uvm_page.c revision 1.162 1 /* $NetBSD: uvm_page.c,v 1.162 2010/11/12 03:21:04 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1997 Charles D. Cranor and Washington University.
31 * Copyright (c) 1991, 1993, The Regents of the University of California.
32 *
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to Berkeley by
36 * The Mach Operating System project at Carnegie-Mellon University.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Charles D. Cranor,
49 * Washington University, the University of California, Berkeley and
50 * its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
68 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
69 *
70 *
71 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
72 * All rights reserved.
73 *
74 * Permission to use, copy, modify and distribute this software and
75 * its documentation is hereby granted, provided that both the copyright
76 * notice and this permission notice appear in all copies of the
77 * software, derivative works or modified versions, and any portions
78 * thereof, and that both notices appear in supporting documentation.
79 *
80 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
81 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
82 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
83 *
84 * Carnegie Mellon requests users of this software to return to
85 *
86 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
87 * School of Computer Science
88 * Carnegie Mellon University
89 * Pittsburgh PA 15213-3890
90 *
91 * any improvements or extensions that they make and grant Carnegie the
92 * rights to redistribute these changes.
93 */
94
95 /*
96 * uvm_page.c: page ops.
97 */
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.162 2010/11/12 03:21:04 uebayasi Exp $");
101
102 #include "opt_ddb.h"
103 #include "opt_uvmhist.h"
104 #include "opt_readahead.h"
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/malloc.h>
109 #include <sys/sched.h>
110 #include <sys/kernel.h>
111 #include <sys/vnode.h>
112 #include <sys/proc.h>
113 #include <sys/atomic.h>
114 #include <sys/cpu.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119
120 /*
121 * global vars... XXXCDC: move to uvm. structure.
122 */
123
124 /*
125 * physical memory config is stored in vm_physmem.
126 */
127
128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
129 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
130 #define vm_nphysmem vm_nphysseg
131
132 /*
133 * Some supported CPUs in a given architecture don't support all
134 * of the things necessary to do idle page zero'ing efficiently.
135 * We therefore provide a way to enable it from machdep code here.
136 */
137 bool vm_page_zero_enable = false;
138
139 /*
140 * number of pages per-CPU to reserve for the kernel.
141 */
142 int vm_page_reserve_kernel = 5;
143
144 /*
145 * physical memory size;
146 */
147 int physmem;
148
149 /*
150 * local variables
151 */
152
153 /*
154 * these variables record the values returned by vm_page_bootstrap,
155 * for debugging purposes. The implementation of uvm_pageboot_alloc
156 * and pmap_startup here also uses them internally.
157 */
158
159 static vaddr_t virtual_space_start;
160 static vaddr_t virtual_space_end;
161
162 /*
163 * we allocate an initial number of page colors in uvm_page_init(),
164 * and remember them. We may re-color pages as cache sizes are
165 * discovered during the autoconfiguration phase. But we can never
166 * free the initial set of buckets, since they are allocated using
167 * uvm_pageboot_alloc().
168 */
169
170 static bool have_recolored_pages /* = false */;
171
172 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
173
174 #ifdef DEBUG
175 vaddr_t uvm_zerocheckkva;
176 #endif /* DEBUG */
177
178 /*
179 * local prototypes
180 */
181
182 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
183 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
184
185 /*
186 * per-object tree of pages
187 */
188
189 static signed int
190 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
191 {
192 const struct vm_page *pg1 = n1;
193 const struct vm_page *pg2 = n2;
194 const voff_t a = pg1->offset;
195 const voff_t b = pg2->offset;
196
197 if (a < b)
198 return -1;
199 if (a > b)
200 return 1;
201 return 0;
202 }
203
204 static signed int
205 uvm_page_compare_key(void *ctx, const void *n, const void *key)
206 {
207 const struct vm_page *pg = n;
208 const voff_t a = pg->offset;
209 const voff_t b = *(const voff_t *)key;
210
211 if (a < b)
212 return -1;
213 if (a > b)
214 return 1;
215 return 0;
216 }
217
218 const rb_tree_ops_t uvm_page_tree_ops = {
219 .rbto_compare_nodes = uvm_page_compare_nodes,
220 .rbto_compare_key = uvm_page_compare_key,
221 .rbto_node_offset = offsetof(struct vm_page, rb_node),
222 .rbto_context = NULL
223 };
224
225 /*
226 * inline functions
227 */
228
229 /*
230 * uvm_pageinsert: insert a page in the object.
231 *
232 * => caller must lock object
233 * => caller must lock page queues
234 * => call should have already set pg's object and offset pointers
235 * and bumped the version counter
236 */
237
238 static inline void
239 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
240 struct vm_page *where)
241 {
242
243 KASSERT(uobj == pg->uobject);
244 KASSERT(mutex_owned(&uobj->vmobjlock));
245 KASSERT((pg->flags & PG_TABLED) == 0);
246 KASSERT(where == NULL || (where->flags & PG_TABLED));
247 KASSERT(where == NULL || (where->uobject == uobj));
248
249 if (UVM_OBJ_IS_VNODE(uobj)) {
250 if (uobj->uo_npages == 0) {
251 struct vnode *vp = (struct vnode *)uobj;
252
253 vholdl(vp);
254 }
255 if (UVM_OBJ_IS_VTEXT(uobj)) {
256 atomic_inc_uint(&uvmexp.execpages);
257 } else {
258 atomic_inc_uint(&uvmexp.filepages);
259 }
260 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
261 atomic_inc_uint(&uvmexp.anonpages);
262 }
263
264 if (where)
265 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
266 else
267 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
268 pg->flags |= PG_TABLED;
269 uobj->uo_npages++;
270 }
271
272
273 static inline void
274 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
275 {
276 struct vm_page *ret;
277
278 KASSERT(uobj == pg->uobject);
279 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
280 KASSERT(ret == pg);
281 }
282
283 static inline void
284 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
285 {
286
287 KDASSERT(uobj != NULL);
288 uvm_pageinsert_tree(uobj, pg);
289 uvm_pageinsert_list(uobj, pg, NULL);
290 }
291
292 /*
293 * uvm_page_remove: remove page from object.
294 *
295 * => caller must lock object
296 * => caller must lock page queues
297 */
298
299 static inline void
300 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
301 {
302
303 KASSERT(uobj == pg->uobject);
304 KASSERT(mutex_owned(&uobj->vmobjlock));
305 KASSERT(pg->flags & PG_TABLED);
306
307 if (UVM_OBJ_IS_VNODE(uobj)) {
308 if (uobj->uo_npages == 1) {
309 struct vnode *vp = (struct vnode *)uobj;
310
311 holdrelel(vp);
312 }
313 if (UVM_OBJ_IS_VTEXT(uobj)) {
314 atomic_dec_uint(&uvmexp.execpages);
315 } else {
316 atomic_dec_uint(&uvmexp.filepages);
317 }
318 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
319 atomic_dec_uint(&uvmexp.anonpages);
320 }
321
322 /* object should be locked */
323 uobj->uo_npages--;
324 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
325 pg->flags &= ~PG_TABLED;
326 pg->uobject = NULL;
327 }
328
329 static inline void
330 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
331 {
332
333 KASSERT(uobj == pg->uobject);
334 rb_tree_remove_node(&uobj->rb_tree, pg);
335 }
336
337 static inline void
338 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
339 {
340
341 KDASSERT(uobj != NULL);
342 uvm_pageremove_tree(uobj, pg);
343 uvm_pageremove_list(uobj, pg);
344 }
345
346 static void
347 uvm_page_init_buckets(struct pgfreelist *pgfl)
348 {
349 int color, i;
350
351 for (color = 0; color < uvmexp.ncolors; color++) {
352 for (i = 0; i < PGFL_NQUEUES; i++) {
353 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
354 }
355 }
356 }
357
358 /*
359 * uvm_page_init: init the page system. called from uvm_init().
360 *
361 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
362 */
363
364 void
365 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
366 {
367 static struct uvm_cpu boot_cpu;
368 psize_t freepages, pagecount, bucketcount, n;
369 struct pgflbucket *bucketarray, *cpuarray;
370 struct vm_physseg *seg;
371 struct vm_page *pagearray;
372 int lcv;
373 u_int i;
374 paddr_t paddr;
375
376 KASSERT(ncpu <= 1);
377 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
378
379 /*
380 * init the page queues and page queue locks, except the free
381 * list; we allocate that later (with the initial vm_page
382 * structures).
383 */
384
385 uvm.cpus[0] = &boot_cpu;
386 curcpu()->ci_data.cpu_uvm = &boot_cpu;
387 uvm_reclaim_init();
388 uvmpdpol_init();
389 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
390 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
391
392 /*
393 * allocate vm_page structures.
394 */
395
396 /*
397 * sanity check:
398 * before calling this function the MD code is expected to register
399 * some free RAM with the uvm_page_physload() function. our job
400 * now is to allocate vm_page structures for this memory.
401 */
402
403 if (vm_nphysmem == 0)
404 panic("uvm_page_bootstrap: no memory pre-allocated");
405
406 /*
407 * first calculate the number of free pages...
408 *
409 * note that we use start/end rather than avail_start/avail_end.
410 * this allows us to allocate extra vm_page structures in case we
411 * want to return some memory to the pool after booting.
412 */
413
414 freepages = 0;
415 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
416 seg = VM_PHYSMEM_PTR(lcv);
417 freepages += (seg->end - seg->start);
418 }
419
420 /*
421 * Let MD code initialize the number of colors, or default
422 * to 1 color if MD code doesn't care.
423 */
424 if (uvmexp.ncolors == 0)
425 uvmexp.ncolors = 1;
426 uvmexp.colormask = uvmexp.ncolors - 1;
427
428 /*
429 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
430 * use. for each page of memory we use we need a vm_page structure.
431 * thus, the total number of pages we can use is the total size of
432 * the memory divided by the PAGE_SIZE plus the size of the vm_page
433 * structure. we add one to freepages as a fudge factor to avoid
434 * truncation errors (since we can only allocate in terms of whole
435 * pages).
436 */
437
438 bucketcount = uvmexp.ncolors * VM_NFREELIST;
439 pagecount = ((freepages + 1) << PAGE_SHIFT) /
440 (PAGE_SIZE + sizeof(struct vm_page));
441
442 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
443 sizeof(struct pgflbucket) * 2) + (pagecount *
444 sizeof(struct vm_page)));
445 cpuarray = bucketarray + bucketcount;
446 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
447
448 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
449 uvm.page_free[lcv].pgfl_buckets =
450 (bucketarray + (lcv * uvmexp.ncolors));
451 uvm_page_init_buckets(&uvm.page_free[lcv]);
452 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
453 (cpuarray + (lcv * uvmexp.ncolors));
454 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
455 }
456 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
457
458 /*
459 * init the vm_page structures and put them in the correct place.
460 */
461
462 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
463 seg = VM_PHYSMEM_PTR(lcv);
464 n = seg->end - seg->start;
465
466 /* set up page array pointers */
467 seg->pgs = pagearray;
468 pagearray += n;
469 pagecount -= n;
470 seg->lastpg = seg->pgs + n;
471
472 /* init and free vm_pages (we've already zeroed them) */
473 paddr = ctob(seg->start);
474 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
475 seg->pgs[i].phys_addr = paddr;
476 #ifdef __HAVE_VM_PAGE_MD
477 VM_MDPAGE_INIT(&seg->pgs[i]);
478 #endif
479 if (atop(paddr) >= seg->avail_start &&
480 atop(paddr) <= seg->avail_end) {
481 uvmexp.npages++;
482 /* add page to free pool */
483 uvm_pagefree(&seg->pgs[i]);
484 }
485 }
486 }
487
488 /*
489 * pass up the values of virtual_space_start and
490 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
491 * layers of the VM.
492 */
493
494 *kvm_startp = round_page(virtual_space_start);
495 *kvm_endp = trunc_page(virtual_space_end);
496 #ifdef DEBUG
497 /*
498 * steal kva for uvm_pagezerocheck().
499 */
500 uvm_zerocheckkva = *kvm_startp;
501 *kvm_startp += PAGE_SIZE;
502 #endif /* DEBUG */
503
504 /*
505 * init various thresholds.
506 */
507
508 uvmexp.reserve_pagedaemon = 1;
509 uvmexp.reserve_kernel = vm_page_reserve_kernel;
510
511 /*
512 * determine if we should zero pages in the idle loop.
513 */
514
515 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
516
517 /*
518 * done!
519 */
520
521 uvm.page_init_done = true;
522 }
523
524 /*
525 * uvm_setpagesize: set the page size
526 *
527 * => sets page_shift and page_mask from uvmexp.pagesize.
528 */
529
530 void
531 uvm_setpagesize(void)
532 {
533
534 /*
535 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
536 * to be a constant (indicated by being a non-zero value).
537 */
538 if (uvmexp.pagesize == 0) {
539 if (PAGE_SIZE == 0)
540 panic("uvm_setpagesize: uvmexp.pagesize not set");
541 uvmexp.pagesize = PAGE_SIZE;
542 }
543 uvmexp.pagemask = uvmexp.pagesize - 1;
544 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
545 panic("uvm_setpagesize: page size not a power of two");
546 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
547 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
548 break;
549 }
550
551 /*
552 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
553 */
554
555 vaddr_t
556 uvm_pageboot_alloc(vsize_t size)
557 {
558 static bool initialized = false;
559 vaddr_t addr;
560 #if !defined(PMAP_STEAL_MEMORY)
561 vaddr_t vaddr;
562 paddr_t paddr;
563 #endif
564
565 /*
566 * on first call to this function, initialize ourselves.
567 */
568 if (initialized == false) {
569 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
570
571 /* round it the way we like it */
572 virtual_space_start = round_page(virtual_space_start);
573 virtual_space_end = trunc_page(virtual_space_end);
574
575 initialized = true;
576 }
577
578 /* round to page size */
579 size = round_page(size);
580
581 #if defined(PMAP_STEAL_MEMORY)
582
583 /*
584 * defer bootstrap allocation to MD code (it may want to allocate
585 * from a direct-mapped segment). pmap_steal_memory should adjust
586 * virtual_space_start/virtual_space_end if necessary.
587 */
588
589 addr = pmap_steal_memory(size, &virtual_space_start,
590 &virtual_space_end);
591
592 return(addr);
593
594 #else /* !PMAP_STEAL_MEMORY */
595
596 /*
597 * allocate virtual memory for this request
598 */
599 if (virtual_space_start == virtual_space_end ||
600 (virtual_space_end - virtual_space_start) < size)
601 panic("uvm_pageboot_alloc: out of virtual space");
602
603 addr = virtual_space_start;
604
605 #ifdef PMAP_GROWKERNEL
606 /*
607 * If the kernel pmap can't map the requested space,
608 * then allocate more resources for it.
609 */
610 if (uvm_maxkaddr < (addr + size)) {
611 uvm_maxkaddr = pmap_growkernel(addr + size);
612 if (uvm_maxkaddr < (addr + size))
613 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
614 }
615 #endif
616
617 virtual_space_start += size;
618
619 /*
620 * allocate and mapin physical pages to back new virtual pages
621 */
622
623 for (vaddr = round_page(addr) ; vaddr < addr + size ;
624 vaddr += PAGE_SIZE) {
625
626 if (!uvm_page_physget(&paddr))
627 panic("uvm_pageboot_alloc: out of memory");
628
629 /*
630 * Note this memory is no longer managed, so using
631 * pmap_kenter is safe.
632 */
633 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
634 }
635 pmap_update(pmap_kernel());
636 return(addr);
637 #endif /* PMAP_STEAL_MEMORY */
638 }
639
640 #if !defined(PMAP_STEAL_MEMORY)
641 /*
642 * uvm_page_physget: "steal" one page from the vm_physmem structure.
643 *
644 * => attempt to allocate it off the end of a segment in which the "avail"
645 * values match the start/end values. if we can't do that, then we
646 * will advance both values (making them equal, and removing some
647 * vm_page structures from the non-avail area).
648 * => return false if out of memory.
649 */
650
651 /* subroutine: try to allocate from memory chunks on the specified freelist */
652 static bool uvm_page_physget_freelist(paddr_t *, int);
653
654 static bool
655 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
656 {
657 struct vm_physseg *seg;
658 int lcv, x;
659
660 /* pass 1: try allocating from a matching end */
661 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
662 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
663 #else
664 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
665 #endif
666 {
667 seg = VM_PHYSMEM_PTR(lcv);
668
669 if (uvm.page_init_done == true)
670 panic("uvm_page_physget: called _after_ bootstrap");
671
672 if (seg->free_list != freelist)
673 continue;
674
675 /* try from front */
676 if (seg->avail_start == seg->start &&
677 seg->avail_start < seg->avail_end) {
678 *paddrp = ctob(seg->avail_start);
679 seg->avail_start++;
680 seg->start++;
681 /* nothing left? nuke it */
682 if (seg->avail_start == seg->end) {
683 if (vm_nphysmem == 1)
684 panic("uvm_page_physget: out of memory!");
685 vm_nphysmem--;
686 for (x = lcv ; x < vm_nphysmem ; x++)
687 /* structure copy */
688 VM_PHYSMEM_PTR_SWAP(x, x + 1);
689 }
690 return (true);
691 }
692
693 /* try from rear */
694 if (seg->avail_end == seg->end &&
695 seg->avail_start < seg->avail_end) {
696 *paddrp = ctob(seg->avail_end - 1);
697 seg->avail_end--;
698 seg->end--;
699 /* nothing left? nuke it */
700 if (seg->avail_end == seg->start) {
701 if (vm_nphysmem == 1)
702 panic("uvm_page_physget: out of memory!");
703 vm_nphysmem--;
704 for (x = lcv ; x < vm_nphysmem ; x++)
705 /* structure copy */
706 VM_PHYSMEM_PTR_SWAP(x, x + 1);
707 }
708 return (true);
709 }
710 }
711
712 /* pass2: forget about matching ends, just allocate something */
713 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
714 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
715 #else
716 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
717 #endif
718 {
719 seg = VM_PHYSMEM_PTR(lcv);
720
721 /* any room in this bank? */
722 if (seg->avail_start >= seg->avail_end)
723 continue; /* nope */
724
725 *paddrp = ctob(seg->avail_start);
726 seg->avail_start++;
727 /* truncate! */
728 seg->start = seg->avail_start;
729
730 /* nothing left? nuke it */
731 if (seg->avail_start == seg->end) {
732 if (vm_nphysmem == 1)
733 panic("uvm_page_physget: out of memory!");
734 vm_nphysmem--;
735 for (x = lcv ; x < vm_nphysmem ; x++)
736 /* structure copy */
737 VM_PHYSMEM_PTR_SWAP(x, x + 1);
738 }
739 return (true);
740 }
741
742 return (false); /* whoops! */
743 }
744
745 bool
746 uvm_page_physget(paddr_t *paddrp)
747 {
748 int i;
749
750 /* try in the order of freelist preference */
751 for (i = 0; i < VM_NFREELIST; i++)
752 if (uvm_page_physget_freelist(paddrp, i) == true)
753 return (true);
754 return (false);
755 }
756 #endif /* PMAP_STEAL_MEMORY */
757
758 /*
759 * uvm_page_physload: load physical memory into VM system
760 *
761 * => all args are PFs
762 * => all pages in start/end get vm_page structures
763 * => areas marked by avail_start/avail_end get added to the free page pool
764 * => we are limited to VM_PHYSSEG_MAX physical memory segments
765 */
766
767 void
768 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
769 paddr_t avail_end, int free_list)
770 {
771 int preload, lcv;
772 psize_t npages;
773 struct vm_page *pgs;
774 struct vm_physseg *ps;
775
776 if (uvmexp.pagesize == 0)
777 panic("uvm_page_physload: page size not set!");
778 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
779 panic("uvm_page_physload: bad free list %d", free_list);
780 if (start >= end)
781 panic("uvm_page_physload: start >= end");
782
783 /*
784 * do we have room?
785 */
786
787 if (vm_nphysmem == VM_PHYSSEG_MAX) {
788 printf("uvm_page_physload: unable to load physical memory "
789 "segment\n");
790 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
791 VM_PHYSSEG_MAX, (long long)start, (long long)end);
792 printf("\tincrease VM_PHYSSEG_MAX\n");
793 return;
794 }
795
796 /*
797 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
798 * called yet, so malloc is not available).
799 */
800
801 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
802 if (VM_PHYSMEM_PTR(lcv)->pgs)
803 break;
804 }
805 preload = (lcv == vm_nphysmem);
806
807 /*
808 * if VM is already running, attempt to malloc() vm_page structures
809 */
810
811 if (!preload) {
812 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
813 } else {
814 pgs = NULL;
815 npages = 0;
816 }
817
818 /*
819 * now insert us in the proper place in vm_physmem[]
820 */
821
822 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
823 /* random: put it at the end (easy!) */
824 ps = VM_PHYSMEM_PTR(vm_nphysmem);
825 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
826 {
827 int x;
828 /* sort by address for binary search */
829 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
830 if (start < VM_PHYSMEM_PTR(lcv)->start)
831 break;
832 ps = VM_PHYSMEM_PTR(lcv);
833 /* move back other entries, if necessary ... */
834 for (x = vm_nphysmem ; x > lcv ; x--)
835 /* structure copy */
836 VM_PHYSMEM_PTR_SWAP(x, x - 1);
837 }
838 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
839 {
840 int x;
841 /* sort by largest segment first */
842 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
843 if ((end - start) >
844 (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
845 break;
846 ps = VM_PHYSMEM_PTR(lcv);
847 /* move back other entries, if necessary ... */
848 for (x = vm_nphysmem ; x > lcv ; x--)
849 /* structure copy */
850 VM_PHYSMEM_PTR_SWAP(x, x - 1);
851 }
852 #else
853 panic("uvm_page_physload: unknown physseg strategy selected!");
854 #endif
855
856 ps->start = start;
857 ps->end = end;
858 ps->avail_start = avail_start;
859 ps->avail_end = avail_end;
860 if (preload) {
861 ps->pgs = NULL;
862 } else {
863 ps->pgs = pgs;
864 ps->lastpg = pgs + npages;
865 }
866 ps->free_list = free_list;
867 vm_nphysmem++;
868
869 if (!preload) {
870 uvmpdpol_reinit();
871 }
872 }
873
874 /*
875 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
876 */
877
878 #if VM_PHYSSEG_MAX == 1
879 static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
880 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
881 static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
882 #else
883 static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
884 #endif
885
886 /*
887 * vm_physseg_find: find vm_physseg structure that belongs to a PA
888 */
889 int
890 vm_physseg_find(paddr_t pframe, int *offp)
891 {
892
893 #if VM_PHYSSEG_MAX == 1
894 return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
895 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
896 return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
897 #else
898 return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
899 #endif
900 }
901
902 #if VM_PHYSSEG_MAX == 1
903 static inline int
904 vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
905 {
906
907 /* 'contig' case */
908 if (pframe >= segs[0].start && pframe < segs[0].end) {
909 if (offp)
910 *offp = pframe - segs[0].start;
911 return(0);
912 }
913 return(-1);
914 }
915
916 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
917
918 static inline int
919 vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
920 {
921 /* binary search for it */
922 u_int start, len, try;
923
924 /*
925 * if try is too large (thus target is less than try) we reduce
926 * the length to trunc(len/2) [i.e. everything smaller than "try"]
927 *
928 * if the try is too small (thus target is greater than try) then
929 * we set the new start to be (try + 1). this means we need to
930 * reduce the length to (round(len/2) - 1).
931 *
932 * note "adjust" below which takes advantage of the fact that
933 * (round(len/2) - 1) == trunc((len - 1) / 2)
934 * for any value of len we may have
935 */
936
937 for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
938 try = start + (len / 2); /* try in the middle */
939
940 /* start past our try? */
941 if (pframe >= segs[try].start) {
942 /* was try correct? */
943 if (pframe < segs[try].end) {
944 if (offp)
945 *offp = pframe - segs[try].start;
946 return(try); /* got it */
947 }
948 start = try + 1; /* next time, start here */
949 len--; /* "adjust" */
950 } else {
951 /*
952 * pframe before try, just reduce length of
953 * region, done in "for" loop
954 */
955 }
956 }
957 return(-1);
958 }
959
960 #else
961
962 static inline int
963 vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
964 {
965 /* linear search for it */
966 int lcv;
967
968 for (lcv = 0; lcv < nsegs; lcv++) {
969 if (pframe >= segs[lcv].start &&
970 pframe < segs[lcv].end) {
971 if (offp)
972 *offp = pframe - segs[lcv].start;
973 return(lcv); /* got it */
974 }
975 }
976 return(-1);
977 }
978 #endif
979
980 /*
981 * uvm_page_recolor: Recolor the pages if the new bucket count is
982 * larger than the old one.
983 */
984
985 void
986 uvm_page_recolor(int newncolors)
987 {
988 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
989 struct pgfreelist gpgfl, pgfl;
990 struct vm_page *pg;
991 vsize_t bucketcount;
992 int lcv, color, i, ocolors;
993 struct uvm_cpu *ucpu;
994
995 if (newncolors <= uvmexp.ncolors)
996 return;
997
998 if (uvm.page_init_done == false) {
999 uvmexp.ncolors = newncolors;
1000 return;
1001 }
1002
1003 bucketcount = newncolors * VM_NFREELIST;
1004 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
1005 M_VMPAGE, M_NOWAIT);
1006 cpuarray = bucketarray + bucketcount;
1007 if (bucketarray == NULL) {
1008 printf("WARNING: unable to allocate %ld page color buckets\n",
1009 (long) bucketcount);
1010 return;
1011 }
1012
1013 mutex_spin_enter(&uvm_fpageqlock);
1014
1015 /* Make sure we should still do this. */
1016 if (newncolors <= uvmexp.ncolors) {
1017 mutex_spin_exit(&uvm_fpageqlock);
1018 free(bucketarray, M_VMPAGE);
1019 return;
1020 }
1021
1022 oldbucketarray = uvm.page_free[0].pgfl_buckets;
1023 ocolors = uvmexp.ncolors;
1024
1025 uvmexp.ncolors = newncolors;
1026 uvmexp.colormask = uvmexp.ncolors - 1;
1027
1028 ucpu = curcpu()->ci_data.cpu_uvm;
1029 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1030 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1031 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1032 uvm_page_init_buckets(&gpgfl);
1033 uvm_page_init_buckets(&pgfl);
1034 for (color = 0; color < ocolors; color++) {
1035 for (i = 0; i < PGFL_NQUEUES; i++) {
1036 while ((pg = LIST_FIRST(&uvm.page_free[
1037 lcv].pgfl_buckets[color].pgfl_queues[i]))
1038 != NULL) {
1039 LIST_REMOVE(pg, pageq.list); /* global */
1040 LIST_REMOVE(pg, listq.list); /* cpu */
1041 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1042 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1043 i], pg, pageq.list);
1044 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1045 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1046 i], pg, listq.list);
1047 }
1048 }
1049 }
1050 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1051 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1052 }
1053
1054 if (have_recolored_pages) {
1055 mutex_spin_exit(&uvm_fpageqlock);
1056 free(oldbucketarray, M_VMPAGE);
1057 return;
1058 }
1059
1060 have_recolored_pages = true;
1061 mutex_spin_exit(&uvm_fpageqlock);
1062 }
1063
1064 /*
1065 * uvm_cpu_attach: initialize per-CPU data structures.
1066 */
1067
1068 void
1069 uvm_cpu_attach(struct cpu_info *ci)
1070 {
1071 struct pgflbucket *bucketarray;
1072 struct pgfreelist pgfl;
1073 struct uvm_cpu *ucpu;
1074 vsize_t bucketcount;
1075 int lcv;
1076
1077 if (CPU_IS_PRIMARY(ci)) {
1078 /* Already done in uvm_page_init(). */
1079 return;
1080 }
1081
1082 /* Add more reserve pages for this CPU. */
1083 uvmexp.reserve_kernel += vm_page_reserve_kernel;
1084
1085 /* Configure this CPU's free lists. */
1086 bucketcount = uvmexp.ncolors * VM_NFREELIST;
1087 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
1088 M_VMPAGE, M_WAITOK);
1089 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1090 uvm.cpus[cpu_index(ci)] = ucpu;
1091 ci->ci_data.cpu_uvm = ucpu;
1092 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1093 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1094 uvm_page_init_buckets(&pgfl);
1095 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1096 }
1097 }
1098
1099 /*
1100 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1101 */
1102
1103 static struct vm_page *
1104 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1105 int *trycolorp)
1106 {
1107 struct pgflist *freeq;
1108 struct vm_page *pg;
1109 int color, trycolor = *trycolorp;
1110 struct pgfreelist *gpgfl, *pgfl;
1111
1112 KASSERT(mutex_owned(&uvm_fpageqlock));
1113
1114 color = trycolor;
1115 pgfl = &ucpu->page_free[flist];
1116 gpgfl = &uvm.page_free[flist];
1117 do {
1118 /* cpu, try1 */
1119 if ((pg = LIST_FIRST((freeq =
1120 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1121 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1122 uvmexp.cpuhit++;
1123 goto gotit;
1124 }
1125 /* global, try1 */
1126 if ((pg = LIST_FIRST((freeq =
1127 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1128 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1129 uvmexp.cpumiss++;
1130 goto gotit;
1131 }
1132 /* cpu, try2 */
1133 if ((pg = LIST_FIRST((freeq =
1134 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1135 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1136 uvmexp.cpuhit++;
1137 goto gotit;
1138 }
1139 /* global, try2 */
1140 if ((pg = LIST_FIRST((freeq =
1141 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1142 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1143 uvmexp.cpumiss++;
1144 goto gotit;
1145 }
1146 color = (color + 1) & uvmexp.colormask;
1147 } while (color != trycolor);
1148
1149 return (NULL);
1150
1151 gotit:
1152 LIST_REMOVE(pg, pageq.list); /* global list */
1153 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1154 uvmexp.free--;
1155
1156 /* update zero'd page count */
1157 if (pg->flags & PG_ZERO)
1158 uvmexp.zeropages--;
1159
1160 if (color == trycolor)
1161 uvmexp.colorhit++;
1162 else {
1163 uvmexp.colormiss++;
1164 *trycolorp = color;
1165 }
1166
1167 return (pg);
1168 }
1169
1170 /*
1171 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1172 *
1173 * => return null if no pages free
1174 * => wake up pagedaemon if number of free pages drops below low water mark
1175 * => if obj != NULL, obj must be locked (to put in obj's tree)
1176 * => if anon != NULL, anon must be locked (to put in anon)
1177 * => only one of obj or anon can be non-null
1178 * => caller must activate/deactivate page if it is not wired.
1179 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1180 * => policy decision: it is more important to pull a page off of the
1181 * appropriate priority free list than it is to get a zero'd or
1182 * unknown contents page. This is because we live with the
1183 * consequences of a bad free list decision for the entire
1184 * lifetime of the page, e.g. if the page comes from memory that
1185 * is slower to access.
1186 */
1187
1188 struct vm_page *
1189 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1190 int flags, int strat, int free_list)
1191 {
1192 int lcv, try1, try2, zeroit = 0, color;
1193 struct uvm_cpu *ucpu;
1194 struct vm_page *pg;
1195 lwp_t *l;
1196
1197 KASSERT(obj == NULL || anon == NULL);
1198 KASSERT(anon == NULL || off == 0);
1199 KASSERT(off == trunc_page(off));
1200 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1201 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1202
1203 mutex_spin_enter(&uvm_fpageqlock);
1204
1205 /*
1206 * This implements a global round-robin page coloring
1207 * algorithm.
1208 *
1209 * XXXJRT: What about virtually-indexed caches?
1210 */
1211
1212 ucpu = curcpu()->ci_data.cpu_uvm;
1213 color = ucpu->page_free_nextcolor;
1214
1215 /*
1216 * check to see if we need to generate some free pages waking
1217 * the pagedaemon.
1218 */
1219
1220 uvm_kick_pdaemon();
1221
1222 /*
1223 * fail if any of these conditions is true:
1224 * [1] there really are no free pages, or
1225 * [2] only kernel "reserved" pages remain and
1226 * reserved pages have not been requested.
1227 * [3] only pagedaemon "reserved" pages remain and
1228 * the requestor isn't the pagedaemon.
1229 * we make kernel reserve pages available if called by a
1230 * kernel thread or a realtime thread.
1231 */
1232 l = curlwp;
1233 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1234 flags |= UVM_PGA_USERESERVE;
1235 }
1236 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1237 (flags & UVM_PGA_USERESERVE) == 0) ||
1238 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1239 curlwp != uvm.pagedaemon_lwp))
1240 goto fail;
1241
1242 #if PGFL_NQUEUES != 2
1243 #error uvm_pagealloc_strat needs to be updated
1244 #endif
1245
1246 /*
1247 * If we want a zero'd page, try the ZEROS queue first, otherwise
1248 * we try the UNKNOWN queue first.
1249 */
1250 if (flags & UVM_PGA_ZERO) {
1251 try1 = PGFL_ZEROS;
1252 try2 = PGFL_UNKNOWN;
1253 } else {
1254 try1 = PGFL_UNKNOWN;
1255 try2 = PGFL_ZEROS;
1256 }
1257
1258 again:
1259 switch (strat) {
1260 case UVM_PGA_STRAT_NORMAL:
1261 /* Check freelists: descending priority (ascending id) order */
1262 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1263 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1264 try1, try2, &color);
1265 if (pg != NULL)
1266 goto gotit;
1267 }
1268
1269 /* No pages free! */
1270 goto fail;
1271
1272 case UVM_PGA_STRAT_ONLY:
1273 case UVM_PGA_STRAT_FALLBACK:
1274 /* Attempt to allocate from the specified free list. */
1275 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1276 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1277 try1, try2, &color);
1278 if (pg != NULL)
1279 goto gotit;
1280
1281 /* Fall back, if possible. */
1282 if (strat == UVM_PGA_STRAT_FALLBACK) {
1283 strat = UVM_PGA_STRAT_NORMAL;
1284 goto again;
1285 }
1286
1287 /* No pages free! */
1288 goto fail;
1289
1290 default:
1291 panic("uvm_pagealloc_strat: bad strat %d", strat);
1292 /* NOTREACHED */
1293 }
1294
1295 gotit:
1296 /*
1297 * We now know which color we actually allocated from; set
1298 * the next color accordingly.
1299 */
1300
1301 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1302
1303 /*
1304 * update allocation statistics and remember if we have to
1305 * zero the page
1306 */
1307
1308 if (flags & UVM_PGA_ZERO) {
1309 if (pg->flags & PG_ZERO) {
1310 uvmexp.pga_zerohit++;
1311 zeroit = 0;
1312 } else {
1313 uvmexp.pga_zeromiss++;
1314 zeroit = 1;
1315 }
1316 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1317 ucpu->page_idle_zero = vm_page_zero_enable;
1318 }
1319 }
1320 KASSERT(pg->pqflags == PQ_FREE);
1321
1322 pg->offset = off;
1323 pg->uobject = obj;
1324 pg->uanon = anon;
1325 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1326 if (anon) {
1327 anon->an_page = pg;
1328 pg->pqflags = PQ_ANON;
1329 atomic_inc_uint(&uvmexp.anonpages);
1330 } else {
1331 if (obj) {
1332 uvm_pageinsert(obj, pg);
1333 }
1334 pg->pqflags = 0;
1335 }
1336 mutex_spin_exit(&uvm_fpageqlock);
1337
1338 #if defined(UVM_PAGE_TRKOWN)
1339 pg->owner_tag = NULL;
1340 #endif
1341 UVM_PAGE_OWN(pg, "new alloc");
1342
1343 if (flags & UVM_PGA_ZERO) {
1344 /*
1345 * A zero'd page is not clean. If we got a page not already
1346 * zero'd, then we have to zero it ourselves.
1347 */
1348 pg->flags &= ~PG_CLEAN;
1349 if (zeroit)
1350 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1351 }
1352
1353 return(pg);
1354
1355 fail:
1356 mutex_spin_exit(&uvm_fpageqlock);
1357 return (NULL);
1358 }
1359
1360 /*
1361 * uvm_pagereplace: replace a page with another
1362 *
1363 * => object must be locked
1364 */
1365
1366 void
1367 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1368 {
1369 struct uvm_object *uobj = oldpg->uobject;
1370
1371 KASSERT((oldpg->flags & PG_TABLED) != 0);
1372 KASSERT(uobj != NULL);
1373 KASSERT((newpg->flags & PG_TABLED) == 0);
1374 KASSERT(newpg->uobject == NULL);
1375 KASSERT(mutex_owned(&uobj->vmobjlock));
1376
1377 newpg->uobject = uobj;
1378 newpg->offset = oldpg->offset;
1379
1380 uvm_pageremove_tree(uobj, oldpg);
1381 uvm_pageinsert_tree(uobj, newpg);
1382 uvm_pageinsert_list(uobj, newpg, oldpg);
1383 uvm_pageremove_list(uobj, oldpg);
1384 }
1385
1386 /*
1387 * uvm_pagerealloc: reallocate a page from one object to another
1388 *
1389 * => both objects must be locked
1390 */
1391
1392 void
1393 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1394 {
1395 /*
1396 * remove it from the old object
1397 */
1398
1399 if (pg->uobject) {
1400 uvm_pageremove(pg->uobject, pg);
1401 }
1402
1403 /*
1404 * put it in the new object
1405 */
1406
1407 if (newobj) {
1408 pg->uobject = newobj;
1409 pg->offset = newoff;
1410 uvm_pageinsert(newobj, pg);
1411 }
1412 }
1413
1414 #ifdef DEBUG
1415 /*
1416 * check if page is zero-filled
1417 *
1418 * - called with free page queue lock held.
1419 */
1420 void
1421 uvm_pagezerocheck(struct vm_page *pg)
1422 {
1423 int *p, *ep;
1424
1425 KASSERT(uvm_zerocheckkva != 0);
1426 KASSERT(mutex_owned(&uvm_fpageqlock));
1427
1428 /*
1429 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1430 * uvm page allocator.
1431 *
1432 * it might be better to have "CPU-local temporary map" pmap interface.
1433 */
1434 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1435 p = (int *)uvm_zerocheckkva;
1436 ep = (int *)((char *)p + PAGE_SIZE);
1437 pmap_update(pmap_kernel());
1438 while (p < ep) {
1439 if (*p != 0)
1440 panic("PG_ZERO page isn't zero-filled");
1441 p++;
1442 }
1443 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1444 /*
1445 * pmap_update() is not necessary here because no one except us
1446 * uses this VA.
1447 */
1448 }
1449 #endif /* DEBUG */
1450
1451 /*
1452 * uvm_pagefree: free page
1453 *
1454 * => erase page's identity (i.e. remove from object)
1455 * => put page on free list
1456 * => caller must lock owning object (either anon or uvm_object)
1457 * => caller must lock page queues
1458 * => assumes all valid mappings of pg are gone
1459 */
1460
1461 void
1462 uvm_pagefree(struct vm_page *pg)
1463 {
1464 struct pgflist *pgfl;
1465 struct uvm_cpu *ucpu;
1466 int index, color, queue;
1467 bool iszero;
1468
1469 #ifdef DEBUG
1470 if (pg->uobject == (void *)0xdeadbeef &&
1471 pg->uanon == (void *)0xdeadbeef) {
1472 panic("uvm_pagefree: freeing free page %p", pg);
1473 }
1474 #endif /* DEBUG */
1475
1476 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1477 KASSERT(!(pg->pqflags & PQ_FREE));
1478 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1479 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1480 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1481 mutex_owned(&pg->uanon->an_lock));
1482
1483 /*
1484 * if the page is loaned, resolve the loan instead of freeing.
1485 */
1486
1487 if (pg->loan_count) {
1488 KASSERT(pg->wire_count == 0);
1489
1490 /*
1491 * if the page is owned by an anon then we just want to
1492 * drop anon ownership. the kernel will free the page when
1493 * it is done with it. if the page is owned by an object,
1494 * remove it from the object and mark it dirty for the benefit
1495 * of possible anon owners.
1496 *
1497 * regardless of previous ownership, wakeup any waiters,
1498 * unbusy the page, and we're done.
1499 */
1500
1501 if (pg->uobject != NULL) {
1502 uvm_pageremove(pg->uobject, pg);
1503 pg->flags &= ~PG_CLEAN;
1504 } else if (pg->uanon != NULL) {
1505 if ((pg->pqflags & PQ_ANON) == 0) {
1506 pg->loan_count--;
1507 } else {
1508 pg->pqflags &= ~PQ_ANON;
1509 atomic_dec_uint(&uvmexp.anonpages);
1510 }
1511 pg->uanon->an_page = NULL;
1512 pg->uanon = NULL;
1513 }
1514 if (pg->flags & PG_WANTED) {
1515 wakeup(pg);
1516 }
1517 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1518 #ifdef UVM_PAGE_TRKOWN
1519 pg->owner_tag = NULL;
1520 #endif
1521 if (pg->loan_count) {
1522 KASSERT(pg->uobject == NULL);
1523 if (pg->uanon == NULL) {
1524 uvm_pagedequeue(pg);
1525 }
1526 return;
1527 }
1528 }
1529
1530 /*
1531 * remove page from its object or anon.
1532 */
1533
1534 if (pg->uobject != NULL) {
1535 uvm_pageremove(pg->uobject, pg);
1536 } else if (pg->uanon != NULL) {
1537 pg->uanon->an_page = NULL;
1538 atomic_dec_uint(&uvmexp.anonpages);
1539 }
1540
1541 /*
1542 * now remove the page from the queues.
1543 */
1544
1545 uvm_pagedequeue(pg);
1546
1547 /*
1548 * if the page was wired, unwire it now.
1549 */
1550
1551 if (pg->wire_count) {
1552 pg->wire_count = 0;
1553 uvmexp.wired--;
1554 }
1555
1556 /*
1557 * and put on free queue
1558 */
1559
1560 iszero = (pg->flags & PG_ZERO);
1561 index = uvm_page_lookup_freelist(pg);
1562 color = VM_PGCOLOR_BUCKET(pg);
1563 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1564
1565 #ifdef DEBUG
1566 pg->uobject = (void *)0xdeadbeef;
1567 pg->uanon = (void *)0xdeadbeef;
1568 #endif
1569
1570 mutex_spin_enter(&uvm_fpageqlock);
1571 pg->pqflags = PQ_FREE;
1572
1573 #ifdef DEBUG
1574 if (iszero)
1575 uvm_pagezerocheck(pg);
1576 #endif /* DEBUG */
1577
1578
1579 /* global list */
1580 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1581 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1582 uvmexp.free++;
1583 if (iszero) {
1584 uvmexp.zeropages++;
1585 }
1586
1587 /* per-cpu list */
1588 ucpu = curcpu()->ci_data.cpu_uvm;
1589 pg->offset = (uintptr_t)ucpu;
1590 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1591 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1592 ucpu->pages[queue]++;
1593 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1594 ucpu->page_idle_zero = vm_page_zero_enable;
1595 }
1596
1597 mutex_spin_exit(&uvm_fpageqlock);
1598 }
1599
1600 /*
1601 * uvm_page_unbusy: unbusy an array of pages.
1602 *
1603 * => pages must either all belong to the same object, or all belong to anons.
1604 * => if pages are object-owned, object must be locked.
1605 * => if pages are anon-owned, anons must be locked.
1606 * => caller must lock page queues if pages may be released.
1607 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1608 */
1609
1610 void
1611 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1612 {
1613 struct vm_page *pg;
1614 int i;
1615 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1616
1617 for (i = 0; i < npgs; i++) {
1618 pg = pgs[i];
1619 if (pg == NULL || pg == PGO_DONTCARE) {
1620 continue;
1621 }
1622
1623 KASSERT(pg->uobject == NULL ||
1624 mutex_owned(&pg->uobject->vmobjlock));
1625 KASSERT(pg->uobject != NULL ||
1626 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1627
1628 KASSERT(pg->flags & PG_BUSY);
1629 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1630 if (pg->flags & PG_WANTED) {
1631 wakeup(pg);
1632 }
1633 if (pg->flags & PG_RELEASED) {
1634 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1635 KASSERT(pg->uobject != NULL ||
1636 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1637 pg->flags &= ~PG_RELEASED;
1638 uvm_pagefree(pg);
1639 } else {
1640 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1641 KASSERT((pg->flags & PG_FAKE) == 0);
1642 pg->flags &= ~(PG_WANTED|PG_BUSY);
1643 UVM_PAGE_OWN(pg, NULL);
1644 }
1645 }
1646 }
1647
1648 #if defined(UVM_PAGE_TRKOWN)
1649 /*
1650 * uvm_page_own: set or release page ownership
1651 *
1652 * => this is a debugging function that keeps track of who sets PG_BUSY
1653 * and where they do it. it can be used to track down problems
1654 * such a process setting "PG_BUSY" and never releasing it.
1655 * => page's object [if any] must be locked
1656 * => if "tag" is NULL then we are releasing page ownership
1657 */
1658 void
1659 uvm_page_own(struct vm_page *pg, const char *tag)
1660 {
1661 struct uvm_object *uobj;
1662 struct vm_anon *anon;
1663
1664 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1665
1666 uobj = pg->uobject;
1667 anon = pg->uanon;
1668 if (uobj != NULL) {
1669 KASSERT(mutex_owned(&uobj->vmobjlock));
1670 } else if (anon != NULL) {
1671 KASSERT(mutex_owned(&anon->an_lock));
1672 }
1673
1674 KASSERT((pg->flags & PG_WANTED) == 0);
1675
1676 /* gain ownership? */
1677 if (tag) {
1678 KASSERT((pg->flags & PG_BUSY) != 0);
1679 if (pg->owner_tag) {
1680 printf("uvm_page_own: page %p already owned "
1681 "by proc %d [%s]\n", pg,
1682 pg->owner, pg->owner_tag);
1683 panic("uvm_page_own");
1684 }
1685 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1686 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1687 pg->owner_tag = tag;
1688 return;
1689 }
1690
1691 /* drop ownership */
1692 KASSERT((pg->flags & PG_BUSY) == 0);
1693 if (pg->owner_tag == NULL) {
1694 printf("uvm_page_own: dropping ownership of an non-owned "
1695 "page (%p)\n", pg);
1696 panic("uvm_page_own");
1697 }
1698 if (!uvmpdpol_pageisqueued_p(pg)) {
1699 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1700 pg->wire_count > 0);
1701 } else {
1702 KASSERT(pg->wire_count == 0);
1703 }
1704 pg->owner_tag = NULL;
1705 }
1706 #endif
1707
1708 /*
1709 * uvm_pageidlezero: zero free pages while the system is idle.
1710 *
1711 * => try to complete one color bucket at a time, to reduce our impact
1712 * on the CPU cache.
1713 * => we loop until we either reach the target or there is a lwp ready
1714 * to run, or MD code detects a reason to break early.
1715 */
1716 void
1717 uvm_pageidlezero(void)
1718 {
1719 struct vm_page *pg;
1720 struct pgfreelist *pgfl, *gpgfl;
1721 struct uvm_cpu *ucpu;
1722 int free_list, firstbucket, nextbucket;
1723
1724 ucpu = curcpu()->ci_data.cpu_uvm;
1725 if (!ucpu->page_idle_zero ||
1726 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1727 ucpu->page_idle_zero = false;
1728 return;
1729 }
1730 mutex_enter(&uvm_fpageqlock);
1731 firstbucket = ucpu->page_free_nextcolor;
1732 nextbucket = firstbucket;
1733 do {
1734 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1735 if (sched_curcpu_runnable_p()) {
1736 goto quit;
1737 }
1738 pgfl = &ucpu->page_free[free_list];
1739 gpgfl = &uvm.page_free[free_list];
1740 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1741 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1742 if (sched_curcpu_runnable_p()) {
1743 goto quit;
1744 }
1745 LIST_REMOVE(pg, pageq.list); /* global list */
1746 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1747 ucpu->pages[PGFL_UNKNOWN]--;
1748 uvmexp.free--;
1749 KASSERT(pg->pqflags == PQ_FREE);
1750 pg->pqflags = 0;
1751 mutex_spin_exit(&uvm_fpageqlock);
1752 #ifdef PMAP_PAGEIDLEZERO
1753 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1754
1755 /*
1756 * The machine-dependent code detected
1757 * some reason for us to abort zeroing
1758 * pages, probably because there is a
1759 * process now ready to run.
1760 */
1761
1762 mutex_spin_enter(&uvm_fpageqlock);
1763 pg->pqflags = PQ_FREE;
1764 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1765 nextbucket].pgfl_queues[
1766 PGFL_UNKNOWN], pg, pageq.list);
1767 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1768 nextbucket].pgfl_queues[
1769 PGFL_UNKNOWN], pg, listq.list);
1770 ucpu->pages[PGFL_UNKNOWN]++;
1771 uvmexp.free++;
1772 uvmexp.zeroaborts++;
1773 goto quit;
1774 }
1775 #else
1776 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1777 #endif /* PMAP_PAGEIDLEZERO */
1778 pg->flags |= PG_ZERO;
1779
1780 mutex_spin_enter(&uvm_fpageqlock);
1781 pg->pqflags = PQ_FREE;
1782 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1783 nextbucket].pgfl_queues[PGFL_ZEROS],
1784 pg, pageq.list);
1785 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1786 nextbucket].pgfl_queues[PGFL_ZEROS],
1787 pg, listq.list);
1788 ucpu->pages[PGFL_ZEROS]++;
1789 uvmexp.free++;
1790 uvmexp.zeropages++;
1791 }
1792 }
1793 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1794 break;
1795 }
1796 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1797 } while (nextbucket != firstbucket);
1798 ucpu->page_idle_zero = false;
1799 quit:
1800 mutex_spin_exit(&uvm_fpageqlock);
1801 }
1802
1803 /*
1804 * uvm_pagelookup: look up a page
1805 *
1806 * => caller should lock object to keep someone from pulling the page
1807 * out from under it
1808 */
1809
1810 struct vm_page *
1811 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1812 {
1813 struct vm_page *pg;
1814
1815 KASSERT(mutex_owned(&obj->vmobjlock));
1816
1817 pg = rb_tree_find_node(&obj->rb_tree, &off);
1818
1819 KASSERT(pg == NULL || obj->uo_npages != 0);
1820 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1821 (pg->flags & PG_BUSY) != 0);
1822 return pg;
1823 }
1824
1825 /*
1826 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1827 *
1828 * => caller must lock page queues
1829 */
1830
1831 void
1832 uvm_pagewire(struct vm_page *pg)
1833 {
1834 KASSERT(mutex_owned(&uvm_pageqlock));
1835 #if defined(READAHEAD_STATS)
1836 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1837 uvm_ra_hit.ev_count++;
1838 pg->pqflags &= ~PQ_READAHEAD;
1839 }
1840 #endif /* defined(READAHEAD_STATS) */
1841 if (pg->wire_count == 0) {
1842 uvm_pagedequeue(pg);
1843 uvmexp.wired++;
1844 }
1845 pg->wire_count++;
1846 }
1847
1848 /*
1849 * uvm_pageunwire: unwire the page.
1850 *
1851 * => activate if wire count goes to zero.
1852 * => caller must lock page queues
1853 */
1854
1855 void
1856 uvm_pageunwire(struct vm_page *pg)
1857 {
1858 KASSERT(mutex_owned(&uvm_pageqlock));
1859 pg->wire_count--;
1860 if (pg->wire_count == 0) {
1861 uvm_pageactivate(pg);
1862 uvmexp.wired--;
1863 }
1864 }
1865
1866 /*
1867 * uvm_pagedeactivate: deactivate page
1868 *
1869 * => caller must lock page queues
1870 * => caller must check to make sure page is not wired
1871 * => object that page belongs to must be locked (so we can adjust pg->flags)
1872 * => caller must clear the reference on the page before calling
1873 */
1874
1875 void
1876 uvm_pagedeactivate(struct vm_page *pg)
1877 {
1878
1879 KASSERT(mutex_owned(&uvm_pageqlock));
1880 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1881 uvmpdpol_pagedeactivate(pg);
1882 }
1883
1884 /*
1885 * uvm_pageactivate: activate page
1886 *
1887 * => caller must lock page queues
1888 */
1889
1890 void
1891 uvm_pageactivate(struct vm_page *pg)
1892 {
1893
1894 KASSERT(mutex_owned(&uvm_pageqlock));
1895 #if defined(READAHEAD_STATS)
1896 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1897 uvm_ra_hit.ev_count++;
1898 pg->pqflags &= ~PQ_READAHEAD;
1899 }
1900 #endif /* defined(READAHEAD_STATS) */
1901 if (pg->wire_count != 0) {
1902 return;
1903 }
1904 uvmpdpol_pageactivate(pg);
1905 }
1906
1907 /*
1908 * uvm_pagedequeue: remove a page from any paging queue
1909 */
1910
1911 void
1912 uvm_pagedequeue(struct vm_page *pg)
1913 {
1914
1915 if (uvmpdpol_pageisqueued_p(pg)) {
1916 KASSERT(mutex_owned(&uvm_pageqlock));
1917 }
1918
1919 uvmpdpol_pagedequeue(pg);
1920 }
1921
1922 /*
1923 * uvm_pageenqueue: add a page to a paging queue without activating.
1924 * used where a page is not really demanded (yet). eg. read-ahead
1925 */
1926
1927 void
1928 uvm_pageenqueue(struct vm_page *pg)
1929 {
1930
1931 KASSERT(mutex_owned(&uvm_pageqlock));
1932 if (pg->wire_count != 0) {
1933 return;
1934 }
1935 uvmpdpol_pageenqueue(pg);
1936 }
1937
1938 /*
1939 * uvm_pagezero: zero fill a page
1940 *
1941 * => if page is part of an object then the object should be locked
1942 * to protect pg->flags.
1943 */
1944
1945 void
1946 uvm_pagezero(struct vm_page *pg)
1947 {
1948 pg->flags &= ~PG_CLEAN;
1949 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1950 }
1951
1952 /*
1953 * uvm_pagecopy: copy a page
1954 *
1955 * => if page is part of an object then the object should be locked
1956 * to protect pg->flags.
1957 */
1958
1959 void
1960 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1961 {
1962
1963 dst->flags &= ~PG_CLEAN;
1964 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1965 }
1966
1967 /*
1968 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1969 */
1970
1971 bool
1972 uvm_pageismanaged(paddr_t pa)
1973 {
1974
1975 return (vm_physseg_find(atop(pa), NULL) != -1);
1976 }
1977
1978 /*
1979 * uvm_page_lookup_freelist: look up the free list for the specified page
1980 */
1981
1982 int
1983 uvm_page_lookup_freelist(struct vm_page *pg)
1984 {
1985 int lcv;
1986
1987 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1988 KASSERT(lcv != -1);
1989 return (VM_PHYSMEM_PTR(lcv)->free_list);
1990 }
1991
1992 #if defined(DDB) || defined(DEBUGPRINT)
1993
1994 /*
1995 * uvm_page_printit: actually print the page
1996 */
1997
1998 static const char page_flagbits[] = UVM_PGFLAGBITS;
1999 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2000
2001 void
2002 uvm_page_printit(struct vm_page *pg, bool full,
2003 void (*pr)(const char *, ...))
2004 {
2005 struct vm_page *tpg;
2006 struct uvm_object *uobj;
2007 struct pgflist *pgl;
2008 char pgbuf[128];
2009 char pqbuf[128];
2010
2011 (*pr)("PAGE %p:\n", pg);
2012 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2013 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2014 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2015 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2016 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2017 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2018 #if defined(UVM_PAGE_TRKOWN)
2019 if (pg->flags & PG_BUSY)
2020 (*pr)(" owning process = %d, tag=%s\n",
2021 pg->owner, pg->owner_tag);
2022 else
2023 (*pr)(" page not busy, no owner\n");
2024 #else
2025 (*pr)(" [page ownership tracking disabled]\n");
2026 #endif
2027
2028 if (!full)
2029 return;
2030
2031 /* cross-verify object/anon */
2032 if ((pg->pqflags & PQ_FREE) == 0) {
2033 if (pg->pqflags & PQ_ANON) {
2034 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2035 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2036 (pg->uanon) ? pg->uanon->an_page : NULL);
2037 else
2038 (*pr)(" anon backpointer is OK\n");
2039 } else {
2040 uobj = pg->uobject;
2041 if (uobj) {
2042 (*pr)(" checking object list\n");
2043 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2044 if (tpg == pg) {
2045 break;
2046 }
2047 }
2048 if (tpg)
2049 (*pr)(" page found on object list\n");
2050 else
2051 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2052 }
2053 }
2054 }
2055
2056 /* cross-verify page queue */
2057 if (pg->pqflags & PQ_FREE) {
2058 int fl = uvm_page_lookup_freelist(pg);
2059 int color = VM_PGCOLOR_BUCKET(pg);
2060 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2061 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2062 } else {
2063 pgl = NULL;
2064 }
2065
2066 if (pgl) {
2067 (*pr)(" checking pageq list\n");
2068 LIST_FOREACH(tpg, pgl, pageq.list) {
2069 if (tpg == pg) {
2070 break;
2071 }
2072 }
2073 if (tpg)
2074 (*pr)(" page found on pageq list\n");
2075 else
2076 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2077 }
2078 }
2079
2080 /*
2081 * uvm_pages_printthem - print a summary of all managed pages
2082 */
2083
2084 void
2085 uvm_page_printall(void (*pr)(const char *, ...))
2086 {
2087 unsigned i;
2088 struct vm_page *pg;
2089
2090 (*pr)("%18s %4s %4s %18s %18s"
2091 #ifdef UVM_PAGE_TRKOWN
2092 " OWNER"
2093 #endif
2094 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2095 for (i = 0; i < vm_nphysmem; i++) {
2096 for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2097 (*pr)("%18p %04x %04x %18p %18p",
2098 pg, pg->flags, pg->pqflags, pg->uobject,
2099 pg->uanon);
2100 #ifdef UVM_PAGE_TRKOWN
2101 if (pg->flags & PG_BUSY)
2102 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2103 #endif
2104 (*pr)("\n");
2105 }
2106 }
2107 }
2108
2109 #endif /* DDB || DEBUGPRINT */
2110