Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.168
      1 /*	$NetBSD: uvm_page.c,v 1.168 2010/12/11 22:34:03 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2010 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     31  * Copyright (c) 1991, 1993, The Regents of the University of California.
     32  *
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to Berkeley by
     36  * The Mach Operating System project at Carnegie-Mellon University.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *	This product includes software developed by Charles D. Cranor,
     49  *      Washington University, the University of California, Berkeley and
     50  *      its contributors.
     51  * 4. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     68  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     69  *
     70  *
     71  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     72  * All rights reserved.
     73  *
     74  * Permission to use, copy, modify and distribute this software and
     75  * its documentation is hereby granted, provided that both the copyright
     76  * notice and this permission notice appear in all copies of the
     77  * software, derivative works or modified versions, and any portions
     78  * thereof, and that both notices appear in supporting documentation.
     79  *
     80  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     81  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     82  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     83  *
     84  * Carnegie Mellon requests users of this software to return to
     85  *
     86  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     87  *  School of Computer Science
     88  *  Carnegie Mellon University
     89  *  Pittsburgh PA 15213-3890
     90  *
     91  * any improvements or extensions that they make and grant Carnegie the
     92  * rights to redistribute these changes.
     93  */
     94 
     95 /*
     96  * uvm_page.c: page ops.
     97  */
     98 
     99 #include <sys/cdefs.h>
    100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.168 2010/12/11 22:34:03 matt Exp $");
    101 
    102 #include "opt_ddb.h"
    103 #include "opt_uvmhist.h"
    104 #include "opt_readahead.h"
    105 
    106 #include <sys/param.h>
    107 #include <sys/systm.h>
    108 #include <sys/malloc.h>
    109 #include <sys/sched.h>
    110 #include <sys/kernel.h>
    111 #include <sys/vnode.h>
    112 #include <sys/proc.h>
    113 #include <sys/atomic.h>
    114 #include <sys/cpu.h>
    115 
    116 #include <uvm/uvm.h>
    117 #include <uvm/uvm_ddb.h>
    118 #include <uvm/uvm_pdpolicy.h>
    119 
    120 /*
    121  * global vars... XXXCDC: move to uvm. structure.
    122  */
    123 
    124 /*
    125  * physical memory config is stored in vm_physmem.
    126  */
    127 
    128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    129 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    130 #define	vm_nphysmem	vm_nphysseg
    131 
    132 /*
    133  * Some supported CPUs in a given architecture don't support all
    134  * of the things necessary to do idle page zero'ing efficiently.
    135  * We therefore provide a way to enable it from machdep code here.
    136  */
    137 bool vm_page_zero_enable = false;
    138 
    139 /*
    140  * number of pages per-CPU to reserve for the kernel.
    141  */
    142 int vm_page_reserve_kernel = 5;
    143 
    144 /*
    145  * physical memory size;
    146  */
    147 int physmem;
    148 
    149 /*
    150  * local variables
    151  */
    152 
    153 /*
    154  * these variables record the values returned by vm_page_bootstrap,
    155  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    156  * and pmap_startup here also uses them internally.
    157  */
    158 
    159 static vaddr_t      virtual_space_start;
    160 static vaddr_t      virtual_space_end;
    161 
    162 /*
    163  * we allocate an initial number of page colors in uvm_page_init(),
    164  * and remember them.  We may re-color pages as cache sizes are
    165  * discovered during the autoconfiguration phase.  But we can never
    166  * free the initial set of buckets, since they are allocated using
    167  * uvm_pageboot_alloc().
    168  */
    169 
    170 static bool have_recolored_pages /* = false */;
    171 
    172 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    173 
    174 #ifdef DEBUG
    175 vaddr_t uvm_zerocheckkva;
    176 #endif /* DEBUG */
    177 
    178 /*
    179  * local prototypes
    180  */
    181 
    182 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    183 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    184 
    185 /*
    186  * per-object tree of pages
    187  */
    188 
    189 static signed int
    190 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    191 {
    192 	const struct vm_page *pg1 = n1;
    193 	const struct vm_page *pg2 = n2;
    194 	const voff_t a = pg1->offset;
    195 	const voff_t b = pg2->offset;
    196 
    197 	if (a < b)
    198 		return -1;
    199 	if (a > b)
    200 		return 1;
    201 	return 0;
    202 }
    203 
    204 static signed int
    205 uvm_page_compare_key(void *ctx, const void *n, const void *key)
    206 {
    207 	const struct vm_page *pg = n;
    208 	const voff_t a = pg->offset;
    209 	const voff_t b = *(const voff_t *)key;
    210 
    211 	if (a < b)
    212 		return -1;
    213 	if (a > b)
    214 		return 1;
    215 	return 0;
    216 }
    217 
    218 const rb_tree_ops_t uvm_page_tree_ops = {
    219 	.rbto_compare_nodes = uvm_page_compare_nodes,
    220 	.rbto_compare_key = uvm_page_compare_key,
    221 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    222 	.rbto_context = NULL
    223 };
    224 
    225 /*
    226  * inline functions
    227  */
    228 
    229 /*
    230  * uvm_pageinsert: insert a page in the object.
    231  *
    232  * => caller must lock object
    233  * => caller must lock page queues
    234  * => call should have already set pg's object and offset pointers
    235  *    and bumped the version counter
    236  */
    237 
    238 static inline void
    239 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    240     struct vm_page *where)
    241 {
    242 
    243 	KASSERT(uobj == pg->uobject);
    244 	KASSERT(mutex_owned(&uobj->vmobjlock));
    245 	KASSERT((pg->flags & PG_TABLED) == 0);
    246 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    247 	KASSERT(where == NULL || (where->uobject == uobj));
    248 
    249 	if (UVM_OBJ_IS_VNODE(uobj)) {
    250 		if (uobj->uo_npages == 0) {
    251 			struct vnode *vp = (struct vnode *)uobj;
    252 
    253 			vholdl(vp);
    254 		}
    255 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    256 			atomic_inc_uint(&uvmexp.execpages);
    257 		} else {
    258 			atomic_inc_uint(&uvmexp.filepages);
    259 		}
    260 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    261 		atomic_inc_uint(&uvmexp.anonpages);
    262 	}
    263 
    264 	if (where)
    265 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    266 	else
    267 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    268 	pg->flags |= PG_TABLED;
    269 	uobj->uo_npages++;
    270 }
    271 
    272 
    273 static inline void
    274 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    275 {
    276 	struct vm_page *ret;
    277 
    278 	KASSERT(uobj == pg->uobject);
    279 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    280 	KASSERT(ret == pg);
    281 }
    282 
    283 static inline void
    284 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    285 {
    286 
    287 	KDASSERT(uobj != NULL);
    288 	uvm_pageinsert_tree(uobj, pg);
    289 	uvm_pageinsert_list(uobj, pg, NULL);
    290 }
    291 
    292 /*
    293  * uvm_page_remove: remove page from object.
    294  *
    295  * => caller must lock object
    296  * => caller must lock page queues
    297  */
    298 
    299 static inline void
    300 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    301 {
    302 
    303 	KASSERT(uobj == pg->uobject);
    304 	KASSERT(mutex_owned(&uobj->vmobjlock));
    305 	KASSERT(pg->flags & PG_TABLED);
    306 
    307 	if (UVM_OBJ_IS_VNODE(uobj)) {
    308 		if (uobj->uo_npages == 1) {
    309 			struct vnode *vp = (struct vnode *)uobj;
    310 
    311 			holdrelel(vp);
    312 		}
    313 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    314 			atomic_dec_uint(&uvmexp.execpages);
    315 		} else {
    316 			atomic_dec_uint(&uvmexp.filepages);
    317 		}
    318 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    319 		atomic_dec_uint(&uvmexp.anonpages);
    320 	}
    321 
    322 	/* object should be locked */
    323 	uobj->uo_npages--;
    324 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    325 	pg->flags &= ~PG_TABLED;
    326 	pg->uobject = NULL;
    327 }
    328 
    329 static inline void
    330 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    331 {
    332 
    333 	KASSERT(uobj == pg->uobject);
    334 	rb_tree_remove_node(&uobj->rb_tree, pg);
    335 }
    336 
    337 static inline void
    338 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    339 {
    340 
    341 	KDASSERT(uobj != NULL);
    342 	uvm_pageremove_tree(uobj, pg);
    343 	uvm_pageremove_list(uobj, pg);
    344 }
    345 
    346 static void
    347 uvm_page_init_buckets(struct pgfreelist *pgfl)
    348 {
    349 	int color, i;
    350 
    351 	for (color = 0; color < uvmexp.ncolors; color++) {
    352 		for (i = 0; i < PGFL_NQUEUES; i++) {
    353 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    354 		}
    355 	}
    356 }
    357 
    358 /*
    359  * uvm_page_init: init the page system.   called from uvm_init().
    360  *
    361  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    362  */
    363 
    364 void
    365 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    366 {
    367 	static struct uvm_cpu boot_cpu;
    368 	psize_t freepages, pagecount, bucketcount, n;
    369 	struct pgflbucket *bucketarray, *cpuarray;
    370 	struct vm_physseg *seg;
    371 	struct vm_page *pagearray;
    372 	int lcv;
    373 	u_int i;
    374 	paddr_t paddr;
    375 
    376 	KASSERT(ncpu <= 1);
    377 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    378 
    379 	/*
    380 	 * init the page queues and page queue locks, except the free
    381 	 * list; we allocate that later (with the initial vm_page
    382 	 * structures).
    383 	 */
    384 
    385 	uvm.cpus[0] = &boot_cpu;
    386 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    387 	uvm_reclaim_init();
    388 	uvmpdpol_init();
    389 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    390 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    391 
    392 	/*
    393 	 * allocate vm_page structures.
    394 	 */
    395 
    396 	/*
    397 	 * sanity check:
    398 	 * before calling this function the MD code is expected to register
    399 	 * some free RAM with the uvm_page_physload() function.   our job
    400 	 * now is to allocate vm_page structures for this memory.
    401 	 */
    402 
    403 	if (vm_nphysmem == 0)
    404 		panic("uvm_page_bootstrap: no memory pre-allocated");
    405 
    406 	/*
    407 	 * first calculate the number of free pages...
    408 	 *
    409 	 * note that we use start/end rather than avail_start/avail_end.
    410 	 * this allows us to allocate extra vm_page structures in case we
    411 	 * want to return some memory to the pool after booting.
    412 	 */
    413 
    414 	freepages = 0;
    415 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    416 		seg = VM_PHYSMEM_PTR(lcv);
    417 		freepages += (seg->end - seg->start);
    418 	}
    419 
    420 	/*
    421 	 * Let MD code initialize the number of colors, or default
    422 	 * to 1 color if MD code doesn't care.
    423 	 */
    424 	if (uvmexp.ncolors == 0)
    425 		uvmexp.ncolors = 1;
    426 	uvmexp.colormask = uvmexp.ncolors - 1;
    427 
    428 	/*
    429 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    430 	 * use.   for each page of memory we use we need a vm_page structure.
    431 	 * thus, the total number of pages we can use is the total size of
    432 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    433 	 * structure.   we add one to freepages as a fudge factor to avoid
    434 	 * truncation errors (since we can only allocate in terms of whole
    435 	 * pages).
    436 	 */
    437 
    438 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    439 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    440 	    (PAGE_SIZE + sizeof(struct vm_page));
    441 
    442 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    443 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    444 	    sizeof(struct vm_page)));
    445 	cpuarray = bucketarray + bucketcount;
    446 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    447 
    448 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    449 		uvm.page_free[lcv].pgfl_buckets =
    450 		    (bucketarray + (lcv * uvmexp.ncolors));
    451 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    452 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    453 		    (cpuarray + (lcv * uvmexp.ncolors));
    454 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    455 	}
    456 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    457 
    458 	/*
    459 	 * init the vm_page structures and put them in the correct place.
    460 	 */
    461 
    462 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    463 		seg = VM_PHYSMEM_PTR(lcv);
    464 		n = seg->end - seg->start;
    465 
    466 		/* set up page array pointers */
    467 		seg->pgs = pagearray;
    468 		pagearray += n;
    469 		pagecount -= n;
    470 		seg->lastpg = seg->pgs + n;
    471 
    472 		/* init and free vm_pages (we've already zeroed them) */
    473 		paddr = ctob(seg->start);
    474 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    475 			seg->pgs[i].phys_addr = paddr;
    476 #ifdef __HAVE_VM_PAGE_MD
    477 			VM_MDPAGE_INIT(&seg->pgs[i]);
    478 #endif
    479 			if (atop(paddr) >= seg->avail_start &&
    480 			    atop(paddr) <= seg->avail_end) {
    481 				uvmexp.npages++;
    482 				/* add page to free pool */
    483 				uvm_pagefree(&seg->pgs[i]);
    484 			}
    485 		}
    486 	}
    487 
    488 	/*
    489 	 * pass up the values of virtual_space_start and
    490 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    491 	 * layers of the VM.
    492 	 */
    493 
    494 	*kvm_startp = round_page(virtual_space_start);
    495 	*kvm_endp = trunc_page(virtual_space_end);
    496 #ifdef DEBUG
    497 	/*
    498 	 * steal kva for uvm_pagezerocheck().
    499 	 */
    500 	uvm_zerocheckkva = *kvm_startp;
    501 	*kvm_startp += PAGE_SIZE;
    502 #endif /* DEBUG */
    503 
    504 	/*
    505 	 * init various thresholds.
    506 	 */
    507 
    508 	uvmexp.reserve_pagedaemon = 1;
    509 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    510 
    511 	/*
    512 	 * determine if we should zero pages in the idle loop.
    513 	 */
    514 
    515 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    516 
    517 	/*
    518 	 * done!
    519 	 */
    520 
    521 	uvm.page_init_done = true;
    522 }
    523 
    524 /*
    525  * uvm_setpagesize: set the page size
    526  *
    527  * => sets page_shift and page_mask from uvmexp.pagesize.
    528  */
    529 
    530 void
    531 uvm_setpagesize(void)
    532 {
    533 
    534 	/*
    535 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    536 	 * to be a constant (indicated by being a non-zero value).
    537 	 */
    538 	if (uvmexp.pagesize == 0) {
    539 		if (PAGE_SIZE == 0)
    540 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    541 		uvmexp.pagesize = PAGE_SIZE;
    542 	}
    543 	uvmexp.pagemask = uvmexp.pagesize - 1;
    544 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    545 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    546 		    uvmexp.pagesize, uvmexp.pagesize);
    547 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    548 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    549 			break;
    550 }
    551 
    552 /*
    553  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    554  */
    555 
    556 vaddr_t
    557 uvm_pageboot_alloc(vsize_t size)
    558 {
    559 	static bool initialized = false;
    560 	vaddr_t addr;
    561 #if !defined(PMAP_STEAL_MEMORY)
    562 	vaddr_t vaddr;
    563 	paddr_t paddr;
    564 #endif
    565 
    566 	/*
    567 	 * on first call to this function, initialize ourselves.
    568 	 */
    569 	if (initialized == false) {
    570 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    571 
    572 		/* round it the way we like it */
    573 		virtual_space_start = round_page(virtual_space_start);
    574 		virtual_space_end = trunc_page(virtual_space_end);
    575 
    576 		initialized = true;
    577 	}
    578 
    579 	/* round to page size */
    580 	size = round_page(size);
    581 
    582 #if defined(PMAP_STEAL_MEMORY)
    583 
    584 	/*
    585 	 * defer bootstrap allocation to MD code (it may want to allocate
    586 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    587 	 * virtual_space_start/virtual_space_end if necessary.
    588 	 */
    589 
    590 	addr = pmap_steal_memory(size, &virtual_space_start,
    591 	    &virtual_space_end);
    592 
    593 	return(addr);
    594 
    595 #else /* !PMAP_STEAL_MEMORY */
    596 
    597 	/*
    598 	 * allocate virtual memory for this request
    599 	 */
    600 	if (virtual_space_start == virtual_space_end ||
    601 	    (virtual_space_end - virtual_space_start) < size)
    602 		panic("uvm_pageboot_alloc: out of virtual space");
    603 
    604 	addr = virtual_space_start;
    605 
    606 #ifdef PMAP_GROWKERNEL
    607 	/*
    608 	 * If the kernel pmap can't map the requested space,
    609 	 * then allocate more resources for it.
    610 	 */
    611 	if (uvm_maxkaddr < (addr + size)) {
    612 		uvm_maxkaddr = pmap_growkernel(addr + size);
    613 		if (uvm_maxkaddr < (addr + size))
    614 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    615 	}
    616 #endif
    617 
    618 	virtual_space_start += size;
    619 
    620 	/*
    621 	 * allocate and mapin physical pages to back new virtual pages
    622 	 */
    623 
    624 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    625 	    vaddr += PAGE_SIZE) {
    626 
    627 		if (!uvm_page_physget(&paddr))
    628 			panic("uvm_pageboot_alloc: out of memory");
    629 
    630 		/*
    631 		 * Note this memory is no longer managed, so using
    632 		 * pmap_kenter is safe.
    633 		 */
    634 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    635 	}
    636 	pmap_update(pmap_kernel());
    637 	return(addr);
    638 #endif	/* PMAP_STEAL_MEMORY */
    639 }
    640 
    641 #if !defined(PMAP_STEAL_MEMORY)
    642 /*
    643  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    644  *
    645  * => attempt to allocate it off the end of a segment in which the "avail"
    646  *    values match the start/end values.   if we can't do that, then we
    647  *    will advance both values (making them equal, and removing some
    648  *    vm_page structures from the non-avail area).
    649  * => return false if out of memory.
    650  */
    651 
    652 /* subroutine: try to allocate from memory chunks on the specified freelist */
    653 static bool uvm_page_physget_freelist(paddr_t *, int);
    654 
    655 static bool
    656 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    657 {
    658 	struct vm_physseg *seg;
    659 	int lcv, x;
    660 
    661 	/* pass 1: try allocating from a matching end */
    662 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    663 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    664 #else
    665 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    666 #endif
    667 	{
    668 		seg = VM_PHYSMEM_PTR(lcv);
    669 
    670 		if (uvm.page_init_done == true)
    671 			panic("uvm_page_physget: called _after_ bootstrap");
    672 
    673 		if (seg->free_list != freelist)
    674 			continue;
    675 
    676 		/* try from front */
    677 		if (seg->avail_start == seg->start &&
    678 		    seg->avail_start < seg->avail_end) {
    679 			*paddrp = ctob(seg->avail_start);
    680 			seg->avail_start++;
    681 			seg->start++;
    682 			/* nothing left?   nuke it */
    683 			if (seg->avail_start == seg->end) {
    684 				if (vm_nphysmem == 1)
    685 				    panic("uvm_page_physget: out of memory!");
    686 				vm_nphysmem--;
    687 				for (x = lcv ; x < vm_nphysmem ; x++)
    688 					/* structure copy */
    689 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    690 			}
    691 			return (true);
    692 		}
    693 
    694 		/* try from rear */
    695 		if (seg->avail_end == seg->end &&
    696 		    seg->avail_start < seg->avail_end) {
    697 			*paddrp = ctob(seg->avail_end - 1);
    698 			seg->avail_end--;
    699 			seg->end--;
    700 			/* nothing left?   nuke it */
    701 			if (seg->avail_end == seg->start) {
    702 				if (vm_nphysmem == 1)
    703 				    panic("uvm_page_physget: out of memory!");
    704 				vm_nphysmem--;
    705 				for (x = lcv ; x < vm_nphysmem ; x++)
    706 					/* structure copy */
    707 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    708 			}
    709 			return (true);
    710 		}
    711 	}
    712 
    713 	/* pass2: forget about matching ends, just allocate something */
    714 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    715 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    716 #else
    717 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    718 #endif
    719 	{
    720 		seg = VM_PHYSMEM_PTR(lcv);
    721 
    722 		/* any room in this bank? */
    723 		if (seg->avail_start >= seg->avail_end)
    724 			continue;  /* nope */
    725 
    726 		*paddrp = ctob(seg->avail_start);
    727 		seg->avail_start++;
    728 		/* truncate! */
    729 		seg->start = seg->avail_start;
    730 
    731 		/* nothing left?   nuke it */
    732 		if (seg->avail_start == seg->end) {
    733 			if (vm_nphysmem == 1)
    734 				panic("uvm_page_physget: out of memory!");
    735 			vm_nphysmem--;
    736 			for (x = lcv ; x < vm_nphysmem ; x++)
    737 				/* structure copy */
    738 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    739 		}
    740 		return (true);
    741 	}
    742 
    743 	return (false);        /* whoops! */
    744 }
    745 
    746 bool
    747 uvm_page_physget(paddr_t *paddrp)
    748 {
    749 	int i;
    750 
    751 	/* try in the order of freelist preference */
    752 	for (i = 0; i < VM_NFREELIST; i++)
    753 		if (uvm_page_physget_freelist(paddrp, i) == true)
    754 			return (true);
    755 	return (false);
    756 }
    757 #endif /* PMAP_STEAL_MEMORY */
    758 
    759 /*
    760  * uvm_page_physload: load physical memory into VM system
    761  *
    762  * => all args are PFs
    763  * => all pages in start/end get vm_page structures
    764  * => areas marked by avail_start/avail_end get added to the free page pool
    765  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    766  */
    767 
    768 void
    769 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    770     paddr_t avail_end, int free_list)
    771 {
    772 	int preload, lcv;
    773 	psize_t npages;
    774 	struct vm_page *pgs;
    775 	struct vm_physseg *ps;
    776 
    777 	if (uvmexp.pagesize == 0)
    778 		panic("uvm_page_physload: page size not set!");
    779 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    780 		panic("uvm_page_physload: bad free list %d", free_list);
    781 	if (start >= end)
    782 		panic("uvm_page_physload: start >= end");
    783 
    784 	/*
    785 	 * do we have room?
    786 	 */
    787 
    788 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    789 		printf("uvm_page_physload: unable to load physical memory "
    790 		    "segment\n");
    791 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    792 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    793 		printf("\tincrease VM_PHYSSEG_MAX\n");
    794 		return;
    795 	}
    796 
    797 	/*
    798 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    799 	 * called yet, so malloc is not available).
    800 	 */
    801 
    802 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    803 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    804 			break;
    805 	}
    806 	preload = (lcv == vm_nphysmem);
    807 
    808 	/*
    809 	 * if VM is already running, attempt to malloc() vm_page structures
    810 	 */
    811 
    812 	if (!preload) {
    813 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    814 	} else {
    815 		pgs = NULL;
    816 		npages = 0;
    817 	}
    818 
    819 	/*
    820 	 * now insert us in the proper place in vm_physmem[]
    821 	 */
    822 
    823 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    824 	/* random: put it at the end (easy!) */
    825 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    826 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    827 	{
    828 		int x;
    829 		/* sort by address for binary search */
    830 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    831 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    832 				break;
    833 		ps = VM_PHYSMEM_PTR(lcv);
    834 		/* move back other entries, if necessary ... */
    835 		for (x = vm_nphysmem ; x > lcv ; x--)
    836 			/* structure copy */
    837 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    838 	}
    839 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    840 	{
    841 		int x;
    842 		/* sort by largest segment first */
    843 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    844 			if ((end - start) >
    845 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    846 				break;
    847 		ps = VM_PHYSMEM_PTR(lcv);
    848 		/* move back other entries, if necessary ... */
    849 		for (x = vm_nphysmem ; x > lcv ; x--)
    850 			/* structure copy */
    851 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    852 	}
    853 #else
    854 	panic("uvm_page_physload: unknown physseg strategy selected!");
    855 #endif
    856 
    857 	ps->start = start;
    858 	ps->end = end;
    859 	ps->avail_start = avail_start;
    860 	ps->avail_end = avail_end;
    861 	if (preload) {
    862 		ps->pgs = NULL;
    863 	} else {
    864 		ps->pgs = pgs;
    865 		ps->lastpg = pgs + npages;
    866 	}
    867 	ps->free_list = free_list;
    868 	vm_nphysmem++;
    869 
    870 	if (!preload) {
    871 		uvmpdpol_reinit();
    872 	}
    873 }
    874 
    875 /*
    876  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    877  */
    878 
    879 #if VM_PHYSSEG_MAX == 1
    880 static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
    881 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    882 static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
    883 #else
    884 static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
    885 #endif
    886 
    887 /*
    888  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    889  */
    890 int
    891 vm_physseg_find(paddr_t pframe, int *offp)
    892 {
    893 
    894 #if VM_PHYSSEG_MAX == 1
    895 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    896 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    897 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    898 #else
    899 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    900 #endif
    901 }
    902 
    903 #if VM_PHYSSEG_MAX == 1
    904 static inline int
    905 vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    906 {
    907 
    908 	/* 'contig' case */
    909 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    910 		if (offp)
    911 			*offp = pframe - segs[0].start;
    912 		return(0);
    913 	}
    914 	return(-1);
    915 }
    916 
    917 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    918 
    919 static inline int
    920 vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    921 {
    922 	/* binary search for it */
    923 	u_int	start, len, try;
    924 
    925 	/*
    926 	 * if try is too large (thus target is less than try) we reduce
    927 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    928 	 *
    929 	 * if the try is too small (thus target is greater than try) then
    930 	 * we set the new start to be (try + 1).   this means we need to
    931 	 * reduce the length to (round(len/2) - 1).
    932 	 *
    933 	 * note "adjust" below which takes advantage of the fact that
    934 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    935 	 * for any value of len we may have
    936 	 */
    937 
    938 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    939 		try = start + (len / 2);	/* try in the middle */
    940 
    941 		/* start past our try? */
    942 		if (pframe >= segs[try].start) {
    943 			/* was try correct? */
    944 			if (pframe < segs[try].end) {
    945 				if (offp)
    946 					*offp = pframe - segs[try].start;
    947 				return(try);            /* got it */
    948 			}
    949 			start = try + 1;	/* next time, start here */
    950 			len--;			/* "adjust" */
    951 		} else {
    952 			/*
    953 			 * pframe before try, just reduce length of
    954 			 * region, done in "for" loop
    955 			 */
    956 		}
    957 	}
    958 	return(-1);
    959 }
    960 
    961 #else
    962 
    963 static inline int
    964 vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    965 {
    966 	/* linear search for it */
    967 	int	lcv;
    968 
    969 	for (lcv = 0; lcv < nsegs; lcv++) {
    970 		if (pframe >= segs[lcv].start &&
    971 		    pframe < segs[lcv].end) {
    972 			if (offp)
    973 				*offp = pframe - segs[lcv].start;
    974 			return(lcv);		   /* got it */
    975 		}
    976 	}
    977 	return(-1);
    978 }
    979 #endif
    980 
    981 /*
    982  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    983  * back from an I/O mapping (ugh!).   used in some MD code as well.
    984  */
    985 struct vm_page *
    986 uvm_phys_to_vm_page(paddr_t pa)
    987 {
    988 	paddr_t pf = atop(pa);
    989 	int	off;
    990 	int	psi;
    991 
    992 	psi = vm_physseg_find(pf, &off);
    993 	if (psi != -1)
    994 		return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
    995 	return(NULL);
    996 }
    997 
    998 paddr_t
    999 uvm_vm_page_to_phys(const struct vm_page *pg)
   1000 {
   1001 
   1002 	return pg->phys_addr;
   1003 }
   1004 
   1005 /*
   1006  * uvm_page_recolor: Recolor the pages if the new bucket count is
   1007  * larger than the old one.
   1008  */
   1009 
   1010 void
   1011 uvm_page_recolor(int newncolors)
   1012 {
   1013 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
   1014 	struct pgfreelist gpgfl, pgfl;
   1015 	struct vm_page *pg;
   1016 	vsize_t bucketcount;
   1017 	int lcv, color, i, ocolors;
   1018 	struct uvm_cpu *ucpu;
   1019 
   1020 	if (newncolors <= uvmexp.ncolors)
   1021 		return;
   1022 
   1023 	if (uvm.page_init_done == false) {
   1024 		uvmexp.ncolors = newncolors;
   1025 		return;
   1026 	}
   1027 
   1028 	bucketcount = newncolors * VM_NFREELIST;
   1029 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
   1030 	    M_VMPAGE, M_NOWAIT);
   1031 	cpuarray = bucketarray + bucketcount;
   1032 	if (bucketarray == NULL) {
   1033 		printf("WARNING: unable to allocate %ld page color buckets\n",
   1034 		    (long) bucketcount);
   1035 		return;
   1036 	}
   1037 
   1038 	mutex_spin_enter(&uvm_fpageqlock);
   1039 
   1040 	/* Make sure we should still do this. */
   1041 	if (newncolors <= uvmexp.ncolors) {
   1042 		mutex_spin_exit(&uvm_fpageqlock);
   1043 		free(bucketarray, M_VMPAGE);
   1044 		return;
   1045 	}
   1046 
   1047 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
   1048 	ocolors = uvmexp.ncolors;
   1049 
   1050 	uvmexp.ncolors = newncolors;
   1051 	uvmexp.colormask = uvmexp.ncolors - 1;
   1052 
   1053 	ucpu = curcpu()->ci_data.cpu_uvm;
   1054 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1055 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
   1056 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
   1057 		uvm_page_init_buckets(&gpgfl);
   1058 		uvm_page_init_buckets(&pgfl);
   1059 		for (color = 0; color < ocolors; color++) {
   1060 			for (i = 0; i < PGFL_NQUEUES; i++) {
   1061 				while ((pg = LIST_FIRST(&uvm.page_free[
   1062 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
   1063 				    != NULL) {
   1064 					LIST_REMOVE(pg, pageq.list); /* global */
   1065 					LIST_REMOVE(pg, listq.list); /* cpu */
   1066 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
   1067 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1068 					    i], pg, pageq.list);
   1069 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1070 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1071 					    i], pg, listq.list);
   1072 				}
   1073 			}
   1074 		}
   1075 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1076 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1077 	}
   1078 
   1079 	if (have_recolored_pages) {
   1080 		mutex_spin_exit(&uvm_fpageqlock);
   1081 		free(oldbucketarray, M_VMPAGE);
   1082 		return;
   1083 	}
   1084 
   1085 	have_recolored_pages = true;
   1086 	mutex_spin_exit(&uvm_fpageqlock);
   1087 }
   1088 
   1089 /*
   1090  * uvm_cpu_attach: initialize per-CPU data structures.
   1091  */
   1092 
   1093 void
   1094 uvm_cpu_attach(struct cpu_info *ci)
   1095 {
   1096 	struct pgflbucket *bucketarray;
   1097 	struct pgfreelist pgfl;
   1098 	struct uvm_cpu *ucpu;
   1099 	vsize_t bucketcount;
   1100 	int lcv;
   1101 
   1102 	if (CPU_IS_PRIMARY(ci)) {
   1103 		/* Already done in uvm_page_init(). */
   1104 		return;
   1105 	}
   1106 
   1107 	/* Add more reserve pages for this CPU. */
   1108 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
   1109 
   1110 	/* Configure this CPU's free lists. */
   1111 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1112 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1113 	    M_VMPAGE, M_WAITOK);
   1114 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
   1115 	uvm.cpus[cpu_index(ci)] = ucpu;
   1116 	ci->ci_data.cpu_uvm = ucpu;
   1117 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1118 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1119 		uvm_page_init_buckets(&pgfl);
   1120 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1121 	}
   1122 }
   1123 
   1124 /*
   1125  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1126  */
   1127 
   1128 static struct vm_page *
   1129 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1130     int *trycolorp)
   1131 {
   1132 	struct pgflist *freeq;
   1133 	struct vm_page *pg;
   1134 	int color, trycolor = *trycolorp;
   1135 	struct pgfreelist *gpgfl, *pgfl;
   1136 
   1137 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1138 
   1139 	color = trycolor;
   1140 	pgfl = &ucpu->page_free[flist];
   1141 	gpgfl = &uvm.page_free[flist];
   1142 	do {
   1143 		/* cpu, try1 */
   1144 		if ((pg = LIST_FIRST((freeq =
   1145 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1146 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1147 		    	uvmexp.cpuhit++;
   1148 			goto gotit;
   1149 		}
   1150 		/* global, try1 */
   1151 		if ((pg = LIST_FIRST((freeq =
   1152 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1153 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1154 		    	uvmexp.cpumiss++;
   1155 			goto gotit;
   1156 		}
   1157 		/* cpu, try2 */
   1158 		if ((pg = LIST_FIRST((freeq =
   1159 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1160 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1161 		    	uvmexp.cpuhit++;
   1162 			goto gotit;
   1163 		}
   1164 		/* global, try2 */
   1165 		if ((pg = LIST_FIRST((freeq =
   1166 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1167 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1168 		    	uvmexp.cpumiss++;
   1169 			goto gotit;
   1170 		}
   1171 		color = (color + 1) & uvmexp.colormask;
   1172 	} while (color != trycolor);
   1173 
   1174 	return (NULL);
   1175 
   1176  gotit:
   1177 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1178 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1179 	uvmexp.free--;
   1180 
   1181 	/* update zero'd page count */
   1182 	if (pg->flags & PG_ZERO)
   1183 		uvmexp.zeropages--;
   1184 
   1185 	if (color == trycolor)
   1186 		uvmexp.colorhit++;
   1187 	else {
   1188 		uvmexp.colormiss++;
   1189 		*trycolorp = color;
   1190 	}
   1191 
   1192 	return (pg);
   1193 }
   1194 
   1195 /*
   1196  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1197  *
   1198  * => return null if no pages free
   1199  * => wake up pagedaemon if number of free pages drops below low water mark
   1200  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1201  * => if anon != NULL, anon must be locked (to put in anon)
   1202  * => only one of obj or anon can be non-null
   1203  * => caller must activate/deactivate page if it is not wired.
   1204  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1205  * => policy decision: it is more important to pull a page off of the
   1206  *	appropriate priority free list than it is to get a zero'd or
   1207  *	unknown contents page.  This is because we live with the
   1208  *	consequences of a bad free list decision for the entire
   1209  *	lifetime of the page, e.g. if the page comes from memory that
   1210  *	is slower to access.
   1211  */
   1212 
   1213 struct vm_page *
   1214 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1215     int flags, int strat, int free_list)
   1216 {
   1217 	int lcv, try1, try2, zeroit = 0, color;
   1218 	struct uvm_cpu *ucpu;
   1219 	struct vm_page *pg;
   1220 	lwp_t *l;
   1221 
   1222 	KASSERT(obj == NULL || anon == NULL);
   1223 	KASSERT(anon == NULL || off == 0);
   1224 	KASSERT(off == trunc_page(off));
   1225 	KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
   1226 	KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
   1227 
   1228 	mutex_spin_enter(&uvm_fpageqlock);
   1229 
   1230 	/*
   1231 	 * This implements a global round-robin page coloring
   1232 	 * algorithm.
   1233 	 *
   1234 	 * XXXJRT: What about virtually-indexed caches?
   1235 	 */
   1236 
   1237 	ucpu = curcpu()->ci_data.cpu_uvm;
   1238 	color = ucpu->page_free_nextcolor;
   1239 
   1240 	/*
   1241 	 * check to see if we need to generate some free pages waking
   1242 	 * the pagedaemon.
   1243 	 */
   1244 
   1245 	uvm_kick_pdaemon();
   1246 
   1247 	/*
   1248 	 * fail if any of these conditions is true:
   1249 	 * [1]  there really are no free pages, or
   1250 	 * [2]  only kernel "reserved" pages remain and
   1251 	 *        reserved pages have not been requested.
   1252 	 * [3]  only pagedaemon "reserved" pages remain and
   1253 	 *        the requestor isn't the pagedaemon.
   1254 	 * we make kernel reserve pages available if called by a
   1255 	 * kernel thread or a realtime thread.
   1256 	 */
   1257 	l = curlwp;
   1258 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1259 		flags |= UVM_PGA_USERESERVE;
   1260 	}
   1261 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1262 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1263 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1264 	     curlwp != uvm.pagedaemon_lwp))
   1265 		goto fail;
   1266 
   1267 #if PGFL_NQUEUES != 2
   1268 #error uvm_pagealloc_strat needs to be updated
   1269 #endif
   1270 
   1271 	/*
   1272 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1273 	 * we try the UNKNOWN queue first.
   1274 	 */
   1275 	if (flags & UVM_PGA_ZERO) {
   1276 		try1 = PGFL_ZEROS;
   1277 		try2 = PGFL_UNKNOWN;
   1278 	} else {
   1279 		try1 = PGFL_UNKNOWN;
   1280 		try2 = PGFL_ZEROS;
   1281 	}
   1282 
   1283  again:
   1284 	switch (strat) {
   1285 	case UVM_PGA_STRAT_NORMAL:
   1286 		/* Check freelists: descending priority (ascending id) order */
   1287 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1288 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1289 			    try1, try2, &color);
   1290 			if (pg != NULL)
   1291 				goto gotit;
   1292 		}
   1293 
   1294 		/* No pages free! */
   1295 		goto fail;
   1296 
   1297 	case UVM_PGA_STRAT_ONLY:
   1298 	case UVM_PGA_STRAT_FALLBACK:
   1299 		/* Attempt to allocate from the specified free list. */
   1300 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1301 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1302 		    try1, try2, &color);
   1303 		if (pg != NULL)
   1304 			goto gotit;
   1305 
   1306 		/* Fall back, if possible. */
   1307 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1308 			strat = UVM_PGA_STRAT_NORMAL;
   1309 			goto again;
   1310 		}
   1311 
   1312 		/* No pages free! */
   1313 		goto fail;
   1314 
   1315 	default:
   1316 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1317 		/* NOTREACHED */
   1318 	}
   1319 
   1320  gotit:
   1321 	/*
   1322 	 * We now know which color we actually allocated from; set
   1323 	 * the next color accordingly.
   1324 	 */
   1325 
   1326 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1327 
   1328 	/*
   1329 	 * update allocation statistics and remember if we have to
   1330 	 * zero the page
   1331 	 */
   1332 
   1333 	if (flags & UVM_PGA_ZERO) {
   1334 		if (pg->flags & PG_ZERO) {
   1335 			uvmexp.pga_zerohit++;
   1336 			zeroit = 0;
   1337 		} else {
   1338 			uvmexp.pga_zeromiss++;
   1339 			zeroit = 1;
   1340 		}
   1341 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1342 			ucpu->page_idle_zero = vm_page_zero_enable;
   1343 		}
   1344 	}
   1345 	KASSERT(pg->pqflags == PQ_FREE);
   1346 
   1347 	pg->offset = off;
   1348 	pg->uobject = obj;
   1349 	pg->uanon = anon;
   1350 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1351 	if (anon) {
   1352 		anon->an_page = pg;
   1353 		pg->pqflags = PQ_ANON;
   1354 		atomic_inc_uint(&uvmexp.anonpages);
   1355 	} else {
   1356 		if (obj) {
   1357 			uvm_pageinsert(obj, pg);
   1358 		}
   1359 		pg->pqflags = 0;
   1360 	}
   1361 	mutex_spin_exit(&uvm_fpageqlock);
   1362 
   1363 #if defined(UVM_PAGE_TRKOWN)
   1364 	pg->owner_tag = NULL;
   1365 #endif
   1366 	UVM_PAGE_OWN(pg, "new alloc");
   1367 
   1368 	if (flags & UVM_PGA_ZERO) {
   1369 		/*
   1370 		 * A zero'd page is not clean.  If we got a page not already
   1371 		 * zero'd, then we have to zero it ourselves.
   1372 		 */
   1373 		pg->flags &= ~PG_CLEAN;
   1374 		if (zeroit)
   1375 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1376 	}
   1377 
   1378 	return(pg);
   1379 
   1380  fail:
   1381 	mutex_spin_exit(&uvm_fpageqlock);
   1382 	return (NULL);
   1383 }
   1384 
   1385 /*
   1386  * uvm_pagereplace: replace a page with another
   1387  *
   1388  * => object must be locked
   1389  */
   1390 
   1391 void
   1392 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1393 {
   1394 	struct uvm_object *uobj = oldpg->uobject;
   1395 
   1396 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1397 	KASSERT(uobj != NULL);
   1398 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1399 	KASSERT(newpg->uobject == NULL);
   1400 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1401 
   1402 	newpg->uobject = uobj;
   1403 	newpg->offset = oldpg->offset;
   1404 
   1405 	uvm_pageremove_tree(uobj, oldpg);
   1406 	uvm_pageinsert_tree(uobj, newpg);
   1407 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1408 	uvm_pageremove_list(uobj, oldpg);
   1409 }
   1410 
   1411 /*
   1412  * uvm_pagerealloc: reallocate a page from one object to another
   1413  *
   1414  * => both objects must be locked
   1415  */
   1416 
   1417 void
   1418 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1419 {
   1420 	/*
   1421 	 * remove it from the old object
   1422 	 */
   1423 
   1424 	if (pg->uobject) {
   1425 		uvm_pageremove(pg->uobject, pg);
   1426 	}
   1427 
   1428 	/*
   1429 	 * put it in the new object
   1430 	 */
   1431 
   1432 	if (newobj) {
   1433 		pg->uobject = newobj;
   1434 		pg->offset = newoff;
   1435 		uvm_pageinsert(newobj, pg);
   1436 	}
   1437 }
   1438 
   1439 #ifdef DEBUG
   1440 /*
   1441  * check if page is zero-filled
   1442  *
   1443  *  - called with free page queue lock held.
   1444  */
   1445 void
   1446 uvm_pagezerocheck(struct vm_page *pg)
   1447 {
   1448 	int *p, *ep;
   1449 
   1450 	KASSERT(uvm_zerocheckkva != 0);
   1451 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1452 
   1453 	/*
   1454 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1455 	 * uvm page allocator.
   1456 	 *
   1457 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1458 	 */
   1459 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1460 	p = (int *)uvm_zerocheckkva;
   1461 	ep = (int *)((char *)p + PAGE_SIZE);
   1462 	pmap_update(pmap_kernel());
   1463 	while (p < ep) {
   1464 		if (*p != 0)
   1465 			panic("PG_ZERO page isn't zero-filled");
   1466 		p++;
   1467 	}
   1468 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1469 	/*
   1470 	 * pmap_update() is not necessary here because no one except us
   1471 	 * uses this VA.
   1472 	 */
   1473 }
   1474 #endif /* DEBUG */
   1475 
   1476 /*
   1477  * uvm_pagefree: free page
   1478  *
   1479  * => erase page's identity (i.e. remove from object)
   1480  * => put page on free list
   1481  * => caller must lock owning object (either anon or uvm_object)
   1482  * => caller must lock page queues
   1483  * => assumes all valid mappings of pg are gone
   1484  */
   1485 
   1486 void
   1487 uvm_pagefree(struct vm_page *pg)
   1488 {
   1489 	struct pgflist *pgfl;
   1490 	struct uvm_cpu *ucpu;
   1491 	int index, color, queue;
   1492 	bool iszero;
   1493 
   1494 #ifdef DEBUG
   1495 	if (pg->uobject == (void *)0xdeadbeef &&
   1496 	    pg->uanon == (void *)0xdeadbeef) {
   1497 		panic("uvm_pagefree: freeing free page %p", pg);
   1498 	}
   1499 #endif /* DEBUG */
   1500 
   1501 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1502 	KASSERT(!(pg->pqflags & PQ_FREE));
   1503 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1504 	KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
   1505 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1506 		mutex_owned(&pg->uanon->an_lock));
   1507 
   1508 	/*
   1509 	 * if the page is loaned, resolve the loan instead of freeing.
   1510 	 */
   1511 
   1512 	if (pg->loan_count) {
   1513 		KASSERT(pg->wire_count == 0);
   1514 
   1515 		/*
   1516 		 * if the page is owned by an anon then we just want to
   1517 		 * drop anon ownership.  the kernel will free the page when
   1518 		 * it is done with it.  if the page is owned by an object,
   1519 		 * remove it from the object and mark it dirty for the benefit
   1520 		 * of possible anon owners.
   1521 		 *
   1522 		 * regardless of previous ownership, wakeup any waiters,
   1523 		 * unbusy the page, and we're done.
   1524 		 */
   1525 
   1526 		if (pg->uobject != NULL) {
   1527 			uvm_pageremove(pg->uobject, pg);
   1528 			pg->flags &= ~PG_CLEAN;
   1529 		} else if (pg->uanon != NULL) {
   1530 			if ((pg->pqflags & PQ_ANON) == 0) {
   1531 				pg->loan_count--;
   1532 			} else {
   1533 				pg->pqflags &= ~PQ_ANON;
   1534 				atomic_dec_uint(&uvmexp.anonpages);
   1535 			}
   1536 			pg->uanon->an_page = NULL;
   1537 			pg->uanon = NULL;
   1538 		}
   1539 		if (pg->flags & PG_WANTED) {
   1540 			wakeup(pg);
   1541 		}
   1542 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1543 #ifdef UVM_PAGE_TRKOWN
   1544 		pg->owner_tag = NULL;
   1545 #endif
   1546 		if (pg->loan_count) {
   1547 			KASSERT(pg->uobject == NULL);
   1548 			if (pg->uanon == NULL) {
   1549 				uvm_pagedequeue(pg);
   1550 			}
   1551 			return;
   1552 		}
   1553 	}
   1554 
   1555 	/*
   1556 	 * remove page from its object or anon.
   1557 	 */
   1558 
   1559 	if (pg->uobject != NULL) {
   1560 		uvm_pageremove(pg->uobject, pg);
   1561 	} else if (pg->uanon != NULL) {
   1562 		pg->uanon->an_page = NULL;
   1563 		atomic_dec_uint(&uvmexp.anonpages);
   1564 	}
   1565 
   1566 	/*
   1567 	 * now remove the page from the queues.
   1568 	 */
   1569 
   1570 	uvm_pagedequeue(pg);
   1571 
   1572 	/*
   1573 	 * if the page was wired, unwire it now.
   1574 	 */
   1575 
   1576 	if (pg->wire_count) {
   1577 		pg->wire_count = 0;
   1578 		uvmexp.wired--;
   1579 	}
   1580 
   1581 	/*
   1582 	 * and put on free queue
   1583 	 */
   1584 
   1585 	iszero = (pg->flags & PG_ZERO);
   1586 	index = uvm_page_lookup_freelist(pg);
   1587 	color = VM_PGCOLOR_BUCKET(pg);
   1588 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1589 
   1590 #ifdef DEBUG
   1591 	pg->uobject = (void *)0xdeadbeef;
   1592 	pg->uanon = (void *)0xdeadbeef;
   1593 #endif
   1594 
   1595 	mutex_spin_enter(&uvm_fpageqlock);
   1596 	pg->pqflags = PQ_FREE;
   1597 
   1598 #ifdef DEBUG
   1599 	if (iszero)
   1600 		uvm_pagezerocheck(pg);
   1601 #endif /* DEBUG */
   1602 
   1603 
   1604 	/* global list */
   1605 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1606 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1607 	uvmexp.free++;
   1608 	if (iszero) {
   1609 		uvmexp.zeropages++;
   1610 	}
   1611 
   1612 	/* per-cpu list */
   1613 	ucpu = curcpu()->ci_data.cpu_uvm;
   1614 	pg->offset = (uintptr_t)ucpu;
   1615 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1616 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1617 	ucpu->pages[queue]++;
   1618 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1619 		ucpu->page_idle_zero = vm_page_zero_enable;
   1620 	}
   1621 
   1622 	mutex_spin_exit(&uvm_fpageqlock);
   1623 }
   1624 
   1625 /*
   1626  * uvm_page_unbusy: unbusy an array of pages.
   1627  *
   1628  * => pages must either all belong to the same object, or all belong to anons.
   1629  * => if pages are object-owned, object must be locked.
   1630  * => if pages are anon-owned, anons must be locked.
   1631  * => caller must lock page queues if pages may be released.
   1632  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1633  */
   1634 
   1635 void
   1636 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1637 {
   1638 	struct vm_page *pg;
   1639 	int i;
   1640 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1641 
   1642 	for (i = 0; i < npgs; i++) {
   1643 		pg = pgs[i];
   1644 		if (pg == NULL || pg == PGO_DONTCARE) {
   1645 			continue;
   1646 		}
   1647 
   1648 		KASSERT(pg->uobject == NULL ||
   1649 		    mutex_owned(&pg->uobject->vmobjlock));
   1650 		KASSERT(pg->uobject != NULL ||
   1651 		    (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
   1652 
   1653 		KASSERT(pg->flags & PG_BUSY);
   1654 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1655 		if (pg->flags & PG_WANTED) {
   1656 			wakeup(pg);
   1657 		}
   1658 		if (pg->flags & PG_RELEASED) {
   1659 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1660 			KASSERT(pg->uobject != NULL ||
   1661 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1662 			pg->flags &= ~PG_RELEASED;
   1663 			uvm_pagefree(pg);
   1664 		} else {
   1665 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1666 			KASSERT((pg->flags & PG_FAKE) == 0);
   1667 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1668 			UVM_PAGE_OWN(pg, NULL);
   1669 		}
   1670 	}
   1671 }
   1672 
   1673 #if defined(UVM_PAGE_TRKOWN)
   1674 /*
   1675  * uvm_page_own: set or release page ownership
   1676  *
   1677  * => this is a debugging function that keeps track of who sets PG_BUSY
   1678  *	and where they do it.   it can be used to track down problems
   1679  *	such a process setting "PG_BUSY" and never releasing it.
   1680  * => page's object [if any] must be locked
   1681  * => if "tag" is NULL then we are releasing page ownership
   1682  */
   1683 void
   1684 uvm_page_own(struct vm_page *pg, const char *tag)
   1685 {
   1686 	struct uvm_object *uobj;
   1687 	struct vm_anon *anon;
   1688 
   1689 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1690 
   1691 	uobj = pg->uobject;
   1692 	anon = pg->uanon;
   1693 	if (uobj != NULL) {
   1694 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1695 	} else if (anon != NULL) {
   1696 		KASSERT(mutex_owned(&anon->an_lock));
   1697 	}
   1698 
   1699 	KASSERT((pg->flags & PG_WANTED) == 0);
   1700 
   1701 	/* gain ownership? */
   1702 	if (tag) {
   1703 		KASSERT((pg->flags & PG_BUSY) != 0);
   1704 		if (pg->owner_tag) {
   1705 			printf("uvm_page_own: page %p already owned "
   1706 			    "by proc %d [%s]\n", pg,
   1707 			    pg->owner, pg->owner_tag);
   1708 			panic("uvm_page_own");
   1709 		}
   1710 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1711 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1712 		pg->owner_tag = tag;
   1713 		return;
   1714 	}
   1715 
   1716 	/* drop ownership */
   1717 	KASSERT((pg->flags & PG_BUSY) == 0);
   1718 	if (pg->owner_tag == NULL) {
   1719 		printf("uvm_page_own: dropping ownership of an non-owned "
   1720 		    "page (%p)\n", pg);
   1721 		panic("uvm_page_own");
   1722 	}
   1723 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1724 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1725 		    pg->wire_count > 0);
   1726 	} else {
   1727 		KASSERT(pg->wire_count == 0);
   1728 	}
   1729 	pg->owner_tag = NULL;
   1730 }
   1731 #endif
   1732 
   1733 /*
   1734  * uvm_pageidlezero: zero free pages while the system is idle.
   1735  *
   1736  * => try to complete one color bucket at a time, to reduce our impact
   1737  *	on the CPU cache.
   1738  * => we loop until we either reach the target or there is a lwp ready
   1739  *      to run, or MD code detects a reason to break early.
   1740  */
   1741 void
   1742 uvm_pageidlezero(void)
   1743 {
   1744 	struct vm_page *pg;
   1745 	struct pgfreelist *pgfl, *gpgfl;
   1746 	struct uvm_cpu *ucpu;
   1747 	int free_list, firstbucket, nextbucket;
   1748 
   1749 	ucpu = curcpu()->ci_data.cpu_uvm;
   1750 	if (!ucpu->page_idle_zero ||
   1751 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1752 	    	ucpu->page_idle_zero = false;
   1753 		return;
   1754 	}
   1755 	mutex_enter(&uvm_fpageqlock);
   1756 	firstbucket = ucpu->page_free_nextcolor;
   1757 	nextbucket = firstbucket;
   1758 	do {
   1759 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1760 			if (sched_curcpu_runnable_p()) {
   1761 				goto quit;
   1762 			}
   1763 			pgfl = &ucpu->page_free[free_list];
   1764 			gpgfl = &uvm.page_free[free_list];
   1765 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1766 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1767 				if (sched_curcpu_runnable_p()) {
   1768 					goto quit;
   1769 				}
   1770 				LIST_REMOVE(pg, pageq.list); /* global list */
   1771 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1772 				ucpu->pages[PGFL_UNKNOWN]--;
   1773 				uvmexp.free--;
   1774 				KASSERT(pg->pqflags == PQ_FREE);
   1775 				pg->pqflags = 0;
   1776 				mutex_spin_exit(&uvm_fpageqlock);
   1777 #ifdef PMAP_PAGEIDLEZERO
   1778 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1779 
   1780 					/*
   1781 					 * The machine-dependent code detected
   1782 					 * some reason for us to abort zeroing
   1783 					 * pages, probably because there is a
   1784 					 * process now ready to run.
   1785 					 */
   1786 
   1787 					mutex_spin_enter(&uvm_fpageqlock);
   1788 					pg->pqflags = PQ_FREE;
   1789 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1790 					    nextbucket].pgfl_queues[
   1791 					    PGFL_UNKNOWN], pg, pageq.list);
   1792 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1793 					    nextbucket].pgfl_queues[
   1794 					    PGFL_UNKNOWN], pg, listq.list);
   1795 					ucpu->pages[PGFL_UNKNOWN]++;
   1796 					uvmexp.free++;
   1797 					uvmexp.zeroaborts++;
   1798 					goto quit;
   1799 				}
   1800 #else
   1801 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1802 #endif /* PMAP_PAGEIDLEZERO */
   1803 				pg->flags |= PG_ZERO;
   1804 
   1805 				mutex_spin_enter(&uvm_fpageqlock);
   1806 				pg->pqflags = PQ_FREE;
   1807 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1808 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1809 				    pg, pageq.list);
   1810 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1811 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1812 				    pg, listq.list);
   1813 				ucpu->pages[PGFL_ZEROS]++;
   1814 				uvmexp.free++;
   1815 				uvmexp.zeropages++;
   1816 			}
   1817 		}
   1818 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1819 			break;
   1820 		}
   1821 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1822 	} while (nextbucket != firstbucket);
   1823 	ucpu->page_idle_zero = false;
   1824  quit:
   1825 	mutex_spin_exit(&uvm_fpageqlock);
   1826 }
   1827 
   1828 /*
   1829  * uvm_pagelookup: look up a page
   1830  *
   1831  * => caller should lock object to keep someone from pulling the page
   1832  *	out from under it
   1833  */
   1834 
   1835 struct vm_page *
   1836 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1837 {
   1838 	struct vm_page *pg;
   1839 
   1840 	KASSERT(mutex_owned(&obj->vmobjlock));
   1841 
   1842 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1843 
   1844 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1845 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1846 		(pg->flags & PG_BUSY) != 0);
   1847 	return pg;
   1848 }
   1849 
   1850 /*
   1851  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1852  *
   1853  * => caller must lock page queues
   1854  */
   1855 
   1856 void
   1857 uvm_pagewire(struct vm_page *pg)
   1858 {
   1859 	KASSERT(mutex_owned(&uvm_pageqlock));
   1860 #if defined(READAHEAD_STATS)
   1861 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1862 		uvm_ra_hit.ev_count++;
   1863 		pg->pqflags &= ~PQ_READAHEAD;
   1864 	}
   1865 #endif /* defined(READAHEAD_STATS) */
   1866 	if (pg->wire_count == 0) {
   1867 		uvm_pagedequeue(pg);
   1868 		uvmexp.wired++;
   1869 	}
   1870 	pg->wire_count++;
   1871 }
   1872 
   1873 /*
   1874  * uvm_pageunwire: unwire the page.
   1875  *
   1876  * => activate if wire count goes to zero.
   1877  * => caller must lock page queues
   1878  */
   1879 
   1880 void
   1881 uvm_pageunwire(struct vm_page *pg)
   1882 {
   1883 	KASSERT(mutex_owned(&uvm_pageqlock));
   1884 	pg->wire_count--;
   1885 	if (pg->wire_count == 0) {
   1886 		uvm_pageactivate(pg);
   1887 		uvmexp.wired--;
   1888 	}
   1889 }
   1890 
   1891 /*
   1892  * uvm_pagedeactivate: deactivate page
   1893  *
   1894  * => caller must lock page queues
   1895  * => caller must check to make sure page is not wired
   1896  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1897  * => caller must clear the reference on the page before calling
   1898  */
   1899 
   1900 void
   1901 uvm_pagedeactivate(struct vm_page *pg)
   1902 {
   1903 
   1904 	KASSERT(mutex_owned(&uvm_pageqlock));
   1905 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1906 	uvmpdpol_pagedeactivate(pg);
   1907 }
   1908 
   1909 /*
   1910  * uvm_pageactivate: activate page
   1911  *
   1912  * => caller must lock page queues
   1913  */
   1914 
   1915 void
   1916 uvm_pageactivate(struct vm_page *pg)
   1917 {
   1918 
   1919 	KASSERT(mutex_owned(&uvm_pageqlock));
   1920 #if defined(READAHEAD_STATS)
   1921 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1922 		uvm_ra_hit.ev_count++;
   1923 		pg->pqflags &= ~PQ_READAHEAD;
   1924 	}
   1925 #endif /* defined(READAHEAD_STATS) */
   1926 	if (pg->wire_count != 0) {
   1927 		return;
   1928 	}
   1929 	uvmpdpol_pageactivate(pg);
   1930 }
   1931 
   1932 /*
   1933  * uvm_pagedequeue: remove a page from any paging queue
   1934  */
   1935 
   1936 void
   1937 uvm_pagedequeue(struct vm_page *pg)
   1938 {
   1939 
   1940 	if (uvmpdpol_pageisqueued_p(pg)) {
   1941 		KASSERT(mutex_owned(&uvm_pageqlock));
   1942 	}
   1943 
   1944 	uvmpdpol_pagedequeue(pg);
   1945 }
   1946 
   1947 /*
   1948  * uvm_pageenqueue: add a page to a paging queue without activating.
   1949  * used where a page is not really demanded (yet).  eg. read-ahead
   1950  */
   1951 
   1952 void
   1953 uvm_pageenqueue(struct vm_page *pg)
   1954 {
   1955 
   1956 	KASSERT(mutex_owned(&uvm_pageqlock));
   1957 	if (pg->wire_count != 0) {
   1958 		return;
   1959 	}
   1960 	uvmpdpol_pageenqueue(pg);
   1961 }
   1962 
   1963 /*
   1964  * uvm_pagezero: zero fill a page
   1965  *
   1966  * => if page is part of an object then the object should be locked
   1967  *	to protect pg->flags.
   1968  */
   1969 
   1970 void
   1971 uvm_pagezero(struct vm_page *pg)
   1972 {
   1973 	pg->flags &= ~PG_CLEAN;
   1974 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1975 }
   1976 
   1977 /*
   1978  * uvm_pagecopy: copy a page
   1979  *
   1980  * => if page is part of an object then the object should be locked
   1981  *	to protect pg->flags.
   1982  */
   1983 
   1984 void
   1985 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1986 {
   1987 
   1988 	dst->flags &= ~PG_CLEAN;
   1989 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1990 }
   1991 
   1992 /*
   1993  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1994  */
   1995 
   1996 bool
   1997 uvm_pageismanaged(paddr_t pa)
   1998 {
   1999 
   2000 	return (vm_physseg_find(atop(pa), NULL) != -1);
   2001 }
   2002 
   2003 /*
   2004  * uvm_page_lookup_freelist: look up the free list for the specified page
   2005  */
   2006 
   2007 int
   2008 uvm_page_lookup_freelist(struct vm_page *pg)
   2009 {
   2010 	int lcv;
   2011 
   2012 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2013 	KASSERT(lcv != -1);
   2014 	return (VM_PHYSMEM_PTR(lcv)->free_list);
   2015 }
   2016 
   2017 #if defined(DDB) || defined(DEBUGPRINT)
   2018 
   2019 /*
   2020  * uvm_page_printit: actually print the page
   2021  */
   2022 
   2023 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2024 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2025 
   2026 void
   2027 uvm_page_printit(struct vm_page *pg, bool full,
   2028     void (*pr)(const char *, ...))
   2029 {
   2030 	struct vm_page *tpg;
   2031 	struct uvm_object *uobj;
   2032 	struct pgflist *pgl;
   2033 	char pgbuf[128];
   2034 	char pqbuf[128];
   2035 
   2036 	(*pr)("PAGE %p:\n", pg);
   2037 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2038 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   2039 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   2040 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2041 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2042 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2043 #if defined(UVM_PAGE_TRKOWN)
   2044 	if (pg->flags & PG_BUSY)
   2045 		(*pr)("  owning process = %d, tag=%s\n",
   2046 		    pg->owner, pg->owner_tag);
   2047 	else
   2048 		(*pr)("  page not busy, no owner\n");
   2049 #else
   2050 	(*pr)("  [page ownership tracking disabled]\n");
   2051 #endif
   2052 
   2053 	if (!full)
   2054 		return;
   2055 
   2056 	/* cross-verify object/anon */
   2057 	if ((pg->pqflags & PQ_FREE) == 0) {
   2058 		if (pg->pqflags & PQ_ANON) {
   2059 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2060 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2061 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2062 			else
   2063 				(*pr)("  anon backpointer is OK\n");
   2064 		} else {
   2065 			uobj = pg->uobject;
   2066 			if (uobj) {
   2067 				(*pr)("  checking object list\n");
   2068 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   2069 					if (tpg == pg) {
   2070 						break;
   2071 					}
   2072 				}
   2073 				if (tpg)
   2074 					(*pr)("  page found on object list\n");
   2075 				else
   2076 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2077 			}
   2078 		}
   2079 	}
   2080 
   2081 	/* cross-verify page queue */
   2082 	if (pg->pqflags & PQ_FREE) {
   2083 		int fl = uvm_page_lookup_freelist(pg);
   2084 		int color = VM_PGCOLOR_BUCKET(pg);
   2085 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   2086 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   2087 	} else {
   2088 		pgl = NULL;
   2089 	}
   2090 
   2091 	if (pgl) {
   2092 		(*pr)("  checking pageq list\n");
   2093 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2094 			if (tpg == pg) {
   2095 				break;
   2096 			}
   2097 		}
   2098 		if (tpg)
   2099 			(*pr)("  page found on pageq list\n");
   2100 		else
   2101 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2102 	}
   2103 }
   2104 
   2105 /*
   2106  * uvm_pages_printthem - print a summary of all managed pages
   2107  */
   2108 
   2109 void
   2110 uvm_page_printall(void (*pr)(const char *, ...))
   2111 {
   2112 	unsigned i;
   2113 	struct vm_page *pg;
   2114 
   2115 	(*pr)("%18s %4s %4s %18s %18s"
   2116 #ifdef UVM_PAGE_TRKOWN
   2117 	    " OWNER"
   2118 #endif
   2119 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2120 	for (i = 0; i < vm_nphysmem; i++) {
   2121 		for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
   2122 			(*pr)("%18p %04x %04x %18p %18p",
   2123 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2124 			    pg->uanon);
   2125 #ifdef UVM_PAGE_TRKOWN
   2126 			if (pg->flags & PG_BUSY)
   2127 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2128 #endif
   2129 			(*pr)("\n");
   2130 		}
   2131 	}
   2132 }
   2133 
   2134 #endif /* DDB || DEBUGPRINT */
   2135