Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.174
      1 /*	$NetBSD: uvm_page.c,v 1.174 2011/06/12 03:36:03 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_page.c: page ops.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.174 2011/06/12 03:36:03 rmind Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_uvmhist.h"
     73 #include "opt_readahead.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/malloc.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 #include <sys/vnode.h>
     81 #include <sys/proc.h>
     82 #include <sys/atomic.h>
     83 #include <sys/cpu.h>
     84 
     85 #include <uvm/uvm.h>
     86 #include <uvm/uvm_ddb.h>
     87 #include <uvm/uvm_pdpolicy.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 #define	vm_nphysmem	vm_nphysseg
    100 
    101 /*
    102  * Some supported CPUs in a given architecture don't support all
    103  * of the things necessary to do idle page zero'ing efficiently.
    104  * We therefore provide a way to enable it from machdep code here.
    105  */
    106 bool vm_page_zero_enable = false;
    107 
    108 /*
    109  * number of pages per-CPU to reserve for the kernel.
    110  */
    111 int vm_page_reserve_kernel = 5;
    112 
    113 /*
    114  * physical memory size;
    115  */
    116 int physmem;
    117 
    118 /*
    119  * local variables
    120  */
    121 
    122 /*
    123  * these variables record the values returned by vm_page_bootstrap,
    124  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    125  * and pmap_startup here also uses them internally.
    126  */
    127 
    128 static vaddr_t      virtual_space_start;
    129 static vaddr_t      virtual_space_end;
    130 
    131 /*
    132  * we allocate an initial number of page colors in uvm_page_init(),
    133  * and remember them.  We may re-color pages as cache sizes are
    134  * discovered during the autoconfiguration phase.  But we can never
    135  * free the initial set of buckets, since they are allocated using
    136  * uvm_pageboot_alloc().
    137  */
    138 
    139 static bool have_recolored_pages /* = false */;
    140 
    141 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    142 
    143 #ifdef DEBUG
    144 vaddr_t uvm_zerocheckkva;
    145 #endif /* DEBUG */
    146 
    147 /*
    148  * local prototypes
    149  */
    150 
    151 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    152 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    153 
    154 /*
    155  * per-object tree of pages
    156  */
    157 
    158 static signed int
    159 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    160 {
    161 	const struct vm_page *pg1 = n1;
    162 	const struct vm_page *pg2 = n2;
    163 	const voff_t a = pg1->offset;
    164 	const voff_t b = pg2->offset;
    165 
    166 	if (a < b)
    167 		return -1;
    168 	if (a > b)
    169 		return 1;
    170 	return 0;
    171 }
    172 
    173 static signed int
    174 uvm_page_compare_key(void *ctx, const void *n, const void *key)
    175 {
    176 	const struct vm_page *pg = n;
    177 	const voff_t a = pg->offset;
    178 	const voff_t b = *(const voff_t *)key;
    179 
    180 	if (a < b)
    181 		return -1;
    182 	if (a > b)
    183 		return 1;
    184 	return 0;
    185 }
    186 
    187 const rb_tree_ops_t uvm_page_tree_ops = {
    188 	.rbto_compare_nodes = uvm_page_compare_nodes,
    189 	.rbto_compare_key = uvm_page_compare_key,
    190 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    191 	.rbto_context = NULL
    192 };
    193 
    194 /*
    195  * inline functions
    196  */
    197 
    198 /*
    199  * uvm_pageinsert: insert a page in the object.
    200  *
    201  * => caller must lock object
    202  * => caller must lock page queues
    203  * => call should have already set pg's object and offset pointers
    204  *    and bumped the version counter
    205  */
    206 
    207 static inline void
    208 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    209     struct vm_page *where)
    210 {
    211 
    212 	KASSERT(uobj == pg->uobject);
    213 	KASSERT(mutex_owned(uobj->vmobjlock));
    214 	KASSERT((pg->flags & PG_TABLED) == 0);
    215 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    216 	KASSERT(where == NULL || (where->uobject == uobj));
    217 
    218 	if (UVM_OBJ_IS_VNODE(uobj)) {
    219 		if (uobj->uo_npages == 0) {
    220 			struct vnode *vp = (struct vnode *)uobj;
    221 
    222 			vholdl(vp);
    223 		}
    224 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    225 			atomic_inc_uint(&uvmexp.execpages);
    226 		} else {
    227 			atomic_inc_uint(&uvmexp.filepages);
    228 		}
    229 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    230 		atomic_inc_uint(&uvmexp.anonpages);
    231 	}
    232 
    233 	if (where)
    234 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    235 	else
    236 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    237 	pg->flags |= PG_TABLED;
    238 	uobj->uo_npages++;
    239 }
    240 
    241 
    242 static inline void
    243 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    244 {
    245 	struct vm_page *ret;
    246 
    247 	KASSERT(uobj == pg->uobject);
    248 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    249 	KASSERT(ret == pg);
    250 }
    251 
    252 static inline void
    253 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    254 {
    255 
    256 	KDASSERT(uobj != NULL);
    257 	uvm_pageinsert_tree(uobj, pg);
    258 	uvm_pageinsert_list(uobj, pg, NULL);
    259 }
    260 
    261 /*
    262  * uvm_page_remove: remove page from object.
    263  *
    264  * => caller must lock object
    265  * => caller must lock page queues
    266  */
    267 
    268 static inline void
    269 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    270 {
    271 
    272 	KASSERT(uobj == pg->uobject);
    273 	KASSERT(mutex_owned(uobj->vmobjlock));
    274 	KASSERT(pg->flags & PG_TABLED);
    275 
    276 	if (UVM_OBJ_IS_VNODE(uobj)) {
    277 		if (uobj->uo_npages == 1) {
    278 			struct vnode *vp = (struct vnode *)uobj;
    279 
    280 			holdrelel(vp);
    281 		}
    282 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    283 			atomic_dec_uint(&uvmexp.execpages);
    284 		} else {
    285 			atomic_dec_uint(&uvmexp.filepages);
    286 		}
    287 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    288 		atomic_dec_uint(&uvmexp.anonpages);
    289 	}
    290 
    291 	/* object should be locked */
    292 	uobj->uo_npages--;
    293 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    294 	pg->flags &= ~PG_TABLED;
    295 	pg->uobject = NULL;
    296 }
    297 
    298 static inline void
    299 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    300 {
    301 
    302 	KASSERT(uobj == pg->uobject);
    303 	rb_tree_remove_node(&uobj->rb_tree, pg);
    304 }
    305 
    306 static inline void
    307 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    308 {
    309 
    310 	KDASSERT(uobj != NULL);
    311 	uvm_pageremove_tree(uobj, pg);
    312 	uvm_pageremove_list(uobj, pg);
    313 }
    314 
    315 static void
    316 uvm_page_init_buckets(struct pgfreelist *pgfl)
    317 {
    318 	int color, i;
    319 
    320 	for (color = 0; color < uvmexp.ncolors; color++) {
    321 		for (i = 0; i < PGFL_NQUEUES; i++) {
    322 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    323 		}
    324 	}
    325 }
    326 
    327 /*
    328  * uvm_page_init: init the page system.   called from uvm_init().
    329  *
    330  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    331  */
    332 
    333 void
    334 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    335 {
    336 	static struct uvm_cpu boot_cpu;
    337 	psize_t freepages, pagecount, bucketcount, n;
    338 	struct pgflbucket *bucketarray, *cpuarray;
    339 	struct vm_physseg *seg;
    340 	struct vm_page *pagearray;
    341 	int lcv;
    342 	u_int i;
    343 	paddr_t paddr;
    344 
    345 	KASSERT(ncpu <= 1);
    346 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    347 
    348 	/*
    349 	 * init the page queues and page queue locks, except the free
    350 	 * list; we allocate that later (with the initial vm_page
    351 	 * structures).
    352 	 */
    353 
    354 	uvm.cpus[0] = &boot_cpu;
    355 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    356 	uvm_reclaim_init();
    357 	uvmpdpol_init();
    358 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    359 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    360 
    361 	/*
    362 	 * allocate vm_page structures.
    363 	 */
    364 
    365 	/*
    366 	 * sanity check:
    367 	 * before calling this function the MD code is expected to register
    368 	 * some free RAM with the uvm_page_physload() function.   our job
    369 	 * now is to allocate vm_page structures for this memory.
    370 	 */
    371 
    372 	if (vm_nphysmem == 0)
    373 		panic("uvm_page_bootstrap: no memory pre-allocated");
    374 
    375 	/*
    376 	 * first calculate the number of free pages...
    377 	 *
    378 	 * note that we use start/end rather than avail_start/avail_end.
    379 	 * this allows us to allocate extra vm_page structures in case we
    380 	 * want to return some memory to the pool after booting.
    381 	 */
    382 
    383 	freepages = 0;
    384 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    385 		seg = VM_PHYSMEM_PTR(lcv);
    386 		freepages += (seg->end - seg->start);
    387 	}
    388 
    389 	/*
    390 	 * Let MD code initialize the number of colors, or default
    391 	 * to 1 color if MD code doesn't care.
    392 	 */
    393 	if (uvmexp.ncolors == 0)
    394 		uvmexp.ncolors = 1;
    395 	uvmexp.colormask = uvmexp.ncolors - 1;
    396 
    397 	/*
    398 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    399 	 * use.   for each page of memory we use we need a vm_page structure.
    400 	 * thus, the total number of pages we can use is the total size of
    401 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    402 	 * structure.   we add one to freepages as a fudge factor to avoid
    403 	 * truncation errors (since we can only allocate in terms of whole
    404 	 * pages).
    405 	 */
    406 
    407 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    408 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    409 	    (PAGE_SIZE + sizeof(struct vm_page));
    410 
    411 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    412 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    413 	    sizeof(struct vm_page)));
    414 	cpuarray = bucketarray + bucketcount;
    415 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    416 
    417 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    418 		uvm.page_free[lcv].pgfl_buckets =
    419 		    (bucketarray + (lcv * uvmexp.ncolors));
    420 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    421 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    422 		    (cpuarray + (lcv * uvmexp.ncolors));
    423 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    424 	}
    425 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    426 
    427 	/*
    428 	 * init the vm_page structures and put them in the correct place.
    429 	 */
    430 
    431 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    432 		seg = VM_PHYSMEM_PTR(lcv);
    433 		n = seg->end - seg->start;
    434 
    435 		/* set up page array pointers */
    436 		seg->pgs = pagearray;
    437 		pagearray += n;
    438 		pagecount -= n;
    439 		seg->lastpg = seg->pgs + n;
    440 
    441 		/* init and free vm_pages (we've already zeroed them) */
    442 		paddr = ctob(seg->start);
    443 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    444 			seg->pgs[i].phys_addr = paddr;
    445 #ifdef __HAVE_VM_PAGE_MD
    446 			VM_MDPAGE_INIT(&seg->pgs[i]);
    447 #endif
    448 			if (atop(paddr) >= seg->avail_start &&
    449 			    atop(paddr) < seg->avail_end) {
    450 				uvmexp.npages++;
    451 				/* add page to free pool */
    452 				uvm_pagefree(&seg->pgs[i]);
    453 			}
    454 		}
    455 	}
    456 
    457 	/*
    458 	 * pass up the values of virtual_space_start and
    459 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    460 	 * layers of the VM.
    461 	 */
    462 
    463 	*kvm_startp = round_page(virtual_space_start);
    464 	*kvm_endp = trunc_page(virtual_space_end);
    465 #ifdef DEBUG
    466 	/*
    467 	 * steal kva for uvm_pagezerocheck().
    468 	 */
    469 	uvm_zerocheckkva = *kvm_startp;
    470 	*kvm_startp += PAGE_SIZE;
    471 #endif /* DEBUG */
    472 
    473 	/*
    474 	 * init various thresholds.
    475 	 */
    476 
    477 	uvmexp.reserve_pagedaemon = 1;
    478 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    479 
    480 	/*
    481 	 * determine if we should zero pages in the idle loop.
    482 	 */
    483 
    484 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    485 
    486 	/*
    487 	 * done!
    488 	 */
    489 
    490 	uvm.page_init_done = true;
    491 }
    492 
    493 /*
    494  * uvm_setpagesize: set the page size
    495  *
    496  * => sets page_shift and page_mask from uvmexp.pagesize.
    497  */
    498 
    499 void
    500 uvm_setpagesize(void)
    501 {
    502 
    503 	/*
    504 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    505 	 * to be a constant (indicated by being a non-zero value).
    506 	 */
    507 	if (uvmexp.pagesize == 0) {
    508 		if (PAGE_SIZE == 0)
    509 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    510 		uvmexp.pagesize = PAGE_SIZE;
    511 	}
    512 	uvmexp.pagemask = uvmexp.pagesize - 1;
    513 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    514 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    515 		    uvmexp.pagesize, uvmexp.pagesize);
    516 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    517 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    518 			break;
    519 }
    520 
    521 /*
    522  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    523  */
    524 
    525 vaddr_t
    526 uvm_pageboot_alloc(vsize_t size)
    527 {
    528 	static bool initialized = false;
    529 	vaddr_t addr;
    530 #if !defined(PMAP_STEAL_MEMORY)
    531 	vaddr_t vaddr;
    532 	paddr_t paddr;
    533 #endif
    534 
    535 	/*
    536 	 * on first call to this function, initialize ourselves.
    537 	 */
    538 	if (initialized == false) {
    539 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    540 
    541 		/* round it the way we like it */
    542 		virtual_space_start = round_page(virtual_space_start);
    543 		virtual_space_end = trunc_page(virtual_space_end);
    544 
    545 		initialized = true;
    546 	}
    547 
    548 	/* round to page size */
    549 	size = round_page(size);
    550 
    551 #if defined(PMAP_STEAL_MEMORY)
    552 
    553 	/*
    554 	 * defer bootstrap allocation to MD code (it may want to allocate
    555 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    556 	 * virtual_space_start/virtual_space_end if necessary.
    557 	 */
    558 
    559 	addr = pmap_steal_memory(size, &virtual_space_start,
    560 	    &virtual_space_end);
    561 
    562 	return(addr);
    563 
    564 #else /* !PMAP_STEAL_MEMORY */
    565 
    566 	/*
    567 	 * allocate virtual memory for this request
    568 	 */
    569 	if (virtual_space_start == virtual_space_end ||
    570 	    (virtual_space_end - virtual_space_start) < size)
    571 		panic("uvm_pageboot_alloc: out of virtual space");
    572 
    573 	addr = virtual_space_start;
    574 
    575 #ifdef PMAP_GROWKERNEL
    576 	/*
    577 	 * If the kernel pmap can't map the requested space,
    578 	 * then allocate more resources for it.
    579 	 */
    580 	if (uvm_maxkaddr < (addr + size)) {
    581 		uvm_maxkaddr = pmap_growkernel(addr + size);
    582 		if (uvm_maxkaddr < (addr + size))
    583 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    584 	}
    585 #endif
    586 
    587 	virtual_space_start += size;
    588 
    589 	/*
    590 	 * allocate and mapin physical pages to back new virtual pages
    591 	 */
    592 
    593 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    594 	    vaddr += PAGE_SIZE) {
    595 
    596 		if (!uvm_page_physget(&paddr))
    597 			panic("uvm_pageboot_alloc: out of memory");
    598 
    599 		/*
    600 		 * Note this memory is no longer managed, so using
    601 		 * pmap_kenter is safe.
    602 		 */
    603 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    604 	}
    605 	pmap_update(pmap_kernel());
    606 	return(addr);
    607 #endif	/* PMAP_STEAL_MEMORY */
    608 }
    609 
    610 #if !defined(PMAP_STEAL_MEMORY)
    611 /*
    612  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    613  *
    614  * => attempt to allocate it off the end of a segment in which the "avail"
    615  *    values match the start/end values.   if we can't do that, then we
    616  *    will advance both values (making them equal, and removing some
    617  *    vm_page structures from the non-avail area).
    618  * => return false if out of memory.
    619  */
    620 
    621 /* subroutine: try to allocate from memory chunks on the specified freelist */
    622 static bool uvm_page_physget_freelist(paddr_t *, int);
    623 
    624 static bool
    625 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    626 {
    627 	struct vm_physseg *seg;
    628 	int lcv, x;
    629 
    630 	/* pass 1: try allocating from a matching end */
    631 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    632 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    633 #else
    634 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    635 #endif
    636 	{
    637 		seg = VM_PHYSMEM_PTR(lcv);
    638 
    639 		if (uvm.page_init_done == true)
    640 			panic("uvm_page_physget: called _after_ bootstrap");
    641 
    642 		if (seg->free_list != freelist)
    643 			continue;
    644 
    645 		/* try from front */
    646 		if (seg->avail_start == seg->start &&
    647 		    seg->avail_start < seg->avail_end) {
    648 			*paddrp = ctob(seg->avail_start);
    649 			seg->avail_start++;
    650 			seg->start++;
    651 			/* nothing left?   nuke it */
    652 			if (seg->avail_start == seg->end) {
    653 				if (vm_nphysmem == 1)
    654 				    panic("uvm_page_physget: out of memory!");
    655 				vm_nphysmem--;
    656 				for (x = lcv ; x < vm_nphysmem ; x++)
    657 					/* structure copy */
    658 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    659 			}
    660 			return (true);
    661 		}
    662 
    663 		/* try from rear */
    664 		if (seg->avail_end == seg->end &&
    665 		    seg->avail_start < seg->avail_end) {
    666 			*paddrp = ctob(seg->avail_end - 1);
    667 			seg->avail_end--;
    668 			seg->end--;
    669 			/* nothing left?   nuke it */
    670 			if (seg->avail_end == seg->start) {
    671 				if (vm_nphysmem == 1)
    672 				    panic("uvm_page_physget: out of memory!");
    673 				vm_nphysmem--;
    674 				for (x = lcv ; x < vm_nphysmem ; x++)
    675 					/* structure copy */
    676 					VM_PHYSMEM_PTR_SWAP(x, x + 1);
    677 			}
    678 			return (true);
    679 		}
    680 	}
    681 
    682 	/* pass2: forget about matching ends, just allocate something */
    683 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    684 	for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
    685 #else
    686 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    687 #endif
    688 	{
    689 		seg = VM_PHYSMEM_PTR(lcv);
    690 
    691 		/* any room in this bank? */
    692 		if (seg->avail_start >= seg->avail_end)
    693 			continue;  /* nope */
    694 
    695 		*paddrp = ctob(seg->avail_start);
    696 		seg->avail_start++;
    697 		/* truncate! */
    698 		seg->start = seg->avail_start;
    699 
    700 		/* nothing left?   nuke it */
    701 		if (seg->avail_start == seg->end) {
    702 			if (vm_nphysmem == 1)
    703 				panic("uvm_page_physget: out of memory!");
    704 			vm_nphysmem--;
    705 			for (x = lcv ; x < vm_nphysmem ; x++)
    706 				/* structure copy */
    707 				VM_PHYSMEM_PTR_SWAP(x, x + 1);
    708 		}
    709 		return (true);
    710 	}
    711 
    712 	return (false);        /* whoops! */
    713 }
    714 
    715 bool
    716 uvm_page_physget(paddr_t *paddrp)
    717 {
    718 	int i;
    719 
    720 	/* try in the order of freelist preference */
    721 	for (i = 0; i < VM_NFREELIST; i++)
    722 		if (uvm_page_physget_freelist(paddrp, i) == true)
    723 			return (true);
    724 	return (false);
    725 }
    726 #endif /* PMAP_STEAL_MEMORY */
    727 
    728 /*
    729  * uvm_page_physload: load physical memory into VM system
    730  *
    731  * => all args are PFs
    732  * => all pages in start/end get vm_page structures
    733  * => areas marked by avail_start/avail_end get added to the free page pool
    734  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    735  */
    736 
    737 void
    738 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
    739     paddr_t avail_end, int free_list)
    740 {
    741 	int preload, lcv;
    742 	psize_t npages;
    743 	struct vm_page *pgs;
    744 	struct vm_physseg *ps;
    745 
    746 	if (uvmexp.pagesize == 0)
    747 		panic("uvm_page_physload: page size not set!");
    748 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    749 		panic("uvm_page_physload: bad free list %d", free_list);
    750 	if (start >= end)
    751 		panic("uvm_page_physload: start >= end");
    752 
    753 	/*
    754 	 * do we have room?
    755 	 */
    756 
    757 	if (vm_nphysmem == VM_PHYSSEG_MAX) {
    758 		printf("uvm_page_physload: unable to load physical memory "
    759 		    "segment\n");
    760 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    761 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    762 		printf("\tincrease VM_PHYSSEG_MAX\n");
    763 		return;
    764 	}
    765 
    766 	/*
    767 	 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
    768 	 * called yet, so malloc is not available).
    769 	 */
    770 
    771 	for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    772 		if (VM_PHYSMEM_PTR(lcv)->pgs)
    773 			break;
    774 	}
    775 	preload = (lcv == vm_nphysmem);
    776 
    777 	/*
    778 	 * if VM is already running, attempt to malloc() vm_page structures
    779 	 */
    780 
    781 	if (!preload) {
    782 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    783 	} else {
    784 		pgs = NULL;
    785 		npages = 0;
    786 	}
    787 
    788 	/*
    789 	 * now insert us in the proper place in vm_physmem[]
    790 	 */
    791 
    792 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    793 	/* random: put it at the end (easy!) */
    794 	ps = VM_PHYSMEM_PTR(vm_nphysmem);
    795 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    796 	{
    797 		int x;
    798 		/* sort by address for binary search */
    799 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    800 			if (start < VM_PHYSMEM_PTR(lcv)->start)
    801 				break;
    802 		ps = VM_PHYSMEM_PTR(lcv);
    803 		/* move back other entries, if necessary ... */
    804 		for (x = vm_nphysmem ; x > lcv ; x--)
    805 			/* structure copy */
    806 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    807 	}
    808 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    809 	{
    810 		int x;
    811 		/* sort by largest segment first */
    812 		for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
    813 			if ((end - start) >
    814 			    (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
    815 				break;
    816 		ps = VM_PHYSMEM_PTR(lcv);
    817 		/* move back other entries, if necessary ... */
    818 		for (x = vm_nphysmem ; x > lcv ; x--)
    819 			/* structure copy */
    820 			VM_PHYSMEM_PTR_SWAP(x, x - 1);
    821 	}
    822 #else
    823 	panic("uvm_page_physload: unknown physseg strategy selected!");
    824 #endif
    825 
    826 	ps->start = start;
    827 	ps->end = end;
    828 	ps->avail_start = avail_start;
    829 	ps->avail_end = avail_end;
    830 	if (preload) {
    831 		ps->pgs = NULL;
    832 	} else {
    833 		ps->pgs = pgs;
    834 		ps->lastpg = pgs + npages;
    835 	}
    836 	ps->free_list = free_list;
    837 	vm_nphysmem++;
    838 
    839 	if (!preload) {
    840 		uvmpdpol_reinit();
    841 	}
    842 }
    843 
    844 /*
    845  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    846  */
    847 
    848 #if VM_PHYSSEG_MAX == 1
    849 static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
    850 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    851 static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
    852 #else
    853 static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
    854 #endif
    855 
    856 /*
    857  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    858  */
    859 int
    860 vm_physseg_find(paddr_t pframe, int *offp)
    861 {
    862 
    863 #if VM_PHYSSEG_MAX == 1
    864 	return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
    865 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    866 	return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
    867 #else
    868 	return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
    869 #endif
    870 }
    871 
    872 #if VM_PHYSSEG_MAX == 1
    873 static inline int
    874 vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    875 {
    876 
    877 	/* 'contig' case */
    878 	if (pframe >= segs[0].start && pframe < segs[0].end) {
    879 		if (offp)
    880 			*offp = pframe - segs[0].start;
    881 		return(0);
    882 	}
    883 	return(-1);
    884 }
    885 
    886 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    887 
    888 static inline int
    889 vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    890 {
    891 	/* binary search for it */
    892 	u_int	start, len, try;
    893 
    894 	/*
    895 	 * if try is too large (thus target is less than try) we reduce
    896 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    897 	 *
    898 	 * if the try is too small (thus target is greater than try) then
    899 	 * we set the new start to be (try + 1).   this means we need to
    900 	 * reduce the length to (round(len/2) - 1).
    901 	 *
    902 	 * note "adjust" below which takes advantage of the fact that
    903 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    904 	 * for any value of len we may have
    905 	 */
    906 
    907 	for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
    908 		try = start + (len / 2);	/* try in the middle */
    909 
    910 		/* start past our try? */
    911 		if (pframe >= segs[try].start) {
    912 			/* was try correct? */
    913 			if (pframe < segs[try].end) {
    914 				if (offp)
    915 					*offp = pframe - segs[try].start;
    916 				return(try);            /* got it */
    917 			}
    918 			start = try + 1;	/* next time, start here */
    919 			len--;			/* "adjust" */
    920 		} else {
    921 			/*
    922 			 * pframe before try, just reduce length of
    923 			 * region, done in "for" loop
    924 			 */
    925 		}
    926 	}
    927 	return(-1);
    928 }
    929 
    930 #else
    931 
    932 static inline int
    933 vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
    934 {
    935 	/* linear search for it */
    936 	int	lcv;
    937 
    938 	for (lcv = 0; lcv < nsegs; lcv++) {
    939 		if (pframe >= segs[lcv].start &&
    940 		    pframe < segs[lcv].end) {
    941 			if (offp)
    942 				*offp = pframe - segs[lcv].start;
    943 			return(lcv);		   /* got it */
    944 		}
    945 	}
    946 	return(-1);
    947 }
    948 #endif
    949 
    950 /*
    951  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    952  * back from an I/O mapping (ugh!).   used in some MD code as well.
    953  */
    954 struct vm_page *
    955 uvm_phys_to_vm_page(paddr_t pa)
    956 {
    957 	paddr_t pf = atop(pa);
    958 	int	off;
    959 	int	psi;
    960 
    961 	psi = vm_physseg_find(pf, &off);
    962 	if (psi != -1)
    963 		return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
    964 	return(NULL);
    965 }
    966 
    967 paddr_t
    968 uvm_vm_page_to_phys(const struct vm_page *pg)
    969 {
    970 
    971 	return pg->phys_addr;
    972 }
    973 
    974 /*
    975  * uvm_page_recolor: Recolor the pages if the new bucket count is
    976  * larger than the old one.
    977  */
    978 
    979 void
    980 uvm_page_recolor(int newncolors)
    981 {
    982 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    983 	struct pgfreelist gpgfl, pgfl;
    984 	struct vm_page *pg;
    985 	vsize_t bucketcount;
    986 	int lcv, color, i, ocolors;
    987 	struct uvm_cpu *ucpu;
    988 
    989 	if (newncolors <= uvmexp.ncolors)
    990 		return;
    991 
    992 	if (uvm.page_init_done == false) {
    993 		uvmexp.ncolors = newncolors;
    994 		return;
    995 	}
    996 
    997 	bucketcount = newncolors * VM_NFREELIST;
    998 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
    999 	    M_VMPAGE, M_NOWAIT);
   1000 	cpuarray = bucketarray + bucketcount;
   1001 	if (bucketarray == NULL) {
   1002 		printf("WARNING: unable to allocate %ld page color buckets\n",
   1003 		    (long) bucketcount);
   1004 		return;
   1005 	}
   1006 
   1007 	mutex_spin_enter(&uvm_fpageqlock);
   1008 
   1009 	/* Make sure we should still do this. */
   1010 	if (newncolors <= uvmexp.ncolors) {
   1011 		mutex_spin_exit(&uvm_fpageqlock);
   1012 		free(bucketarray, M_VMPAGE);
   1013 		return;
   1014 	}
   1015 
   1016 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
   1017 	ocolors = uvmexp.ncolors;
   1018 
   1019 	uvmexp.ncolors = newncolors;
   1020 	uvmexp.colormask = uvmexp.ncolors - 1;
   1021 
   1022 	ucpu = curcpu()->ci_data.cpu_uvm;
   1023 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1024 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
   1025 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
   1026 		uvm_page_init_buckets(&gpgfl);
   1027 		uvm_page_init_buckets(&pgfl);
   1028 		for (color = 0; color < ocolors; color++) {
   1029 			for (i = 0; i < PGFL_NQUEUES; i++) {
   1030 				while ((pg = LIST_FIRST(&uvm.page_free[
   1031 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
   1032 				    != NULL) {
   1033 					LIST_REMOVE(pg, pageq.list); /* global */
   1034 					LIST_REMOVE(pg, listq.list); /* cpu */
   1035 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
   1036 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1037 					    i], pg, pageq.list);
   1038 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
   1039 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
   1040 					    i], pg, listq.list);
   1041 				}
   1042 			}
   1043 		}
   1044 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
   1045 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1046 	}
   1047 
   1048 	if (have_recolored_pages) {
   1049 		mutex_spin_exit(&uvm_fpageqlock);
   1050 		free(oldbucketarray, M_VMPAGE);
   1051 		return;
   1052 	}
   1053 
   1054 	have_recolored_pages = true;
   1055 	mutex_spin_exit(&uvm_fpageqlock);
   1056 }
   1057 
   1058 /*
   1059  * uvm_cpu_attach: initialize per-CPU data structures.
   1060  */
   1061 
   1062 void
   1063 uvm_cpu_attach(struct cpu_info *ci)
   1064 {
   1065 	struct pgflbucket *bucketarray;
   1066 	struct pgfreelist pgfl;
   1067 	struct uvm_cpu *ucpu;
   1068 	vsize_t bucketcount;
   1069 	int lcv;
   1070 
   1071 	if (CPU_IS_PRIMARY(ci)) {
   1072 		/* Already done in uvm_page_init(). */
   1073 		return;
   1074 	}
   1075 
   1076 	/* Add more reserve pages for this CPU. */
   1077 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
   1078 
   1079 	/* Configure this CPU's free lists. */
   1080 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
   1081 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
   1082 	    M_VMPAGE, M_WAITOK);
   1083 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
   1084 	uvm.cpus[cpu_index(ci)] = ucpu;
   1085 	ci->ci_data.cpu_uvm = ucpu;
   1086 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1087 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
   1088 		uvm_page_init_buckets(&pgfl);
   1089 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
   1090 	}
   1091 }
   1092 
   1093 /*
   1094  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
   1095  */
   1096 
   1097 static struct vm_page *
   1098 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
   1099     int *trycolorp)
   1100 {
   1101 	struct pgflist *freeq;
   1102 	struct vm_page *pg;
   1103 	int color, trycolor = *trycolorp;
   1104 	struct pgfreelist *gpgfl, *pgfl;
   1105 
   1106 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1107 
   1108 	color = trycolor;
   1109 	pgfl = &ucpu->page_free[flist];
   1110 	gpgfl = &uvm.page_free[flist];
   1111 	do {
   1112 		/* cpu, try1 */
   1113 		if ((pg = LIST_FIRST((freeq =
   1114 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1115 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1116 		    	uvmexp.cpuhit++;
   1117 			goto gotit;
   1118 		}
   1119 		/* global, try1 */
   1120 		if ((pg = LIST_FIRST((freeq =
   1121 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
   1122 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
   1123 		    	uvmexp.cpumiss++;
   1124 			goto gotit;
   1125 		}
   1126 		/* cpu, try2 */
   1127 		if ((pg = LIST_FIRST((freeq =
   1128 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1129 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1130 		    	uvmexp.cpuhit++;
   1131 			goto gotit;
   1132 		}
   1133 		/* global, try2 */
   1134 		if ((pg = LIST_FIRST((freeq =
   1135 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
   1136 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
   1137 		    	uvmexp.cpumiss++;
   1138 			goto gotit;
   1139 		}
   1140 		color = (color + 1) & uvmexp.colormask;
   1141 	} while (color != trycolor);
   1142 
   1143 	return (NULL);
   1144 
   1145  gotit:
   1146 	LIST_REMOVE(pg, pageq.list);	/* global list */
   1147 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
   1148 	uvmexp.free--;
   1149 
   1150 	/* update zero'd page count */
   1151 	if (pg->flags & PG_ZERO)
   1152 		uvmexp.zeropages--;
   1153 
   1154 	if (color == trycolor)
   1155 		uvmexp.colorhit++;
   1156 	else {
   1157 		uvmexp.colormiss++;
   1158 		*trycolorp = color;
   1159 	}
   1160 
   1161 	return (pg);
   1162 }
   1163 
   1164 /*
   1165  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1166  *
   1167  * => return null if no pages free
   1168  * => wake up pagedaemon if number of free pages drops below low water mark
   1169  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1170  * => if anon != NULL, anon must be locked (to put in anon)
   1171  * => only one of obj or anon can be non-null
   1172  * => caller must activate/deactivate page if it is not wired.
   1173  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1174  * => policy decision: it is more important to pull a page off of the
   1175  *	appropriate priority free list than it is to get a zero'd or
   1176  *	unknown contents page.  This is because we live with the
   1177  *	consequences of a bad free list decision for the entire
   1178  *	lifetime of the page, e.g. if the page comes from memory that
   1179  *	is slower to access.
   1180  */
   1181 
   1182 struct vm_page *
   1183 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1184     int flags, int strat, int free_list)
   1185 {
   1186 	int lcv, try1, try2, zeroit = 0, color;
   1187 	struct uvm_cpu *ucpu;
   1188 	struct vm_page *pg;
   1189 	lwp_t *l;
   1190 
   1191 	KASSERT(obj == NULL || anon == NULL);
   1192 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1193 	KASSERT(off == trunc_page(off));
   1194 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
   1195 	KASSERT(anon == NULL || mutex_owned(anon->an_lock));
   1196 
   1197 	mutex_spin_enter(&uvm_fpageqlock);
   1198 
   1199 	/*
   1200 	 * This implements a global round-robin page coloring
   1201 	 * algorithm.
   1202 	 */
   1203 
   1204 	ucpu = curcpu()->ci_data.cpu_uvm;
   1205 	if (flags & UVM_FLAG_COLORMATCH) {
   1206 		color = atop(off) & uvmexp.colormask;
   1207 	} else {
   1208 		color = ucpu->page_free_nextcolor;
   1209 	}
   1210 
   1211 	/*
   1212 	 * check to see if we need to generate some free pages waking
   1213 	 * the pagedaemon.
   1214 	 */
   1215 
   1216 	uvm_kick_pdaemon();
   1217 
   1218 	/*
   1219 	 * fail if any of these conditions is true:
   1220 	 * [1]  there really are no free pages, or
   1221 	 * [2]  only kernel "reserved" pages remain and
   1222 	 *        reserved pages have not been requested.
   1223 	 * [3]  only pagedaemon "reserved" pages remain and
   1224 	 *        the requestor isn't the pagedaemon.
   1225 	 * we make kernel reserve pages available if called by a
   1226 	 * kernel thread or a realtime thread.
   1227 	 */
   1228 	l = curlwp;
   1229 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1230 		flags |= UVM_PGA_USERESERVE;
   1231 	}
   1232 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
   1233 	    (flags & UVM_PGA_USERESERVE) == 0) ||
   1234 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1235 	     curlwp != uvm.pagedaemon_lwp))
   1236 		goto fail;
   1237 
   1238 #if PGFL_NQUEUES != 2
   1239 #error uvm_pagealloc_strat needs to be updated
   1240 #endif
   1241 
   1242 	/*
   1243 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1244 	 * we try the UNKNOWN queue first.
   1245 	 */
   1246 	if (flags & UVM_PGA_ZERO) {
   1247 		try1 = PGFL_ZEROS;
   1248 		try2 = PGFL_UNKNOWN;
   1249 	} else {
   1250 		try1 = PGFL_UNKNOWN;
   1251 		try2 = PGFL_ZEROS;
   1252 	}
   1253 
   1254  again:
   1255 	switch (strat) {
   1256 	case UVM_PGA_STRAT_NORMAL:
   1257 		/* Check freelists: descending priority (ascending id) order */
   1258 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1259 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1260 			    try1, try2, &color);
   1261 			if (pg != NULL)
   1262 				goto gotit;
   1263 		}
   1264 
   1265 		/* No pages free! */
   1266 		goto fail;
   1267 
   1268 	case UVM_PGA_STRAT_ONLY:
   1269 	case UVM_PGA_STRAT_FALLBACK:
   1270 		/* Attempt to allocate from the specified free list. */
   1271 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1272 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1273 		    try1, try2, &color);
   1274 		if (pg != NULL)
   1275 			goto gotit;
   1276 
   1277 		/* Fall back, if possible. */
   1278 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1279 			strat = UVM_PGA_STRAT_NORMAL;
   1280 			goto again;
   1281 		}
   1282 
   1283 		/* No pages free! */
   1284 		goto fail;
   1285 
   1286 	default:
   1287 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1288 		/* NOTREACHED */
   1289 	}
   1290 
   1291  gotit:
   1292 	/*
   1293 	 * We now know which color we actually allocated from; set
   1294 	 * the next color accordingly.
   1295 	 */
   1296 
   1297 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1298 
   1299 	/*
   1300 	 * update allocation statistics and remember if we have to
   1301 	 * zero the page
   1302 	 */
   1303 
   1304 	if (flags & UVM_PGA_ZERO) {
   1305 		if (pg->flags & PG_ZERO) {
   1306 			uvmexp.pga_zerohit++;
   1307 			zeroit = 0;
   1308 		} else {
   1309 			uvmexp.pga_zeromiss++;
   1310 			zeroit = 1;
   1311 		}
   1312 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1313 			ucpu->page_idle_zero = vm_page_zero_enable;
   1314 		}
   1315 	}
   1316 	KASSERT(pg->pqflags == PQ_FREE);
   1317 
   1318 	pg->offset = off;
   1319 	pg->uobject = obj;
   1320 	pg->uanon = anon;
   1321 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1322 	if (anon) {
   1323 		anon->an_page = pg;
   1324 		pg->pqflags = PQ_ANON;
   1325 		atomic_inc_uint(&uvmexp.anonpages);
   1326 	} else {
   1327 		if (obj) {
   1328 			uvm_pageinsert(obj, pg);
   1329 		}
   1330 		pg->pqflags = 0;
   1331 	}
   1332 	mutex_spin_exit(&uvm_fpageqlock);
   1333 
   1334 #if defined(UVM_PAGE_TRKOWN)
   1335 	pg->owner_tag = NULL;
   1336 #endif
   1337 	UVM_PAGE_OWN(pg, "new alloc");
   1338 
   1339 	if (flags & UVM_PGA_ZERO) {
   1340 		/*
   1341 		 * A zero'd page is not clean.  If we got a page not already
   1342 		 * zero'd, then we have to zero it ourselves.
   1343 		 */
   1344 		pg->flags &= ~PG_CLEAN;
   1345 		if (zeroit)
   1346 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1347 	}
   1348 
   1349 	return(pg);
   1350 
   1351  fail:
   1352 	mutex_spin_exit(&uvm_fpageqlock);
   1353 	return (NULL);
   1354 }
   1355 
   1356 /*
   1357  * uvm_pagereplace: replace a page with another
   1358  *
   1359  * => object must be locked
   1360  */
   1361 
   1362 void
   1363 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1364 {
   1365 	struct uvm_object *uobj = oldpg->uobject;
   1366 
   1367 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1368 	KASSERT(uobj != NULL);
   1369 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1370 	KASSERT(newpg->uobject == NULL);
   1371 	KASSERT(mutex_owned(uobj->vmobjlock));
   1372 
   1373 	newpg->uobject = uobj;
   1374 	newpg->offset = oldpg->offset;
   1375 
   1376 	uvm_pageremove_tree(uobj, oldpg);
   1377 	uvm_pageinsert_tree(uobj, newpg);
   1378 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1379 	uvm_pageremove_list(uobj, oldpg);
   1380 }
   1381 
   1382 /*
   1383  * uvm_pagerealloc: reallocate a page from one object to another
   1384  *
   1385  * => both objects must be locked
   1386  */
   1387 
   1388 void
   1389 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1390 {
   1391 	/*
   1392 	 * remove it from the old object
   1393 	 */
   1394 
   1395 	if (pg->uobject) {
   1396 		uvm_pageremove(pg->uobject, pg);
   1397 	}
   1398 
   1399 	/*
   1400 	 * put it in the new object
   1401 	 */
   1402 
   1403 	if (newobj) {
   1404 		pg->uobject = newobj;
   1405 		pg->offset = newoff;
   1406 		uvm_pageinsert(newobj, pg);
   1407 	}
   1408 }
   1409 
   1410 #ifdef DEBUG
   1411 /*
   1412  * check if page is zero-filled
   1413  *
   1414  *  - called with free page queue lock held.
   1415  */
   1416 void
   1417 uvm_pagezerocheck(struct vm_page *pg)
   1418 {
   1419 	int *p, *ep;
   1420 
   1421 	KASSERT(uvm_zerocheckkva != 0);
   1422 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1423 
   1424 	/*
   1425 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1426 	 * uvm page allocator.
   1427 	 *
   1428 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1429 	 */
   1430 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1431 	p = (int *)uvm_zerocheckkva;
   1432 	ep = (int *)((char *)p + PAGE_SIZE);
   1433 	pmap_update(pmap_kernel());
   1434 	while (p < ep) {
   1435 		if (*p != 0)
   1436 			panic("PG_ZERO page isn't zero-filled");
   1437 		p++;
   1438 	}
   1439 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1440 	/*
   1441 	 * pmap_update() is not necessary here because no one except us
   1442 	 * uses this VA.
   1443 	 */
   1444 }
   1445 #endif /* DEBUG */
   1446 
   1447 /*
   1448  * uvm_pagefree: free page
   1449  *
   1450  * => erase page's identity (i.e. remove from object)
   1451  * => put page on free list
   1452  * => caller must lock owning object (either anon or uvm_object)
   1453  * => caller must lock page queues
   1454  * => assumes all valid mappings of pg are gone
   1455  */
   1456 
   1457 void
   1458 uvm_pagefree(struct vm_page *pg)
   1459 {
   1460 	struct pgflist *pgfl;
   1461 	struct uvm_cpu *ucpu;
   1462 	int index, color, queue;
   1463 	bool iszero;
   1464 
   1465 #ifdef DEBUG
   1466 	if (pg->uobject == (void *)0xdeadbeef &&
   1467 	    pg->uanon == (void *)0xdeadbeef) {
   1468 		panic("uvm_pagefree: freeing free page %p", pg);
   1469 	}
   1470 #endif /* DEBUG */
   1471 
   1472 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1473 	KASSERT(!(pg->pqflags & PQ_FREE));
   1474 	KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1475 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1476 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1477 		mutex_owned(pg->uanon->an_lock));
   1478 
   1479 	/*
   1480 	 * if the page is loaned, resolve the loan instead of freeing.
   1481 	 */
   1482 
   1483 	if (pg->loan_count) {
   1484 		KASSERT(pg->wire_count == 0);
   1485 
   1486 		/*
   1487 		 * if the page is owned by an anon then we just want to
   1488 		 * drop anon ownership.  the kernel will free the page when
   1489 		 * it is done with it.  if the page is owned by an object,
   1490 		 * remove it from the object and mark it dirty for the benefit
   1491 		 * of possible anon owners.
   1492 		 *
   1493 		 * regardless of previous ownership, wakeup any waiters,
   1494 		 * unbusy the page, and we're done.
   1495 		 */
   1496 
   1497 		if (pg->uobject != NULL) {
   1498 			uvm_pageremove(pg->uobject, pg);
   1499 			pg->flags &= ~PG_CLEAN;
   1500 		} else if (pg->uanon != NULL) {
   1501 			if ((pg->pqflags & PQ_ANON) == 0) {
   1502 				pg->loan_count--;
   1503 			} else {
   1504 				pg->pqflags &= ~PQ_ANON;
   1505 				atomic_dec_uint(&uvmexp.anonpages);
   1506 			}
   1507 			pg->uanon->an_page = NULL;
   1508 			pg->uanon = NULL;
   1509 		}
   1510 		if (pg->flags & PG_WANTED) {
   1511 			wakeup(pg);
   1512 		}
   1513 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1514 #ifdef UVM_PAGE_TRKOWN
   1515 		pg->owner_tag = NULL;
   1516 #endif
   1517 		if (pg->loan_count) {
   1518 			KASSERT(pg->uobject == NULL);
   1519 			if (pg->uanon == NULL) {
   1520 				uvm_pagedequeue(pg);
   1521 			}
   1522 			return;
   1523 		}
   1524 	}
   1525 
   1526 	/*
   1527 	 * remove page from its object or anon.
   1528 	 */
   1529 
   1530 	if (pg->uobject != NULL) {
   1531 		uvm_pageremove(pg->uobject, pg);
   1532 	} else if (pg->uanon != NULL) {
   1533 		pg->uanon->an_page = NULL;
   1534 		atomic_dec_uint(&uvmexp.anonpages);
   1535 	}
   1536 
   1537 	/*
   1538 	 * now remove the page from the queues.
   1539 	 */
   1540 
   1541 	uvm_pagedequeue(pg);
   1542 
   1543 	/*
   1544 	 * if the page was wired, unwire it now.
   1545 	 */
   1546 
   1547 	if (pg->wire_count) {
   1548 		pg->wire_count = 0;
   1549 		uvmexp.wired--;
   1550 	}
   1551 
   1552 	/*
   1553 	 * and put on free queue
   1554 	 */
   1555 
   1556 	iszero = (pg->flags & PG_ZERO);
   1557 	index = uvm_page_lookup_freelist(pg);
   1558 	color = VM_PGCOLOR_BUCKET(pg);
   1559 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1560 
   1561 #ifdef DEBUG
   1562 	pg->uobject = (void *)0xdeadbeef;
   1563 	pg->uanon = (void *)0xdeadbeef;
   1564 #endif
   1565 
   1566 	mutex_spin_enter(&uvm_fpageqlock);
   1567 	pg->pqflags = PQ_FREE;
   1568 
   1569 #ifdef DEBUG
   1570 	if (iszero)
   1571 		uvm_pagezerocheck(pg);
   1572 #endif /* DEBUG */
   1573 
   1574 
   1575 	/* global list */
   1576 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1577 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1578 	uvmexp.free++;
   1579 	if (iszero) {
   1580 		uvmexp.zeropages++;
   1581 	}
   1582 
   1583 	/* per-cpu list */
   1584 	ucpu = curcpu()->ci_data.cpu_uvm;
   1585 	pg->offset = (uintptr_t)ucpu;
   1586 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1587 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1588 	ucpu->pages[queue]++;
   1589 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1590 		ucpu->page_idle_zero = vm_page_zero_enable;
   1591 	}
   1592 
   1593 	mutex_spin_exit(&uvm_fpageqlock);
   1594 }
   1595 
   1596 /*
   1597  * uvm_page_unbusy: unbusy an array of pages.
   1598  *
   1599  * => pages must either all belong to the same object, or all belong to anons.
   1600  * => if pages are object-owned, object must be locked.
   1601  * => if pages are anon-owned, anons must be locked.
   1602  * => caller must lock page queues if pages may be released.
   1603  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1604  */
   1605 
   1606 void
   1607 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1608 {
   1609 	struct vm_page *pg;
   1610 	int i;
   1611 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1612 
   1613 	for (i = 0; i < npgs; i++) {
   1614 		pg = pgs[i];
   1615 		if (pg == NULL || pg == PGO_DONTCARE) {
   1616 			continue;
   1617 		}
   1618 
   1619 		KASSERT(pg->uobject == NULL ||
   1620 		    mutex_owned(pg->uobject->vmobjlock));
   1621 		KASSERT(pg->uobject != NULL ||
   1622 		    (pg->uanon != NULL && mutex_owned(pg->uanon->an_lock)));
   1623 
   1624 		KASSERT(pg->flags & PG_BUSY);
   1625 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1626 		if (pg->flags & PG_WANTED) {
   1627 			wakeup(pg);
   1628 		}
   1629 		if (pg->flags & PG_RELEASED) {
   1630 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1631 			KASSERT(pg->uobject != NULL ||
   1632 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1633 			pg->flags &= ~PG_RELEASED;
   1634 			uvm_pagefree(pg);
   1635 		} else {
   1636 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1637 			KASSERT((pg->flags & PG_FAKE) == 0);
   1638 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1639 			UVM_PAGE_OWN(pg, NULL);
   1640 		}
   1641 	}
   1642 }
   1643 
   1644 #if defined(UVM_PAGE_TRKOWN)
   1645 /*
   1646  * uvm_page_own: set or release page ownership
   1647  *
   1648  * => this is a debugging function that keeps track of who sets PG_BUSY
   1649  *	and where they do it.   it can be used to track down problems
   1650  *	such a process setting "PG_BUSY" and never releasing it.
   1651  * => page's object [if any] must be locked
   1652  * => if "tag" is NULL then we are releasing page ownership
   1653  */
   1654 void
   1655 uvm_page_own(struct vm_page *pg, const char *tag)
   1656 {
   1657 	struct uvm_object *uobj;
   1658 	struct vm_anon *anon;
   1659 
   1660 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1661 
   1662 	uobj = pg->uobject;
   1663 	anon = pg->uanon;
   1664 	if (uobj != NULL) {
   1665 		KASSERT(mutex_owned(uobj->vmobjlock));
   1666 	} else if (anon != NULL) {
   1667 		KASSERT(mutex_owned(anon->an_lock));
   1668 	}
   1669 
   1670 	KASSERT((pg->flags & PG_WANTED) == 0);
   1671 
   1672 	/* gain ownership? */
   1673 	if (tag) {
   1674 		KASSERT((pg->flags & PG_BUSY) != 0);
   1675 		if (pg->owner_tag) {
   1676 			printf("uvm_page_own: page %p already owned "
   1677 			    "by proc %d [%s]\n", pg,
   1678 			    pg->owner, pg->owner_tag);
   1679 			panic("uvm_page_own");
   1680 		}
   1681 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1682 		pg->lowner = (curlwp) ? curlwp->l_lid :  (lwpid_t) -1;
   1683 		pg->owner_tag = tag;
   1684 		return;
   1685 	}
   1686 
   1687 	/* drop ownership */
   1688 	KASSERT((pg->flags & PG_BUSY) == 0);
   1689 	if (pg->owner_tag == NULL) {
   1690 		printf("uvm_page_own: dropping ownership of an non-owned "
   1691 		    "page (%p)\n", pg);
   1692 		panic("uvm_page_own");
   1693 	}
   1694 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1695 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1696 		    pg->wire_count > 0);
   1697 	} else {
   1698 		KASSERT(pg->wire_count == 0);
   1699 	}
   1700 	pg->owner_tag = NULL;
   1701 }
   1702 #endif
   1703 
   1704 /*
   1705  * uvm_pageidlezero: zero free pages while the system is idle.
   1706  *
   1707  * => try to complete one color bucket at a time, to reduce our impact
   1708  *	on the CPU cache.
   1709  * => we loop until we either reach the target or there is a lwp ready
   1710  *      to run, or MD code detects a reason to break early.
   1711  */
   1712 void
   1713 uvm_pageidlezero(void)
   1714 {
   1715 	struct vm_page *pg;
   1716 	struct pgfreelist *pgfl, *gpgfl;
   1717 	struct uvm_cpu *ucpu;
   1718 	int free_list, firstbucket, nextbucket;
   1719 	bool lcont = false;
   1720 
   1721 	ucpu = curcpu()->ci_data.cpu_uvm;
   1722 	if (!ucpu->page_idle_zero ||
   1723 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1724 	    	ucpu->page_idle_zero = false;
   1725 		return;
   1726 	}
   1727 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1728 		/* Contention: let other CPUs to use the lock. */
   1729 		return;
   1730 	}
   1731 	firstbucket = ucpu->page_free_nextcolor;
   1732 	nextbucket = firstbucket;
   1733 	do {
   1734 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1735 			if (sched_curcpu_runnable_p()) {
   1736 				goto quit;
   1737 			}
   1738 			pgfl = &ucpu->page_free[free_list];
   1739 			gpgfl = &uvm.page_free[free_list];
   1740 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1741 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1742 				if (lcont || sched_curcpu_runnable_p()) {
   1743 					goto quit;
   1744 				}
   1745 				LIST_REMOVE(pg, pageq.list); /* global list */
   1746 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1747 				ucpu->pages[PGFL_UNKNOWN]--;
   1748 				uvmexp.free--;
   1749 				KASSERT(pg->pqflags == PQ_FREE);
   1750 				pg->pqflags = 0;
   1751 				mutex_spin_exit(&uvm_fpageqlock);
   1752 #ifdef PMAP_PAGEIDLEZERO
   1753 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1754 
   1755 					/*
   1756 					 * The machine-dependent code detected
   1757 					 * some reason for us to abort zeroing
   1758 					 * pages, probably because there is a
   1759 					 * process now ready to run.
   1760 					 */
   1761 
   1762 					mutex_spin_enter(&uvm_fpageqlock);
   1763 					pg->pqflags = PQ_FREE;
   1764 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1765 					    nextbucket].pgfl_queues[
   1766 					    PGFL_UNKNOWN], pg, pageq.list);
   1767 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1768 					    nextbucket].pgfl_queues[
   1769 					    PGFL_UNKNOWN], pg, listq.list);
   1770 					ucpu->pages[PGFL_UNKNOWN]++;
   1771 					uvmexp.free++;
   1772 					uvmexp.zeroaborts++;
   1773 					goto quit;
   1774 				}
   1775 #else
   1776 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1777 #endif /* PMAP_PAGEIDLEZERO */
   1778 				pg->flags |= PG_ZERO;
   1779 
   1780 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1781 					lcont = true;
   1782 					mutex_spin_enter(&uvm_fpageqlock);
   1783 				} else {
   1784 					lcont = false;
   1785 				}
   1786 				pg->pqflags = PQ_FREE;
   1787 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1788 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1789 				    pg, pageq.list);
   1790 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1791 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1792 				    pg, listq.list);
   1793 				ucpu->pages[PGFL_ZEROS]++;
   1794 				uvmexp.free++;
   1795 				uvmexp.zeropages++;
   1796 			}
   1797 		}
   1798 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1799 			break;
   1800 		}
   1801 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1802 	} while (nextbucket != firstbucket);
   1803 	ucpu->page_idle_zero = false;
   1804  quit:
   1805 	mutex_spin_exit(&uvm_fpageqlock);
   1806 }
   1807 
   1808 /*
   1809  * uvm_pagelookup: look up a page
   1810  *
   1811  * => caller should lock object to keep someone from pulling the page
   1812  *	out from under it
   1813  */
   1814 
   1815 struct vm_page *
   1816 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1817 {
   1818 	struct vm_page *pg;
   1819 
   1820 	KASSERT(mutex_owned(obj->vmobjlock));
   1821 
   1822 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1823 
   1824 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1825 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1826 		(pg->flags & PG_BUSY) != 0);
   1827 	return pg;
   1828 }
   1829 
   1830 /*
   1831  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1832  *
   1833  * => caller must lock page queues
   1834  */
   1835 
   1836 void
   1837 uvm_pagewire(struct vm_page *pg)
   1838 {
   1839 	KASSERT(mutex_owned(&uvm_pageqlock));
   1840 #if defined(READAHEAD_STATS)
   1841 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1842 		uvm_ra_hit.ev_count++;
   1843 		pg->pqflags &= ~PQ_READAHEAD;
   1844 	}
   1845 #endif /* defined(READAHEAD_STATS) */
   1846 	if (pg->wire_count == 0) {
   1847 		uvm_pagedequeue(pg);
   1848 		uvmexp.wired++;
   1849 	}
   1850 	pg->wire_count++;
   1851 }
   1852 
   1853 /*
   1854  * uvm_pageunwire: unwire the page.
   1855  *
   1856  * => activate if wire count goes to zero.
   1857  * => caller must lock page queues
   1858  */
   1859 
   1860 void
   1861 uvm_pageunwire(struct vm_page *pg)
   1862 {
   1863 	KASSERT(mutex_owned(&uvm_pageqlock));
   1864 	pg->wire_count--;
   1865 	if (pg->wire_count == 0) {
   1866 		uvm_pageactivate(pg);
   1867 		uvmexp.wired--;
   1868 	}
   1869 }
   1870 
   1871 /*
   1872  * uvm_pagedeactivate: deactivate page
   1873  *
   1874  * => caller must lock page queues
   1875  * => caller must check to make sure page is not wired
   1876  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1877  * => caller must clear the reference on the page before calling
   1878  */
   1879 
   1880 void
   1881 uvm_pagedeactivate(struct vm_page *pg)
   1882 {
   1883 
   1884 	KASSERT(mutex_owned(&uvm_pageqlock));
   1885 	KASSERT(uvm_page_locked_p(pg));
   1886 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1887 	uvmpdpol_pagedeactivate(pg);
   1888 }
   1889 
   1890 /*
   1891  * uvm_pageactivate: activate page
   1892  *
   1893  * => caller must lock page queues
   1894  */
   1895 
   1896 void
   1897 uvm_pageactivate(struct vm_page *pg)
   1898 {
   1899 
   1900 	KASSERT(mutex_owned(&uvm_pageqlock));
   1901 	KASSERT(uvm_page_locked_p(pg));
   1902 #if defined(READAHEAD_STATS)
   1903 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1904 		uvm_ra_hit.ev_count++;
   1905 		pg->pqflags &= ~PQ_READAHEAD;
   1906 	}
   1907 #endif /* defined(READAHEAD_STATS) */
   1908 	if (pg->wire_count != 0) {
   1909 		return;
   1910 	}
   1911 	uvmpdpol_pageactivate(pg);
   1912 }
   1913 
   1914 /*
   1915  * uvm_pagedequeue: remove a page from any paging queue
   1916  */
   1917 
   1918 void
   1919 uvm_pagedequeue(struct vm_page *pg)
   1920 {
   1921 
   1922 	if (uvmpdpol_pageisqueued_p(pg)) {
   1923 		KASSERT(mutex_owned(&uvm_pageqlock));
   1924 	}
   1925 
   1926 	uvmpdpol_pagedequeue(pg);
   1927 }
   1928 
   1929 /*
   1930  * uvm_pageenqueue: add a page to a paging queue without activating.
   1931  * used where a page is not really demanded (yet).  eg. read-ahead
   1932  */
   1933 
   1934 void
   1935 uvm_pageenqueue(struct vm_page *pg)
   1936 {
   1937 
   1938 	KASSERT(mutex_owned(&uvm_pageqlock));
   1939 	if (pg->wire_count != 0) {
   1940 		return;
   1941 	}
   1942 	uvmpdpol_pageenqueue(pg);
   1943 }
   1944 
   1945 /*
   1946  * uvm_pagezero: zero fill a page
   1947  *
   1948  * => if page is part of an object then the object should be locked
   1949  *	to protect pg->flags.
   1950  */
   1951 
   1952 void
   1953 uvm_pagezero(struct vm_page *pg)
   1954 {
   1955 	pg->flags &= ~PG_CLEAN;
   1956 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1957 }
   1958 
   1959 /*
   1960  * uvm_pagecopy: copy a page
   1961  *
   1962  * => if page is part of an object then the object should be locked
   1963  *	to protect pg->flags.
   1964  */
   1965 
   1966 void
   1967 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1968 {
   1969 
   1970 	dst->flags &= ~PG_CLEAN;
   1971 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1972 }
   1973 
   1974 /*
   1975  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1976  */
   1977 
   1978 bool
   1979 uvm_pageismanaged(paddr_t pa)
   1980 {
   1981 
   1982 	return (vm_physseg_find(atop(pa), NULL) != -1);
   1983 }
   1984 
   1985 /*
   1986  * uvm_page_lookup_freelist: look up the free list for the specified page
   1987  */
   1988 
   1989 int
   1990 uvm_page_lookup_freelist(struct vm_page *pg)
   1991 {
   1992 	int lcv;
   1993 
   1994 	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1995 	KASSERT(lcv != -1);
   1996 	return (VM_PHYSMEM_PTR(lcv)->free_list);
   1997 }
   1998 
   1999 /*
   2000  * uvm_page_locked_p: return true if object associated with page is
   2001  * locked.  this is a weak check for runtime assertions only.
   2002  */
   2003 
   2004 bool
   2005 uvm_page_locked_p(struct vm_page *pg)
   2006 {
   2007 
   2008 	if (pg->uobject != NULL) {
   2009 		return mutex_owned(pg->uobject->vmobjlock);
   2010 	}
   2011 	if (pg->uanon != NULL) {
   2012 		return mutex_owned(pg->uanon->an_lock);
   2013 	}
   2014 	return true;
   2015 }
   2016 
   2017 #if defined(DDB) || defined(DEBUGPRINT)
   2018 
   2019 /*
   2020  * uvm_page_printit: actually print the page
   2021  */
   2022 
   2023 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2024 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2025 
   2026 void
   2027 uvm_page_printit(struct vm_page *pg, bool full,
   2028     void (*pr)(const char *, ...))
   2029 {
   2030 	struct vm_page *tpg;
   2031 	struct uvm_object *uobj;
   2032 	struct pgflist *pgl;
   2033 	char pgbuf[128];
   2034 	char pqbuf[128];
   2035 
   2036 	(*pr)("PAGE %p:\n", pg);
   2037 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2038 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   2039 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   2040 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2041 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2042 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2043 #if defined(UVM_PAGE_TRKOWN)
   2044 	if (pg->flags & PG_BUSY)
   2045 		(*pr)("  owning process = %d, tag=%s\n",
   2046 		    pg->owner, pg->owner_tag);
   2047 	else
   2048 		(*pr)("  page not busy, no owner\n");
   2049 #else
   2050 	(*pr)("  [page ownership tracking disabled]\n");
   2051 #endif
   2052 
   2053 	if (!full)
   2054 		return;
   2055 
   2056 	/* cross-verify object/anon */
   2057 	if ((pg->pqflags & PQ_FREE) == 0) {
   2058 		if (pg->pqflags & PQ_ANON) {
   2059 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2060 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2061 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2062 			else
   2063 				(*pr)("  anon backpointer is OK\n");
   2064 		} else {
   2065 			uobj = pg->uobject;
   2066 			if (uobj) {
   2067 				(*pr)("  checking object list\n");
   2068 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   2069 					if (tpg == pg) {
   2070 						break;
   2071 					}
   2072 				}
   2073 				if (tpg)
   2074 					(*pr)("  page found on object list\n");
   2075 				else
   2076 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2077 			}
   2078 		}
   2079 	}
   2080 
   2081 	/* cross-verify page queue */
   2082 	if (pg->pqflags & PQ_FREE) {
   2083 		int fl = uvm_page_lookup_freelist(pg);
   2084 		int color = VM_PGCOLOR_BUCKET(pg);
   2085 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   2086 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   2087 	} else {
   2088 		pgl = NULL;
   2089 	}
   2090 
   2091 	if (pgl) {
   2092 		(*pr)("  checking pageq list\n");
   2093 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2094 			if (tpg == pg) {
   2095 				break;
   2096 			}
   2097 		}
   2098 		if (tpg)
   2099 			(*pr)("  page found on pageq list\n");
   2100 		else
   2101 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2102 	}
   2103 }
   2104 
   2105 /*
   2106  * uvm_pages_printthem - print a summary of all managed pages
   2107  */
   2108 
   2109 void
   2110 uvm_page_printall(void (*pr)(const char *, ...))
   2111 {
   2112 	unsigned i;
   2113 	struct vm_page *pg;
   2114 
   2115 	(*pr)("%18s %4s %4s %18s %18s"
   2116 #ifdef UVM_PAGE_TRKOWN
   2117 	    " OWNER"
   2118 #endif
   2119 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2120 	for (i = 0; i < vm_nphysmem; i++) {
   2121 		for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
   2122 			(*pr)("%18p %04x %04x %18p %18p",
   2123 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2124 			    pg->uanon);
   2125 #ifdef UVM_PAGE_TRKOWN
   2126 			if (pg->flags & PG_BUSY)
   2127 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2128 #endif
   2129 			(*pr)("\n");
   2130 		}
   2131 	}
   2132 }
   2133 
   2134 #endif /* DDB || DEBUGPRINT */
   2135