uvm_page.c revision 1.184 1 /* $NetBSD: uvm_page.c,v 1.184 2014/04/21 16:33:48 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_page.c: page ops.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.184 2014/04/21 16:33:48 chs Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_uvmhist.h"
73 #include "opt_readahead.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sched.h>
78 #include <sys/kernel.h>
79 #include <sys/vnode.h>
80 #include <sys/proc.h>
81 #include <sys/atomic.h>
82 #include <sys/cpu.h>
83
84 #include <uvm/uvm.h>
85 #include <uvm/uvm_ddb.h>
86 #include <uvm/uvm_pdpolicy.h>
87
88 /*
89 * global vars... XXXCDC: move to uvm. structure.
90 */
91
92 /*
93 * physical memory config is stored in vm_physmem.
94 */
95
96 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
97 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
98 #define vm_nphysmem vm_nphysseg
99
100 /*
101 * Some supported CPUs in a given architecture don't support all
102 * of the things necessary to do idle page zero'ing efficiently.
103 * We therefore provide a way to enable it from machdep code here.
104 */
105 bool vm_page_zero_enable = false;
106
107 /*
108 * number of pages per-CPU to reserve for the kernel.
109 */
110 int vm_page_reserve_kernel = 5;
111
112 /*
113 * physical memory size;
114 */
115 int physmem;
116
117 /*
118 * local variables
119 */
120
121 /*
122 * these variables record the values returned by vm_page_bootstrap,
123 * for debugging purposes. The implementation of uvm_pageboot_alloc
124 * and pmap_startup here also uses them internally.
125 */
126
127 static vaddr_t virtual_space_start;
128 static vaddr_t virtual_space_end;
129
130 /*
131 * we allocate an initial number of page colors in uvm_page_init(),
132 * and remember them. We may re-color pages as cache sizes are
133 * discovered during the autoconfiguration phase. But we can never
134 * free the initial set of buckets, since they are allocated using
135 * uvm_pageboot_alloc().
136 */
137
138 static size_t recolored_pages_memsize /* = 0 */;
139
140 #ifdef DEBUG
141 vaddr_t uvm_zerocheckkva;
142 #endif /* DEBUG */
143
144 /*
145 * local prototypes
146 */
147
148 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
149 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
150
151 /*
152 * per-object tree of pages
153 */
154
155 static signed int
156 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
157 {
158 const struct vm_page *pg1 = n1;
159 const struct vm_page *pg2 = n2;
160 const voff_t a = pg1->offset;
161 const voff_t b = pg2->offset;
162
163 if (a < b)
164 return -1;
165 if (a > b)
166 return 1;
167 return 0;
168 }
169
170 static signed int
171 uvm_page_compare_key(void *ctx, const void *n, const void *key)
172 {
173 const struct vm_page *pg = n;
174 const voff_t a = pg->offset;
175 const voff_t b = *(const voff_t *)key;
176
177 if (a < b)
178 return -1;
179 if (a > b)
180 return 1;
181 return 0;
182 }
183
184 const rb_tree_ops_t uvm_page_tree_ops = {
185 .rbto_compare_nodes = uvm_page_compare_nodes,
186 .rbto_compare_key = uvm_page_compare_key,
187 .rbto_node_offset = offsetof(struct vm_page, rb_node),
188 .rbto_context = NULL
189 };
190
191 /*
192 * inline functions
193 */
194
195 /*
196 * uvm_pageinsert: insert a page in the object.
197 *
198 * => caller must lock object
199 * => caller must lock page queues
200 * => call should have already set pg's object and offset pointers
201 * and bumped the version counter
202 */
203
204 static inline void
205 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
206 struct vm_page *where)
207 {
208
209 KASSERT(uobj == pg->uobject);
210 KASSERT(mutex_owned(uobj->vmobjlock));
211 KASSERT((pg->flags & PG_TABLED) == 0);
212 KASSERT(where == NULL || (where->flags & PG_TABLED));
213 KASSERT(where == NULL || (where->uobject == uobj));
214
215 if (UVM_OBJ_IS_VNODE(uobj)) {
216 if (uobj->uo_npages == 0) {
217 struct vnode *vp = (struct vnode *)uobj;
218
219 vholdl(vp);
220 }
221 if (UVM_OBJ_IS_VTEXT(uobj)) {
222 atomic_inc_uint(&uvmexp.execpages);
223 } else {
224 atomic_inc_uint(&uvmexp.filepages);
225 }
226 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
227 atomic_inc_uint(&uvmexp.anonpages);
228 }
229
230 if (where)
231 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
232 else
233 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
234 pg->flags |= PG_TABLED;
235 uobj->uo_npages++;
236 }
237
238
239 static inline void
240 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
241 {
242 struct vm_page *ret __diagused;
243
244 KASSERT(uobj == pg->uobject);
245 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
246 KASSERT(ret == pg);
247 }
248
249 static inline void
250 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
251 {
252
253 KDASSERT(uobj != NULL);
254 uvm_pageinsert_tree(uobj, pg);
255 uvm_pageinsert_list(uobj, pg, NULL);
256 }
257
258 /*
259 * uvm_page_remove: remove page from object.
260 *
261 * => caller must lock object
262 * => caller must lock page queues
263 */
264
265 static inline void
266 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
267 {
268
269 KASSERT(uobj == pg->uobject);
270 KASSERT(mutex_owned(uobj->vmobjlock));
271 KASSERT(pg->flags & PG_TABLED);
272
273 if (UVM_OBJ_IS_VNODE(uobj)) {
274 if (uobj->uo_npages == 1) {
275 struct vnode *vp = (struct vnode *)uobj;
276
277 holdrelel(vp);
278 }
279 if (UVM_OBJ_IS_VTEXT(uobj)) {
280 atomic_dec_uint(&uvmexp.execpages);
281 } else {
282 atomic_dec_uint(&uvmexp.filepages);
283 }
284 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
285 atomic_dec_uint(&uvmexp.anonpages);
286 }
287
288 /* object should be locked */
289 uobj->uo_npages--;
290 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
291 pg->flags &= ~PG_TABLED;
292 pg->uobject = NULL;
293 }
294
295 static inline void
296 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
297 {
298
299 KASSERT(uobj == pg->uobject);
300 rb_tree_remove_node(&uobj->rb_tree, pg);
301 }
302
303 static inline void
304 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
305 {
306
307 KDASSERT(uobj != NULL);
308 uvm_pageremove_tree(uobj, pg);
309 uvm_pageremove_list(uobj, pg);
310 }
311
312 static void
313 uvm_page_init_buckets(struct pgfreelist *pgfl)
314 {
315 int color, i;
316
317 for (color = 0; color < uvmexp.ncolors; color++) {
318 for (i = 0; i < PGFL_NQUEUES; i++) {
319 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
320 }
321 }
322 }
323
324 /*
325 * uvm_page_init: init the page system. called from uvm_init().
326 *
327 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
328 */
329
330 void
331 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
332 {
333 static struct uvm_cpu boot_cpu;
334 psize_t freepages, pagecount, bucketcount, n;
335 struct pgflbucket *bucketarray, *cpuarray;
336 struct vm_physseg *seg;
337 struct vm_page *pagearray;
338 int lcv;
339 u_int i;
340 paddr_t paddr;
341
342 KASSERT(ncpu <= 1);
343 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
344
345 /*
346 * init the page queues and page queue locks, except the free
347 * list; we allocate that later (with the initial vm_page
348 * structures).
349 */
350
351 uvm.cpus[0] = &boot_cpu;
352 curcpu()->ci_data.cpu_uvm = &boot_cpu;
353 uvmpdpol_init();
354 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
355 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
356
357 /*
358 * allocate vm_page structures.
359 */
360
361 /*
362 * sanity check:
363 * before calling this function the MD code is expected to register
364 * some free RAM with the uvm_page_physload() function. our job
365 * now is to allocate vm_page structures for this memory.
366 */
367
368 if (vm_nphysmem == 0)
369 panic("uvm_page_bootstrap: no memory pre-allocated");
370
371 /*
372 * first calculate the number of free pages...
373 *
374 * note that we use start/end rather than avail_start/avail_end.
375 * this allows us to allocate extra vm_page structures in case we
376 * want to return some memory to the pool after booting.
377 */
378
379 freepages = 0;
380 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
381 seg = VM_PHYSMEM_PTR(lcv);
382 freepages += (seg->end - seg->start);
383 }
384
385 /*
386 * Let MD code initialize the number of colors, or default
387 * to 1 color if MD code doesn't care.
388 */
389 if (uvmexp.ncolors == 0)
390 uvmexp.ncolors = 1;
391 uvmexp.colormask = uvmexp.ncolors - 1;
392 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
393
394 /*
395 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
396 * use. for each page of memory we use we need a vm_page structure.
397 * thus, the total number of pages we can use is the total size of
398 * the memory divided by the PAGE_SIZE plus the size of the vm_page
399 * structure. we add one to freepages as a fudge factor to avoid
400 * truncation errors (since we can only allocate in terms of whole
401 * pages).
402 */
403
404 bucketcount = uvmexp.ncolors * VM_NFREELIST;
405 pagecount = ((freepages + 1) << PAGE_SHIFT) /
406 (PAGE_SIZE + sizeof(struct vm_page));
407
408 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
409 sizeof(struct pgflbucket) * 2) + (pagecount *
410 sizeof(struct vm_page)));
411 cpuarray = bucketarray + bucketcount;
412 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
413
414 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
415 uvm.page_free[lcv].pgfl_buckets =
416 (bucketarray + (lcv * uvmexp.ncolors));
417 uvm_page_init_buckets(&uvm.page_free[lcv]);
418 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
419 (cpuarray + (lcv * uvmexp.ncolors));
420 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
421 }
422 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
423
424 /*
425 * init the vm_page structures and put them in the correct place.
426 */
427
428 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
429 seg = VM_PHYSMEM_PTR(lcv);
430 n = seg->end - seg->start;
431
432 /* set up page array pointers */
433 seg->pgs = pagearray;
434 pagearray += n;
435 pagecount -= n;
436 seg->lastpg = seg->pgs + n;
437
438 /* init and free vm_pages (we've already zeroed them) */
439 paddr = ctob(seg->start);
440 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
441 seg->pgs[i].phys_addr = paddr;
442 #ifdef __HAVE_VM_PAGE_MD
443 VM_MDPAGE_INIT(&seg->pgs[i]);
444 #endif
445 if (atop(paddr) >= seg->avail_start &&
446 atop(paddr) < seg->avail_end) {
447 uvmexp.npages++;
448 /* add page to free pool */
449 uvm_pagefree(&seg->pgs[i]);
450 }
451 }
452 }
453
454 /*
455 * pass up the values of virtual_space_start and
456 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
457 * layers of the VM.
458 */
459
460 *kvm_startp = round_page(virtual_space_start);
461 *kvm_endp = trunc_page(virtual_space_end);
462 #ifdef DEBUG
463 /*
464 * steal kva for uvm_pagezerocheck().
465 */
466 uvm_zerocheckkva = *kvm_startp;
467 *kvm_startp += PAGE_SIZE;
468 #endif /* DEBUG */
469
470 /*
471 * init various thresholds.
472 */
473
474 uvmexp.reserve_pagedaemon = 1;
475 uvmexp.reserve_kernel = vm_page_reserve_kernel;
476
477 /*
478 * determine if we should zero pages in the idle loop.
479 */
480
481 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
482
483 /*
484 * done!
485 */
486
487 uvm.page_init_done = true;
488 }
489
490 /*
491 * uvm_setpagesize: set the page size
492 *
493 * => sets page_shift and page_mask from uvmexp.pagesize.
494 */
495
496 void
497 uvm_setpagesize(void)
498 {
499
500 /*
501 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
502 * to be a constant (indicated by being a non-zero value).
503 */
504 if (uvmexp.pagesize == 0) {
505 if (PAGE_SIZE == 0)
506 panic("uvm_setpagesize: uvmexp.pagesize not set");
507 uvmexp.pagesize = PAGE_SIZE;
508 }
509 uvmexp.pagemask = uvmexp.pagesize - 1;
510 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
511 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
512 uvmexp.pagesize, uvmexp.pagesize);
513 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
514 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
515 break;
516 }
517
518 /*
519 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
520 */
521
522 vaddr_t
523 uvm_pageboot_alloc(vsize_t size)
524 {
525 static bool initialized = false;
526 vaddr_t addr;
527 #if !defined(PMAP_STEAL_MEMORY)
528 vaddr_t vaddr;
529 paddr_t paddr;
530 #endif
531
532 /*
533 * on first call to this function, initialize ourselves.
534 */
535 if (initialized == false) {
536 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
537
538 /* round it the way we like it */
539 virtual_space_start = round_page(virtual_space_start);
540 virtual_space_end = trunc_page(virtual_space_end);
541
542 initialized = true;
543 }
544
545 /* round to page size */
546 size = round_page(size);
547
548 #if defined(PMAP_STEAL_MEMORY)
549
550 /*
551 * defer bootstrap allocation to MD code (it may want to allocate
552 * from a direct-mapped segment). pmap_steal_memory should adjust
553 * virtual_space_start/virtual_space_end if necessary.
554 */
555
556 addr = pmap_steal_memory(size, &virtual_space_start,
557 &virtual_space_end);
558
559 return(addr);
560
561 #else /* !PMAP_STEAL_MEMORY */
562
563 /*
564 * allocate virtual memory for this request
565 */
566 if (virtual_space_start == virtual_space_end ||
567 (virtual_space_end - virtual_space_start) < size)
568 panic("uvm_pageboot_alloc: out of virtual space");
569
570 addr = virtual_space_start;
571
572 #ifdef PMAP_GROWKERNEL
573 /*
574 * If the kernel pmap can't map the requested space,
575 * then allocate more resources for it.
576 */
577 if (uvm_maxkaddr < (addr + size)) {
578 uvm_maxkaddr = pmap_growkernel(addr + size);
579 if (uvm_maxkaddr < (addr + size))
580 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
581 }
582 #endif
583
584 virtual_space_start += size;
585
586 /*
587 * allocate and mapin physical pages to back new virtual pages
588 */
589
590 for (vaddr = round_page(addr) ; vaddr < addr + size ;
591 vaddr += PAGE_SIZE) {
592
593 if (!uvm_page_physget(&paddr))
594 panic("uvm_pageboot_alloc: out of memory");
595
596 /*
597 * Note this memory is no longer managed, so using
598 * pmap_kenter is safe.
599 */
600 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
601 }
602 pmap_update(pmap_kernel());
603 return(addr);
604 #endif /* PMAP_STEAL_MEMORY */
605 }
606
607 #if !defined(PMAP_STEAL_MEMORY)
608 /*
609 * uvm_page_physget: "steal" one page from the vm_physmem structure.
610 *
611 * => attempt to allocate it off the end of a segment in which the "avail"
612 * values match the start/end values. if we can't do that, then we
613 * will advance both values (making them equal, and removing some
614 * vm_page structures from the non-avail area).
615 * => return false if out of memory.
616 */
617
618 /* subroutine: try to allocate from memory chunks on the specified freelist */
619 static bool uvm_page_physget_freelist(paddr_t *, int);
620
621 static bool
622 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
623 {
624 struct vm_physseg *seg;
625 int lcv, x;
626
627 /* pass 1: try allocating from a matching end */
628 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
629 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
630 #else
631 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
632 #endif
633 {
634 seg = VM_PHYSMEM_PTR(lcv);
635
636 if (uvm.page_init_done == true)
637 panic("uvm_page_physget: called _after_ bootstrap");
638
639 if (seg->free_list != freelist)
640 continue;
641
642 /* try from front */
643 if (seg->avail_start == seg->start &&
644 seg->avail_start < seg->avail_end) {
645 *paddrp = ctob(seg->avail_start);
646 seg->avail_start++;
647 seg->start++;
648 /* nothing left? nuke it */
649 if (seg->avail_start == seg->end) {
650 if (vm_nphysmem == 1)
651 panic("uvm_page_physget: out of memory!");
652 vm_nphysmem--;
653 for (x = lcv ; x < vm_nphysmem ; x++)
654 /* structure copy */
655 VM_PHYSMEM_PTR_SWAP(x, x + 1);
656 }
657 return (true);
658 }
659
660 /* try from rear */
661 if (seg->avail_end == seg->end &&
662 seg->avail_start < seg->avail_end) {
663 *paddrp = ctob(seg->avail_end - 1);
664 seg->avail_end--;
665 seg->end--;
666 /* nothing left? nuke it */
667 if (seg->avail_end == seg->start) {
668 if (vm_nphysmem == 1)
669 panic("uvm_page_physget: out of memory!");
670 vm_nphysmem--;
671 for (x = lcv ; x < vm_nphysmem ; x++)
672 /* structure copy */
673 VM_PHYSMEM_PTR_SWAP(x, x + 1);
674 }
675 return (true);
676 }
677 }
678
679 /* pass2: forget about matching ends, just allocate something */
680 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
681 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
682 #else
683 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
684 #endif
685 {
686 seg = VM_PHYSMEM_PTR(lcv);
687
688 /* any room in this bank? */
689 if (seg->avail_start >= seg->avail_end)
690 continue; /* nope */
691
692 *paddrp = ctob(seg->avail_start);
693 seg->avail_start++;
694 /* truncate! */
695 seg->start = seg->avail_start;
696
697 /* nothing left? nuke it */
698 if (seg->avail_start == seg->end) {
699 if (vm_nphysmem == 1)
700 panic("uvm_page_physget: out of memory!");
701 vm_nphysmem--;
702 for (x = lcv ; x < vm_nphysmem ; x++)
703 /* structure copy */
704 VM_PHYSMEM_PTR_SWAP(x, x + 1);
705 }
706 return (true);
707 }
708
709 return (false); /* whoops! */
710 }
711
712 bool
713 uvm_page_physget(paddr_t *paddrp)
714 {
715 int i;
716
717 /* try in the order of freelist preference */
718 for (i = 0; i < VM_NFREELIST; i++)
719 if (uvm_page_physget_freelist(paddrp, i) == true)
720 return (true);
721 return (false);
722 }
723 #endif /* PMAP_STEAL_MEMORY */
724
725 /*
726 * uvm_page_physload: load physical memory into VM system
727 *
728 * => all args are PFs
729 * => all pages in start/end get vm_page structures
730 * => areas marked by avail_start/avail_end get added to the free page pool
731 * => we are limited to VM_PHYSSEG_MAX physical memory segments
732 */
733
734 void
735 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
736 paddr_t avail_end, int free_list)
737 {
738 int preload, lcv;
739 psize_t npages;
740 struct vm_page *pgs;
741 struct vm_physseg *ps;
742
743 if (uvmexp.pagesize == 0)
744 panic("uvm_page_physload: page size not set!");
745 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
746 panic("uvm_page_physload: bad free list %d", free_list);
747 if (start >= end)
748 panic("uvm_page_physload: start >= end");
749
750 /*
751 * do we have room?
752 */
753
754 if (vm_nphysmem == VM_PHYSSEG_MAX) {
755 printf("uvm_page_physload: unable to load physical memory "
756 "segment\n");
757 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
758 VM_PHYSSEG_MAX, (long long)start, (long long)end);
759 printf("\tincrease VM_PHYSSEG_MAX\n");
760 return;
761 }
762
763 /*
764 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
765 * called yet, so kmem is not available).
766 */
767
768 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
769 if (VM_PHYSMEM_PTR(lcv)->pgs)
770 break;
771 }
772 preload = (lcv == vm_nphysmem);
773
774 /*
775 * if VM is already running, attempt to kmem_alloc vm_page structures
776 */
777
778 if (!preload) {
779 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
780 } else {
781 pgs = NULL;
782 npages = 0;
783 }
784
785 /*
786 * now insert us in the proper place in vm_physmem[]
787 */
788
789 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
790 /* random: put it at the end (easy!) */
791 ps = VM_PHYSMEM_PTR(vm_nphysmem);
792 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
793 {
794 int x;
795 /* sort by address for binary search */
796 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
797 if (start < VM_PHYSMEM_PTR(lcv)->start)
798 break;
799 ps = VM_PHYSMEM_PTR(lcv);
800 /* move back other entries, if necessary ... */
801 for (x = vm_nphysmem ; x > lcv ; x--)
802 /* structure copy */
803 VM_PHYSMEM_PTR_SWAP(x, x - 1);
804 }
805 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
806 {
807 int x;
808 /* sort by largest segment first */
809 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
810 if ((end - start) >
811 (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
812 break;
813 ps = VM_PHYSMEM_PTR(lcv);
814 /* move back other entries, if necessary ... */
815 for (x = vm_nphysmem ; x > lcv ; x--)
816 /* structure copy */
817 VM_PHYSMEM_PTR_SWAP(x, x - 1);
818 }
819 #else
820 panic("uvm_page_physload: unknown physseg strategy selected!");
821 #endif
822
823 ps->start = start;
824 ps->end = end;
825 ps->avail_start = avail_start;
826 ps->avail_end = avail_end;
827 if (preload) {
828 ps->pgs = NULL;
829 } else {
830 ps->pgs = pgs;
831 ps->lastpg = pgs + npages;
832 }
833 ps->free_list = free_list;
834 vm_nphysmem++;
835
836 if (!preload) {
837 uvmpdpol_reinit();
838 }
839 }
840
841 /*
842 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
843 */
844
845 #if VM_PHYSSEG_MAX == 1
846 static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
847 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
848 static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
849 #else
850 static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
851 #endif
852
853 /*
854 * vm_physseg_find: find vm_physseg structure that belongs to a PA
855 */
856 int
857 vm_physseg_find(paddr_t pframe, int *offp)
858 {
859
860 #if VM_PHYSSEG_MAX == 1
861 return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
862 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
863 return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
864 #else
865 return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
866 #endif
867 }
868
869 #if VM_PHYSSEG_MAX == 1
870 static inline int
871 vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
872 {
873
874 /* 'contig' case */
875 if (pframe >= segs[0].start && pframe < segs[0].end) {
876 if (offp)
877 *offp = pframe - segs[0].start;
878 return(0);
879 }
880 return(-1);
881 }
882
883 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
884
885 static inline int
886 vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
887 {
888 /* binary search for it */
889 u_int start, len, try;
890
891 /*
892 * if try is too large (thus target is less than try) we reduce
893 * the length to trunc(len/2) [i.e. everything smaller than "try"]
894 *
895 * if the try is too small (thus target is greater than try) then
896 * we set the new start to be (try + 1). this means we need to
897 * reduce the length to (round(len/2) - 1).
898 *
899 * note "adjust" below which takes advantage of the fact that
900 * (round(len/2) - 1) == trunc((len - 1) / 2)
901 * for any value of len we may have
902 */
903
904 for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
905 try = start + (len / 2); /* try in the middle */
906
907 /* start past our try? */
908 if (pframe >= segs[try].start) {
909 /* was try correct? */
910 if (pframe < segs[try].end) {
911 if (offp)
912 *offp = pframe - segs[try].start;
913 return(try); /* got it */
914 }
915 start = try + 1; /* next time, start here */
916 len--; /* "adjust" */
917 } else {
918 /*
919 * pframe before try, just reduce length of
920 * region, done in "for" loop
921 */
922 }
923 }
924 return(-1);
925 }
926
927 #else
928
929 static inline int
930 vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
931 {
932 /* linear search for it */
933 int lcv;
934
935 for (lcv = 0; lcv < nsegs; lcv++) {
936 if (pframe >= segs[lcv].start &&
937 pframe < segs[lcv].end) {
938 if (offp)
939 *offp = pframe - segs[lcv].start;
940 return(lcv); /* got it */
941 }
942 }
943 return(-1);
944 }
945 #endif
946
947 /*
948 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
949 * back from an I/O mapping (ugh!). used in some MD code as well.
950 */
951 struct vm_page *
952 uvm_phys_to_vm_page(paddr_t pa)
953 {
954 paddr_t pf = atop(pa);
955 int off;
956 int psi;
957
958 psi = vm_physseg_find(pf, &off);
959 if (psi != -1)
960 return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
961 return(NULL);
962 }
963
964 paddr_t
965 uvm_vm_page_to_phys(const struct vm_page *pg)
966 {
967
968 return pg->phys_addr;
969 }
970
971 /*
972 * uvm_page_recolor: Recolor the pages if the new bucket count is
973 * larger than the old one.
974 */
975
976 void
977 uvm_page_recolor(int newncolors)
978 {
979 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
980 struct pgfreelist gpgfl, pgfl;
981 struct vm_page *pg;
982 vsize_t bucketcount;
983 size_t bucketmemsize, oldbucketmemsize;
984 int lcv, color, i, ocolors;
985 struct uvm_cpu *ucpu;
986
987 KASSERT(((newncolors - 1) & newncolors) == 0);
988
989 if (newncolors <= uvmexp.ncolors)
990 return;
991
992 if (uvm.page_init_done == false) {
993 uvmexp.ncolors = newncolors;
994 return;
995 }
996
997 bucketcount = newncolors * VM_NFREELIST;
998 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
999 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
1000 cpuarray = bucketarray + bucketcount;
1001 if (bucketarray == NULL) {
1002 printf("WARNING: unable to allocate %ld page color buckets\n",
1003 (long) bucketcount);
1004 return;
1005 }
1006
1007 mutex_spin_enter(&uvm_fpageqlock);
1008
1009 /* Make sure we should still do this. */
1010 if (newncolors <= uvmexp.ncolors) {
1011 mutex_spin_exit(&uvm_fpageqlock);
1012 kmem_free(bucketarray, bucketmemsize);
1013 return;
1014 }
1015
1016 oldbucketarray = uvm.page_free[0].pgfl_buckets;
1017 ocolors = uvmexp.ncolors;
1018
1019 uvmexp.ncolors = newncolors;
1020 uvmexp.colormask = uvmexp.ncolors - 1;
1021
1022 ucpu = curcpu()->ci_data.cpu_uvm;
1023 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1024 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1025 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1026 uvm_page_init_buckets(&gpgfl);
1027 uvm_page_init_buckets(&pgfl);
1028 for (color = 0; color < ocolors; color++) {
1029 for (i = 0; i < PGFL_NQUEUES; i++) {
1030 while ((pg = LIST_FIRST(&uvm.page_free[
1031 lcv].pgfl_buckets[color].pgfl_queues[i]))
1032 != NULL) {
1033 LIST_REMOVE(pg, pageq.list); /* global */
1034 LIST_REMOVE(pg, listq.list); /* cpu */
1035 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1036 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1037 i], pg, pageq.list);
1038 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1039 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1040 i], pg, listq.list);
1041 }
1042 }
1043 }
1044 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1045 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1046 }
1047
1048 oldbucketmemsize = recolored_pages_memsize;
1049
1050 recolored_pages_memsize = bucketmemsize;
1051 mutex_spin_exit(&uvm_fpageqlock);
1052
1053 if (oldbucketmemsize) {
1054 kmem_free(oldbucketarray, recolored_pages_memsize);
1055 }
1056
1057 /*
1058 * this calls uvm_km_alloc() which may want to hold
1059 * uvm_fpageqlock.
1060 */
1061 uvm_pager_realloc_emerg();
1062 }
1063
1064 /*
1065 * uvm_cpu_attach: initialize per-CPU data structures.
1066 */
1067
1068 void
1069 uvm_cpu_attach(struct cpu_info *ci)
1070 {
1071 struct pgflbucket *bucketarray;
1072 struct pgfreelist pgfl;
1073 struct uvm_cpu *ucpu;
1074 vsize_t bucketcount;
1075 int lcv;
1076
1077 if (CPU_IS_PRIMARY(ci)) {
1078 /* Already done in uvm_page_init(). */
1079 goto attachrnd;
1080 }
1081
1082 /* Add more reserve pages for this CPU. */
1083 uvmexp.reserve_kernel += vm_page_reserve_kernel;
1084
1085 /* Configure this CPU's free lists. */
1086 bucketcount = uvmexp.ncolors * VM_NFREELIST;
1087 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
1088 KM_SLEEP);
1089 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1090 uvm.cpus[cpu_index(ci)] = ucpu;
1091 ci->ci_data.cpu_uvm = ucpu;
1092 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1093 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1094 uvm_page_init_buckets(&pgfl);
1095 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1096 }
1097
1098 attachrnd:
1099 /*
1100 * Attach RNG source for this CPU's VM events
1101 */
1102 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
1103 ci->ci_data.cpu_name, RND_TYPE_VM, 0);
1104
1105 }
1106
1107 /*
1108 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1109 */
1110
1111 static struct vm_page *
1112 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1113 int *trycolorp)
1114 {
1115 struct pgflist *freeq;
1116 struct vm_page *pg;
1117 int color, trycolor = *trycolorp;
1118 struct pgfreelist *gpgfl, *pgfl;
1119
1120 KASSERT(mutex_owned(&uvm_fpageqlock));
1121
1122 color = trycolor;
1123 pgfl = &ucpu->page_free[flist];
1124 gpgfl = &uvm.page_free[flist];
1125 do {
1126 /* cpu, try1 */
1127 if ((pg = LIST_FIRST((freeq =
1128 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1129 KASSERT(pg->pqflags & PQ_FREE);
1130 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1131 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1132 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1133 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1134 uvmexp.cpuhit++;
1135 goto gotit;
1136 }
1137 /* global, try1 */
1138 if ((pg = LIST_FIRST((freeq =
1139 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1140 KASSERT(pg->pqflags & PQ_FREE);
1141 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1142 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1143 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1144 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1145 uvmexp.cpumiss++;
1146 goto gotit;
1147 }
1148 /* cpu, try2 */
1149 if ((pg = LIST_FIRST((freeq =
1150 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1151 KASSERT(pg->pqflags & PQ_FREE);
1152 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1153 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1154 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1155 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1156 uvmexp.cpuhit++;
1157 goto gotit;
1158 }
1159 /* global, try2 */
1160 if ((pg = LIST_FIRST((freeq =
1161 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1162 KASSERT(pg->pqflags & PQ_FREE);
1163 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1164 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1165 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1166 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1167 uvmexp.cpumiss++;
1168 goto gotit;
1169 }
1170 color = (color + 1) & uvmexp.colormask;
1171 } while (color != trycolor);
1172
1173 return (NULL);
1174
1175 gotit:
1176 LIST_REMOVE(pg, pageq.list); /* global list */
1177 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1178 uvmexp.free--;
1179
1180 /* update zero'd page count */
1181 if (pg->flags & PG_ZERO)
1182 uvmexp.zeropages--;
1183
1184 if (color == trycolor)
1185 uvmexp.colorhit++;
1186 else {
1187 uvmexp.colormiss++;
1188 *trycolorp = color;
1189 }
1190
1191 return (pg);
1192 }
1193
1194 /*
1195 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1196 *
1197 * => return null if no pages free
1198 * => wake up pagedaemon if number of free pages drops below low water mark
1199 * => if obj != NULL, obj must be locked (to put in obj's tree)
1200 * => if anon != NULL, anon must be locked (to put in anon)
1201 * => only one of obj or anon can be non-null
1202 * => caller must activate/deactivate page if it is not wired.
1203 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1204 * => policy decision: it is more important to pull a page off of the
1205 * appropriate priority free list than it is to get a zero'd or
1206 * unknown contents page. This is because we live with the
1207 * consequences of a bad free list decision for the entire
1208 * lifetime of the page, e.g. if the page comes from memory that
1209 * is slower to access.
1210 */
1211
1212 struct vm_page *
1213 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1214 int flags, int strat, int free_list)
1215 {
1216 int lcv, try1, try2, zeroit = 0, color;
1217 struct uvm_cpu *ucpu;
1218 struct vm_page *pg;
1219 lwp_t *l;
1220
1221 KASSERT(obj == NULL || anon == NULL);
1222 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1223 KASSERT(off == trunc_page(off));
1224 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
1225 KASSERT(anon == NULL || anon->an_lock == NULL ||
1226 mutex_owned(anon->an_lock));
1227
1228 mutex_spin_enter(&uvm_fpageqlock);
1229
1230 /*
1231 * This implements a global round-robin page coloring
1232 * algorithm.
1233 */
1234
1235 ucpu = curcpu()->ci_data.cpu_uvm;
1236 if (flags & UVM_FLAG_COLORMATCH) {
1237 color = atop(off) & uvmexp.colormask;
1238 } else {
1239 color = ucpu->page_free_nextcolor;
1240 }
1241
1242 /*
1243 * check to see if we need to generate some free pages waking
1244 * the pagedaemon.
1245 */
1246
1247 uvm_kick_pdaemon();
1248
1249 /*
1250 * fail if any of these conditions is true:
1251 * [1] there really are no free pages, or
1252 * [2] only kernel "reserved" pages remain and
1253 * reserved pages have not been requested.
1254 * [3] only pagedaemon "reserved" pages remain and
1255 * the requestor isn't the pagedaemon.
1256 * we make kernel reserve pages available if called by a
1257 * kernel thread or a realtime thread.
1258 */
1259 l = curlwp;
1260 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1261 flags |= UVM_PGA_USERESERVE;
1262 }
1263 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1264 (flags & UVM_PGA_USERESERVE) == 0) ||
1265 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1266 curlwp != uvm.pagedaemon_lwp))
1267 goto fail;
1268
1269 #if PGFL_NQUEUES != 2
1270 #error uvm_pagealloc_strat needs to be updated
1271 #endif
1272
1273 /*
1274 * If we want a zero'd page, try the ZEROS queue first, otherwise
1275 * we try the UNKNOWN queue first.
1276 */
1277 if (flags & UVM_PGA_ZERO) {
1278 try1 = PGFL_ZEROS;
1279 try2 = PGFL_UNKNOWN;
1280 } else {
1281 try1 = PGFL_UNKNOWN;
1282 try2 = PGFL_ZEROS;
1283 }
1284
1285 again:
1286 switch (strat) {
1287 case UVM_PGA_STRAT_NORMAL:
1288 /* Check freelists: descending priority (ascending id) order */
1289 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1290 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1291 try1, try2, &color);
1292 if (pg != NULL)
1293 goto gotit;
1294 }
1295
1296 /* No pages free! */
1297 goto fail;
1298
1299 case UVM_PGA_STRAT_ONLY:
1300 case UVM_PGA_STRAT_FALLBACK:
1301 /* Attempt to allocate from the specified free list. */
1302 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1303 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1304 try1, try2, &color);
1305 if (pg != NULL)
1306 goto gotit;
1307
1308 /* Fall back, if possible. */
1309 if (strat == UVM_PGA_STRAT_FALLBACK) {
1310 strat = UVM_PGA_STRAT_NORMAL;
1311 goto again;
1312 }
1313
1314 /* No pages free! */
1315 goto fail;
1316
1317 default:
1318 panic("uvm_pagealloc_strat: bad strat %d", strat);
1319 /* NOTREACHED */
1320 }
1321
1322 gotit:
1323 /*
1324 * We now know which color we actually allocated from; set
1325 * the next color accordingly.
1326 */
1327
1328 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1329
1330 /*
1331 * update allocation statistics and remember if we have to
1332 * zero the page
1333 */
1334
1335 if (flags & UVM_PGA_ZERO) {
1336 if (pg->flags & PG_ZERO) {
1337 uvmexp.pga_zerohit++;
1338 zeroit = 0;
1339 } else {
1340 uvmexp.pga_zeromiss++;
1341 zeroit = 1;
1342 }
1343 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1344 ucpu->page_idle_zero = vm_page_zero_enable;
1345 }
1346 }
1347 KASSERT(pg->pqflags == PQ_FREE);
1348
1349 pg->offset = off;
1350 pg->uobject = obj;
1351 pg->uanon = anon;
1352 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1353 if (anon) {
1354 anon->an_page = pg;
1355 pg->pqflags = PQ_ANON;
1356 atomic_inc_uint(&uvmexp.anonpages);
1357 } else {
1358 if (obj) {
1359 uvm_pageinsert(obj, pg);
1360 }
1361 pg->pqflags = 0;
1362 }
1363 mutex_spin_exit(&uvm_fpageqlock);
1364
1365 #if defined(UVM_PAGE_TRKOWN)
1366 pg->owner_tag = NULL;
1367 #endif
1368 UVM_PAGE_OWN(pg, "new alloc");
1369
1370 if (flags & UVM_PGA_ZERO) {
1371 /*
1372 * A zero'd page is not clean. If we got a page not already
1373 * zero'd, then we have to zero it ourselves.
1374 */
1375 pg->flags &= ~PG_CLEAN;
1376 if (zeroit)
1377 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1378 }
1379
1380 return(pg);
1381
1382 fail:
1383 mutex_spin_exit(&uvm_fpageqlock);
1384 return (NULL);
1385 }
1386
1387 /*
1388 * uvm_pagereplace: replace a page with another
1389 *
1390 * => object must be locked
1391 */
1392
1393 void
1394 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1395 {
1396 struct uvm_object *uobj = oldpg->uobject;
1397
1398 KASSERT((oldpg->flags & PG_TABLED) != 0);
1399 KASSERT(uobj != NULL);
1400 KASSERT((newpg->flags & PG_TABLED) == 0);
1401 KASSERT(newpg->uobject == NULL);
1402 KASSERT(mutex_owned(uobj->vmobjlock));
1403
1404 newpg->uobject = uobj;
1405 newpg->offset = oldpg->offset;
1406
1407 uvm_pageremove_tree(uobj, oldpg);
1408 uvm_pageinsert_tree(uobj, newpg);
1409 uvm_pageinsert_list(uobj, newpg, oldpg);
1410 uvm_pageremove_list(uobj, oldpg);
1411 }
1412
1413 /*
1414 * uvm_pagerealloc: reallocate a page from one object to another
1415 *
1416 * => both objects must be locked
1417 */
1418
1419 void
1420 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1421 {
1422 /*
1423 * remove it from the old object
1424 */
1425
1426 if (pg->uobject) {
1427 uvm_pageremove(pg->uobject, pg);
1428 }
1429
1430 /*
1431 * put it in the new object
1432 */
1433
1434 if (newobj) {
1435 pg->uobject = newobj;
1436 pg->offset = newoff;
1437 uvm_pageinsert(newobj, pg);
1438 }
1439 }
1440
1441 #ifdef DEBUG
1442 /*
1443 * check if page is zero-filled
1444 *
1445 * - called with free page queue lock held.
1446 */
1447 void
1448 uvm_pagezerocheck(struct vm_page *pg)
1449 {
1450 int *p, *ep;
1451
1452 KASSERT(uvm_zerocheckkva != 0);
1453 KASSERT(mutex_owned(&uvm_fpageqlock));
1454
1455 /*
1456 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1457 * uvm page allocator.
1458 *
1459 * it might be better to have "CPU-local temporary map" pmap interface.
1460 */
1461 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1462 p = (int *)uvm_zerocheckkva;
1463 ep = (int *)((char *)p + PAGE_SIZE);
1464 pmap_update(pmap_kernel());
1465 while (p < ep) {
1466 if (*p != 0)
1467 panic("PG_ZERO page isn't zero-filled");
1468 p++;
1469 }
1470 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1471 /*
1472 * pmap_update() is not necessary here because no one except us
1473 * uses this VA.
1474 */
1475 }
1476 #endif /* DEBUG */
1477
1478 /*
1479 * uvm_pagefree: free page
1480 *
1481 * => erase page's identity (i.e. remove from object)
1482 * => put page on free list
1483 * => caller must lock owning object (either anon or uvm_object)
1484 * => caller must lock page queues
1485 * => assumes all valid mappings of pg are gone
1486 */
1487
1488 void
1489 uvm_pagefree(struct vm_page *pg)
1490 {
1491 struct pgflist *pgfl;
1492 struct uvm_cpu *ucpu;
1493 int index, color, queue;
1494 bool iszero;
1495
1496 #ifdef DEBUG
1497 if (pg->uobject == (void *)0xdeadbeef &&
1498 pg->uanon == (void *)0xdeadbeef) {
1499 panic("uvm_pagefree: freeing free page %p", pg);
1500 }
1501 #endif /* DEBUG */
1502
1503 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1504 KASSERT(!(pg->pqflags & PQ_FREE));
1505 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1506 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1507 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1508 mutex_owned(pg->uanon->an_lock));
1509
1510 /*
1511 * if the page is loaned, resolve the loan instead of freeing.
1512 */
1513
1514 if (pg->loan_count) {
1515 KASSERT(pg->wire_count == 0);
1516
1517 /*
1518 * if the page is owned by an anon then we just want to
1519 * drop anon ownership. the kernel will free the page when
1520 * it is done with it. if the page is owned by an object,
1521 * remove it from the object and mark it dirty for the benefit
1522 * of possible anon owners.
1523 *
1524 * regardless of previous ownership, wakeup any waiters,
1525 * unbusy the page, and we're done.
1526 */
1527
1528 if (pg->uobject != NULL) {
1529 uvm_pageremove(pg->uobject, pg);
1530 pg->flags &= ~PG_CLEAN;
1531 } else if (pg->uanon != NULL) {
1532 if ((pg->pqflags & PQ_ANON) == 0) {
1533 pg->loan_count--;
1534 } else {
1535 pg->pqflags &= ~PQ_ANON;
1536 atomic_dec_uint(&uvmexp.anonpages);
1537 }
1538 pg->uanon->an_page = NULL;
1539 pg->uanon = NULL;
1540 }
1541 if (pg->flags & PG_WANTED) {
1542 wakeup(pg);
1543 }
1544 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1545 #ifdef UVM_PAGE_TRKOWN
1546 pg->owner_tag = NULL;
1547 #endif
1548 if (pg->loan_count) {
1549 KASSERT(pg->uobject == NULL);
1550 if (pg->uanon == NULL) {
1551 KASSERT(mutex_owned(&uvm_pageqlock));
1552 uvm_pagedequeue(pg);
1553 }
1554 return;
1555 }
1556 }
1557
1558 /*
1559 * remove page from its object or anon.
1560 */
1561
1562 if (pg->uobject != NULL) {
1563 uvm_pageremove(pg->uobject, pg);
1564 } else if (pg->uanon != NULL) {
1565 pg->uanon->an_page = NULL;
1566 atomic_dec_uint(&uvmexp.anonpages);
1567 }
1568
1569 /*
1570 * now remove the page from the queues.
1571 */
1572 if (uvmpdpol_pageisqueued_p(pg)) {
1573 KASSERT(mutex_owned(&uvm_pageqlock));
1574 uvm_pagedequeue(pg);
1575 }
1576
1577 /*
1578 * if the page was wired, unwire it now.
1579 */
1580
1581 if (pg->wire_count) {
1582 pg->wire_count = 0;
1583 uvmexp.wired--;
1584 }
1585
1586 /*
1587 * and put on free queue
1588 */
1589
1590 iszero = (pg->flags & PG_ZERO);
1591 index = uvm_page_lookup_freelist(pg);
1592 color = VM_PGCOLOR_BUCKET(pg);
1593 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1594
1595 #ifdef DEBUG
1596 pg->uobject = (void *)0xdeadbeef;
1597 pg->uanon = (void *)0xdeadbeef;
1598 #endif
1599
1600 mutex_spin_enter(&uvm_fpageqlock);
1601 pg->pqflags = PQ_FREE;
1602
1603 #ifdef DEBUG
1604 if (iszero)
1605 uvm_pagezerocheck(pg);
1606 #endif /* DEBUG */
1607
1608
1609 /* global list */
1610 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1611 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1612 uvmexp.free++;
1613 if (iszero) {
1614 uvmexp.zeropages++;
1615 }
1616
1617 /* per-cpu list */
1618 ucpu = curcpu()->ci_data.cpu_uvm;
1619 pg->offset = (uintptr_t)ucpu;
1620 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1621 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1622 ucpu->pages[queue]++;
1623 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1624 ucpu->page_idle_zero = vm_page_zero_enable;
1625 }
1626
1627 mutex_spin_exit(&uvm_fpageqlock);
1628 }
1629
1630 /*
1631 * uvm_page_unbusy: unbusy an array of pages.
1632 *
1633 * => pages must either all belong to the same object, or all belong to anons.
1634 * => if pages are object-owned, object must be locked.
1635 * => if pages are anon-owned, anons must be locked.
1636 * => caller must lock page queues if pages may be released.
1637 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1638 */
1639
1640 void
1641 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1642 {
1643 struct vm_page *pg;
1644 int i;
1645 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1646
1647 for (i = 0; i < npgs; i++) {
1648 pg = pgs[i];
1649 if (pg == NULL || pg == PGO_DONTCARE) {
1650 continue;
1651 }
1652
1653 KASSERT(uvm_page_locked_p(pg));
1654 KASSERT(pg->flags & PG_BUSY);
1655 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1656 if (pg->flags & PG_WANTED) {
1657 wakeup(pg);
1658 }
1659 if (pg->flags & PG_RELEASED) {
1660 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1661 KASSERT(pg->uobject != NULL ||
1662 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1663 pg->flags &= ~PG_RELEASED;
1664 uvm_pagefree(pg);
1665 } else {
1666 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1667 KASSERT((pg->flags & PG_FAKE) == 0);
1668 pg->flags &= ~(PG_WANTED|PG_BUSY);
1669 UVM_PAGE_OWN(pg, NULL);
1670 }
1671 }
1672 }
1673
1674 #if defined(UVM_PAGE_TRKOWN)
1675 /*
1676 * uvm_page_own: set or release page ownership
1677 *
1678 * => this is a debugging function that keeps track of who sets PG_BUSY
1679 * and where they do it. it can be used to track down problems
1680 * such a process setting "PG_BUSY" and never releasing it.
1681 * => page's object [if any] must be locked
1682 * => if "tag" is NULL then we are releasing page ownership
1683 */
1684 void
1685 uvm_page_own(struct vm_page *pg, const char *tag)
1686 {
1687
1688 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1689 KASSERT((pg->flags & PG_WANTED) == 0);
1690 KASSERT(uvm_page_locked_p(pg));
1691
1692 /* gain ownership? */
1693 if (tag) {
1694 KASSERT((pg->flags & PG_BUSY) != 0);
1695 if (pg->owner_tag) {
1696 printf("uvm_page_own: page %p already owned "
1697 "by proc %d [%s]\n", pg,
1698 pg->owner, pg->owner_tag);
1699 panic("uvm_page_own");
1700 }
1701 pg->owner = curproc->p_pid;
1702 pg->lowner = curlwp->l_lid;
1703 pg->owner_tag = tag;
1704 return;
1705 }
1706
1707 /* drop ownership */
1708 KASSERT((pg->flags & PG_BUSY) == 0);
1709 if (pg->owner_tag == NULL) {
1710 printf("uvm_page_own: dropping ownership of an non-owned "
1711 "page (%p)\n", pg);
1712 panic("uvm_page_own");
1713 }
1714 if (!uvmpdpol_pageisqueued_p(pg)) {
1715 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1716 pg->wire_count > 0);
1717 } else {
1718 KASSERT(pg->wire_count == 0);
1719 }
1720 pg->owner_tag = NULL;
1721 }
1722 #endif
1723
1724 /*
1725 * uvm_pageidlezero: zero free pages while the system is idle.
1726 *
1727 * => try to complete one color bucket at a time, to reduce our impact
1728 * on the CPU cache.
1729 * => we loop until we either reach the target or there is a lwp ready
1730 * to run, or MD code detects a reason to break early.
1731 */
1732 void
1733 uvm_pageidlezero(void)
1734 {
1735 struct vm_page *pg;
1736 struct pgfreelist *pgfl, *gpgfl;
1737 struct uvm_cpu *ucpu;
1738 int free_list, firstbucket, nextbucket;
1739 bool lcont = false;
1740
1741 ucpu = curcpu()->ci_data.cpu_uvm;
1742 if (!ucpu->page_idle_zero ||
1743 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1744 ucpu->page_idle_zero = false;
1745 return;
1746 }
1747 if (!mutex_tryenter(&uvm_fpageqlock)) {
1748 /* Contention: let other CPUs to use the lock. */
1749 return;
1750 }
1751 firstbucket = ucpu->page_free_nextcolor;
1752 nextbucket = firstbucket;
1753 do {
1754 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1755 if (sched_curcpu_runnable_p()) {
1756 goto quit;
1757 }
1758 pgfl = &ucpu->page_free[free_list];
1759 gpgfl = &uvm.page_free[free_list];
1760 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1761 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1762 if (lcont || sched_curcpu_runnable_p()) {
1763 goto quit;
1764 }
1765 LIST_REMOVE(pg, pageq.list); /* global list */
1766 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1767 ucpu->pages[PGFL_UNKNOWN]--;
1768 uvmexp.free--;
1769 KASSERT(pg->pqflags == PQ_FREE);
1770 pg->pqflags = 0;
1771 mutex_spin_exit(&uvm_fpageqlock);
1772 #ifdef PMAP_PAGEIDLEZERO
1773 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1774
1775 /*
1776 * The machine-dependent code detected
1777 * some reason for us to abort zeroing
1778 * pages, probably because there is a
1779 * process now ready to run.
1780 */
1781
1782 mutex_spin_enter(&uvm_fpageqlock);
1783 pg->pqflags = PQ_FREE;
1784 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1785 nextbucket].pgfl_queues[
1786 PGFL_UNKNOWN], pg, pageq.list);
1787 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1788 nextbucket].pgfl_queues[
1789 PGFL_UNKNOWN], pg, listq.list);
1790 ucpu->pages[PGFL_UNKNOWN]++;
1791 uvmexp.free++;
1792 uvmexp.zeroaborts++;
1793 goto quit;
1794 }
1795 #else
1796 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1797 #endif /* PMAP_PAGEIDLEZERO */
1798 pg->flags |= PG_ZERO;
1799
1800 if (!mutex_tryenter(&uvm_fpageqlock)) {
1801 lcont = true;
1802 mutex_spin_enter(&uvm_fpageqlock);
1803 } else {
1804 lcont = false;
1805 }
1806 pg->pqflags = PQ_FREE;
1807 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1808 nextbucket].pgfl_queues[PGFL_ZEROS],
1809 pg, pageq.list);
1810 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1811 nextbucket].pgfl_queues[PGFL_ZEROS],
1812 pg, listq.list);
1813 ucpu->pages[PGFL_ZEROS]++;
1814 uvmexp.free++;
1815 uvmexp.zeropages++;
1816 }
1817 }
1818 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1819 break;
1820 }
1821 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1822 } while (nextbucket != firstbucket);
1823 ucpu->page_idle_zero = false;
1824 quit:
1825 mutex_spin_exit(&uvm_fpageqlock);
1826 }
1827
1828 /*
1829 * uvm_pagelookup: look up a page
1830 *
1831 * => caller should lock object to keep someone from pulling the page
1832 * out from under it
1833 */
1834
1835 struct vm_page *
1836 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1837 {
1838 struct vm_page *pg;
1839
1840 KASSERT(mutex_owned(obj->vmobjlock));
1841
1842 pg = rb_tree_find_node(&obj->rb_tree, &off);
1843
1844 KASSERT(pg == NULL || obj->uo_npages != 0);
1845 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1846 (pg->flags & PG_BUSY) != 0);
1847 return pg;
1848 }
1849
1850 /*
1851 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1852 *
1853 * => caller must lock page queues
1854 */
1855
1856 void
1857 uvm_pagewire(struct vm_page *pg)
1858 {
1859 KASSERT(mutex_owned(&uvm_pageqlock));
1860 #if defined(READAHEAD_STATS)
1861 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1862 uvm_ra_hit.ev_count++;
1863 pg->pqflags &= ~PQ_READAHEAD;
1864 }
1865 #endif /* defined(READAHEAD_STATS) */
1866 if (pg->wire_count == 0) {
1867 uvm_pagedequeue(pg);
1868 uvmexp.wired++;
1869 }
1870 pg->wire_count++;
1871 }
1872
1873 /*
1874 * uvm_pageunwire: unwire the page.
1875 *
1876 * => activate if wire count goes to zero.
1877 * => caller must lock page queues
1878 */
1879
1880 void
1881 uvm_pageunwire(struct vm_page *pg)
1882 {
1883 KASSERT(mutex_owned(&uvm_pageqlock));
1884 pg->wire_count--;
1885 if (pg->wire_count == 0) {
1886 uvm_pageactivate(pg);
1887 uvmexp.wired--;
1888 }
1889 }
1890
1891 /*
1892 * uvm_pagedeactivate: deactivate page
1893 *
1894 * => caller must lock page queues
1895 * => caller must check to make sure page is not wired
1896 * => object that page belongs to must be locked (so we can adjust pg->flags)
1897 * => caller must clear the reference on the page before calling
1898 */
1899
1900 void
1901 uvm_pagedeactivate(struct vm_page *pg)
1902 {
1903
1904 KASSERT(mutex_owned(&uvm_pageqlock));
1905 KASSERT(uvm_page_locked_p(pg));
1906 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1907 uvmpdpol_pagedeactivate(pg);
1908 }
1909
1910 /*
1911 * uvm_pageactivate: activate page
1912 *
1913 * => caller must lock page queues
1914 */
1915
1916 void
1917 uvm_pageactivate(struct vm_page *pg)
1918 {
1919
1920 KASSERT(mutex_owned(&uvm_pageqlock));
1921 KASSERT(uvm_page_locked_p(pg));
1922 #if defined(READAHEAD_STATS)
1923 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1924 uvm_ra_hit.ev_count++;
1925 pg->pqflags &= ~PQ_READAHEAD;
1926 }
1927 #endif /* defined(READAHEAD_STATS) */
1928 if (pg->wire_count != 0) {
1929 return;
1930 }
1931 uvmpdpol_pageactivate(pg);
1932 }
1933
1934 /*
1935 * uvm_pagedequeue: remove a page from any paging queue
1936 */
1937
1938 void
1939 uvm_pagedequeue(struct vm_page *pg)
1940 {
1941
1942 if (uvmpdpol_pageisqueued_p(pg)) {
1943 KASSERT(mutex_owned(&uvm_pageqlock));
1944 }
1945
1946 uvmpdpol_pagedequeue(pg);
1947 }
1948
1949 /*
1950 * uvm_pageenqueue: add a page to a paging queue without activating.
1951 * used where a page is not really demanded (yet). eg. read-ahead
1952 */
1953
1954 void
1955 uvm_pageenqueue(struct vm_page *pg)
1956 {
1957
1958 KASSERT(mutex_owned(&uvm_pageqlock));
1959 if (pg->wire_count != 0) {
1960 return;
1961 }
1962 uvmpdpol_pageenqueue(pg);
1963 }
1964
1965 /*
1966 * uvm_pagezero: zero fill a page
1967 *
1968 * => if page is part of an object then the object should be locked
1969 * to protect pg->flags.
1970 */
1971
1972 void
1973 uvm_pagezero(struct vm_page *pg)
1974 {
1975 pg->flags &= ~PG_CLEAN;
1976 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1977 }
1978
1979 /*
1980 * uvm_pagecopy: copy a page
1981 *
1982 * => if page is part of an object then the object should be locked
1983 * to protect pg->flags.
1984 */
1985
1986 void
1987 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1988 {
1989
1990 dst->flags &= ~PG_CLEAN;
1991 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1992 }
1993
1994 /*
1995 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1996 */
1997
1998 bool
1999 uvm_pageismanaged(paddr_t pa)
2000 {
2001
2002 return (vm_physseg_find(atop(pa), NULL) != -1);
2003 }
2004
2005 /*
2006 * uvm_page_lookup_freelist: look up the free list for the specified page
2007 */
2008
2009 int
2010 uvm_page_lookup_freelist(struct vm_page *pg)
2011 {
2012 int lcv;
2013
2014 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2015 KASSERT(lcv != -1);
2016 return (VM_PHYSMEM_PTR(lcv)->free_list);
2017 }
2018
2019 /*
2020 * uvm_page_locked_p: return true if object associated with page is
2021 * locked. this is a weak check for runtime assertions only.
2022 */
2023
2024 bool
2025 uvm_page_locked_p(struct vm_page *pg)
2026 {
2027
2028 if (pg->uobject != NULL) {
2029 return mutex_owned(pg->uobject->vmobjlock);
2030 }
2031 if (pg->uanon != NULL) {
2032 return mutex_owned(pg->uanon->an_lock);
2033 }
2034 return true;
2035 }
2036
2037 #if defined(DDB) || defined(DEBUGPRINT)
2038
2039 /*
2040 * uvm_page_printit: actually print the page
2041 */
2042
2043 static const char page_flagbits[] = UVM_PGFLAGBITS;
2044 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2045
2046 void
2047 uvm_page_printit(struct vm_page *pg, bool full,
2048 void (*pr)(const char *, ...))
2049 {
2050 struct vm_page *tpg;
2051 struct uvm_object *uobj;
2052 struct pgflist *pgl;
2053 char pgbuf[128];
2054 char pqbuf[128];
2055
2056 (*pr)("PAGE %p:\n", pg);
2057 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2058 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2059 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2060 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2061 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2062 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2063 #if defined(UVM_PAGE_TRKOWN)
2064 if (pg->flags & PG_BUSY)
2065 (*pr)(" owning process = %d, tag=%s\n",
2066 pg->owner, pg->owner_tag);
2067 else
2068 (*pr)(" page not busy, no owner\n");
2069 #else
2070 (*pr)(" [page ownership tracking disabled]\n");
2071 #endif
2072
2073 if (!full)
2074 return;
2075
2076 /* cross-verify object/anon */
2077 if ((pg->pqflags & PQ_FREE) == 0) {
2078 if (pg->pqflags & PQ_ANON) {
2079 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2080 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2081 (pg->uanon) ? pg->uanon->an_page : NULL);
2082 else
2083 (*pr)(" anon backpointer is OK\n");
2084 } else {
2085 uobj = pg->uobject;
2086 if (uobj) {
2087 (*pr)(" checking object list\n");
2088 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2089 if (tpg == pg) {
2090 break;
2091 }
2092 }
2093 if (tpg)
2094 (*pr)(" page found on object list\n");
2095 else
2096 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2097 }
2098 }
2099 }
2100
2101 /* cross-verify page queue */
2102 if (pg->pqflags & PQ_FREE) {
2103 int fl = uvm_page_lookup_freelist(pg);
2104 int color = VM_PGCOLOR_BUCKET(pg);
2105 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2106 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2107 } else {
2108 pgl = NULL;
2109 }
2110
2111 if (pgl) {
2112 (*pr)(" checking pageq list\n");
2113 LIST_FOREACH(tpg, pgl, pageq.list) {
2114 if (tpg == pg) {
2115 break;
2116 }
2117 }
2118 if (tpg)
2119 (*pr)(" page found on pageq list\n");
2120 else
2121 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2122 }
2123 }
2124
2125 /*
2126 * uvm_pages_printthem - print a summary of all managed pages
2127 */
2128
2129 void
2130 uvm_page_printall(void (*pr)(const char *, ...))
2131 {
2132 unsigned i;
2133 struct vm_page *pg;
2134
2135 (*pr)("%18s %4s %4s %18s %18s"
2136 #ifdef UVM_PAGE_TRKOWN
2137 " OWNER"
2138 #endif
2139 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2140 for (i = 0; i < vm_nphysmem; i++) {
2141 for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2142 (*pr)("%18p %04x %04x %18p %18p",
2143 pg, pg->flags, pg->pqflags, pg->uobject,
2144 pg->uanon);
2145 #ifdef UVM_PAGE_TRKOWN
2146 if (pg->flags & PG_BUSY)
2147 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2148 #endif
2149 (*pr)("\n");
2150 }
2151 }
2152 }
2153
2154 #endif /* DDB || DEBUGPRINT */
2155