Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.191
      1 /*	$NetBSD: uvm_page.c,v 1.191 2016/12/23 09:36:55 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_page.c: page ops.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.191 2016/12/23 09:36:55 skrll Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_uvm.h"
     73 #include "opt_uvmhist.h"
     74 #include "opt_readahead.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 #include <sys/vnode.h>
     81 #include <sys/proc.h>
     82 #include <sys/atomic.h>
     83 #include <sys/cpu.h>
     84 #include <sys/extent.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_ddb.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * Some supported CPUs in a given architecture don't support all
     92  * of the things necessary to do idle page zero'ing efficiently.
     93  * We therefore provide a way to enable it from machdep code here.
     94  */
     95 bool vm_page_zero_enable = false;
     96 
     97 /*
     98  * number of pages per-CPU to reserve for the kernel.
     99  */
    100 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    101 #define	UVM_RESERVED_PAGES_PER_CPU	5
    102 #endif
    103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    104 
    105 /*
    106  * physical memory size;
    107  */
    108 psize_t physmem;
    109 
    110 /*
    111  * local variables
    112  */
    113 
    114 /*
    115  * these variables record the values returned by vm_page_bootstrap,
    116  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    117  * and pmap_startup here also uses them internally.
    118  */
    119 
    120 static vaddr_t      virtual_space_start;
    121 static vaddr_t      virtual_space_end;
    122 
    123 /*
    124  * we allocate an initial number of page colors in uvm_page_init(),
    125  * and remember them.  We may re-color pages as cache sizes are
    126  * discovered during the autoconfiguration phase.  But we can never
    127  * free the initial set of buckets, since they are allocated using
    128  * uvm_pageboot_alloc().
    129  */
    130 
    131 static size_t recolored_pages_memsize /* = 0 */;
    132 
    133 #ifdef DEBUG
    134 vaddr_t uvm_zerocheckkva;
    135 #endif /* DEBUG */
    136 
    137 /*
    138  * These functions are reserved for uvm(9) internal use and are not
    139  * exported in the header file uvm_physseg.h
    140  *
    141  * Thus they are redefined here.
    142  */
    143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    145 
    146 /* returns a pgs array */
    147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    148 
    149 /*
    150  * local prototypes
    151  */
    152 
    153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    155 
    156 /*
    157  * per-object tree of pages
    158  */
    159 
    160 static signed int
    161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    162 {
    163 	const struct vm_page *pg1 = n1;
    164 	const struct vm_page *pg2 = n2;
    165 	const voff_t a = pg1->offset;
    166 	const voff_t b = pg2->offset;
    167 
    168 	if (a < b)
    169 		return -1;
    170 	if (a > b)
    171 		return 1;
    172 	return 0;
    173 }
    174 
    175 static signed int
    176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
    177 {
    178 	const struct vm_page *pg = n;
    179 	const voff_t a = pg->offset;
    180 	const voff_t b = *(const voff_t *)key;
    181 
    182 	if (a < b)
    183 		return -1;
    184 	if (a > b)
    185 		return 1;
    186 	return 0;
    187 }
    188 
    189 const rb_tree_ops_t uvm_page_tree_ops = {
    190 	.rbto_compare_nodes = uvm_page_compare_nodes,
    191 	.rbto_compare_key = uvm_page_compare_key,
    192 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    193 	.rbto_context = NULL
    194 };
    195 
    196 /*
    197  * inline functions
    198  */
    199 
    200 /*
    201  * uvm_pageinsert: insert a page in the object.
    202  *
    203  * => caller must lock object
    204  * => caller must lock page queues
    205  * => call should have already set pg's object and offset pointers
    206  *    and bumped the version counter
    207  */
    208 
    209 static inline void
    210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    211     struct vm_page *where)
    212 {
    213 
    214 	KASSERT(uobj == pg->uobject);
    215 	KASSERT(mutex_owned(uobj->vmobjlock));
    216 	KASSERT((pg->flags & PG_TABLED) == 0);
    217 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    218 	KASSERT(where == NULL || (where->uobject == uobj));
    219 
    220 	if (UVM_OBJ_IS_VNODE(uobj)) {
    221 		if (uobj->uo_npages == 0) {
    222 			struct vnode *vp = (struct vnode *)uobj;
    223 
    224 			vholdl(vp);
    225 		}
    226 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    227 			atomic_inc_uint(&uvmexp.execpages);
    228 		} else {
    229 			atomic_inc_uint(&uvmexp.filepages);
    230 		}
    231 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    232 		atomic_inc_uint(&uvmexp.anonpages);
    233 	}
    234 
    235 	if (where)
    236 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    237 	else
    238 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    239 	pg->flags |= PG_TABLED;
    240 	uobj->uo_npages++;
    241 }
    242 
    243 
    244 static inline void
    245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    246 {
    247 	struct vm_page *ret __diagused;
    248 
    249 	KASSERT(uobj == pg->uobject);
    250 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    251 	KASSERT(ret == pg);
    252 }
    253 
    254 static inline void
    255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    256 {
    257 
    258 	KDASSERT(uobj != NULL);
    259 	uvm_pageinsert_tree(uobj, pg);
    260 	uvm_pageinsert_list(uobj, pg, NULL);
    261 }
    262 
    263 /*
    264  * uvm_page_remove: remove page from object.
    265  *
    266  * => caller must lock object
    267  * => caller must lock page queues
    268  */
    269 
    270 static inline void
    271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    272 {
    273 
    274 	KASSERT(uobj == pg->uobject);
    275 	KASSERT(mutex_owned(uobj->vmobjlock));
    276 	KASSERT(pg->flags & PG_TABLED);
    277 
    278 	if (UVM_OBJ_IS_VNODE(uobj)) {
    279 		if (uobj->uo_npages == 1) {
    280 			struct vnode *vp = (struct vnode *)uobj;
    281 
    282 			holdrelel(vp);
    283 		}
    284 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    285 			atomic_dec_uint(&uvmexp.execpages);
    286 		} else {
    287 			atomic_dec_uint(&uvmexp.filepages);
    288 		}
    289 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    290 		atomic_dec_uint(&uvmexp.anonpages);
    291 	}
    292 
    293 	/* object should be locked */
    294 	uobj->uo_npages--;
    295 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    296 	pg->flags &= ~PG_TABLED;
    297 	pg->uobject = NULL;
    298 }
    299 
    300 static inline void
    301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    302 {
    303 
    304 	KASSERT(uobj == pg->uobject);
    305 	rb_tree_remove_node(&uobj->rb_tree, pg);
    306 }
    307 
    308 static inline void
    309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    310 {
    311 
    312 	KDASSERT(uobj != NULL);
    313 	uvm_pageremove_tree(uobj, pg);
    314 	uvm_pageremove_list(uobj, pg);
    315 }
    316 
    317 static void
    318 uvm_page_init_buckets(struct pgfreelist *pgfl)
    319 {
    320 	int color, i;
    321 
    322 	for (color = 0; color < uvmexp.ncolors; color++) {
    323 		for (i = 0; i < PGFL_NQUEUES; i++) {
    324 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    325 		}
    326 	}
    327 }
    328 
    329 /*
    330  * uvm_page_init: init the page system.   called from uvm_init().
    331  *
    332  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    333  */
    334 
    335 void
    336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    337 {
    338 	static struct uvm_cpu boot_cpu;
    339 	psize_t freepages, pagecount, bucketcount, n;
    340 	struct pgflbucket *bucketarray, *cpuarray;
    341 	struct vm_page *pagearray;
    342 	uvm_physseg_t bank;
    343 	int lcv;
    344 
    345 	KASSERT(ncpu <= 1);
    346 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    347 
    348 	/*
    349 	 * init the page queues and page queue locks, except the free
    350 	 * list; we allocate that later (with the initial vm_page
    351 	 * structures).
    352 	 */
    353 
    354 	uvm.cpus[0] = &boot_cpu;
    355 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    356 	uvmpdpol_init();
    357 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    358 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    359 
    360 	/*
    361 	 * allocate vm_page structures.
    362 	 */
    363 
    364 	/*
    365 	 * sanity check:
    366 	 * before calling this function the MD code is expected to register
    367 	 * some free RAM with the uvm_page_physload() function.   our job
    368 	 * now is to allocate vm_page structures for this memory.
    369 	 */
    370 
    371 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    372 		panic("uvm_page_bootstrap: no memory pre-allocated");
    373 
    374 	/*
    375 	 * first calculate the number of free pages...
    376 	 *
    377 	 * note that we use start/end rather than avail_start/avail_end.
    378 	 * this allows us to allocate extra vm_page structures in case we
    379 	 * want to return some memory to the pool after booting.
    380 	 */
    381 
    382 	freepages = 0;
    383 
    384 	for (bank = uvm_physseg_get_first();
    385 	     uvm_physseg_valid_p(bank) ;
    386 	     bank = uvm_physseg_get_next(bank)) {
    387 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    388 	}
    389 
    390 	/*
    391 	 * Let MD code initialize the number of colors, or default
    392 	 * to 1 color if MD code doesn't care.
    393 	 */
    394 	if (uvmexp.ncolors == 0)
    395 		uvmexp.ncolors = 1;
    396 	uvmexp.colormask = uvmexp.ncolors - 1;
    397 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    398 
    399 	/*
    400 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    401 	 * use.   for each page of memory we use we need a vm_page structure.
    402 	 * thus, the total number of pages we can use is the total size of
    403 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    404 	 * structure.   we add one to freepages as a fudge factor to avoid
    405 	 * truncation errors (since we can only allocate in terms of whole
    406 	 * pages).
    407 	 */
    408 
    409 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    410 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    411 	    (PAGE_SIZE + sizeof(struct vm_page));
    412 
    413 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    414 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    415 	    sizeof(struct vm_page)));
    416 	cpuarray = bucketarray + bucketcount;
    417 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    418 
    419 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    420 		uvm.page_free[lcv].pgfl_buckets =
    421 		    (bucketarray + (lcv * uvmexp.ncolors));
    422 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    423 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    424 		    (cpuarray + (lcv * uvmexp.ncolors));
    425 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    426 	}
    427 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    428 
    429 	/*
    430 	 * init the vm_page structures and put them in the correct place.
    431 	 */
    432 	/* First init the extent */
    433 
    434 	for (bank = uvm_physseg_get_first(),
    435 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    436 	     uvm_physseg_valid_p(bank);
    437 	     bank = uvm_physseg_get_next(bank)) {
    438 
    439 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    440 		uvm_physseg_seg_alloc_from_slab(bank, n);
    441 		uvm_physseg_init_seg(bank, pagearray);
    442 
    443 		/* set up page array pointers */
    444 		pagearray += n;
    445 		pagecount -= n;
    446 	}
    447 
    448 	/*
    449 	 * pass up the values of virtual_space_start and
    450 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    451 	 * layers of the VM.
    452 	 */
    453 
    454 	*kvm_startp = round_page(virtual_space_start);
    455 	*kvm_endp = trunc_page(virtual_space_end);
    456 #ifdef DEBUG
    457 	/*
    458 	 * steal kva for uvm_pagezerocheck().
    459 	 */
    460 	uvm_zerocheckkva = *kvm_startp;
    461 	*kvm_startp += PAGE_SIZE;
    462 #endif /* DEBUG */
    463 
    464 	/*
    465 	 * init various thresholds.
    466 	 */
    467 
    468 	uvmexp.reserve_pagedaemon = 1;
    469 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    470 
    471 	/*
    472 	 * determine if we should zero pages in the idle loop.
    473 	 */
    474 
    475 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    476 
    477 	/*
    478 	 * done!
    479 	 */
    480 
    481 	uvm.page_init_done = true;
    482 }
    483 
    484 /*
    485  * uvm_setpagesize: set the page size
    486  *
    487  * => sets page_shift and page_mask from uvmexp.pagesize.
    488  */
    489 
    490 void
    491 uvm_setpagesize(void)
    492 {
    493 
    494 	/*
    495 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    496 	 * to be a constant (indicated by being a non-zero value).
    497 	 */
    498 	if (uvmexp.pagesize == 0) {
    499 		if (PAGE_SIZE == 0)
    500 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    501 		uvmexp.pagesize = PAGE_SIZE;
    502 	}
    503 	uvmexp.pagemask = uvmexp.pagesize - 1;
    504 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    505 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    506 		    uvmexp.pagesize, uvmexp.pagesize);
    507 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    508 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    509 			break;
    510 }
    511 
    512 /*
    513  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    514  */
    515 
    516 vaddr_t
    517 uvm_pageboot_alloc(vsize_t size)
    518 {
    519 	static bool initialized = false;
    520 	vaddr_t addr;
    521 #if !defined(PMAP_STEAL_MEMORY)
    522 	vaddr_t vaddr;
    523 	paddr_t paddr;
    524 #endif
    525 
    526 	/*
    527 	 * on first call to this function, initialize ourselves.
    528 	 */
    529 	if (initialized == false) {
    530 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    531 
    532 		/* round it the way we like it */
    533 		virtual_space_start = round_page(virtual_space_start);
    534 		virtual_space_end = trunc_page(virtual_space_end);
    535 
    536 		initialized = true;
    537 	}
    538 
    539 	/* round to page size */
    540 	size = round_page(size);
    541 
    542 #if defined(PMAP_STEAL_MEMORY)
    543 
    544 	/*
    545 	 * defer bootstrap allocation to MD code (it may want to allocate
    546 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    547 	 * virtual_space_start/virtual_space_end if necessary.
    548 	 */
    549 
    550 	addr = pmap_steal_memory(size, &virtual_space_start,
    551 	    &virtual_space_end);
    552 
    553 	return(addr);
    554 
    555 #else /* !PMAP_STEAL_MEMORY */
    556 
    557 	/*
    558 	 * allocate virtual memory for this request
    559 	 */
    560 	if (virtual_space_start == virtual_space_end ||
    561 	    (virtual_space_end - virtual_space_start) < size)
    562 		panic("uvm_pageboot_alloc: out of virtual space");
    563 
    564 	addr = virtual_space_start;
    565 
    566 #ifdef PMAP_GROWKERNEL
    567 	/*
    568 	 * If the kernel pmap can't map the requested space,
    569 	 * then allocate more resources for it.
    570 	 */
    571 	if (uvm_maxkaddr < (addr + size)) {
    572 		uvm_maxkaddr = pmap_growkernel(addr + size);
    573 		if (uvm_maxkaddr < (addr + size))
    574 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    575 	}
    576 #endif
    577 
    578 	virtual_space_start += size;
    579 
    580 	/*
    581 	 * allocate and mapin physical pages to back new virtual pages
    582 	 */
    583 
    584 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    585 	    vaddr += PAGE_SIZE) {
    586 
    587 		if (!uvm_page_physget(&paddr))
    588 			panic("uvm_pageboot_alloc: out of memory");
    589 
    590 		/*
    591 		 * Note this memory is no longer managed, so using
    592 		 * pmap_kenter is safe.
    593 		 */
    594 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    595 	}
    596 	pmap_update(pmap_kernel());
    597 	return(addr);
    598 #endif	/* PMAP_STEAL_MEMORY */
    599 }
    600 
    601 #if !defined(PMAP_STEAL_MEMORY)
    602 /*
    603  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    604  *
    605  * => attempt to allocate it off the end of a segment in which the "avail"
    606  *    values match the start/end values.   if we can't do that, then we
    607  *    will advance both values (making them equal, and removing some
    608  *    vm_page structures from the non-avail area).
    609  * => return false if out of memory.
    610  */
    611 
    612 /* subroutine: try to allocate from memory chunks on the specified freelist */
    613 static bool uvm_page_physget_freelist(paddr_t *, int);
    614 
    615 static bool
    616 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    617 {
    618 	uvm_physseg_t lcv;
    619 
    620 	/* pass 1: try allocating from a matching end */
    621 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    622 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    623 #else
    624 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    625 #endif
    626 	{
    627 		if (uvm.page_init_done == true)
    628 			panic("uvm_page_physget: called _after_ bootstrap");
    629 
    630 		/* Try to match at front or back on unused segment */
    631 		if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
    632 			if (paddrp == NULL) /* freelist fail, try next */
    633 				continue;
    634 		} else
    635 			return true;
    636 	}
    637 
    638 	/* pass2: forget about matching ends, just allocate something */
    639 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    640 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    641 #else
    642 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    643 #endif
    644 	{
    645 		/* Try the front regardless. */
    646 		if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
    647 			if (paddrp == NULL) /* freelist fail, try next */
    648 				continue;
    649 		} else
    650 			return true;
    651 	}
    652 	return false;
    653 }
    654 
    655 bool
    656 uvm_page_physget(paddr_t *paddrp)
    657 {
    658 	int i;
    659 
    660 	/* try in the order of freelist preference */
    661 	for (i = 0; i < VM_NFREELIST; i++)
    662 		if (uvm_page_physget_freelist(paddrp, i) == true)
    663 			return (true);
    664 	return (false);
    665 }
    666 #endif /* PMAP_STEAL_MEMORY */
    667 
    668 /*
    669  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    670  * back from an I/O mapping (ugh!).   used in some MD code as well.
    671  */
    672 struct vm_page *
    673 uvm_phys_to_vm_page(paddr_t pa)
    674 {
    675 	paddr_t pf = atop(pa);
    676 	paddr_t	off;
    677 	uvm_physseg_t	upm;
    678 
    679 	upm = uvm_physseg_find(pf, &off);
    680 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    681 		return uvm_physseg_get_pg(upm, off);
    682 	return(NULL);
    683 }
    684 
    685 paddr_t
    686 uvm_vm_page_to_phys(const struct vm_page *pg)
    687 {
    688 
    689 	return pg->phys_addr;
    690 }
    691 
    692 /*
    693  * uvm_page_recolor: Recolor the pages if the new bucket count is
    694  * larger than the old one.
    695  */
    696 
    697 void
    698 uvm_page_recolor(int newncolors)
    699 {
    700 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    701 	struct pgfreelist gpgfl, pgfl;
    702 	struct vm_page *pg;
    703 	vsize_t bucketcount;
    704 	size_t bucketmemsize, oldbucketmemsize;
    705 	int color, i, ocolors;
    706 	int lcv;
    707 	struct uvm_cpu *ucpu;
    708 
    709 	KASSERT(((newncolors - 1) & newncolors) == 0);
    710 
    711 	if (newncolors <= uvmexp.ncolors)
    712 		return;
    713 
    714 	if (uvm.page_init_done == false) {
    715 		uvmexp.ncolors = newncolors;
    716 		return;
    717 	}
    718 
    719 	bucketcount = newncolors * VM_NFREELIST;
    720 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    721 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
    722 	cpuarray = bucketarray + bucketcount;
    723 	if (bucketarray == NULL) {
    724 		printf("WARNING: unable to allocate %ld page color buckets\n",
    725 		    (long) bucketcount);
    726 		return;
    727 	}
    728 
    729 	mutex_spin_enter(&uvm_fpageqlock);
    730 
    731 	/* Make sure we should still do this. */
    732 	if (newncolors <= uvmexp.ncolors) {
    733 		mutex_spin_exit(&uvm_fpageqlock);
    734 		kmem_free(bucketarray, bucketmemsize);
    735 		return;
    736 	}
    737 
    738 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    739 	ocolors = uvmexp.ncolors;
    740 
    741 	uvmexp.ncolors = newncolors;
    742 	uvmexp.colormask = uvmexp.ncolors - 1;
    743 
    744 	ucpu = curcpu()->ci_data.cpu_uvm;
    745 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    746 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    747 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    748 		uvm_page_init_buckets(&gpgfl);
    749 		uvm_page_init_buckets(&pgfl);
    750 		for (color = 0; color < ocolors; color++) {
    751 			for (i = 0; i < PGFL_NQUEUES; i++) {
    752 				while ((pg = LIST_FIRST(&uvm.page_free[
    753 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    754 				    != NULL) {
    755 					LIST_REMOVE(pg, pageq.list); /* global */
    756 					LIST_REMOVE(pg, listq.list); /* cpu */
    757 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    758 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    759 					    i], pg, pageq.list);
    760 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    761 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    762 					    i], pg, listq.list);
    763 				}
    764 			}
    765 		}
    766 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    767 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    768 	}
    769 
    770 	oldbucketmemsize = recolored_pages_memsize;
    771 
    772 	recolored_pages_memsize = bucketmemsize;
    773 	mutex_spin_exit(&uvm_fpageqlock);
    774 
    775 	if (oldbucketmemsize) {
    776 		kmem_free(oldbucketarray, recolored_pages_memsize);
    777 	}
    778 
    779 	/*
    780 	 * this calls uvm_km_alloc() which may want to hold
    781 	 * uvm_fpageqlock.
    782 	 */
    783 	uvm_pager_realloc_emerg();
    784 }
    785 
    786 /*
    787  * uvm_cpu_attach: initialize per-CPU data structures.
    788  */
    789 
    790 void
    791 uvm_cpu_attach(struct cpu_info *ci)
    792 {
    793 	struct pgflbucket *bucketarray;
    794 	struct pgfreelist pgfl;
    795 	struct uvm_cpu *ucpu;
    796 	vsize_t bucketcount;
    797 	int lcv;
    798 
    799 	if (CPU_IS_PRIMARY(ci)) {
    800 		/* Already done in uvm_page_init(). */
    801 		goto attachrnd;
    802 	}
    803 
    804 	/* Add more reserve pages for this CPU. */
    805 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    806 
    807 	/* Configure this CPU's free lists. */
    808 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    809 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
    810 	    KM_SLEEP);
    811 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
    812 	uvm.cpus[cpu_index(ci)] = ucpu;
    813 	ci->ci_data.cpu_uvm = ucpu;
    814 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    815 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    816 		uvm_page_init_buckets(&pgfl);
    817 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    818 	}
    819 
    820 attachrnd:
    821 	/*
    822 	 * Attach RNG source for this CPU's VM events
    823 	 */
    824         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
    825 			  ci->ci_data.cpu_name, RND_TYPE_VM,
    826 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    827 			  RND_FLAG_ESTIMATE_VALUE);
    828 
    829 }
    830 
    831 /*
    832  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    833  */
    834 
    835 static struct vm_page *
    836 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    837     int *trycolorp)
    838 {
    839 	struct pgflist *freeq;
    840 	struct vm_page *pg;
    841 	int color, trycolor = *trycolorp;
    842 	struct pgfreelist *gpgfl, *pgfl;
    843 
    844 	KASSERT(mutex_owned(&uvm_fpageqlock));
    845 
    846 	color = trycolor;
    847 	pgfl = &ucpu->page_free[flist];
    848 	gpgfl = &uvm.page_free[flist];
    849 	do {
    850 		/* cpu, try1 */
    851 		if ((pg = LIST_FIRST((freeq =
    852 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    853 			KASSERT(pg->pqflags & PQ_FREE);
    854 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    855 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    856 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    857 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    858 		    	uvmexp.cpuhit++;
    859 			goto gotit;
    860 		}
    861 		/* global, try1 */
    862 		if ((pg = LIST_FIRST((freeq =
    863 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    864 			KASSERT(pg->pqflags & PQ_FREE);
    865 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    866 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    867 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    868 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    869 		    	uvmexp.cpumiss++;
    870 			goto gotit;
    871 		}
    872 		/* cpu, try2 */
    873 		if ((pg = LIST_FIRST((freeq =
    874 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    875 			KASSERT(pg->pqflags & PQ_FREE);
    876 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    877 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    878 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    879 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    880 		    	uvmexp.cpuhit++;
    881 			goto gotit;
    882 		}
    883 		/* global, try2 */
    884 		if ((pg = LIST_FIRST((freeq =
    885 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    886 			KASSERT(pg->pqflags & PQ_FREE);
    887 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    888 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    889 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    890 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    891 		    	uvmexp.cpumiss++;
    892 			goto gotit;
    893 		}
    894 		color = (color + 1) & uvmexp.colormask;
    895 	} while (color != trycolor);
    896 
    897 	return (NULL);
    898 
    899  gotit:
    900 	LIST_REMOVE(pg, pageq.list);	/* global list */
    901 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
    902 	uvmexp.free--;
    903 
    904 	/* update zero'd page count */
    905 	if (pg->flags & PG_ZERO)
    906 		uvmexp.zeropages--;
    907 
    908 	if (color == trycolor)
    909 		uvmexp.colorhit++;
    910 	else {
    911 		uvmexp.colormiss++;
    912 		*trycolorp = color;
    913 	}
    914 
    915 	return (pg);
    916 }
    917 
    918 /*
    919  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    920  *
    921  * => return null if no pages free
    922  * => wake up pagedaemon if number of free pages drops below low water mark
    923  * => if obj != NULL, obj must be locked (to put in obj's tree)
    924  * => if anon != NULL, anon must be locked (to put in anon)
    925  * => only one of obj or anon can be non-null
    926  * => caller must activate/deactivate page if it is not wired.
    927  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    928  * => policy decision: it is more important to pull a page off of the
    929  *	appropriate priority free list than it is to get a zero'd or
    930  *	unknown contents page.  This is because we live with the
    931  *	consequences of a bad free list decision for the entire
    932  *	lifetime of the page, e.g. if the page comes from memory that
    933  *	is slower to access.
    934  */
    935 
    936 struct vm_page *
    937 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
    938     int flags, int strat, int free_list)
    939 {
    940 	int try1, try2, zeroit = 0, color;
    941 	int lcv;
    942 	struct uvm_cpu *ucpu;
    943 	struct vm_page *pg;
    944 	lwp_t *l;
    945 
    946 	KASSERT(obj == NULL || anon == NULL);
    947 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
    948 	KASSERT(off == trunc_page(off));
    949 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
    950 	KASSERT(anon == NULL || anon->an_lock == NULL ||
    951 	    mutex_owned(anon->an_lock));
    952 
    953 	mutex_spin_enter(&uvm_fpageqlock);
    954 
    955 	/*
    956 	 * This implements a global round-robin page coloring
    957 	 * algorithm.
    958 	 */
    959 
    960 	ucpu = curcpu()->ci_data.cpu_uvm;
    961 	if (flags & UVM_FLAG_COLORMATCH) {
    962 		color = atop(off) & uvmexp.colormask;
    963 	} else {
    964 		color = ucpu->page_free_nextcolor;
    965 	}
    966 
    967 	/*
    968 	 * check to see if we need to generate some free pages waking
    969 	 * the pagedaemon.
    970 	 */
    971 
    972 	uvm_kick_pdaemon();
    973 
    974 	/*
    975 	 * fail if any of these conditions is true:
    976 	 * [1]  there really are no free pages, or
    977 	 * [2]  only kernel "reserved" pages remain and
    978 	 *        reserved pages have not been requested.
    979 	 * [3]  only pagedaemon "reserved" pages remain and
    980 	 *        the requestor isn't the pagedaemon.
    981 	 * we make kernel reserve pages available if called by a
    982 	 * kernel thread or a realtime thread.
    983 	 */
    984 	l = curlwp;
    985 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
    986 		flags |= UVM_PGA_USERESERVE;
    987 	}
    988 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    989 	    (flags & UVM_PGA_USERESERVE) == 0) ||
    990 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    991 	     curlwp != uvm.pagedaemon_lwp))
    992 		goto fail;
    993 
    994 #if PGFL_NQUEUES != 2
    995 #error uvm_pagealloc_strat needs to be updated
    996 #endif
    997 
    998 	/*
    999 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1000 	 * we try the UNKNOWN queue first.
   1001 	 */
   1002 	if (flags & UVM_PGA_ZERO) {
   1003 		try1 = PGFL_ZEROS;
   1004 		try2 = PGFL_UNKNOWN;
   1005 	} else {
   1006 		try1 = PGFL_UNKNOWN;
   1007 		try2 = PGFL_ZEROS;
   1008 	}
   1009 
   1010  again:
   1011 	switch (strat) {
   1012 	case UVM_PGA_STRAT_NORMAL:
   1013 		/* Check freelists: descending priority (ascending id) order */
   1014 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1015 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1016 			    try1, try2, &color);
   1017 			if (pg != NULL)
   1018 				goto gotit;
   1019 		}
   1020 
   1021 		/* No pages free! */
   1022 		goto fail;
   1023 
   1024 	case UVM_PGA_STRAT_ONLY:
   1025 	case UVM_PGA_STRAT_FALLBACK:
   1026 		/* Attempt to allocate from the specified free list. */
   1027 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1028 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1029 		    try1, try2, &color);
   1030 		if (pg != NULL)
   1031 			goto gotit;
   1032 
   1033 		/* Fall back, if possible. */
   1034 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1035 			strat = UVM_PGA_STRAT_NORMAL;
   1036 			goto again;
   1037 		}
   1038 
   1039 		/* No pages free! */
   1040 		goto fail;
   1041 
   1042 	default:
   1043 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1044 		/* NOTREACHED */
   1045 	}
   1046 
   1047  gotit:
   1048 	/*
   1049 	 * We now know which color we actually allocated from; set
   1050 	 * the next color accordingly.
   1051 	 */
   1052 
   1053 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1054 
   1055 	/*
   1056 	 * update allocation statistics and remember if we have to
   1057 	 * zero the page
   1058 	 */
   1059 
   1060 	if (flags & UVM_PGA_ZERO) {
   1061 		if (pg->flags & PG_ZERO) {
   1062 			uvmexp.pga_zerohit++;
   1063 			zeroit = 0;
   1064 		} else {
   1065 			uvmexp.pga_zeromiss++;
   1066 			zeroit = 1;
   1067 		}
   1068 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1069 			ucpu->page_idle_zero = vm_page_zero_enable;
   1070 		}
   1071 	}
   1072 	KASSERT(pg->pqflags == PQ_FREE);
   1073 
   1074 	pg->offset = off;
   1075 	pg->uobject = obj;
   1076 	pg->uanon = anon;
   1077 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1078 	if (anon) {
   1079 		anon->an_page = pg;
   1080 		pg->pqflags = PQ_ANON;
   1081 		atomic_inc_uint(&uvmexp.anonpages);
   1082 	} else {
   1083 		if (obj) {
   1084 			uvm_pageinsert(obj, pg);
   1085 		}
   1086 		pg->pqflags = 0;
   1087 	}
   1088 	mutex_spin_exit(&uvm_fpageqlock);
   1089 
   1090 #if defined(UVM_PAGE_TRKOWN)
   1091 	pg->owner_tag = NULL;
   1092 #endif
   1093 	UVM_PAGE_OWN(pg, "new alloc");
   1094 
   1095 	if (flags & UVM_PGA_ZERO) {
   1096 		/*
   1097 		 * A zero'd page is not clean.  If we got a page not already
   1098 		 * zero'd, then we have to zero it ourselves.
   1099 		 */
   1100 		pg->flags &= ~PG_CLEAN;
   1101 		if (zeroit)
   1102 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1103 	}
   1104 
   1105 	return(pg);
   1106 
   1107  fail:
   1108 	mutex_spin_exit(&uvm_fpageqlock);
   1109 	return (NULL);
   1110 }
   1111 
   1112 /*
   1113  * uvm_pagereplace: replace a page with another
   1114  *
   1115  * => object must be locked
   1116  */
   1117 
   1118 void
   1119 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1120 {
   1121 	struct uvm_object *uobj = oldpg->uobject;
   1122 
   1123 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1124 	KASSERT(uobj != NULL);
   1125 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1126 	KASSERT(newpg->uobject == NULL);
   1127 	KASSERT(mutex_owned(uobj->vmobjlock));
   1128 
   1129 	newpg->uobject = uobj;
   1130 	newpg->offset = oldpg->offset;
   1131 
   1132 	uvm_pageremove_tree(uobj, oldpg);
   1133 	uvm_pageinsert_tree(uobj, newpg);
   1134 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1135 	uvm_pageremove_list(uobj, oldpg);
   1136 }
   1137 
   1138 /*
   1139  * uvm_pagerealloc: reallocate a page from one object to another
   1140  *
   1141  * => both objects must be locked
   1142  */
   1143 
   1144 void
   1145 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1146 {
   1147 	/*
   1148 	 * remove it from the old object
   1149 	 */
   1150 
   1151 	if (pg->uobject) {
   1152 		uvm_pageremove(pg->uobject, pg);
   1153 	}
   1154 
   1155 	/*
   1156 	 * put it in the new object
   1157 	 */
   1158 
   1159 	if (newobj) {
   1160 		pg->uobject = newobj;
   1161 		pg->offset = newoff;
   1162 		uvm_pageinsert(newobj, pg);
   1163 	}
   1164 }
   1165 
   1166 #ifdef DEBUG
   1167 /*
   1168  * check if page is zero-filled
   1169  *
   1170  *  - called with free page queue lock held.
   1171  */
   1172 void
   1173 uvm_pagezerocheck(struct vm_page *pg)
   1174 {
   1175 	int *p, *ep;
   1176 
   1177 	KASSERT(uvm_zerocheckkva != 0);
   1178 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1179 
   1180 	/*
   1181 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1182 	 * uvm page allocator.
   1183 	 *
   1184 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1185 	 */
   1186 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1187 	p = (int *)uvm_zerocheckkva;
   1188 	ep = (int *)((char *)p + PAGE_SIZE);
   1189 	pmap_update(pmap_kernel());
   1190 	while (p < ep) {
   1191 		if (*p != 0)
   1192 			panic("PG_ZERO page isn't zero-filled");
   1193 		p++;
   1194 	}
   1195 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1196 	/*
   1197 	 * pmap_update() is not necessary here because no one except us
   1198 	 * uses this VA.
   1199 	 */
   1200 }
   1201 #endif /* DEBUG */
   1202 
   1203 /*
   1204  * uvm_pagefree: free page
   1205  *
   1206  * => erase page's identity (i.e. remove from object)
   1207  * => put page on free list
   1208  * => caller must lock owning object (either anon or uvm_object)
   1209  * => caller must lock page queues
   1210  * => assumes all valid mappings of pg are gone
   1211  */
   1212 
   1213 void
   1214 uvm_pagefree(struct vm_page *pg)
   1215 {
   1216 	struct pgflist *pgfl;
   1217 	struct uvm_cpu *ucpu;
   1218 	int index, color, queue;
   1219 	bool iszero;
   1220 
   1221 #ifdef DEBUG
   1222 	if (pg->uobject == (void *)0xdeadbeef &&
   1223 	    pg->uanon == (void *)0xdeadbeef) {
   1224 		panic("uvm_pagefree: freeing free page %p", pg);
   1225 	}
   1226 #endif /* DEBUG */
   1227 
   1228 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1229 	KASSERT(!(pg->pqflags & PQ_FREE));
   1230 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1231 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1232 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1233 		mutex_owned(pg->uanon->an_lock));
   1234 
   1235 	/*
   1236 	 * if the page is loaned, resolve the loan instead of freeing.
   1237 	 */
   1238 
   1239 	if (pg->loan_count) {
   1240 		KASSERT(pg->wire_count == 0);
   1241 
   1242 		/*
   1243 		 * if the page is owned by an anon then we just want to
   1244 		 * drop anon ownership.  the kernel will free the page when
   1245 		 * it is done with it.  if the page is owned by an object,
   1246 		 * remove it from the object and mark it dirty for the benefit
   1247 		 * of possible anon owners.
   1248 		 *
   1249 		 * regardless of previous ownership, wakeup any waiters,
   1250 		 * unbusy the page, and we're done.
   1251 		 */
   1252 
   1253 		if (pg->uobject != NULL) {
   1254 			uvm_pageremove(pg->uobject, pg);
   1255 			pg->flags &= ~PG_CLEAN;
   1256 		} else if (pg->uanon != NULL) {
   1257 			if ((pg->pqflags & PQ_ANON) == 0) {
   1258 				pg->loan_count--;
   1259 			} else {
   1260 				pg->pqflags &= ~PQ_ANON;
   1261 				atomic_dec_uint(&uvmexp.anonpages);
   1262 			}
   1263 			pg->uanon->an_page = NULL;
   1264 			pg->uanon = NULL;
   1265 		}
   1266 		if (pg->flags & PG_WANTED) {
   1267 			wakeup(pg);
   1268 		}
   1269 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1270 #ifdef UVM_PAGE_TRKOWN
   1271 		pg->owner_tag = NULL;
   1272 #endif
   1273 		if (pg->loan_count) {
   1274 			KASSERT(pg->uobject == NULL);
   1275 			if (pg->uanon == NULL) {
   1276 				KASSERT(mutex_owned(&uvm_pageqlock));
   1277 				uvm_pagedequeue(pg);
   1278 			}
   1279 			return;
   1280 		}
   1281 	}
   1282 
   1283 	/*
   1284 	 * remove page from its object or anon.
   1285 	 */
   1286 
   1287 	if (pg->uobject != NULL) {
   1288 		uvm_pageremove(pg->uobject, pg);
   1289 	} else if (pg->uanon != NULL) {
   1290 		pg->uanon->an_page = NULL;
   1291 		atomic_dec_uint(&uvmexp.anonpages);
   1292 	}
   1293 
   1294 	/*
   1295 	 * now remove the page from the queues.
   1296 	 */
   1297 	if (uvmpdpol_pageisqueued_p(pg)) {
   1298 		KASSERT(mutex_owned(&uvm_pageqlock));
   1299 		uvm_pagedequeue(pg);
   1300 	}
   1301 
   1302 	/*
   1303 	 * if the page was wired, unwire it now.
   1304 	 */
   1305 
   1306 	if (pg->wire_count) {
   1307 		pg->wire_count = 0;
   1308 		uvmexp.wired--;
   1309 	}
   1310 
   1311 	/*
   1312 	 * and put on free queue
   1313 	 */
   1314 
   1315 	iszero = (pg->flags & PG_ZERO);
   1316 	index = uvm_page_lookup_freelist(pg);
   1317 	color = VM_PGCOLOR_BUCKET(pg);
   1318 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1319 
   1320 #ifdef DEBUG
   1321 	pg->uobject = (void *)0xdeadbeef;
   1322 	pg->uanon = (void *)0xdeadbeef;
   1323 #endif
   1324 
   1325 	mutex_spin_enter(&uvm_fpageqlock);
   1326 	pg->pqflags = PQ_FREE;
   1327 
   1328 #ifdef DEBUG
   1329 	if (iszero)
   1330 		uvm_pagezerocheck(pg);
   1331 #endif /* DEBUG */
   1332 
   1333 
   1334 	/* global list */
   1335 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1336 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1337 	uvmexp.free++;
   1338 	if (iszero) {
   1339 		uvmexp.zeropages++;
   1340 	}
   1341 
   1342 	/* per-cpu list */
   1343 	ucpu = curcpu()->ci_data.cpu_uvm;
   1344 	pg->offset = (uintptr_t)ucpu;
   1345 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1346 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1347 	ucpu->pages[queue]++;
   1348 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1349 		ucpu->page_idle_zero = vm_page_zero_enable;
   1350 	}
   1351 
   1352 	mutex_spin_exit(&uvm_fpageqlock);
   1353 }
   1354 
   1355 /*
   1356  * uvm_page_unbusy: unbusy an array of pages.
   1357  *
   1358  * => pages must either all belong to the same object, or all belong to anons.
   1359  * => if pages are object-owned, object must be locked.
   1360  * => if pages are anon-owned, anons must be locked.
   1361  * => caller must lock page queues if pages may be released.
   1362  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1363  */
   1364 
   1365 void
   1366 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1367 {
   1368 	struct vm_page *pg;
   1369 	int i;
   1370 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1371 
   1372 	for (i = 0; i < npgs; i++) {
   1373 		pg = pgs[i];
   1374 		if (pg == NULL || pg == PGO_DONTCARE) {
   1375 			continue;
   1376 		}
   1377 
   1378 		KASSERT(uvm_page_locked_p(pg));
   1379 		KASSERT(pg->flags & PG_BUSY);
   1380 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1381 		if (pg->flags & PG_WANTED) {
   1382 			wakeup(pg);
   1383 		}
   1384 		if (pg->flags & PG_RELEASED) {
   1385 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1386 			KASSERT(pg->uobject != NULL ||
   1387 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1388 			pg->flags &= ~PG_RELEASED;
   1389 			uvm_pagefree(pg);
   1390 		} else {
   1391 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1392 			KASSERT((pg->flags & PG_FAKE) == 0);
   1393 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1394 			UVM_PAGE_OWN(pg, NULL);
   1395 		}
   1396 	}
   1397 }
   1398 
   1399 #if defined(UVM_PAGE_TRKOWN)
   1400 /*
   1401  * uvm_page_own: set or release page ownership
   1402  *
   1403  * => this is a debugging function that keeps track of who sets PG_BUSY
   1404  *	and where they do it.   it can be used to track down problems
   1405  *	such a process setting "PG_BUSY" and never releasing it.
   1406  * => page's object [if any] must be locked
   1407  * => if "tag" is NULL then we are releasing page ownership
   1408  */
   1409 void
   1410 uvm_page_own(struct vm_page *pg, const char *tag)
   1411 {
   1412 
   1413 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1414 	KASSERT((pg->flags & PG_WANTED) == 0);
   1415 	KASSERT(uvm_page_locked_p(pg));
   1416 
   1417 	/* gain ownership? */
   1418 	if (tag) {
   1419 		KASSERT((pg->flags & PG_BUSY) != 0);
   1420 		if (pg->owner_tag) {
   1421 			printf("uvm_page_own: page %p already owned "
   1422 			    "by proc %d [%s]\n", pg,
   1423 			    pg->owner, pg->owner_tag);
   1424 			panic("uvm_page_own");
   1425 		}
   1426 		pg->owner = curproc->p_pid;
   1427 		pg->lowner = curlwp->l_lid;
   1428 		pg->owner_tag = tag;
   1429 		return;
   1430 	}
   1431 
   1432 	/* drop ownership */
   1433 	KASSERT((pg->flags & PG_BUSY) == 0);
   1434 	if (pg->owner_tag == NULL) {
   1435 		printf("uvm_page_own: dropping ownership of an non-owned "
   1436 		    "page (%p)\n", pg);
   1437 		panic("uvm_page_own");
   1438 	}
   1439 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1440 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1441 		    pg->wire_count > 0);
   1442 	} else {
   1443 		KASSERT(pg->wire_count == 0);
   1444 	}
   1445 	pg->owner_tag = NULL;
   1446 }
   1447 #endif
   1448 
   1449 /*
   1450  * uvm_pageidlezero: zero free pages while the system is idle.
   1451  *
   1452  * => try to complete one color bucket at a time, to reduce our impact
   1453  *	on the CPU cache.
   1454  * => we loop until we either reach the target or there is a lwp ready
   1455  *      to run, or MD code detects a reason to break early.
   1456  */
   1457 void
   1458 uvm_pageidlezero(void)
   1459 {
   1460 	struct vm_page *pg;
   1461 	struct pgfreelist *pgfl, *gpgfl;
   1462 	struct uvm_cpu *ucpu;
   1463 	int free_list, firstbucket, nextbucket;
   1464 	bool lcont = false;
   1465 
   1466 	ucpu = curcpu()->ci_data.cpu_uvm;
   1467 	if (!ucpu->page_idle_zero ||
   1468 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1469 	    	ucpu->page_idle_zero = false;
   1470 		return;
   1471 	}
   1472 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1473 		/* Contention: let other CPUs to use the lock. */
   1474 		return;
   1475 	}
   1476 	firstbucket = ucpu->page_free_nextcolor;
   1477 	nextbucket = firstbucket;
   1478 	do {
   1479 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1480 			if (sched_curcpu_runnable_p()) {
   1481 				goto quit;
   1482 			}
   1483 			pgfl = &ucpu->page_free[free_list];
   1484 			gpgfl = &uvm.page_free[free_list];
   1485 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1486 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1487 				if (lcont || sched_curcpu_runnable_p()) {
   1488 					goto quit;
   1489 				}
   1490 				LIST_REMOVE(pg, pageq.list); /* global list */
   1491 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1492 				ucpu->pages[PGFL_UNKNOWN]--;
   1493 				uvmexp.free--;
   1494 				KASSERT(pg->pqflags == PQ_FREE);
   1495 				pg->pqflags = 0;
   1496 				mutex_spin_exit(&uvm_fpageqlock);
   1497 #ifdef PMAP_PAGEIDLEZERO
   1498 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1499 
   1500 					/*
   1501 					 * The machine-dependent code detected
   1502 					 * some reason for us to abort zeroing
   1503 					 * pages, probably because there is a
   1504 					 * process now ready to run.
   1505 					 */
   1506 
   1507 					mutex_spin_enter(&uvm_fpageqlock);
   1508 					pg->pqflags = PQ_FREE;
   1509 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1510 					    nextbucket].pgfl_queues[
   1511 					    PGFL_UNKNOWN], pg, pageq.list);
   1512 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1513 					    nextbucket].pgfl_queues[
   1514 					    PGFL_UNKNOWN], pg, listq.list);
   1515 					ucpu->pages[PGFL_UNKNOWN]++;
   1516 					uvmexp.free++;
   1517 					uvmexp.zeroaborts++;
   1518 					goto quit;
   1519 				}
   1520 #else
   1521 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1522 #endif /* PMAP_PAGEIDLEZERO */
   1523 				pg->flags |= PG_ZERO;
   1524 
   1525 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1526 					lcont = true;
   1527 					mutex_spin_enter(&uvm_fpageqlock);
   1528 				} else {
   1529 					lcont = false;
   1530 				}
   1531 				pg->pqflags = PQ_FREE;
   1532 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1533 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1534 				    pg, pageq.list);
   1535 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1536 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1537 				    pg, listq.list);
   1538 				ucpu->pages[PGFL_ZEROS]++;
   1539 				uvmexp.free++;
   1540 				uvmexp.zeropages++;
   1541 			}
   1542 		}
   1543 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1544 			break;
   1545 		}
   1546 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1547 	} while (nextbucket != firstbucket);
   1548 	ucpu->page_idle_zero = false;
   1549  quit:
   1550 	mutex_spin_exit(&uvm_fpageqlock);
   1551 }
   1552 
   1553 /*
   1554  * uvm_pagelookup: look up a page
   1555  *
   1556  * => caller should lock object to keep someone from pulling the page
   1557  *	out from under it
   1558  */
   1559 
   1560 struct vm_page *
   1561 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1562 {
   1563 	struct vm_page *pg;
   1564 
   1565 	KASSERT(mutex_owned(obj->vmobjlock));
   1566 
   1567 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1568 
   1569 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1570 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1571 		(pg->flags & PG_BUSY) != 0);
   1572 	return pg;
   1573 }
   1574 
   1575 /*
   1576  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1577  *
   1578  * => caller must lock page queues
   1579  */
   1580 
   1581 void
   1582 uvm_pagewire(struct vm_page *pg)
   1583 {
   1584 	KASSERT(mutex_owned(&uvm_pageqlock));
   1585 #if defined(READAHEAD_STATS)
   1586 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1587 		uvm_ra_hit.ev_count++;
   1588 		pg->pqflags &= ~PQ_READAHEAD;
   1589 	}
   1590 #endif /* defined(READAHEAD_STATS) */
   1591 	if (pg->wire_count == 0) {
   1592 		uvm_pagedequeue(pg);
   1593 		uvmexp.wired++;
   1594 	}
   1595 	pg->wire_count++;
   1596 }
   1597 
   1598 /*
   1599  * uvm_pageunwire: unwire the page.
   1600  *
   1601  * => activate if wire count goes to zero.
   1602  * => caller must lock page queues
   1603  */
   1604 
   1605 void
   1606 uvm_pageunwire(struct vm_page *pg)
   1607 {
   1608 	KASSERT(mutex_owned(&uvm_pageqlock));
   1609 	pg->wire_count--;
   1610 	if (pg->wire_count == 0) {
   1611 		uvm_pageactivate(pg);
   1612 		uvmexp.wired--;
   1613 	}
   1614 }
   1615 
   1616 /*
   1617  * uvm_pagedeactivate: deactivate page
   1618  *
   1619  * => caller must lock page queues
   1620  * => caller must check to make sure page is not wired
   1621  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1622  * => caller must clear the reference on the page before calling
   1623  */
   1624 
   1625 void
   1626 uvm_pagedeactivate(struct vm_page *pg)
   1627 {
   1628 
   1629 	KASSERT(mutex_owned(&uvm_pageqlock));
   1630 	KASSERT(uvm_page_locked_p(pg));
   1631 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1632 	uvmpdpol_pagedeactivate(pg);
   1633 }
   1634 
   1635 /*
   1636  * uvm_pageactivate: activate page
   1637  *
   1638  * => caller must lock page queues
   1639  */
   1640 
   1641 void
   1642 uvm_pageactivate(struct vm_page *pg)
   1643 {
   1644 
   1645 	KASSERT(mutex_owned(&uvm_pageqlock));
   1646 	KASSERT(uvm_page_locked_p(pg));
   1647 #if defined(READAHEAD_STATS)
   1648 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1649 		uvm_ra_hit.ev_count++;
   1650 		pg->pqflags &= ~PQ_READAHEAD;
   1651 	}
   1652 #endif /* defined(READAHEAD_STATS) */
   1653 	if (pg->wire_count != 0) {
   1654 		return;
   1655 	}
   1656 	uvmpdpol_pageactivate(pg);
   1657 }
   1658 
   1659 /*
   1660  * uvm_pagedequeue: remove a page from any paging queue
   1661  */
   1662 
   1663 void
   1664 uvm_pagedequeue(struct vm_page *pg)
   1665 {
   1666 
   1667 	if (uvmpdpol_pageisqueued_p(pg)) {
   1668 		KASSERT(mutex_owned(&uvm_pageqlock));
   1669 	}
   1670 
   1671 	uvmpdpol_pagedequeue(pg);
   1672 }
   1673 
   1674 /*
   1675  * uvm_pageenqueue: add a page to a paging queue without activating.
   1676  * used where a page is not really demanded (yet).  eg. read-ahead
   1677  */
   1678 
   1679 void
   1680 uvm_pageenqueue(struct vm_page *pg)
   1681 {
   1682 
   1683 	KASSERT(mutex_owned(&uvm_pageqlock));
   1684 	if (pg->wire_count != 0) {
   1685 		return;
   1686 	}
   1687 	uvmpdpol_pageenqueue(pg);
   1688 }
   1689 
   1690 /*
   1691  * uvm_pagezero: zero fill a page
   1692  *
   1693  * => if page is part of an object then the object should be locked
   1694  *	to protect pg->flags.
   1695  */
   1696 
   1697 void
   1698 uvm_pagezero(struct vm_page *pg)
   1699 {
   1700 	pg->flags &= ~PG_CLEAN;
   1701 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1702 }
   1703 
   1704 /*
   1705  * uvm_pagecopy: copy a page
   1706  *
   1707  * => if page is part of an object then the object should be locked
   1708  *	to protect pg->flags.
   1709  */
   1710 
   1711 void
   1712 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1713 {
   1714 
   1715 	dst->flags &= ~PG_CLEAN;
   1716 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1717 }
   1718 
   1719 /*
   1720  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1721  */
   1722 
   1723 bool
   1724 uvm_pageismanaged(paddr_t pa)
   1725 {
   1726 
   1727 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1728 }
   1729 
   1730 /*
   1731  * uvm_page_lookup_freelist: look up the free list for the specified page
   1732  */
   1733 
   1734 int
   1735 uvm_page_lookup_freelist(struct vm_page *pg)
   1736 {
   1737 	uvm_physseg_t upm;
   1738 
   1739 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1740 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1741 	return uvm_physseg_get_free_list(upm);
   1742 }
   1743 
   1744 /*
   1745  * uvm_page_locked_p: return true if object associated with page is
   1746  * locked.  this is a weak check for runtime assertions only.
   1747  */
   1748 
   1749 bool
   1750 uvm_page_locked_p(struct vm_page *pg)
   1751 {
   1752 
   1753 	if (pg->uobject != NULL) {
   1754 		return mutex_owned(pg->uobject->vmobjlock);
   1755 	}
   1756 	if (pg->uanon != NULL) {
   1757 		return mutex_owned(pg->uanon->an_lock);
   1758 	}
   1759 	return true;
   1760 }
   1761 
   1762 #if defined(DDB) || defined(DEBUGPRINT)
   1763 
   1764 /*
   1765  * uvm_page_printit: actually print the page
   1766  */
   1767 
   1768 static const char page_flagbits[] = UVM_PGFLAGBITS;
   1769 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   1770 
   1771 void
   1772 uvm_page_printit(struct vm_page *pg, bool full,
   1773     void (*pr)(const char *, ...))
   1774 {
   1775 	struct vm_page *tpg;
   1776 	struct uvm_object *uobj;
   1777 	struct pgflist *pgl;
   1778 	char pgbuf[128];
   1779 	char pqbuf[128];
   1780 
   1781 	(*pr)("PAGE %p:\n", pg);
   1782 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1783 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   1784 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   1785 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1786 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1787 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1788 #if defined(UVM_PAGE_TRKOWN)
   1789 	if (pg->flags & PG_BUSY)
   1790 		(*pr)("  owning process = %d, tag=%s\n",
   1791 		    pg->owner, pg->owner_tag);
   1792 	else
   1793 		(*pr)("  page not busy, no owner\n");
   1794 #else
   1795 	(*pr)("  [page ownership tracking disabled]\n");
   1796 #endif
   1797 
   1798 	if (!full)
   1799 		return;
   1800 
   1801 	/* cross-verify object/anon */
   1802 	if ((pg->pqflags & PQ_FREE) == 0) {
   1803 		if (pg->pqflags & PQ_ANON) {
   1804 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1805 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1806 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1807 			else
   1808 				(*pr)("  anon backpointer is OK\n");
   1809 		} else {
   1810 			uobj = pg->uobject;
   1811 			if (uobj) {
   1812 				(*pr)("  checking object list\n");
   1813 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   1814 					if (tpg == pg) {
   1815 						break;
   1816 					}
   1817 				}
   1818 				if (tpg)
   1819 					(*pr)("  page found on object list\n");
   1820 				else
   1821 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1822 			}
   1823 		}
   1824 	}
   1825 
   1826 	/* cross-verify page queue */
   1827 	if (pg->pqflags & PQ_FREE) {
   1828 		int fl = uvm_page_lookup_freelist(pg);
   1829 		int color = VM_PGCOLOR_BUCKET(pg);
   1830 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1831 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1832 	} else {
   1833 		pgl = NULL;
   1834 	}
   1835 
   1836 	if (pgl) {
   1837 		(*pr)("  checking pageq list\n");
   1838 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1839 			if (tpg == pg) {
   1840 				break;
   1841 			}
   1842 		}
   1843 		if (tpg)
   1844 			(*pr)("  page found on pageq list\n");
   1845 		else
   1846 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1847 	}
   1848 }
   1849 
   1850 /*
   1851  * uvm_pages_printthem - print a summary of all managed pages
   1852  */
   1853 
   1854 void
   1855 uvm_page_printall(void (*pr)(const char *, ...))
   1856 {
   1857 	uvm_physseg_t i;
   1858 	paddr_t pfn;
   1859 	struct vm_page *pg;
   1860 
   1861 	(*pr)("%18s %4s %4s %18s %18s"
   1862 #ifdef UVM_PAGE_TRKOWN
   1863 	    " OWNER"
   1864 #endif
   1865 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1866 	for (i = uvm_physseg_get_first();
   1867 	     uvm_physseg_valid_p(i);
   1868 	     i = uvm_physseg_get_next(i)) {
   1869 		for (pfn = uvm_physseg_get_start(i);
   1870 		     pfn <= uvm_physseg_get_end(i);
   1871 		     pfn++) {
   1872 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   1873 
   1874 			(*pr)("%18p %04x %04x %18p %18p",
   1875 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1876 			    pg->uanon);
   1877 #ifdef UVM_PAGE_TRKOWN
   1878 			if (pg->flags & PG_BUSY)
   1879 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1880 #endif
   1881 			(*pr)("\n");
   1882 		}
   1883 	}
   1884 }
   1885 
   1886 #endif /* DDB || DEBUGPRINT */
   1887