Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.194
      1 /*	$NetBSD: uvm_page.c,v 1.194 2017/10/28 00:37:13 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     37  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_page.c: page ops.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.194 2017/10/28 00:37:13 pgoyette Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_uvm.h"
     73 #include "opt_uvmhist.h"
     74 #include "opt_readahead.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 #include <sys/vnode.h>
     81 #include <sys/proc.h>
     82 #include <sys/atomic.h>
     83 #include <sys/cpu.h>
     84 #include <sys/extent.h>
     85 
     86 #include <uvm/uvm.h>
     87 #include <uvm/uvm_ddb.h>
     88 #include <uvm/uvm_pdpolicy.h>
     89 
     90 /*
     91  * Some supported CPUs in a given architecture don't support all
     92  * of the things necessary to do idle page zero'ing efficiently.
     93  * We therefore provide a way to enable it from machdep code here.
     94  */
     95 bool vm_page_zero_enable = false;
     96 
     97 /*
     98  * number of pages per-CPU to reserve for the kernel.
     99  */
    100 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    101 #define	UVM_RESERVED_PAGES_PER_CPU	5
    102 #endif
    103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    104 
    105 /*
    106  * physical memory size;
    107  */
    108 psize_t physmem;
    109 
    110 /*
    111  * local variables
    112  */
    113 
    114 /*
    115  * these variables record the values returned by vm_page_bootstrap,
    116  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    117  * and pmap_startup here also uses them internally.
    118  */
    119 
    120 static vaddr_t      virtual_space_start;
    121 static vaddr_t      virtual_space_end;
    122 
    123 /*
    124  * we allocate an initial number of page colors in uvm_page_init(),
    125  * and remember them.  We may re-color pages as cache sizes are
    126  * discovered during the autoconfiguration phase.  But we can never
    127  * free the initial set of buckets, since they are allocated using
    128  * uvm_pageboot_alloc().
    129  */
    130 
    131 static size_t recolored_pages_memsize /* = 0 */;
    132 
    133 #ifdef DEBUG
    134 vaddr_t uvm_zerocheckkva;
    135 #endif /* DEBUG */
    136 
    137 /*
    138  * These functions are reserved for uvm(9) internal use and are not
    139  * exported in the header file uvm_physseg.h
    140  *
    141  * Thus they are redefined here.
    142  */
    143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    145 
    146 /* returns a pgs array */
    147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    148 
    149 /*
    150  * local prototypes
    151  */
    152 
    153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
    154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
    155 
    156 /*
    157  * per-object tree of pages
    158  */
    159 
    160 static signed int
    161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
    162 {
    163 	const struct vm_page *pg1 = n1;
    164 	const struct vm_page *pg2 = n2;
    165 	const voff_t a = pg1->offset;
    166 	const voff_t b = pg2->offset;
    167 
    168 	if (a < b)
    169 		return -1;
    170 	if (a > b)
    171 		return 1;
    172 	return 0;
    173 }
    174 
    175 static signed int
    176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
    177 {
    178 	const struct vm_page *pg = n;
    179 	const voff_t a = pg->offset;
    180 	const voff_t b = *(const voff_t *)key;
    181 
    182 	if (a < b)
    183 		return -1;
    184 	if (a > b)
    185 		return 1;
    186 	return 0;
    187 }
    188 
    189 const rb_tree_ops_t uvm_page_tree_ops = {
    190 	.rbto_compare_nodes = uvm_page_compare_nodes,
    191 	.rbto_compare_key = uvm_page_compare_key,
    192 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    193 	.rbto_context = NULL
    194 };
    195 
    196 /*
    197  * inline functions
    198  */
    199 
    200 /*
    201  * uvm_pageinsert: insert a page in the object.
    202  *
    203  * => caller must lock object
    204  * => caller must lock page queues
    205  * => call should have already set pg's object and offset pointers
    206  *    and bumped the version counter
    207  */
    208 
    209 static inline void
    210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
    211     struct vm_page *where)
    212 {
    213 
    214 	KASSERT(uobj == pg->uobject);
    215 	KASSERT(mutex_owned(uobj->vmobjlock));
    216 	KASSERT((pg->flags & PG_TABLED) == 0);
    217 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    218 	KASSERT(where == NULL || (where->uobject == uobj));
    219 
    220 	if (UVM_OBJ_IS_VNODE(uobj)) {
    221 		if (uobj->uo_npages == 0) {
    222 			struct vnode *vp = (struct vnode *)uobj;
    223 
    224 			vholdl(vp);
    225 		}
    226 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    227 			atomic_inc_uint(&uvmexp.execpages);
    228 		} else {
    229 			atomic_inc_uint(&uvmexp.filepages);
    230 		}
    231 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    232 		atomic_inc_uint(&uvmexp.anonpages);
    233 	}
    234 
    235 	if (where)
    236 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
    237 	else
    238 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    239 	pg->flags |= PG_TABLED;
    240 	uobj->uo_npages++;
    241 }
    242 
    243 
    244 static inline void
    245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    246 {
    247 	struct vm_page *ret __diagused;
    248 
    249 	KASSERT(uobj == pg->uobject);
    250 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
    251 	KASSERT(ret == pg);
    252 }
    253 
    254 static inline void
    255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
    256 {
    257 
    258 	KDASSERT(uobj != NULL);
    259 	uvm_pageinsert_tree(uobj, pg);
    260 	uvm_pageinsert_list(uobj, pg, NULL);
    261 }
    262 
    263 /*
    264  * uvm_page_remove: remove page from object.
    265  *
    266  * => caller must lock object
    267  * => caller must lock page queues
    268  */
    269 
    270 static inline void
    271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
    272 {
    273 
    274 	KASSERT(uobj == pg->uobject);
    275 	KASSERT(mutex_owned(uobj->vmobjlock));
    276 	KASSERT(pg->flags & PG_TABLED);
    277 
    278 	if (UVM_OBJ_IS_VNODE(uobj)) {
    279 		if (uobj->uo_npages == 1) {
    280 			struct vnode *vp = (struct vnode *)uobj;
    281 
    282 			holdrelel(vp);
    283 		}
    284 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    285 			atomic_dec_uint(&uvmexp.execpages);
    286 		} else {
    287 			atomic_dec_uint(&uvmexp.filepages);
    288 		}
    289 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    290 		atomic_dec_uint(&uvmexp.anonpages);
    291 	}
    292 
    293 	/* object should be locked */
    294 	uobj->uo_npages--;
    295 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    296 	pg->flags &= ~PG_TABLED;
    297 	pg->uobject = NULL;
    298 }
    299 
    300 static inline void
    301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    302 {
    303 
    304 	KASSERT(uobj == pg->uobject);
    305 	rb_tree_remove_node(&uobj->rb_tree, pg);
    306 }
    307 
    308 static inline void
    309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
    310 {
    311 
    312 	KDASSERT(uobj != NULL);
    313 	uvm_pageremove_tree(uobj, pg);
    314 	uvm_pageremove_list(uobj, pg);
    315 }
    316 
    317 static void
    318 uvm_page_init_buckets(struct pgfreelist *pgfl)
    319 {
    320 	int color, i;
    321 
    322 	for (color = 0; color < uvmexp.ncolors; color++) {
    323 		for (i = 0; i < PGFL_NQUEUES; i++) {
    324 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    325 		}
    326 	}
    327 }
    328 
    329 /*
    330  * uvm_page_init: init the page system.   called from uvm_init().
    331  *
    332  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    333  */
    334 
    335 void
    336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    337 {
    338 	static struct uvm_cpu boot_cpu;
    339 	psize_t freepages, pagecount, bucketcount, n;
    340 	struct pgflbucket *bucketarray, *cpuarray;
    341 	struct vm_page *pagearray;
    342 	uvm_physseg_t bank;
    343 	int lcv;
    344 
    345 	KASSERT(ncpu <= 1);
    346 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
    347 
    348 	/*
    349 	 * init the page queues and page queue locks, except the free
    350 	 * list; we allocate that later (with the initial vm_page
    351 	 * structures).
    352 	 */
    353 
    354 	uvm.cpus[0] = &boot_cpu;
    355 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    356 	uvmpdpol_init();
    357 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
    358 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
    359 
    360 	/*
    361 	 * allocate vm_page structures.
    362 	 */
    363 
    364 	/*
    365 	 * sanity check:
    366 	 * before calling this function the MD code is expected to register
    367 	 * some free RAM with the uvm_page_physload() function.   our job
    368 	 * now is to allocate vm_page structures for this memory.
    369 	 */
    370 
    371 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    372 		panic("uvm_page_bootstrap: no memory pre-allocated");
    373 
    374 	/*
    375 	 * first calculate the number of free pages...
    376 	 *
    377 	 * note that we use start/end rather than avail_start/avail_end.
    378 	 * this allows us to allocate extra vm_page structures in case we
    379 	 * want to return some memory to the pool after booting.
    380 	 */
    381 
    382 	freepages = 0;
    383 
    384 	for (bank = uvm_physseg_get_first();
    385 	     uvm_physseg_valid_p(bank) ;
    386 	     bank = uvm_physseg_get_next(bank)) {
    387 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    388 	}
    389 
    390 	/*
    391 	 * Let MD code initialize the number of colors, or default
    392 	 * to 1 color if MD code doesn't care.
    393 	 */
    394 	if (uvmexp.ncolors == 0)
    395 		uvmexp.ncolors = 1;
    396 	uvmexp.colormask = uvmexp.ncolors - 1;
    397 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    398 
    399 	/*
    400 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    401 	 * use.   for each page of memory we use we need a vm_page structure.
    402 	 * thus, the total number of pages we can use is the total size of
    403 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    404 	 * structure.   we add one to freepages as a fudge factor to avoid
    405 	 * truncation errors (since we can only allocate in terms of whole
    406 	 * pages).
    407 	 */
    408 
    409 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    410 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    411 	    (PAGE_SIZE + sizeof(struct vm_page));
    412 
    413 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    414 	    sizeof(struct pgflbucket) * 2) + (pagecount *
    415 	    sizeof(struct vm_page)));
    416 	cpuarray = bucketarray + bucketcount;
    417 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
    418 
    419 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    420 		uvm.page_free[lcv].pgfl_buckets =
    421 		    (bucketarray + (lcv * uvmexp.ncolors));
    422 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    423 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
    424 		    (cpuarray + (lcv * uvmexp.ncolors));
    425 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
    426 	}
    427 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    428 
    429 	/*
    430 	 * init the vm_page structures and put them in the correct place.
    431 	 */
    432 	/* First init the extent */
    433 
    434 	for (bank = uvm_physseg_get_first(),
    435 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    436 	     uvm_physseg_valid_p(bank);
    437 	     bank = uvm_physseg_get_next(bank)) {
    438 
    439 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    440 		uvm_physseg_seg_alloc_from_slab(bank, n);
    441 		uvm_physseg_init_seg(bank, pagearray);
    442 
    443 		/* set up page array pointers */
    444 		pagearray += n;
    445 		pagecount -= n;
    446 	}
    447 
    448 	/*
    449 	 * pass up the values of virtual_space_start and
    450 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    451 	 * layers of the VM.
    452 	 */
    453 
    454 	*kvm_startp = round_page(virtual_space_start);
    455 	*kvm_endp = trunc_page(virtual_space_end);
    456 #ifdef DEBUG
    457 	/*
    458 	 * steal kva for uvm_pagezerocheck().
    459 	 */
    460 	uvm_zerocheckkva = *kvm_startp;
    461 	*kvm_startp += PAGE_SIZE;
    462 #endif /* DEBUG */
    463 
    464 	/*
    465 	 * init various thresholds.
    466 	 */
    467 
    468 	uvmexp.reserve_pagedaemon = 1;
    469 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    470 
    471 	/*
    472 	 * determine if we should zero pages in the idle loop.
    473 	 */
    474 
    475 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
    476 
    477 	/*
    478 	 * done!
    479 	 */
    480 
    481 	uvm.page_init_done = true;
    482 }
    483 
    484 /*
    485  * uvm_setpagesize: set the page size
    486  *
    487  * => sets page_shift and page_mask from uvmexp.pagesize.
    488  */
    489 
    490 void
    491 uvm_setpagesize(void)
    492 {
    493 
    494 	/*
    495 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    496 	 * to be a constant (indicated by being a non-zero value).
    497 	 */
    498 	if (uvmexp.pagesize == 0) {
    499 		if (PAGE_SIZE == 0)
    500 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    501 		uvmexp.pagesize = PAGE_SIZE;
    502 	}
    503 	uvmexp.pagemask = uvmexp.pagesize - 1;
    504 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    505 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    506 		    uvmexp.pagesize, uvmexp.pagesize);
    507 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    508 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    509 			break;
    510 }
    511 
    512 /*
    513  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    514  */
    515 
    516 vaddr_t
    517 uvm_pageboot_alloc(vsize_t size)
    518 {
    519 	static bool initialized = false;
    520 	vaddr_t addr;
    521 #if !defined(PMAP_STEAL_MEMORY)
    522 	vaddr_t vaddr;
    523 	paddr_t paddr;
    524 #endif
    525 
    526 	/*
    527 	 * on first call to this function, initialize ourselves.
    528 	 */
    529 	if (initialized == false) {
    530 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    531 
    532 		/* round it the way we like it */
    533 		virtual_space_start = round_page(virtual_space_start);
    534 		virtual_space_end = trunc_page(virtual_space_end);
    535 
    536 		initialized = true;
    537 	}
    538 
    539 	/* round to page size */
    540 	size = round_page(size);
    541 
    542 #if defined(PMAP_STEAL_MEMORY)
    543 
    544 	/*
    545 	 * defer bootstrap allocation to MD code (it may want to allocate
    546 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    547 	 * virtual_space_start/virtual_space_end if necessary.
    548 	 */
    549 
    550 	addr = pmap_steal_memory(size, &virtual_space_start,
    551 	    &virtual_space_end);
    552 
    553 	return(addr);
    554 
    555 #else /* !PMAP_STEAL_MEMORY */
    556 
    557 	/*
    558 	 * allocate virtual memory for this request
    559 	 */
    560 	if (virtual_space_start == virtual_space_end ||
    561 	    (virtual_space_end - virtual_space_start) < size)
    562 		panic("uvm_pageboot_alloc: out of virtual space");
    563 
    564 	addr = virtual_space_start;
    565 
    566 #ifdef PMAP_GROWKERNEL
    567 	/*
    568 	 * If the kernel pmap can't map the requested space,
    569 	 * then allocate more resources for it.
    570 	 */
    571 	if (uvm_maxkaddr < (addr + size)) {
    572 		uvm_maxkaddr = pmap_growkernel(addr + size);
    573 		if (uvm_maxkaddr < (addr + size))
    574 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    575 	}
    576 #endif
    577 
    578 	virtual_space_start += size;
    579 
    580 	/*
    581 	 * allocate and mapin physical pages to back new virtual pages
    582 	 */
    583 
    584 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    585 	    vaddr += PAGE_SIZE) {
    586 
    587 		if (!uvm_page_physget(&paddr))
    588 			panic("uvm_pageboot_alloc: out of memory");
    589 
    590 		/*
    591 		 * Note this memory is no longer managed, so using
    592 		 * pmap_kenter is safe.
    593 		 */
    594 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    595 	}
    596 	pmap_update(pmap_kernel());
    597 	return(addr);
    598 #endif	/* PMAP_STEAL_MEMORY */
    599 }
    600 
    601 #if !defined(PMAP_STEAL_MEMORY)
    602 /*
    603  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    604  *
    605  * => attempt to allocate it off the end of a segment in which the "avail"
    606  *    values match the start/end values.   if we can't do that, then we
    607  *    will advance both values (making them equal, and removing some
    608  *    vm_page structures from the non-avail area).
    609  * => return false if out of memory.
    610  */
    611 
    612 /* subroutine: try to allocate from memory chunks on the specified freelist */
    613 static bool uvm_page_physget_freelist(paddr_t *, int);
    614 
    615 static bool
    616 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    617 {
    618 	uvm_physseg_t lcv;
    619 
    620 	/* pass 1: try allocating from a matching end */
    621 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    622 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    623 #else
    624 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    625 #endif
    626 	{
    627 		if (uvm.page_init_done == true)
    628 			panic("uvm_page_physget: called _after_ bootstrap");
    629 
    630 		/* Try to match at front or back on unused segment */
    631 		if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
    632 			if (paddrp == NULL) /* freelist fail, try next */
    633 				continue;
    634 		} else
    635 			return true;
    636 	}
    637 
    638 	/* pass2: forget about matching ends, just allocate something */
    639 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    640 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    641 #else
    642 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    643 #endif
    644 	{
    645 		/* Try the front regardless. */
    646 		if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
    647 			if (paddrp == NULL) /* freelist fail, try next */
    648 				continue;
    649 		} else
    650 			return true;
    651 	}
    652 	return false;
    653 }
    654 
    655 bool
    656 uvm_page_physget(paddr_t *paddrp)
    657 {
    658 	int i;
    659 
    660 	/* try in the order of freelist preference */
    661 	for (i = 0; i < VM_NFREELIST; i++)
    662 		if (uvm_page_physget_freelist(paddrp, i) == true)
    663 			return (true);
    664 	return (false);
    665 }
    666 #endif /* PMAP_STEAL_MEMORY */
    667 
    668 /*
    669  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    670  * back from an I/O mapping (ugh!).   used in some MD code as well.
    671  */
    672 struct vm_page *
    673 uvm_phys_to_vm_page(paddr_t pa)
    674 {
    675 	paddr_t pf = atop(pa);
    676 	paddr_t	off;
    677 	uvm_physseg_t	upm;
    678 
    679 	upm = uvm_physseg_find(pf, &off);
    680 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    681 		return uvm_physseg_get_pg(upm, off);
    682 	return(NULL);
    683 }
    684 
    685 paddr_t
    686 uvm_vm_page_to_phys(const struct vm_page *pg)
    687 {
    688 
    689 	return pg->phys_addr;
    690 }
    691 
    692 /*
    693  * uvm_page_recolor: Recolor the pages if the new bucket count is
    694  * larger than the old one.
    695  */
    696 
    697 void
    698 uvm_page_recolor(int newncolors)
    699 {
    700 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
    701 	struct pgfreelist gpgfl, pgfl;
    702 	struct vm_page *pg;
    703 	vsize_t bucketcount;
    704 	size_t bucketmemsize, oldbucketmemsize;
    705 	int color, i, ocolors;
    706 	int lcv;
    707 	struct uvm_cpu *ucpu;
    708 
    709 	KASSERT(((newncolors - 1) & newncolors) == 0);
    710 
    711 	if (newncolors <= uvmexp.ncolors)
    712 		return;
    713 
    714 	if (uvm.page_init_done == false) {
    715 		uvmexp.ncolors = newncolors;
    716 		return;
    717 	}
    718 
    719 	bucketcount = newncolors * VM_NFREELIST;
    720 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
    721 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
    722 	cpuarray = bucketarray + bucketcount;
    723 
    724 	mutex_spin_enter(&uvm_fpageqlock);
    725 
    726 	/* Make sure we should still do this. */
    727 	if (newncolors <= uvmexp.ncolors) {
    728 		mutex_spin_exit(&uvm_fpageqlock);
    729 		kmem_free(bucketarray, bucketmemsize);
    730 		return;
    731 	}
    732 
    733 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    734 	ocolors = uvmexp.ncolors;
    735 
    736 	uvmexp.ncolors = newncolors;
    737 	uvmexp.colormask = uvmexp.ncolors - 1;
    738 
    739 	ucpu = curcpu()->ci_data.cpu_uvm;
    740 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    741 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    742 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
    743 		uvm_page_init_buckets(&gpgfl);
    744 		uvm_page_init_buckets(&pgfl);
    745 		for (color = 0; color < ocolors; color++) {
    746 			for (i = 0; i < PGFL_NQUEUES; i++) {
    747 				while ((pg = LIST_FIRST(&uvm.page_free[
    748 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    749 				    != NULL) {
    750 					LIST_REMOVE(pg, pageq.list); /* global */
    751 					LIST_REMOVE(pg, listq.list); /* cpu */
    752 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
    753 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    754 					    i], pg, pageq.list);
    755 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
    756 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    757 					    i], pg, listq.list);
    758 				}
    759 			}
    760 		}
    761 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
    762 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    763 	}
    764 
    765 	oldbucketmemsize = recolored_pages_memsize;
    766 
    767 	recolored_pages_memsize = bucketmemsize;
    768 	mutex_spin_exit(&uvm_fpageqlock);
    769 
    770 	if (oldbucketmemsize) {
    771 		kmem_free(oldbucketarray, recolored_pages_memsize);
    772 	}
    773 
    774 	/*
    775 	 * this calls uvm_km_alloc() which may want to hold
    776 	 * uvm_fpageqlock.
    777 	 */
    778 	uvm_pager_realloc_emerg();
    779 }
    780 
    781 /*
    782  * uvm_cpu_attach: initialize per-CPU data structures.
    783  */
    784 
    785 void
    786 uvm_cpu_attach(struct cpu_info *ci)
    787 {
    788 	struct pgflbucket *bucketarray;
    789 	struct pgfreelist pgfl;
    790 	struct uvm_cpu *ucpu;
    791 	vsize_t bucketcount;
    792 	int lcv;
    793 
    794 	if (CPU_IS_PRIMARY(ci)) {
    795 		/* Already done in uvm_page_init(). */
    796 		goto attachrnd;
    797 	}
    798 
    799 	/* Add more reserve pages for this CPU. */
    800 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
    801 
    802 	/* Configure this CPU's free lists. */
    803 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    804 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
    805 	    KM_SLEEP);
    806 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
    807 	uvm.cpus[cpu_index(ci)] = ucpu;
    808 	ci->ci_data.cpu_uvm = ucpu;
    809 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    810 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
    811 		uvm_page_init_buckets(&pgfl);
    812 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    813 	}
    814 
    815 attachrnd:
    816 	/*
    817 	 * Attach RNG source for this CPU's VM events
    818 	 */
    819         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
    820 			  ci->ci_data.cpu_name, RND_TYPE_VM,
    821 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    822 			  RND_FLAG_ESTIMATE_VALUE);
    823 
    824 }
    825 
    826 /*
    827  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    828  */
    829 
    830 static struct vm_page *
    831 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
    832     int *trycolorp)
    833 {
    834 	struct pgflist *freeq;
    835 	struct vm_page *pg;
    836 	int color, trycolor = *trycolorp;
    837 	struct pgfreelist *gpgfl, *pgfl;
    838 
    839 	KASSERT(mutex_owned(&uvm_fpageqlock));
    840 
    841 	color = trycolor;
    842 	pgfl = &ucpu->page_free[flist];
    843 	gpgfl = &uvm.page_free[flist];
    844 	do {
    845 		/* cpu, try1 */
    846 		if ((pg = LIST_FIRST((freeq =
    847 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    848 			KASSERT(pg->pqflags & PQ_FREE);
    849 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    850 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    851 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    852 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    853 		    	uvmexp.cpuhit++;
    854 			goto gotit;
    855 		}
    856 		/* global, try1 */
    857 		if ((pg = LIST_FIRST((freeq =
    858 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
    859 			KASSERT(pg->pqflags & PQ_FREE);
    860 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    861 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    862 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    863 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
    864 		    	uvmexp.cpumiss++;
    865 			goto gotit;
    866 		}
    867 		/* cpu, try2 */
    868 		if ((pg = LIST_FIRST((freeq =
    869 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    870 			KASSERT(pg->pqflags & PQ_FREE);
    871 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    872 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    873 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
    874 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    875 		    	uvmexp.cpuhit++;
    876 			goto gotit;
    877 		}
    878 		/* global, try2 */
    879 		if ((pg = LIST_FIRST((freeq =
    880 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
    881 			KASSERT(pg->pqflags & PQ_FREE);
    882 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
    883 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
    884 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
    885 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
    886 		    	uvmexp.cpumiss++;
    887 			goto gotit;
    888 		}
    889 		color = (color + 1) & uvmexp.colormask;
    890 	} while (color != trycolor);
    891 
    892 	return (NULL);
    893 
    894  gotit:
    895 	LIST_REMOVE(pg, pageq.list);	/* global list */
    896 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
    897 	uvmexp.free--;
    898 
    899 	/* update zero'd page count */
    900 	if (pg->flags & PG_ZERO)
    901 		uvmexp.zeropages--;
    902 
    903 	if (color == trycolor)
    904 		uvmexp.colorhit++;
    905 	else {
    906 		uvmexp.colormiss++;
    907 		*trycolorp = color;
    908 	}
    909 
    910 	return (pg);
    911 }
    912 
    913 /*
    914  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    915  *
    916  * => return null if no pages free
    917  * => wake up pagedaemon if number of free pages drops below low water mark
    918  * => if obj != NULL, obj must be locked (to put in obj's tree)
    919  * => if anon != NULL, anon must be locked (to put in anon)
    920  * => only one of obj or anon can be non-null
    921  * => caller must activate/deactivate page if it is not wired.
    922  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    923  * => policy decision: it is more important to pull a page off of the
    924  *	appropriate priority free list than it is to get a zero'd or
    925  *	unknown contents page.  This is because we live with the
    926  *	consequences of a bad free list decision for the entire
    927  *	lifetime of the page, e.g. if the page comes from memory that
    928  *	is slower to access.
    929  */
    930 
    931 struct vm_page *
    932 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
    933     int flags, int strat, int free_list)
    934 {
    935 	int try1, try2, zeroit = 0, color;
    936 	int lcv;
    937 	struct uvm_cpu *ucpu;
    938 	struct vm_page *pg;
    939 	lwp_t *l;
    940 
    941 	KASSERT(obj == NULL || anon == NULL);
    942 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
    943 	KASSERT(off == trunc_page(off));
    944 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
    945 	KASSERT(anon == NULL || anon->an_lock == NULL ||
    946 	    mutex_owned(anon->an_lock));
    947 
    948 	mutex_spin_enter(&uvm_fpageqlock);
    949 
    950 	/*
    951 	 * This implements a global round-robin page coloring
    952 	 * algorithm.
    953 	 */
    954 
    955 	ucpu = curcpu()->ci_data.cpu_uvm;
    956 	if (flags & UVM_FLAG_COLORMATCH) {
    957 		color = atop(off) & uvmexp.colormask;
    958 	} else {
    959 		color = ucpu->page_free_nextcolor;
    960 	}
    961 
    962 	/*
    963 	 * check to see if we need to generate some free pages waking
    964 	 * the pagedaemon.
    965 	 */
    966 
    967 	uvm_kick_pdaemon();
    968 
    969 	/*
    970 	 * fail if any of these conditions is true:
    971 	 * [1]  there really are no free pages, or
    972 	 * [2]  only kernel "reserved" pages remain and
    973 	 *        reserved pages have not been requested.
    974 	 * [3]  only pagedaemon "reserved" pages remain and
    975 	 *        the requestor isn't the pagedaemon.
    976 	 * we make kernel reserve pages available if called by a
    977 	 * kernel thread or a realtime thread.
    978 	 */
    979 	l = curlwp;
    980 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
    981 		flags |= UVM_PGA_USERESERVE;
    982 	}
    983 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
    984 	    (flags & UVM_PGA_USERESERVE) == 0) ||
    985 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    986 	     curlwp != uvm.pagedaemon_lwp))
    987 		goto fail;
    988 
    989 #if PGFL_NQUEUES != 2
    990 #error uvm_pagealloc_strat needs to be updated
    991 #endif
    992 
    993 	/*
    994 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    995 	 * we try the UNKNOWN queue first.
    996 	 */
    997 	if (flags & UVM_PGA_ZERO) {
    998 		try1 = PGFL_ZEROS;
    999 		try2 = PGFL_UNKNOWN;
   1000 	} else {
   1001 		try1 = PGFL_UNKNOWN;
   1002 		try2 = PGFL_ZEROS;
   1003 	}
   1004 
   1005  again:
   1006 	switch (strat) {
   1007 	case UVM_PGA_STRAT_NORMAL:
   1008 		/* Check freelists: descending priority (ascending id) order */
   1009 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1010 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
   1011 			    try1, try2, &color);
   1012 			if (pg != NULL)
   1013 				goto gotit;
   1014 		}
   1015 
   1016 		/* No pages free! */
   1017 		goto fail;
   1018 
   1019 	case UVM_PGA_STRAT_ONLY:
   1020 	case UVM_PGA_STRAT_FALLBACK:
   1021 		/* Attempt to allocate from the specified free list. */
   1022 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1023 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
   1024 		    try1, try2, &color);
   1025 		if (pg != NULL)
   1026 			goto gotit;
   1027 
   1028 		/* Fall back, if possible. */
   1029 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1030 			strat = UVM_PGA_STRAT_NORMAL;
   1031 			goto again;
   1032 		}
   1033 
   1034 		/* No pages free! */
   1035 		goto fail;
   1036 
   1037 	default:
   1038 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1039 		/* NOTREACHED */
   1040 	}
   1041 
   1042  gotit:
   1043 	/*
   1044 	 * We now know which color we actually allocated from; set
   1045 	 * the next color accordingly.
   1046 	 */
   1047 
   1048 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1049 
   1050 	/*
   1051 	 * update allocation statistics and remember if we have to
   1052 	 * zero the page
   1053 	 */
   1054 
   1055 	if (flags & UVM_PGA_ZERO) {
   1056 		if (pg->flags & PG_ZERO) {
   1057 			uvmexp.pga_zerohit++;
   1058 			zeroit = 0;
   1059 		} else {
   1060 			uvmexp.pga_zeromiss++;
   1061 			zeroit = 1;
   1062 		}
   1063 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1064 			ucpu->page_idle_zero = vm_page_zero_enable;
   1065 		}
   1066 	}
   1067 	KASSERT(pg->pqflags == PQ_FREE);
   1068 
   1069 	pg->offset = off;
   1070 	pg->uobject = obj;
   1071 	pg->uanon = anon;
   1072 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1073 	if (anon) {
   1074 		anon->an_page = pg;
   1075 		pg->pqflags = PQ_ANON;
   1076 		atomic_inc_uint(&uvmexp.anonpages);
   1077 	} else {
   1078 		if (obj) {
   1079 			uvm_pageinsert(obj, pg);
   1080 		}
   1081 		pg->pqflags = 0;
   1082 	}
   1083 	mutex_spin_exit(&uvm_fpageqlock);
   1084 
   1085 #if defined(UVM_PAGE_TRKOWN)
   1086 	pg->owner_tag = NULL;
   1087 #endif
   1088 	UVM_PAGE_OWN(pg, "new alloc");
   1089 
   1090 	if (flags & UVM_PGA_ZERO) {
   1091 		/*
   1092 		 * A zero'd page is not clean.  If we got a page not already
   1093 		 * zero'd, then we have to zero it ourselves.
   1094 		 */
   1095 		pg->flags &= ~PG_CLEAN;
   1096 		if (zeroit)
   1097 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1098 	}
   1099 
   1100 	return(pg);
   1101 
   1102  fail:
   1103 	mutex_spin_exit(&uvm_fpageqlock);
   1104 	return (NULL);
   1105 }
   1106 
   1107 /*
   1108  * uvm_pagereplace: replace a page with another
   1109  *
   1110  * => object must be locked
   1111  */
   1112 
   1113 void
   1114 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1115 {
   1116 	struct uvm_object *uobj = oldpg->uobject;
   1117 
   1118 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1119 	KASSERT(uobj != NULL);
   1120 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1121 	KASSERT(newpg->uobject == NULL);
   1122 	KASSERT(mutex_owned(uobj->vmobjlock));
   1123 
   1124 	newpg->uobject = uobj;
   1125 	newpg->offset = oldpg->offset;
   1126 
   1127 	uvm_pageremove_tree(uobj, oldpg);
   1128 	uvm_pageinsert_tree(uobj, newpg);
   1129 	uvm_pageinsert_list(uobj, newpg, oldpg);
   1130 	uvm_pageremove_list(uobj, oldpg);
   1131 }
   1132 
   1133 /*
   1134  * uvm_pagerealloc: reallocate a page from one object to another
   1135  *
   1136  * => both objects must be locked
   1137  */
   1138 
   1139 void
   1140 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1141 {
   1142 	/*
   1143 	 * remove it from the old object
   1144 	 */
   1145 
   1146 	if (pg->uobject) {
   1147 		uvm_pageremove(pg->uobject, pg);
   1148 	}
   1149 
   1150 	/*
   1151 	 * put it in the new object
   1152 	 */
   1153 
   1154 	if (newobj) {
   1155 		pg->uobject = newobj;
   1156 		pg->offset = newoff;
   1157 		uvm_pageinsert(newobj, pg);
   1158 	}
   1159 }
   1160 
   1161 #ifdef DEBUG
   1162 /*
   1163  * check if page is zero-filled
   1164  *
   1165  *  - called with free page queue lock held.
   1166  */
   1167 void
   1168 uvm_pagezerocheck(struct vm_page *pg)
   1169 {
   1170 	int *p, *ep;
   1171 
   1172 	KASSERT(uvm_zerocheckkva != 0);
   1173 	KASSERT(mutex_owned(&uvm_fpageqlock));
   1174 
   1175 	/*
   1176 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1177 	 * uvm page allocator.
   1178 	 *
   1179 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1180 	 */
   1181 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1182 	p = (int *)uvm_zerocheckkva;
   1183 	ep = (int *)((char *)p + PAGE_SIZE);
   1184 	pmap_update(pmap_kernel());
   1185 	while (p < ep) {
   1186 		if (*p != 0)
   1187 			panic("PG_ZERO page isn't zero-filled");
   1188 		p++;
   1189 	}
   1190 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1191 	/*
   1192 	 * pmap_update() is not necessary here because no one except us
   1193 	 * uses this VA.
   1194 	 */
   1195 }
   1196 #endif /* DEBUG */
   1197 
   1198 /*
   1199  * uvm_pagefree: free page
   1200  *
   1201  * => erase page's identity (i.e. remove from object)
   1202  * => put page on free list
   1203  * => caller must lock owning object (either anon or uvm_object)
   1204  * => caller must lock page queues
   1205  * => assumes all valid mappings of pg are gone
   1206  */
   1207 
   1208 void
   1209 uvm_pagefree(struct vm_page *pg)
   1210 {
   1211 	struct pgflist *pgfl;
   1212 	struct uvm_cpu *ucpu;
   1213 	int index, color, queue;
   1214 	bool iszero;
   1215 
   1216 #ifdef DEBUG
   1217 	if (pg->uobject == (void *)0xdeadbeef &&
   1218 	    pg->uanon == (void *)0xdeadbeef) {
   1219 		panic("uvm_pagefree: freeing free page %p", pg);
   1220 	}
   1221 #endif /* DEBUG */
   1222 
   1223 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1224 	KASSERT(!(pg->pqflags & PQ_FREE));
   1225 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
   1226 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1227 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1228 		mutex_owned(pg->uanon->an_lock));
   1229 
   1230 	/*
   1231 	 * if the page is loaned, resolve the loan instead of freeing.
   1232 	 */
   1233 
   1234 	if (pg->loan_count) {
   1235 		KASSERT(pg->wire_count == 0);
   1236 
   1237 		/*
   1238 		 * if the page is owned by an anon then we just want to
   1239 		 * drop anon ownership.  the kernel will free the page when
   1240 		 * it is done with it.  if the page is owned by an object,
   1241 		 * remove it from the object and mark it dirty for the benefit
   1242 		 * of possible anon owners.
   1243 		 *
   1244 		 * regardless of previous ownership, wakeup any waiters,
   1245 		 * unbusy the page, and we're done.
   1246 		 */
   1247 
   1248 		if (pg->uobject != NULL) {
   1249 			uvm_pageremove(pg->uobject, pg);
   1250 			pg->flags &= ~PG_CLEAN;
   1251 		} else if (pg->uanon != NULL) {
   1252 			if ((pg->pqflags & PQ_ANON) == 0) {
   1253 				pg->loan_count--;
   1254 			} else {
   1255 				pg->pqflags &= ~PQ_ANON;
   1256 				atomic_dec_uint(&uvmexp.anonpages);
   1257 			}
   1258 			pg->uanon->an_page = NULL;
   1259 			pg->uanon = NULL;
   1260 		}
   1261 		if (pg->flags & PG_WANTED) {
   1262 			wakeup(pg);
   1263 		}
   1264 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1265 #ifdef UVM_PAGE_TRKOWN
   1266 		pg->owner_tag = NULL;
   1267 #endif
   1268 		if (pg->loan_count) {
   1269 			KASSERT(pg->uobject == NULL);
   1270 			if (pg->uanon == NULL) {
   1271 				KASSERT(mutex_owned(&uvm_pageqlock));
   1272 				uvm_pagedequeue(pg);
   1273 			}
   1274 			return;
   1275 		}
   1276 	}
   1277 
   1278 	/*
   1279 	 * remove page from its object or anon.
   1280 	 */
   1281 
   1282 	if (pg->uobject != NULL) {
   1283 		uvm_pageremove(pg->uobject, pg);
   1284 	} else if (pg->uanon != NULL) {
   1285 		pg->uanon->an_page = NULL;
   1286 		atomic_dec_uint(&uvmexp.anonpages);
   1287 	}
   1288 
   1289 	/*
   1290 	 * now remove the page from the queues.
   1291 	 */
   1292 	if (uvmpdpol_pageisqueued_p(pg)) {
   1293 		KASSERT(mutex_owned(&uvm_pageqlock));
   1294 		uvm_pagedequeue(pg);
   1295 	}
   1296 
   1297 	/*
   1298 	 * if the page was wired, unwire it now.
   1299 	 */
   1300 
   1301 	if (pg->wire_count) {
   1302 		pg->wire_count = 0;
   1303 		uvmexp.wired--;
   1304 	}
   1305 
   1306 	/*
   1307 	 * and put on free queue
   1308 	 */
   1309 
   1310 	iszero = (pg->flags & PG_ZERO);
   1311 	index = uvm_page_lookup_freelist(pg);
   1312 	color = VM_PGCOLOR_BUCKET(pg);
   1313 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
   1314 
   1315 #ifdef DEBUG
   1316 	pg->uobject = (void *)0xdeadbeef;
   1317 	pg->uanon = (void *)0xdeadbeef;
   1318 #endif
   1319 
   1320 	mutex_spin_enter(&uvm_fpageqlock);
   1321 	pg->pqflags = PQ_FREE;
   1322 
   1323 #ifdef DEBUG
   1324 	if (iszero)
   1325 		uvm_pagezerocheck(pg);
   1326 #endif /* DEBUG */
   1327 
   1328 
   1329 	/* global list */
   1330 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1331 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
   1332 	uvmexp.free++;
   1333 	if (iszero) {
   1334 		uvmexp.zeropages++;
   1335 	}
   1336 
   1337 	/* per-cpu list */
   1338 	ucpu = curcpu()->ci_data.cpu_uvm;
   1339 	pg->offset = (uintptr_t)ucpu;
   1340 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
   1341 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
   1342 	ucpu->pages[queue]++;
   1343 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
   1344 		ucpu->page_idle_zero = vm_page_zero_enable;
   1345 	}
   1346 
   1347 	mutex_spin_exit(&uvm_fpageqlock);
   1348 }
   1349 
   1350 /*
   1351  * uvm_page_unbusy: unbusy an array of pages.
   1352  *
   1353  * => pages must either all belong to the same object, or all belong to anons.
   1354  * => if pages are object-owned, object must be locked.
   1355  * => if pages are anon-owned, anons must be locked.
   1356  * => caller must lock page queues if pages may be released.
   1357  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1358  */
   1359 
   1360 void
   1361 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1362 {
   1363 	struct vm_page *pg;
   1364 	int i;
   1365 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1366 
   1367 	for (i = 0; i < npgs; i++) {
   1368 		pg = pgs[i];
   1369 		if (pg == NULL || pg == PGO_DONTCARE) {
   1370 			continue;
   1371 		}
   1372 
   1373 		KASSERT(uvm_page_locked_p(pg));
   1374 		KASSERT(pg->flags & PG_BUSY);
   1375 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1376 		if (pg->flags & PG_WANTED) {
   1377 			wakeup(pg);
   1378 		}
   1379 		if (pg->flags & PG_RELEASED) {
   1380 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1381 			    (uintptr_t)pg, 0, 0, 0);
   1382 			KASSERT(pg->uobject != NULL ||
   1383 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1384 			pg->flags &= ~PG_RELEASED;
   1385 			uvm_pagefree(pg);
   1386 		} else {
   1387 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1388 			    (uintptr_t)pg, 0, 0, 0);
   1389 			KASSERT((pg->flags & PG_FAKE) == 0);
   1390 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1391 			UVM_PAGE_OWN(pg, NULL);
   1392 		}
   1393 	}
   1394 }
   1395 
   1396 #if defined(UVM_PAGE_TRKOWN)
   1397 /*
   1398  * uvm_page_own: set or release page ownership
   1399  *
   1400  * => this is a debugging function that keeps track of who sets PG_BUSY
   1401  *	and where they do it.   it can be used to track down problems
   1402  *	such a process setting "PG_BUSY" and never releasing it.
   1403  * => page's object [if any] must be locked
   1404  * => if "tag" is NULL then we are releasing page ownership
   1405  */
   1406 void
   1407 uvm_page_own(struct vm_page *pg, const char *tag)
   1408 {
   1409 
   1410 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1411 	KASSERT((pg->flags & PG_WANTED) == 0);
   1412 	KASSERT(uvm_page_locked_p(pg));
   1413 
   1414 	/* gain ownership? */
   1415 	if (tag) {
   1416 		KASSERT((pg->flags & PG_BUSY) != 0);
   1417 		if (pg->owner_tag) {
   1418 			printf("uvm_page_own: page %p already owned "
   1419 			    "by proc %d [%s]\n", pg,
   1420 			    pg->owner, pg->owner_tag);
   1421 			panic("uvm_page_own");
   1422 		}
   1423 		pg->owner = curproc->p_pid;
   1424 		pg->lowner = curlwp->l_lid;
   1425 		pg->owner_tag = tag;
   1426 		return;
   1427 	}
   1428 
   1429 	/* drop ownership */
   1430 	KASSERT((pg->flags & PG_BUSY) == 0);
   1431 	if (pg->owner_tag == NULL) {
   1432 		printf("uvm_page_own: dropping ownership of an non-owned "
   1433 		    "page (%p)\n", pg);
   1434 		panic("uvm_page_own");
   1435 	}
   1436 	if (!uvmpdpol_pageisqueued_p(pg)) {
   1437 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
   1438 		    pg->wire_count > 0);
   1439 	} else {
   1440 		KASSERT(pg->wire_count == 0);
   1441 	}
   1442 	pg->owner_tag = NULL;
   1443 }
   1444 #endif
   1445 
   1446 /*
   1447  * uvm_pageidlezero: zero free pages while the system is idle.
   1448  *
   1449  * => try to complete one color bucket at a time, to reduce our impact
   1450  *	on the CPU cache.
   1451  * => we loop until we either reach the target or there is a lwp ready
   1452  *      to run, or MD code detects a reason to break early.
   1453  */
   1454 void
   1455 uvm_pageidlezero(void)
   1456 {
   1457 	struct vm_page *pg;
   1458 	struct pgfreelist *pgfl, *gpgfl;
   1459 	struct uvm_cpu *ucpu;
   1460 	int free_list, firstbucket, nextbucket;
   1461 	bool lcont = false;
   1462 
   1463 	ucpu = curcpu()->ci_data.cpu_uvm;
   1464 	if (!ucpu->page_idle_zero ||
   1465 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1466 	    	ucpu->page_idle_zero = false;
   1467 		return;
   1468 	}
   1469 	if (!mutex_tryenter(&uvm_fpageqlock)) {
   1470 		/* Contention: let other CPUs to use the lock. */
   1471 		return;
   1472 	}
   1473 	firstbucket = ucpu->page_free_nextcolor;
   1474 	nextbucket = firstbucket;
   1475 	do {
   1476 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1477 			if (sched_curcpu_runnable_p()) {
   1478 				goto quit;
   1479 			}
   1480 			pgfl = &ucpu->page_free[free_list];
   1481 			gpgfl = &uvm.page_free[free_list];
   1482 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
   1483 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1484 				if (lcont || sched_curcpu_runnable_p()) {
   1485 					goto quit;
   1486 				}
   1487 				LIST_REMOVE(pg, pageq.list); /* global list */
   1488 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
   1489 				ucpu->pages[PGFL_UNKNOWN]--;
   1490 				uvmexp.free--;
   1491 				KASSERT(pg->pqflags == PQ_FREE);
   1492 				pg->pqflags = 0;
   1493 				mutex_spin_exit(&uvm_fpageqlock);
   1494 #ifdef PMAP_PAGEIDLEZERO
   1495 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1496 
   1497 					/*
   1498 					 * The machine-dependent code detected
   1499 					 * some reason for us to abort zeroing
   1500 					 * pages, probably because there is a
   1501 					 * process now ready to run.
   1502 					 */
   1503 
   1504 					mutex_spin_enter(&uvm_fpageqlock);
   1505 					pg->pqflags = PQ_FREE;
   1506 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1507 					    nextbucket].pgfl_queues[
   1508 					    PGFL_UNKNOWN], pg, pageq.list);
   1509 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1510 					    nextbucket].pgfl_queues[
   1511 					    PGFL_UNKNOWN], pg, listq.list);
   1512 					ucpu->pages[PGFL_UNKNOWN]++;
   1513 					uvmexp.free++;
   1514 					uvmexp.zeroaborts++;
   1515 					goto quit;
   1516 				}
   1517 #else
   1518 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1519 #endif /* PMAP_PAGEIDLEZERO */
   1520 				pg->flags |= PG_ZERO;
   1521 
   1522 				if (!mutex_tryenter(&uvm_fpageqlock)) {
   1523 					lcont = true;
   1524 					mutex_spin_enter(&uvm_fpageqlock);
   1525 				} else {
   1526 					lcont = false;
   1527 				}
   1528 				pg->pqflags = PQ_FREE;
   1529 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
   1530 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1531 				    pg, pageq.list);
   1532 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
   1533 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1534 				    pg, listq.list);
   1535 				ucpu->pages[PGFL_ZEROS]++;
   1536 				uvmexp.free++;
   1537 				uvmexp.zeropages++;
   1538 			}
   1539 		}
   1540 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
   1541 			break;
   1542 		}
   1543 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1544 	} while (nextbucket != firstbucket);
   1545 	ucpu->page_idle_zero = false;
   1546  quit:
   1547 	mutex_spin_exit(&uvm_fpageqlock);
   1548 }
   1549 
   1550 /*
   1551  * uvm_pagelookup: look up a page
   1552  *
   1553  * => caller should lock object to keep someone from pulling the page
   1554  *	out from under it
   1555  */
   1556 
   1557 struct vm_page *
   1558 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1559 {
   1560 	struct vm_page *pg;
   1561 
   1562 	KASSERT(mutex_owned(obj->vmobjlock));
   1563 
   1564 	pg = rb_tree_find_node(&obj->rb_tree, &off);
   1565 
   1566 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1567 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1568 		(pg->flags & PG_BUSY) != 0);
   1569 	return pg;
   1570 }
   1571 
   1572 /*
   1573  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1574  *
   1575  * => caller must lock page queues
   1576  */
   1577 
   1578 void
   1579 uvm_pagewire(struct vm_page *pg)
   1580 {
   1581 	KASSERT(mutex_owned(&uvm_pageqlock));
   1582 #if defined(READAHEAD_STATS)
   1583 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1584 		uvm_ra_hit.ev_count++;
   1585 		pg->pqflags &= ~PQ_READAHEAD;
   1586 	}
   1587 #endif /* defined(READAHEAD_STATS) */
   1588 	if (pg->wire_count == 0) {
   1589 		uvm_pagedequeue(pg);
   1590 		uvmexp.wired++;
   1591 	}
   1592 	pg->wire_count++;
   1593 }
   1594 
   1595 /*
   1596  * uvm_pageunwire: unwire the page.
   1597  *
   1598  * => activate if wire count goes to zero.
   1599  * => caller must lock page queues
   1600  */
   1601 
   1602 void
   1603 uvm_pageunwire(struct vm_page *pg)
   1604 {
   1605 	KASSERT(mutex_owned(&uvm_pageqlock));
   1606 	pg->wire_count--;
   1607 	if (pg->wire_count == 0) {
   1608 		uvm_pageactivate(pg);
   1609 		uvmexp.wired--;
   1610 	}
   1611 }
   1612 
   1613 /*
   1614  * uvm_pagedeactivate: deactivate page
   1615  *
   1616  * => caller must lock page queues
   1617  * => caller must check to make sure page is not wired
   1618  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1619  * => caller must clear the reference on the page before calling
   1620  */
   1621 
   1622 void
   1623 uvm_pagedeactivate(struct vm_page *pg)
   1624 {
   1625 
   1626 	KASSERT(mutex_owned(&uvm_pageqlock));
   1627 	KASSERT(uvm_page_locked_p(pg));
   1628 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
   1629 	uvmpdpol_pagedeactivate(pg);
   1630 }
   1631 
   1632 /*
   1633  * uvm_pageactivate: activate page
   1634  *
   1635  * => caller must lock page queues
   1636  */
   1637 
   1638 void
   1639 uvm_pageactivate(struct vm_page *pg)
   1640 {
   1641 
   1642 	KASSERT(mutex_owned(&uvm_pageqlock));
   1643 	KASSERT(uvm_page_locked_p(pg));
   1644 #if defined(READAHEAD_STATS)
   1645 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
   1646 		uvm_ra_hit.ev_count++;
   1647 		pg->pqflags &= ~PQ_READAHEAD;
   1648 	}
   1649 #endif /* defined(READAHEAD_STATS) */
   1650 	if (pg->wire_count != 0) {
   1651 		return;
   1652 	}
   1653 	uvmpdpol_pageactivate(pg);
   1654 }
   1655 
   1656 /*
   1657  * uvm_pagedequeue: remove a page from any paging queue
   1658  */
   1659 
   1660 void
   1661 uvm_pagedequeue(struct vm_page *pg)
   1662 {
   1663 
   1664 	if (uvmpdpol_pageisqueued_p(pg)) {
   1665 		KASSERT(mutex_owned(&uvm_pageqlock));
   1666 	}
   1667 
   1668 	uvmpdpol_pagedequeue(pg);
   1669 }
   1670 
   1671 /*
   1672  * uvm_pageenqueue: add a page to a paging queue without activating.
   1673  * used where a page is not really demanded (yet).  eg. read-ahead
   1674  */
   1675 
   1676 void
   1677 uvm_pageenqueue(struct vm_page *pg)
   1678 {
   1679 
   1680 	KASSERT(mutex_owned(&uvm_pageqlock));
   1681 	if (pg->wire_count != 0) {
   1682 		return;
   1683 	}
   1684 	uvmpdpol_pageenqueue(pg);
   1685 }
   1686 
   1687 /*
   1688  * uvm_pagezero: zero fill a page
   1689  *
   1690  * => if page is part of an object then the object should be locked
   1691  *	to protect pg->flags.
   1692  */
   1693 
   1694 void
   1695 uvm_pagezero(struct vm_page *pg)
   1696 {
   1697 	pg->flags &= ~PG_CLEAN;
   1698 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1699 }
   1700 
   1701 /*
   1702  * uvm_pagecopy: copy a page
   1703  *
   1704  * => if page is part of an object then the object should be locked
   1705  *	to protect pg->flags.
   1706  */
   1707 
   1708 void
   1709 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1710 {
   1711 
   1712 	dst->flags &= ~PG_CLEAN;
   1713 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1714 }
   1715 
   1716 /*
   1717  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1718  */
   1719 
   1720 bool
   1721 uvm_pageismanaged(paddr_t pa)
   1722 {
   1723 
   1724 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1725 }
   1726 
   1727 /*
   1728  * uvm_page_lookup_freelist: look up the free list for the specified page
   1729  */
   1730 
   1731 int
   1732 uvm_page_lookup_freelist(struct vm_page *pg)
   1733 {
   1734 	uvm_physseg_t upm;
   1735 
   1736 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1737 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1738 	return uvm_physseg_get_free_list(upm);
   1739 }
   1740 
   1741 /*
   1742  * uvm_page_locked_p: return true if object associated with page is
   1743  * locked.  this is a weak check for runtime assertions only.
   1744  */
   1745 
   1746 bool
   1747 uvm_page_locked_p(struct vm_page *pg)
   1748 {
   1749 
   1750 	if (pg->uobject != NULL) {
   1751 		return mutex_owned(pg->uobject->vmobjlock);
   1752 	}
   1753 	if (pg->uanon != NULL) {
   1754 		return mutex_owned(pg->uanon->an_lock);
   1755 	}
   1756 	return true;
   1757 }
   1758 
   1759 #if defined(DDB) || defined(DEBUGPRINT)
   1760 
   1761 /*
   1762  * uvm_page_printit: actually print the page
   1763  */
   1764 
   1765 static const char page_flagbits[] = UVM_PGFLAGBITS;
   1766 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   1767 
   1768 void
   1769 uvm_page_printit(struct vm_page *pg, bool full,
   1770     void (*pr)(const char *, ...))
   1771 {
   1772 	struct vm_page *tpg;
   1773 	struct uvm_object *uobj;
   1774 	struct pgflist *pgl;
   1775 	char pgbuf[128];
   1776 	char pqbuf[128];
   1777 
   1778 	(*pr)("PAGE %p:\n", pg);
   1779 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   1780 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
   1781 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
   1782 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   1783 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   1784 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   1785 #if defined(UVM_PAGE_TRKOWN)
   1786 	if (pg->flags & PG_BUSY)
   1787 		(*pr)("  owning process = %d, tag=%s\n",
   1788 		    pg->owner, pg->owner_tag);
   1789 	else
   1790 		(*pr)("  page not busy, no owner\n");
   1791 #else
   1792 	(*pr)("  [page ownership tracking disabled]\n");
   1793 #endif
   1794 
   1795 	if (!full)
   1796 		return;
   1797 
   1798 	/* cross-verify object/anon */
   1799 	if ((pg->pqflags & PQ_FREE) == 0) {
   1800 		if (pg->pqflags & PQ_ANON) {
   1801 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   1802 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   1803 				(pg->uanon) ? pg->uanon->an_page : NULL);
   1804 			else
   1805 				(*pr)("  anon backpointer is OK\n");
   1806 		} else {
   1807 			uobj = pg->uobject;
   1808 			if (uobj) {
   1809 				(*pr)("  checking object list\n");
   1810 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
   1811 					if (tpg == pg) {
   1812 						break;
   1813 					}
   1814 				}
   1815 				if (tpg)
   1816 					(*pr)("  page found on object list\n");
   1817 				else
   1818 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   1819 			}
   1820 		}
   1821 	}
   1822 
   1823 	/* cross-verify page queue */
   1824 	if (pg->pqflags & PQ_FREE) {
   1825 		int fl = uvm_page_lookup_freelist(pg);
   1826 		int color = VM_PGCOLOR_BUCKET(pg);
   1827 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
   1828 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
   1829 	} else {
   1830 		pgl = NULL;
   1831 	}
   1832 
   1833 	if (pgl) {
   1834 		(*pr)("  checking pageq list\n");
   1835 		LIST_FOREACH(tpg, pgl, pageq.list) {
   1836 			if (tpg == pg) {
   1837 				break;
   1838 			}
   1839 		}
   1840 		if (tpg)
   1841 			(*pr)("  page found on pageq list\n");
   1842 		else
   1843 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   1844 	}
   1845 }
   1846 
   1847 /*
   1848  * uvm_pages_printthem - print a summary of all managed pages
   1849  */
   1850 
   1851 void
   1852 uvm_page_printall(void (*pr)(const char *, ...))
   1853 {
   1854 	uvm_physseg_t i;
   1855 	paddr_t pfn;
   1856 	struct vm_page *pg;
   1857 
   1858 	(*pr)("%18s %4s %4s %18s %18s"
   1859 #ifdef UVM_PAGE_TRKOWN
   1860 	    " OWNER"
   1861 #endif
   1862 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   1863 	for (i = uvm_physseg_get_first();
   1864 	     uvm_physseg_valid_p(i);
   1865 	     i = uvm_physseg_get_next(i)) {
   1866 		for (pfn = uvm_physseg_get_start(i);
   1867 		     pfn < uvm_physseg_get_end(i);
   1868 		     pfn++) {
   1869 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   1870 
   1871 			(*pr)("%18p %04x %04x %18p %18p",
   1872 			    pg, pg->flags, pg->pqflags, pg->uobject,
   1873 			    pg->uanon);
   1874 #ifdef UVM_PAGE_TRKOWN
   1875 			if (pg->flags & PG_BUSY)
   1876 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   1877 #endif
   1878 			(*pr)("\n");
   1879 		}
   1880 	}
   1881 }
   1882 
   1883 #endif /* DDB || DEBUGPRINT */
   1884