uvm_page.c revision 1.194 1 /* $NetBSD: uvm_page.c,v 1.194 2017/10/28 00:37:13 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_page.c: page ops.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.194 2017/10/28 00:37:13 pgoyette Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_uvm.h"
73 #include "opt_uvmhist.h"
74 #include "opt_readahead.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/extent.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_ddb.h>
88 #include <uvm/uvm_pdpolicy.h>
89
90 /*
91 * Some supported CPUs in a given architecture don't support all
92 * of the things necessary to do idle page zero'ing efficiently.
93 * We therefore provide a way to enable it from machdep code here.
94 */
95 bool vm_page_zero_enable = false;
96
97 /*
98 * number of pages per-CPU to reserve for the kernel.
99 */
100 #ifndef UVM_RESERVED_PAGES_PER_CPU
101 #define UVM_RESERVED_PAGES_PER_CPU 5
102 #endif
103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104
105 /*
106 * physical memory size;
107 */
108 psize_t physmem;
109
110 /*
111 * local variables
112 */
113
114 /*
115 * these variables record the values returned by vm_page_bootstrap,
116 * for debugging purposes. The implementation of uvm_pageboot_alloc
117 * and pmap_startup here also uses them internally.
118 */
119
120 static vaddr_t virtual_space_start;
121 static vaddr_t virtual_space_end;
122
123 /*
124 * we allocate an initial number of page colors in uvm_page_init(),
125 * and remember them. We may re-color pages as cache sizes are
126 * discovered during the autoconfiguration phase. But we can never
127 * free the initial set of buckets, since they are allocated using
128 * uvm_pageboot_alloc().
129 */
130
131 static size_t recolored_pages_memsize /* = 0 */;
132
133 #ifdef DEBUG
134 vaddr_t uvm_zerocheckkva;
135 #endif /* DEBUG */
136
137 /*
138 * These functions are reserved for uvm(9) internal use and are not
139 * exported in the header file uvm_physseg.h
140 *
141 * Thus they are redefined here.
142 */
143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145
146 /* returns a pgs array */
147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148
149 /*
150 * local prototypes
151 */
152
153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155
156 /*
157 * per-object tree of pages
158 */
159
160 static signed int
161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 {
163 const struct vm_page *pg1 = n1;
164 const struct vm_page *pg2 = n2;
165 const voff_t a = pg1->offset;
166 const voff_t b = pg2->offset;
167
168 if (a < b)
169 return -1;
170 if (a > b)
171 return 1;
172 return 0;
173 }
174
175 static signed int
176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 {
178 const struct vm_page *pg = n;
179 const voff_t a = pg->offset;
180 const voff_t b = *(const voff_t *)key;
181
182 if (a < b)
183 return -1;
184 if (a > b)
185 return 1;
186 return 0;
187 }
188
189 const rb_tree_ops_t uvm_page_tree_ops = {
190 .rbto_compare_nodes = uvm_page_compare_nodes,
191 .rbto_compare_key = uvm_page_compare_key,
192 .rbto_node_offset = offsetof(struct vm_page, rb_node),
193 .rbto_context = NULL
194 };
195
196 /*
197 * inline functions
198 */
199
200 /*
201 * uvm_pageinsert: insert a page in the object.
202 *
203 * => caller must lock object
204 * => caller must lock page queues
205 * => call should have already set pg's object and offset pointers
206 * and bumped the version counter
207 */
208
209 static inline void
210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211 struct vm_page *where)
212 {
213
214 KASSERT(uobj == pg->uobject);
215 KASSERT(mutex_owned(uobj->vmobjlock));
216 KASSERT((pg->flags & PG_TABLED) == 0);
217 KASSERT(where == NULL || (where->flags & PG_TABLED));
218 KASSERT(where == NULL || (where->uobject == uobj));
219
220 if (UVM_OBJ_IS_VNODE(uobj)) {
221 if (uobj->uo_npages == 0) {
222 struct vnode *vp = (struct vnode *)uobj;
223
224 vholdl(vp);
225 }
226 if (UVM_OBJ_IS_VTEXT(uobj)) {
227 atomic_inc_uint(&uvmexp.execpages);
228 } else {
229 atomic_inc_uint(&uvmexp.filepages);
230 }
231 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 atomic_inc_uint(&uvmexp.anonpages);
233 }
234
235 if (where)
236 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 else
238 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 pg->flags |= PG_TABLED;
240 uobj->uo_npages++;
241 }
242
243
244 static inline void
245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 {
247 struct vm_page *ret __diagused;
248
249 KASSERT(uobj == pg->uobject);
250 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
251 KASSERT(ret == pg);
252 }
253
254 static inline void
255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
256 {
257
258 KDASSERT(uobj != NULL);
259 uvm_pageinsert_tree(uobj, pg);
260 uvm_pageinsert_list(uobj, pg, NULL);
261 }
262
263 /*
264 * uvm_page_remove: remove page from object.
265 *
266 * => caller must lock object
267 * => caller must lock page queues
268 */
269
270 static inline void
271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 {
273
274 KASSERT(uobj == pg->uobject);
275 KASSERT(mutex_owned(uobj->vmobjlock));
276 KASSERT(pg->flags & PG_TABLED);
277
278 if (UVM_OBJ_IS_VNODE(uobj)) {
279 if (uobj->uo_npages == 1) {
280 struct vnode *vp = (struct vnode *)uobj;
281
282 holdrelel(vp);
283 }
284 if (UVM_OBJ_IS_VTEXT(uobj)) {
285 atomic_dec_uint(&uvmexp.execpages);
286 } else {
287 atomic_dec_uint(&uvmexp.filepages);
288 }
289 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 atomic_dec_uint(&uvmexp.anonpages);
291 }
292
293 /* object should be locked */
294 uobj->uo_npages--;
295 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 pg->flags &= ~PG_TABLED;
297 pg->uobject = NULL;
298 }
299
300 static inline void
301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 {
303
304 KASSERT(uobj == pg->uobject);
305 rb_tree_remove_node(&uobj->rb_tree, pg);
306 }
307
308 static inline void
309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
310 {
311
312 KDASSERT(uobj != NULL);
313 uvm_pageremove_tree(uobj, pg);
314 uvm_pageremove_list(uobj, pg);
315 }
316
317 static void
318 uvm_page_init_buckets(struct pgfreelist *pgfl)
319 {
320 int color, i;
321
322 for (color = 0; color < uvmexp.ncolors; color++) {
323 for (i = 0; i < PGFL_NQUEUES; i++) {
324 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 }
326 }
327 }
328
329 /*
330 * uvm_page_init: init the page system. called from uvm_init().
331 *
332 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333 */
334
335 void
336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 {
338 static struct uvm_cpu boot_cpu;
339 psize_t freepages, pagecount, bucketcount, n;
340 struct pgflbucket *bucketarray, *cpuarray;
341 struct vm_page *pagearray;
342 uvm_physseg_t bank;
343 int lcv;
344
345 KASSERT(ncpu <= 1);
346 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347
348 /*
349 * init the page queues and page queue locks, except the free
350 * list; we allocate that later (with the initial vm_page
351 * structures).
352 */
353
354 uvm.cpus[0] = &boot_cpu;
355 curcpu()->ci_data.cpu_uvm = &boot_cpu;
356 uvmpdpol_init();
357 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359
360 /*
361 * allocate vm_page structures.
362 */
363
364 /*
365 * sanity check:
366 * before calling this function the MD code is expected to register
367 * some free RAM with the uvm_page_physload() function. our job
368 * now is to allocate vm_page structures for this memory.
369 */
370
371 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
372 panic("uvm_page_bootstrap: no memory pre-allocated");
373
374 /*
375 * first calculate the number of free pages...
376 *
377 * note that we use start/end rather than avail_start/avail_end.
378 * this allows us to allocate extra vm_page structures in case we
379 * want to return some memory to the pool after booting.
380 */
381
382 freepages = 0;
383
384 for (bank = uvm_physseg_get_first();
385 uvm_physseg_valid_p(bank) ;
386 bank = uvm_physseg_get_next(bank)) {
387 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
388 }
389
390 /*
391 * Let MD code initialize the number of colors, or default
392 * to 1 color if MD code doesn't care.
393 */
394 if (uvmexp.ncolors == 0)
395 uvmexp.ncolors = 1;
396 uvmexp.colormask = uvmexp.ncolors - 1;
397 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
398
399 /*
400 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
401 * use. for each page of memory we use we need a vm_page structure.
402 * thus, the total number of pages we can use is the total size of
403 * the memory divided by the PAGE_SIZE plus the size of the vm_page
404 * structure. we add one to freepages as a fudge factor to avoid
405 * truncation errors (since we can only allocate in terms of whole
406 * pages).
407 */
408
409 bucketcount = uvmexp.ncolors * VM_NFREELIST;
410 pagecount = ((freepages + 1) << PAGE_SHIFT) /
411 (PAGE_SIZE + sizeof(struct vm_page));
412
413 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
414 sizeof(struct pgflbucket) * 2) + (pagecount *
415 sizeof(struct vm_page)));
416 cpuarray = bucketarray + bucketcount;
417 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418
419 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
420 uvm.page_free[lcv].pgfl_buckets =
421 (bucketarray + (lcv * uvmexp.ncolors));
422 uvm_page_init_buckets(&uvm.page_free[lcv]);
423 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
424 (cpuarray + (lcv * uvmexp.ncolors));
425 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
426 }
427 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
428
429 /*
430 * init the vm_page structures and put them in the correct place.
431 */
432 /* First init the extent */
433
434 for (bank = uvm_physseg_get_first(),
435 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
436 uvm_physseg_valid_p(bank);
437 bank = uvm_physseg_get_next(bank)) {
438
439 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
440 uvm_physseg_seg_alloc_from_slab(bank, n);
441 uvm_physseg_init_seg(bank, pagearray);
442
443 /* set up page array pointers */
444 pagearray += n;
445 pagecount -= n;
446 }
447
448 /*
449 * pass up the values of virtual_space_start and
450 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
451 * layers of the VM.
452 */
453
454 *kvm_startp = round_page(virtual_space_start);
455 *kvm_endp = trunc_page(virtual_space_end);
456 #ifdef DEBUG
457 /*
458 * steal kva for uvm_pagezerocheck().
459 */
460 uvm_zerocheckkva = *kvm_startp;
461 *kvm_startp += PAGE_SIZE;
462 #endif /* DEBUG */
463
464 /*
465 * init various thresholds.
466 */
467
468 uvmexp.reserve_pagedaemon = 1;
469 uvmexp.reserve_kernel = vm_page_reserve_kernel;
470
471 /*
472 * determine if we should zero pages in the idle loop.
473 */
474
475 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
476
477 /*
478 * done!
479 */
480
481 uvm.page_init_done = true;
482 }
483
484 /*
485 * uvm_setpagesize: set the page size
486 *
487 * => sets page_shift and page_mask from uvmexp.pagesize.
488 */
489
490 void
491 uvm_setpagesize(void)
492 {
493
494 /*
495 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
496 * to be a constant (indicated by being a non-zero value).
497 */
498 if (uvmexp.pagesize == 0) {
499 if (PAGE_SIZE == 0)
500 panic("uvm_setpagesize: uvmexp.pagesize not set");
501 uvmexp.pagesize = PAGE_SIZE;
502 }
503 uvmexp.pagemask = uvmexp.pagesize - 1;
504 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
505 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
506 uvmexp.pagesize, uvmexp.pagesize);
507 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 break;
510 }
511
512 /*
513 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514 */
515
516 vaddr_t
517 uvm_pageboot_alloc(vsize_t size)
518 {
519 static bool initialized = false;
520 vaddr_t addr;
521 #if !defined(PMAP_STEAL_MEMORY)
522 vaddr_t vaddr;
523 paddr_t paddr;
524 #endif
525
526 /*
527 * on first call to this function, initialize ourselves.
528 */
529 if (initialized == false) {
530 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531
532 /* round it the way we like it */
533 virtual_space_start = round_page(virtual_space_start);
534 virtual_space_end = trunc_page(virtual_space_end);
535
536 initialized = true;
537 }
538
539 /* round to page size */
540 size = round_page(size);
541
542 #if defined(PMAP_STEAL_MEMORY)
543
544 /*
545 * defer bootstrap allocation to MD code (it may want to allocate
546 * from a direct-mapped segment). pmap_steal_memory should adjust
547 * virtual_space_start/virtual_space_end if necessary.
548 */
549
550 addr = pmap_steal_memory(size, &virtual_space_start,
551 &virtual_space_end);
552
553 return(addr);
554
555 #else /* !PMAP_STEAL_MEMORY */
556
557 /*
558 * allocate virtual memory for this request
559 */
560 if (virtual_space_start == virtual_space_end ||
561 (virtual_space_end - virtual_space_start) < size)
562 panic("uvm_pageboot_alloc: out of virtual space");
563
564 addr = virtual_space_start;
565
566 #ifdef PMAP_GROWKERNEL
567 /*
568 * If the kernel pmap can't map the requested space,
569 * then allocate more resources for it.
570 */
571 if (uvm_maxkaddr < (addr + size)) {
572 uvm_maxkaddr = pmap_growkernel(addr + size);
573 if (uvm_maxkaddr < (addr + size))
574 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
575 }
576 #endif
577
578 virtual_space_start += size;
579
580 /*
581 * allocate and mapin physical pages to back new virtual pages
582 */
583
584 for (vaddr = round_page(addr) ; vaddr < addr + size ;
585 vaddr += PAGE_SIZE) {
586
587 if (!uvm_page_physget(&paddr))
588 panic("uvm_pageboot_alloc: out of memory");
589
590 /*
591 * Note this memory is no longer managed, so using
592 * pmap_kenter is safe.
593 */
594 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
595 }
596 pmap_update(pmap_kernel());
597 return(addr);
598 #endif /* PMAP_STEAL_MEMORY */
599 }
600
601 #if !defined(PMAP_STEAL_MEMORY)
602 /*
603 * uvm_page_physget: "steal" one page from the vm_physmem structure.
604 *
605 * => attempt to allocate it off the end of a segment in which the "avail"
606 * values match the start/end values. if we can't do that, then we
607 * will advance both values (making them equal, and removing some
608 * vm_page structures from the non-avail area).
609 * => return false if out of memory.
610 */
611
612 /* subroutine: try to allocate from memory chunks on the specified freelist */
613 static bool uvm_page_physget_freelist(paddr_t *, int);
614
615 static bool
616 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
617 {
618 uvm_physseg_t lcv;
619
620 /* pass 1: try allocating from a matching end */
621 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
622 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
623 #else
624 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
625 #endif
626 {
627 if (uvm.page_init_done == true)
628 panic("uvm_page_physget: called _after_ bootstrap");
629
630 /* Try to match at front or back on unused segment */
631 if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
632 if (paddrp == NULL) /* freelist fail, try next */
633 continue;
634 } else
635 return true;
636 }
637
638 /* pass2: forget about matching ends, just allocate something */
639 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
640 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
641 #else
642 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
643 #endif
644 {
645 /* Try the front regardless. */
646 if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
647 if (paddrp == NULL) /* freelist fail, try next */
648 continue;
649 } else
650 return true;
651 }
652 return false;
653 }
654
655 bool
656 uvm_page_physget(paddr_t *paddrp)
657 {
658 int i;
659
660 /* try in the order of freelist preference */
661 for (i = 0; i < VM_NFREELIST; i++)
662 if (uvm_page_physget_freelist(paddrp, i) == true)
663 return (true);
664 return (false);
665 }
666 #endif /* PMAP_STEAL_MEMORY */
667
668 /*
669 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
670 * back from an I/O mapping (ugh!). used in some MD code as well.
671 */
672 struct vm_page *
673 uvm_phys_to_vm_page(paddr_t pa)
674 {
675 paddr_t pf = atop(pa);
676 paddr_t off;
677 uvm_physseg_t upm;
678
679 upm = uvm_physseg_find(pf, &off);
680 if (upm != UVM_PHYSSEG_TYPE_INVALID)
681 return uvm_physseg_get_pg(upm, off);
682 return(NULL);
683 }
684
685 paddr_t
686 uvm_vm_page_to_phys(const struct vm_page *pg)
687 {
688
689 return pg->phys_addr;
690 }
691
692 /*
693 * uvm_page_recolor: Recolor the pages if the new bucket count is
694 * larger than the old one.
695 */
696
697 void
698 uvm_page_recolor(int newncolors)
699 {
700 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
701 struct pgfreelist gpgfl, pgfl;
702 struct vm_page *pg;
703 vsize_t bucketcount;
704 size_t bucketmemsize, oldbucketmemsize;
705 int color, i, ocolors;
706 int lcv;
707 struct uvm_cpu *ucpu;
708
709 KASSERT(((newncolors - 1) & newncolors) == 0);
710
711 if (newncolors <= uvmexp.ncolors)
712 return;
713
714 if (uvm.page_init_done == false) {
715 uvmexp.ncolors = newncolors;
716 return;
717 }
718
719 bucketcount = newncolors * VM_NFREELIST;
720 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
721 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
722 cpuarray = bucketarray + bucketcount;
723
724 mutex_spin_enter(&uvm_fpageqlock);
725
726 /* Make sure we should still do this. */
727 if (newncolors <= uvmexp.ncolors) {
728 mutex_spin_exit(&uvm_fpageqlock);
729 kmem_free(bucketarray, bucketmemsize);
730 return;
731 }
732
733 oldbucketarray = uvm.page_free[0].pgfl_buckets;
734 ocolors = uvmexp.ncolors;
735
736 uvmexp.ncolors = newncolors;
737 uvmexp.colormask = uvmexp.ncolors - 1;
738
739 ucpu = curcpu()->ci_data.cpu_uvm;
740 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
741 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
742 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
743 uvm_page_init_buckets(&gpgfl);
744 uvm_page_init_buckets(&pgfl);
745 for (color = 0; color < ocolors; color++) {
746 for (i = 0; i < PGFL_NQUEUES; i++) {
747 while ((pg = LIST_FIRST(&uvm.page_free[
748 lcv].pgfl_buckets[color].pgfl_queues[i]))
749 != NULL) {
750 LIST_REMOVE(pg, pageq.list); /* global */
751 LIST_REMOVE(pg, listq.list); /* cpu */
752 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
753 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
754 i], pg, pageq.list);
755 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
756 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
757 i], pg, listq.list);
758 }
759 }
760 }
761 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
762 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
763 }
764
765 oldbucketmemsize = recolored_pages_memsize;
766
767 recolored_pages_memsize = bucketmemsize;
768 mutex_spin_exit(&uvm_fpageqlock);
769
770 if (oldbucketmemsize) {
771 kmem_free(oldbucketarray, recolored_pages_memsize);
772 }
773
774 /*
775 * this calls uvm_km_alloc() which may want to hold
776 * uvm_fpageqlock.
777 */
778 uvm_pager_realloc_emerg();
779 }
780
781 /*
782 * uvm_cpu_attach: initialize per-CPU data structures.
783 */
784
785 void
786 uvm_cpu_attach(struct cpu_info *ci)
787 {
788 struct pgflbucket *bucketarray;
789 struct pgfreelist pgfl;
790 struct uvm_cpu *ucpu;
791 vsize_t bucketcount;
792 int lcv;
793
794 if (CPU_IS_PRIMARY(ci)) {
795 /* Already done in uvm_page_init(). */
796 goto attachrnd;
797 }
798
799 /* Add more reserve pages for this CPU. */
800 uvmexp.reserve_kernel += vm_page_reserve_kernel;
801
802 /* Configure this CPU's free lists. */
803 bucketcount = uvmexp.ncolors * VM_NFREELIST;
804 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
805 KM_SLEEP);
806 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
807 uvm.cpus[cpu_index(ci)] = ucpu;
808 ci->ci_data.cpu_uvm = ucpu;
809 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
810 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
811 uvm_page_init_buckets(&pgfl);
812 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
813 }
814
815 attachrnd:
816 /*
817 * Attach RNG source for this CPU's VM events
818 */
819 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
820 ci->ci_data.cpu_name, RND_TYPE_VM,
821 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
822 RND_FLAG_ESTIMATE_VALUE);
823
824 }
825
826 /*
827 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
828 */
829
830 static struct vm_page *
831 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
832 int *trycolorp)
833 {
834 struct pgflist *freeq;
835 struct vm_page *pg;
836 int color, trycolor = *trycolorp;
837 struct pgfreelist *gpgfl, *pgfl;
838
839 KASSERT(mutex_owned(&uvm_fpageqlock));
840
841 color = trycolor;
842 pgfl = &ucpu->page_free[flist];
843 gpgfl = &uvm.page_free[flist];
844 do {
845 /* cpu, try1 */
846 if ((pg = LIST_FIRST((freeq =
847 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
848 KASSERT(pg->pqflags & PQ_FREE);
849 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
850 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
851 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
852 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
853 uvmexp.cpuhit++;
854 goto gotit;
855 }
856 /* global, try1 */
857 if ((pg = LIST_FIRST((freeq =
858 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
859 KASSERT(pg->pqflags & PQ_FREE);
860 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
861 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
862 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
863 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
864 uvmexp.cpumiss++;
865 goto gotit;
866 }
867 /* cpu, try2 */
868 if ((pg = LIST_FIRST((freeq =
869 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
870 KASSERT(pg->pqflags & PQ_FREE);
871 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
872 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
873 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
874 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
875 uvmexp.cpuhit++;
876 goto gotit;
877 }
878 /* global, try2 */
879 if ((pg = LIST_FIRST((freeq =
880 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
881 KASSERT(pg->pqflags & PQ_FREE);
882 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
883 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
884 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
885 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
886 uvmexp.cpumiss++;
887 goto gotit;
888 }
889 color = (color + 1) & uvmexp.colormask;
890 } while (color != trycolor);
891
892 return (NULL);
893
894 gotit:
895 LIST_REMOVE(pg, pageq.list); /* global list */
896 LIST_REMOVE(pg, listq.list); /* per-cpu list */
897 uvmexp.free--;
898
899 /* update zero'd page count */
900 if (pg->flags & PG_ZERO)
901 uvmexp.zeropages--;
902
903 if (color == trycolor)
904 uvmexp.colorhit++;
905 else {
906 uvmexp.colormiss++;
907 *trycolorp = color;
908 }
909
910 return (pg);
911 }
912
913 /*
914 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
915 *
916 * => return null if no pages free
917 * => wake up pagedaemon if number of free pages drops below low water mark
918 * => if obj != NULL, obj must be locked (to put in obj's tree)
919 * => if anon != NULL, anon must be locked (to put in anon)
920 * => only one of obj or anon can be non-null
921 * => caller must activate/deactivate page if it is not wired.
922 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
923 * => policy decision: it is more important to pull a page off of the
924 * appropriate priority free list than it is to get a zero'd or
925 * unknown contents page. This is because we live with the
926 * consequences of a bad free list decision for the entire
927 * lifetime of the page, e.g. if the page comes from memory that
928 * is slower to access.
929 */
930
931 struct vm_page *
932 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
933 int flags, int strat, int free_list)
934 {
935 int try1, try2, zeroit = 0, color;
936 int lcv;
937 struct uvm_cpu *ucpu;
938 struct vm_page *pg;
939 lwp_t *l;
940
941 KASSERT(obj == NULL || anon == NULL);
942 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
943 KASSERT(off == trunc_page(off));
944 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
945 KASSERT(anon == NULL || anon->an_lock == NULL ||
946 mutex_owned(anon->an_lock));
947
948 mutex_spin_enter(&uvm_fpageqlock);
949
950 /*
951 * This implements a global round-robin page coloring
952 * algorithm.
953 */
954
955 ucpu = curcpu()->ci_data.cpu_uvm;
956 if (flags & UVM_FLAG_COLORMATCH) {
957 color = atop(off) & uvmexp.colormask;
958 } else {
959 color = ucpu->page_free_nextcolor;
960 }
961
962 /*
963 * check to see if we need to generate some free pages waking
964 * the pagedaemon.
965 */
966
967 uvm_kick_pdaemon();
968
969 /*
970 * fail if any of these conditions is true:
971 * [1] there really are no free pages, or
972 * [2] only kernel "reserved" pages remain and
973 * reserved pages have not been requested.
974 * [3] only pagedaemon "reserved" pages remain and
975 * the requestor isn't the pagedaemon.
976 * we make kernel reserve pages available if called by a
977 * kernel thread or a realtime thread.
978 */
979 l = curlwp;
980 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
981 flags |= UVM_PGA_USERESERVE;
982 }
983 if ((uvmexp.free <= uvmexp.reserve_kernel &&
984 (flags & UVM_PGA_USERESERVE) == 0) ||
985 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
986 curlwp != uvm.pagedaemon_lwp))
987 goto fail;
988
989 #if PGFL_NQUEUES != 2
990 #error uvm_pagealloc_strat needs to be updated
991 #endif
992
993 /*
994 * If we want a zero'd page, try the ZEROS queue first, otherwise
995 * we try the UNKNOWN queue first.
996 */
997 if (flags & UVM_PGA_ZERO) {
998 try1 = PGFL_ZEROS;
999 try2 = PGFL_UNKNOWN;
1000 } else {
1001 try1 = PGFL_UNKNOWN;
1002 try2 = PGFL_ZEROS;
1003 }
1004
1005 again:
1006 switch (strat) {
1007 case UVM_PGA_STRAT_NORMAL:
1008 /* Check freelists: descending priority (ascending id) order */
1009 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1010 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1011 try1, try2, &color);
1012 if (pg != NULL)
1013 goto gotit;
1014 }
1015
1016 /* No pages free! */
1017 goto fail;
1018
1019 case UVM_PGA_STRAT_ONLY:
1020 case UVM_PGA_STRAT_FALLBACK:
1021 /* Attempt to allocate from the specified free list. */
1022 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1023 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1024 try1, try2, &color);
1025 if (pg != NULL)
1026 goto gotit;
1027
1028 /* Fall back, if possible. */
1029 if (strat == UVM_PGA_STRAT_FALLBACK) {
1030 strat = UVM_PGA_STRAT_NORMAL;
1031 goto again;
1032 }
1033
1034 /* No pages free! */
1035 goto fail;
1036
1037 default:
1038 panic("uvm_pagealloc_strat: bad strat %d", strat);
1039 /* NOTREACHED */
1040 }
1041
1042 gotit:
1043 /*
1044 * We now know which color we actually allocated from; set
1045 * the next color accordingly.
1046 */
1047
1048 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1049
1050 /*
1051 * update allocation statistics and remember if we have to
1052 * zero the page
1053 */
1054
1055 if (flags & UVM_PGA_ZERO) {
1056 if (pg->flags & PG_ZERO) {
1057 uvmexp.pga_zerohit++;
1058 zeroit = 0;
1059 } else {
1060 uvmexp.pga_zeromiss++;
1061 zeroit = 1;
1062 }
1063 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1064 ucpu->page_idle_zero = vm_page_zero_enable;
1065 }
1066 }
1067 KASSERT(pg->pqflags == PQ_FREE);
1068
1069 pg->offset = off;
1070 pg->uobject = obj;
1071 pg->uanon = anon;
1072 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1073 if (anon) {
1074 anon->an_page = pg;
1075 pg->pqflags = PQ_ANON;
1076 atomic_inc_uint(&uvmexp.anonpages);
1077 } else {
1078 if (obj) {
1079 uvm_pageinsert(obj, pg);
1080 }
1081 pg->pqflags = 0;
1082 }
1083 mutex_spin_exit(&uvm_fpageqlock);
1084
1085 #if defined(UVM_PAGE_TRKOWN)
1086 pg->owner_tag = NULL;
1087 #endif
1088 UVM_PAGE_OWN(pg, "new alloc");
1089
1090 if (flags & UVM_PGA_ZERO) {
1091 /*
1092 * A zero'd page is not clean. If we got a page not already
1093 * zero'd, then we have to zero it ourselves.
1094 */
1095 pg->flags &= ~PG_CLEAN;
1096 if (zeroit)
1097 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1098 }
1099
1100 return(pg);
1101
1102 fail:
1103 mutex_spin_exit(&uvm_fpageqlock);
1104 return (NULL);
1105 }
1106
1107 /*
1108 * uvm_pagereplace: replace a page with another
1109 *
1110 * => object must be locked
1111 */
1112
1113 void
1114 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1115 {
1116 struct uvm_object *uobj = oldpg->uobject;
1117
1118 KASSERT((oldpg->flags & PG_TABLED) != 0);
1119 KASSERT(uobj != NULL);
1120 KASSERT((newpg->flags & PG_TABLED) == 0);
1121 KASSERT(newpg->uobject == NULL);
1122 KASSERT(mutex_owned(uobj->vmobjlock));
1123
1124 newpg->uobject = uobj;
1125 newpg->offset = oldpg->offset;
1126
1127 uvm_pageremove_tree(uobj, oldpg);
1128 uvm_pageinsert_tree(uobj, newpg);
1129 uvm_pageinsert_list(uobj, newpg, oldpg);
1130 uvm_pageremove_list(uobj, oldpg);
1131 }
1132
1133 /*
1134 * uvm_pagerealloc: reallocate a page from one object to another
1135 *
1136 * => both objects must be locked
1137 */
1138
1139 void
1140 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1141 {
1142 /*
1143 * remove it from the old object
1144 */
1145
1146 if (pg->uobject) {
1147 uvm_pageremove(pg->uobject, pg);
1148 }
1149
1150 /*
1151 * put it in the new object
1152 */
1153
1154 if (newobj) {
1155 pg->uobject = newobj;
1156 pg->offset = newoff;
1157 uvm_pageinsert(newobj, pg);
1158 }
1159 }
1160
1161 #ifdef DEBUG
1162 /*
1163 * check if page is zero-filled
1164 *
1165 * - called with free page queue lock held.
1166 */
1167 void
1168 uvm_pagezerocheck(struct vm_page *pg)
1169 {
1170 int *p, *ep;
1171
1172 KASSERT(uvm_zerocheckkva != 0);
1173 KASSERT(mutex_owned(&uvm_fpageqlock));
1174
1175 /*
1176 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1177 * uvm page allocator.
1178 *
1179 * it might be better to have "CPU-local temporary map" pmap interface.
1180 */
1181 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1182 p = (int *)uvm_zerocheckkva;
1183 ep = (int *)((char *)p + PAGE_SIZE);
1184 pmap_update(pmap_kernel());
1185 while (p < ep) {
1186 if (*p != 0)
1187 panic("PG_ZERO page isn't zero-filled");
1188 p++;
1189 }
1190 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1191 /*
1192 * pmap_update() is not necessary here because no one except us
1193 * uses this VA.
1194 */
1195 }
1196 #endif /* DEBUG */
1197
1198 /*
1199 * uvm_pagefree: free page
1200 *
1201 * => erase page's identity (i.e. remove from object)
1202 * => put page on free list
1203 * => caller must lock owning object (either anon or uvm_object)
1204 * => caller must lock page queues
1205 * => assumes all valid mappings of pg are gone
1206 */
1207
1208 void
1209 uvm_pagefree(struct vm_page *pg)
1210 {
1211 struct pgflist *pgfl;
1212 struct uvm_cpu *ucpu;
1213 int index, color, queue;
1214 bool iszero;
1215
1216 #ifdef DEBUG
1217 if (pg->uobject == (void *)0xdeadbeef &&
1218 pg->uanon == (void *)0xdeadbeef) {
1219 panic("uvm_pagefree: freeing free page %p", pg);
1220 }
1221 #endif /* DEBUG */
1222
1223 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1224 KASSERT(!(pg->pqflags & PQ_FREE));
1225 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1226 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1227 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1228 mutex_owned(pg->uanon->an_lock));
1229
1230 /*
1231 * if the page is loaned, resolve the loan instead of freeing.
1232 */
1233
1234 if (pg->loan_count) {
1235 KASSERT(pg->wire_count == 0);
1236
1237 /*
1238 * if the page is owned by an anon then we just want to
1239 * drop anon ownership. the kernel will free the page when
1240 * it is done with it. if the page is owned by an object,
1241 * remove it from the object and mark it dirty for the benefit
1242 * of possible anon owners.
1243 *
1244 * regardless of previous ownership, wakeup any waiters,
1245 * unbusy the page, and we're done.
1246 */
1247
1248 if (pg->uobject != NULL) {
1249 uvm_pageremove(pg->uobject, pg);
1250 pg->flags &= ~PG_CLEAN;
1251 } else if (pg->uanon != NULL) {
1252 if ((pg->pqflags & PQ_ANON) == 0) {
1253 pg->loan_count--;
1254 } else {
1255 pg->pqflags &= ~PQ_ANON;
1256 atomic_dec_uint(&uvmexp.anonpages);
1257 }
1258 pg->uanon->an_page = NULL;
1259 pg->uanon = NULL;
1260 }
1261 if (pg->flags & PG_WANTED) {
1262 wakeup(pg);
1263 }
1264 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1265 #ifdef UVM_PAGE_TRKOWN
1266 pg->owner_tag = NULL;
1267 #endif
1268 if (pg->loan_count) {
1269 KASSERT(pg->uobject == NULL);
1270 if (pg->uanon == NULL) {
1271 KASSERT(mutex_owned(&uvm_pageqlock));
1272 uvm_pagedequeue(pg);
1273 }
1274 return;
1275 }
1276 }
1277
1278 /*
1279 * remove page from its object or anon.
1280 */
1281
1282 if (pg->uobject != NULL) {
1283 uvm_pageremove(pg->uobject, pg);
1284 } else if (pg->uanon != NULL) {
1285 pg->uanon->an_page = NULL;
1286 atomic_dec_uint(&uvmexp.anonpages);
1287 }
1288
1289 /*
1290 * now remove the page from the queues.
1291 */
1292 if (uvmpdpol_pageisqueued_p(pg)) {
1293 KASSERT(mutex_owned(&uvm_pageqlock));
1294 uvm_pagedequeue(pg);
1295 }
1296
1297 /*
1298 * if the page was wired, unwire it now.
1299 */
1300
1301 if (pg->wire_count) {
1302 pg->wire_count = 0;
1303 uvmexp.wired--;
1304 }
1305
1306 /*
1307 * and put on free queue
1308 */
1309
1310 iszero = (pg->flags & PG_ZERO);
1311 index = uvm_page_lookup_freelist(pg);
1312 color = VM_PGCOLOR_BUCKET(pg);
1313 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1314
1315 #ifdef DEBUG
1316 pg->uobject = (void *)0xdeadbeef;
1317 pg->uanon = (void *)0xdeadbeef;
1318 #endif
1319
1320 mutex_spin_enter(&uvm_fpageqlock);
1321 pg->pqflags = PQ_FREE;
1322
1323 #ifdef DEBUG
1324 if (iszero)
1325 uvm_pagezerocheck(pg);
1326 #endif /* DEBUG */
1327
1328
1329 /* global list */
1330 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1331 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1332 uvmexp.free++;
1333 if (iszero) {
1334 uvmexp.zeropages++;
1335 }
1336
1337 /* per-cpu list */
1338 ucpu = curcpu()->ci_data.cpu_uvm;
1339 pg->offset = (uintptr_t)ucpu;
1340 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1341 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1342 ucpu->pages[queue]++;
1343 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1344 ucpu->page_idle_zero = vm_page_zero_enable;
1345 }
1346
1347 mutex_spin_exit(&uvm_fpageqlock);
1348 }
1349
1350 /*
1351 * uvm_page_unbusy: unbusy an array of pages.
1352 *
1353 * => pages must either all belong to the same object, or all belong to anons.
1354 * => if pages are object-owned, object must be locked.
1355 * => if pages are anon-owned, anons must be locked.
1356 * => caller must lock page queues if pages may be released.
1357 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1358 */
1359
1360 void
1361 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1362 {
1363 struct vm_page *pg;
1364 int i;
1365 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1366
1367 for (i = 0; i < npgs; i++) {
1368 pg = pgs[i];
1369 if (pg == NULL || pg == PGO_DONTCARE) {
1370 continue;
1371 }
1372
1373 KASSERT(uvm_page_locked_p(pg));
1374 KASSERT(pg->flags & PG_BUSY);
1375 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1376 if (pg->flags & PG_WANTED) {
1377 wakeup(pg);
1378 }
1379 if (pg->flags & PG_RELEASED) {
1380 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1381 (uintptr_t)pg, 0, 0, 0);
1382 KASSERT(pg->uobject != NULL ||
1383 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1384 pg->flags &= ~PG_RELEASED;
1385 uvm_pagefree(pg);
1386 } else {
1387 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1388 (uintptr_t)pg, 0, 0, 0);
1389 KASSERT((pg->flags & PG_FAKE) == 0);
1390 pg->flags &= ~(PG_WANTED|PG_BUSY);
1391 UVM_PAGE_OWN(pg, NULL);
1392 }
1393 }
1394 }
1395
1396 #if defined(UVM_PAGE_TRKOWN)
1397 /*
1398 * uvm_page_own: set or release page ownership
1399 *
1400 * => this is a debugging function that keeps track of who sets PG_BUSY
1401 * and where they do it. it can be used to track down problems
1402 * such a process setting "PG_BUSY" and never releasing it.
1403 * => page's object [if any] must be locked
1404 * => if "tag" is NULL then we are releasing page ownership
1405 */
1406 void
1407 uvm_page_own(struct vm_page *pg, const char *tag)
1408 {
1409
1410 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1411 KASSERT((pg->flags & PG_WANTED) == 0);
1412 KASSERT(uvm_page_locked_p(pg));
1413
1414 /* gain ownership? */
1415 if (tag) {
1416 KASSERT((pg->flags & PG_BUSY) != 0);
1417 if (pg->owner_tag) {
1418 printf("uvm_page_own: page %p already owned "
1419 "by proc %d [%s]\n", pg,
1420 pg->owner, pg->owner_tag);
1421 panic("uvm_page_own");
1422 }
1423 pg->owner = curproc->p_pid;
1424 pg->lowner = curlwp->l_lid;
1425 pg->owner_tag = tag;
1426 return;
1427 }
1428
1429 /* drop ownership */
1430 KASSERT((pg->flags & PG_BUSY) == 0);
1431 if (pg->owner_tag == NULL) {
1432 printf("uvm_page_own: dropping ownership of an non-owned "
1433 "page (%p)\n", pg);
1434 panic("uvm_page_own");
1435 }
1436 if (!uvmpdpol_pageisqueued_p(pg)) {
1437 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1438 pg->wire_count > 0);
1439 } else {
1440 KASSERT(pg->wire_count == 0);
1441 }
1442 pg->owner_tag = NULL;
1443 }
1444 #endif
1445
1446 /*
1447 * uvm_pageidlezero: zero free pages while the system is idle.
1448 *
1449 * => try to complete one color bucket at a time, to reduce our impact
1450 * on the CPU cache.
1451 * => we loop until we either reach the target or there is a lwp ready
1452 * to run, or MD code detects a reason to break early.
1453 */
1454 void
1455 uvm_pageidlezero(void)
1456 {
1457 struct vm_page *pg;
1458 struct pgfreelist *pgfl, *gpgfl;
1459 struct uvm_cpu *ucpu;
1460 int free_list, firstbucket, nextbucket;
1461 bool lcont = false;
1462
1463 ucpu = curcpu()->ci_data.cpu_uvm;
1464 if (!ucpu->page_idle_zero ||
1465 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1466 ucpu->page_idle_zero = false;
1467 return;
1468 }
1469 if (!mutex_tryenter(&uvm_fpageqlock)) {
1470 /* Contention: let other CPUs to use the lock. */
1471 return;
1472 }
1473 firstbucket = ucpu->page_free_nextcolor;
1474 nextbucket = firstbucket;
1475 do {
1476 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1477 if (sched_curcpu_runnable_p()) {
1478 goto quit;
1479 }
1480 pgfl = &ucpu->page_free[free_list];
1481 gpgfl = &uvm.page_free[free_list];
1482 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1483 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1484 if (lcont || sched_curcpu_runnable_p()) {
1485 goto quit;
1486 }
1487 LIST_REMOVE(pg, pageq.list); /* global list */
1488 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1489 ucpu->pages[PGFL_UNKNOWN]--;
1490 uvmexp.free--;
1491 KASSERT(pg->pqflags == PQ_FREE);
1492 pg->pqflags = 0;
1493 mutex_spin_exit(&uvm_fpageqlock);
1494 #ifdef PMAP_PAGEIDLEZERO
1495 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1496
1497 /*
1498 * The machine-dependent code detected
1499 * some reason for us to abort zeroing
1500 * pages, probably because there is a
1501 * process now ready to run.
1502 */
1503
1504 mutex_spin_enter(&uvm_fpageqlock);
1505 pg->pqflags = PQ_FREE;
1506 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1507 nextbucket].pgfl_queues[
1508 PGFL_UNKNOWN], pg, pageq.list);
1509 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1510 nextbucket].pgfl_queues[
1511 PGFL_UNKNOWN], pg, listq.list);
1512 ucpu->pages[PGFL_UNKNOWN]++;
1513 uvmexp.free++;
1514 uvmexp.zeroaborts++;
1515 goto quit;
1516 }
1517 #else
1518 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1519 #endif /* PMAP_PAGEIDLEZERO */
1520 pg->flags |= PG_ZERO;
1521
1522 if (!mutex_tryenter(&uvm_fpageqlock)) {
1523 lcont = true;
1524 mutex_spin_enter(&uvm_fpageqlock);
1525 } else {
1526 lcont = false;
1527 }
1528 pg->pqflags = PQ_FREE;
1529 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1530 nextbucket].pgfl_queues[PGFL_ZEROS],
1531 pg, pageq.list);
1532 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1533 nextbucket].pgfl_queues[PGFL_ZEROS],
1534 pg, listq.list);
1535 ucpu->pages[PGFL_ZEROS]++;
1536 uvmexp.free++;
1537 uvmexp.zeropages++;
1538 }
1539 }
1540 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1541 break;
1542 }
1543 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1544 } while (nextbucket != firstbucket);
1545 ucpu->page_idle_zero = false;
1546 quit:
1547 mutex_spin_exit(&uvm_fpageqlock);
1548 }
1549
1550 /*
1551 * uvm_pagelookup: look up a page
1552 *
1553 * => caller should lock object to keep someone from pulling the page
1554 * out from under it
1555 */
1556
1557 struct vm_page *
1558 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1559 {
1560 struct vm_page *pg;
1561
1562 KASSERT(mutex_owned(obj->vmobjlock));
1563
1564 pg = rb_tree_find_node(&obj->rb_tree, &off);
1565
1566 KASSERT(pg == NULL || obj->uo_npages != 0);
1567 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1568 (pg->flags & PG_BUSY) != 0);
1569 return pg;
1570 }
1571
1572 /*
1573 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1574 *
1575 * => caller must lock page queues
1576 */
1577
1578 void
1579 uvm_pagewire(struct vm_page *pg)
1580 {
1581 KASSERT(mutex_owned(&uvm_pageqlock));
1582 #if defined(READAHEAD_STATS)
1583 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1584 uvm_ra_hit.ev_count++;
1585 pg->pqflags &= ~PQ_READAHEAD;
1586 }
1587 #endif /* defined(READAHEAD_STATS) */
1588 if (pg->wire_count == 0) {
1589 uvm_pagedequeue(pg);
1590 uvmexp.wired++;
1591 }
1592 pg->wire_count++;
1593 }
1594
1595 /*
1596 * uvm_pageunwire: unwire the page.
1597 *
1598 * => activate if wire count goes to zero.
1599 * => caller must lock page queues
1600 */
1601
1602 void
1603 uvm_pageunwire(struct vm_page *pg)
1604 {
1605 KASSERT(mutex_owned(&uvm_pageqlock));
1606 pg->wire_count--;
1607 if (pg->wire_count == 0) {
1608 uvm_pageactivate(pg);
1609 uvmexp.wired--;
1610 }
1611 }
1612
1613 /*
1614 * uvm_pagedeactivate: deactivate page
1615 *
1616 * => caller must lock page queues
1617 * => caller must check to make sure page is not wired
1618 * => object that page belongs to must be locked (so we can adjust pg->flags)
1619 * => caller must clear the reference on the page before calling
1620 */
1621
1622 void
1623 uvm_pagedeactivate(struct vm_page *pg)
1624 {
1625
1626 KASSERT(mutex_owned(&uvm_pageqlock));
1627 KASSERT(uvm_page_locked_p(pg));
1628 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1629 uvmpdpol_pagedeactivate(pg);
1630 }
1631
1632 /*
1633 * uvm_pageactivate: activate page
1634 *
1635 * => caller must lock page queues
1636 */
1637
1638 void
1639 uvm_pageactivate(struct vm_page *pg)
1640 {
1641
1642 KASSERT(mutex_owned(&uvm_pageqlock));
1643 KASSERT(uvm_page_locked_p(pg));
1644 #if defined(READAHEAD_STATS)
1645 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1646 uvm_ra_hit.ev_count++;
1647 pg->pqflags &= ~PQ_READAHEAD;
1648 }
1649 #endif /* defined(READAHEAD_STATS) */
1650 if (pg->wire_count != 0) {
1651 return;
1652 }
1653 uvmpdpol_pageactivate(pg);
1654 }
1655
1656 /*
1657 * uvm_pagedequeue: remove a page from any paging queue
1658 */
1659
1660 void
1661 uvm_pagedequeue(struct vm_page *pg)
1662 {
1663
1664 if (uvmpdpol_pageisqueued_p(pg)) {
1665 KASSERT(mutex_owned(&uvm_pageqlock));
1666 }
1667
1668 uvmpdpol_pagedequeue(pg);
1669 }
1670
1671 /*
1672 * uvm_pageenqueue: add a page to a paging queue without activating.
1673 * used where a page is not really demanded (yet). eg. read-ahead
1674 */
1675
1676 void
1677 uvm_pageenqueue(struct vm_page *pg)
1678 {
1679
1680 KASSERT(mutex_owned(&uvm_pageqlock));
1681 if (pg->wire_count != 0) {
1682 return;
1683 }
1684 uvmpdpol_pageenqueue(pg);
1685 }
1686
1687 /*
1688 * uvm_pagezero: zero fill a page
1689 *
1690 * => if page is part of an object then the object should be locked
1691 * to protect pg->flags.
1692 */
1693
1694 void
1695 uvm_pagezero(struct vm_page *pg)
1696 {
1697 pg->flags &= ~PG_CLEAN;
1698 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1699 }
1700
1701 /*
1702 * uvm_pagecopy: copy a page
1703 *
1704 * => if page is part of an object then the object should be locked
1705 * to protect pg->flags.
1706 */
1707
1708 void
1709 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1710 {
1711
1712 dst->flags &= ~PG_CLEAN;
1713 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1714 }
1715
1716 /*
1717 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1718 */
1719
1720 bool
1721 uvm_pageismanaged(paddr_t pa)
1722 {
1723
1724 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1725 }
1726
1727 /*
1728 * uvm_page_lookup_freelist: look up the free list for the specified page
1729 */
1730
1731 int
1732 uvm_page_lookup_freelist(struct vm_page *pg)
1733 {
1734 uvm_physseg_t upm;
1735
1736 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1737 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1738 return uvm_physseg_get_free_list(upm);
1739 }
1740
1741 /*
1742 * uvm_page_locked_p: return true if object associated with page is
1743 * locked. this is a weak check for runtime assertions only.
1744 */
1745
1746 bool
1747 uvm_page_locked_p(struct vm_page *pg)
1748 {
1749
1750 if (pg->uobject != NULL) {
1751 return mutex_owned(pg->uobject->vmobjlock);
1752 }
1753 if (pg->uanon != NULL) {
1754 return mutex_owned(pg->uanon->an_lock);
1755 }
1756 return true;
1757 }
1758
1759 #if defined(DDB) || defined(DEBUGPRINT)
1760
1761 /*
1762 * uvm_page_printit: actually print the page
1763 */
1764
1765 static const char page_flagbits[] = UVM_PGFLAGBITS;
1766 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1767
1768 void
1769 uvm_page_printit(struct vm_page *pg, bool full,
1770 void (*pr)(const char *, ...))
1771 {
1772 struct vm_page *tpg;
1773 struct uvm_object *uobj;
1774 struct pgflist *pgl;
1775 char pgbuf[128];
1776 char pqbuf[128];
1777
1778 (*pr)("PAGE %p:\n", pg);
1779 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1780 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1781 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1782 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1783 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1784 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1785 #if defined(UVM_PAGE_TRKOWN)
1786 if (pg->flags & PG_BUSY)
1787 (*pr)(" owning process = %d, tag=%s\n",
1788 pg->owner, pg->owner_tag);
1789 else
1790 (*pr)(" page not busy, no owner\n");
1791 #else
1792 (*pr)(" [page ownership tracking disabled]\n");
1793 #endif
1794
1795 if (!full)
1796 return;
1797
1798 /* cross-verify object/anon */
1799 if ((pg->pqflags & PQ_FREE) == 0) {
1800 if (pg->pqflags & PQ_ANON) {
1801 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1802 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1803 (pg->uanon) ? pg->uanon->an_page : NULL);
1804 else
1805 (*pr)(" anon backpointer is OK\n");
1806 } else {
1807 uobj = pg->uobject;
1808 if (uobj) {
1809 (*pr)(" checking object list\n");
1810 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1811 if (tpg == pg) {
1812 break;
1813 }
1814 }
1815 if (tpg)
1816 (*pr)(" page found on object list\n");
1817 else
1818 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1819 }
1820 }
1821 }
1822
1823 /* cross-verify page queue */
1824 if (pg->pqflags & PQ_FREE) {
1825 int fl = uvm_page_lookup_freelist(pg);
1826 int color = VM_PGCOLOR_BUCKET(pg);
1827 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1828 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1829 } else {
1830 pgl = NULL;
1831 }
1832
1833 if (pgl) {
1834 (*pr)(" checking pageq list\n");
1835 LIST_FOREACH(tpg, pgl, pageq.list) {
1836 if (tpg == pg) {
1837 break;
1838 }
1839 }
1840 if (tpg)
1841 (*pr)(" page found on pageq list\n");
1842 else
1843 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1844 }
1845 }
1846
1847 /*
1848 * uvm_pages_printthem - print a summary of all managed pages
1849 */
1850
1851 void
1852 uvm_page_printall(void (*pr)(const char *, ...))
1853 {
1854 uvm_physseg_t i;
1855 paddr_t pfn;
1856 struct vm_page *pg;
1857
1858 (*pr)("%18s %4s %4s %18s %18s"
1859 #ifdef UVM_PAGE_TRKOWN
1860 " OWNER"
1861 #endif
1862 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1863 for (i = uvm_physseg_get_first();
1864 uvm_physseg_valid_p(i);
1865 i = uvm_physseg_get_next(i)) {
1866 for (pfn = uvm_physseg_get_start(i);
1867 pfn < uvm_physseg_get_end(i);
1868 pfn++) {
1869 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1870
1871 (*pr)("%18p %04x %04x %18p %18p",
1872 pg, pg->flags, pg->pqflags, pg->uobject,
1873 pg->uanon);
1874 #ifdef UVM_PAGE_TRKOWN
1875 if (pg->flags & PG_BUSY)
1876 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1877 #endif
1878 (*pr)("\n");
1879 }
1880 }
1881 }
1882
1883 #endif /* DDB || DEBUGPRINT */
1884