uvm_page.c revision 1.198 1 /* $NetBSD: uvm_page.c,v 1.198 2018/05/19 15:03:26 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_page.c: page ops.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.198 2018/05/19 15:03:26 jdolecek Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_uvm.h"
73 #include "opt_uvmhist.h"
74 #include "opt_readahead.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/extent.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_ddb.h>
88 #include <uvm/uvm_pdpolicy.h>
89
90 /*
91 * Some supported CPUs in a given architecture don't support all
92 * of the things necessary to do idle page zero'ing efficiently.
93 * We therefore provide a way to enable it from machdep code here.
94 */
95 bool vm_page_zero_enable = false;
96
97 /*
98 * number of pages per-CPU to reserve for the kernel.
99 */
100 #ifndef UVM_RESERVED_PAGES_PER_CPU
101 #define UVM_RESERVED_PAGES_PER_CPU 5
102 #endif
103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104
105 /*
106 * physical memory size;
107 */
108 psize_t physmem;
109
110 /*
111 * local variables
112 */
113
114 /*
115 * these variables record the values returned by vm_page_bootstrap,
116 * for debugging purposes. The implementation of uvm_pageboot_alloc
117 * and pmap_startup here also uses them internally.
118 */
119
120 static vaddr_t virtual_space_start;
121 static vaddr_t virtual_space_end;
122
123 /*
124 * we allocate an initial number of page colors in uvm_page_init(),
125 * and remember them. We may re-color pages as cache sizes are
126 * discovered during the autoconfiguration phase. But we can never
127 * free the initial set of buckets, since they are allocated using
128 * uvm_pageboot_alloc().
129 */
130
131 static size_t recolored_pages_memsize /* = 0 */;
132
133 #ifdef DEBUG
134 vaddr_t uvm_zerocheckkva;
135 #endif /* DEBUG */
136
137 /*
138 * These functions are reserved for uvm(9) internal use and are not
139 * exported in the header file uvm_physseg.h
140 *
141 * Thus they are redefined here.
142 */
143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145
146 /* returns a pgs array */
147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148
149 /*
150 * local prototypes
151 */
152
153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155
156 /*
157 * per-object tree of pages
158 */
159
160 static signed int
161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 {
163 const struct vm_page *pg1 = n1;
164 const struct vm_page *pg2 = n2;
165 const voff_t a = pg1->offset;
166 const voff_t b = pg2->offset;
167
168 if (a < b)
169 return -1;
170 if (a > b)
171 return 1;
172 return 0;
173 }
174
175 static signed int
176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 {
178 const struct vm_page *pg = n;
179 const voff_t a = pg->offset;
180 const voff_t b = *(const voff_t *)key;
181
182 if (a < b)
183 return -1;
184 if (a > b)
185 return 1;
186 return 0;
187 }
188
189 const rb_tree_ops_t uvm_page_tree_ops = {
190 .rbto_compare_nodes = uvm_page_compare_nodes,
191 .rbto_compare_key = uvm_page_compare_key,
192 .rbto_node_offset = offsetof(struct vm_page, rb_node),
193 .rbto_context = NULL
194 };
195
196 /*
197 * inline functions
198 */
199
200 /*
201 * uvm_pageinsert: insert a page in the object.
202 *
203 * => caller must lock object
204 * => caller must lock page queues
205 * => call should have already set pg's object and offset pointers
206 * and bumped the version counter
207 */
208
209 static inline void
210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211 struct vm_page *where)
212 {
213
214 KASSERT(uobj == pg->uobject);
215 KASSERT(mutex_owned(uobj->vmobjlock));
216 KASSERT((pg->flags & PG_TABLED) == 0);
217 KASSERT(where == NULL || (where->flags & PG_TABLED));
218 KASSERT(where == NULL || (where->uobject == uobj));
219
220 if (UVM_OBJ_IS_VNODE(uobj)) {
221 if (uobj->uo_npages == 0) {
222 struct vnode *vp = (struct vnode *)uobj;
223
224 vholdl(vp);
225 }
226 if (UVM_OBJ_IS_VTEXT(uobj)) {
227 atomic_inc_uint(&uvmexp.execpages);
228 } else {
229 atomic_inc_uint(&uvmexp.filepages);
230 }
231 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 atomic_inc_uint(&uvmexp.anonpages);
233 }
234
235 if (where)
236 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 else
238 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 pg->flags |= PG_TABLED;
240 uobj->uo_npages++;
241 }
242
243
244 static inline void
245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 {
247 struct vm_page *ret __diagused;
248
249 KASSERT(uobj == pg->uobject);
250 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
251 KASSERT(ret == pg);
252 }
253
254 static inline void
255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
256 {
257
258 KDASSERT(uobj != NULL);
259 uvm_pageinsert_tree(uobj, pg);
260 uvm_pageinsert_list(uobj, pg, NULL);
261 }
262
263 /*
264 * uvm_page_remove: remove page from object.
265 *
266 * => caller must lock object
267 * => caller must lock page queues
268 */
269
270 static inline void
271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 {
273
274 KASSERT(uobj == pg->uobject);
275 KASSERT(mutex_owned(uobj->vmobjlock));
276 KASSERT(pg->flags & PG_TABLED);
277
278 if (UVM_OBJ_IS_VNODE(uobj)) {
279 if (uobj->uo_npages == 1) {
280 struct vnode *vp = (struct vnode *)uobj;
281
282 holdrelel(vp);
283 }
284 if (UVM_OBJ_IS_VTEXT(uobj)) {
285 atomic_dec_uint(&uvmexp.execpages);
286 } else {
287 atomic_dec_uint(&uvmexp.filepages);
288 }
289 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 atomic_dec_uint(&uvmexp.anonpages);
291 }
292
293 /* object should be locked */
294 uobj->uo_npages--;
295 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 pg->flags &= ~PG_TABLED;
297 pg->uobject = NULL;
298 }
299
300 static inline void
301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 {
303
304 KASSERT(uobj == pg->uobject);
305 rb_tree_remove_node(&uobj->rb_tree, pg);
306 }
307
308 static inline void
309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
310 {
311
312 KDASSERT(uobj != NULL);
313 uvm_pageremove_tree(uobj, pg);
314 uvm_pageremove_list(uobj, pg);
315 }
316
317 static void
318 uvm_page_init_buckets(struct pgfreelist *pgfl)
319 {
320 int color, i;
321
322 for (color = 0; color < uvmexp.ncolors; color++) {
323 for (i = 0; i < PGFL_NQUEUES; i++) {
324 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 }
326 }
327 }
328
329 /*
330 * uvm_page_init: init the page system. called from uvm_init().
331 *
332 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333 */
334
335 void
336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 {
338 static struct uvm_cpu boot_cpu;
339 psize_t freepages, pagecount, bucketcount, n;
340 struct pgflbucket *bucketarray, *cpuarray;
341 struct vm_page *pagearray;
342 uvm_physseg_t bank;
343 int lcv;
344
345 KASSERT(ncpu <= 1);
346 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347
348 /*
349 * init the page queues and page queue locks, except the free
350 * list; we allocate that later (with the initial vm_page
351 * structures).
352 */
353
354 uvm.cpus[0] = &boot_cpu;
355 curcpu()->ci_data.cpu_uvm = &boot_cpu;
356 uvmpdpol_init();
357 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359
360 /*
361 * allocate vm_page structures.
362 */
363
364 /*
365 * sanity check:
366 * before calling this function the MD code is expected to register
367 * some free RAM with the uvm_page_physload() function. our job
368 * now is to allocate vm_page structures for this memory.
369 */
370
371 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
372 panic("uvm_page_bootstrap: no memory pre-allocated");
373
374 /*
375 * first calculate the number of free pages...
376 *
377 * note that we use start/end rather than avail_start/avail_end.
378 * this allows us to allocate extra vm_page structures in case we
379 * want to return some memory to the pool after booting.
380 */
381
382 freepages = 0;
383
384 for (bank = uvm_physseg_get_first();
385 uvm_physseg_valid_p(bank) ;
386 bank = uvm_physseg_get_next(bank)) {
387 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
388 }
389
390 /*
391 * Let MD code initialize the number of colors, or default
392 * to 1 color if MD code doesn't care.
393 */
394 if (uvmexp.ncolors == 0)
395 uvmexp.ncolors = 1;
396 uvmexp.colormask = uvmexp.ncolors - 1;
397 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
398
399 /*
400 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
401 * use. for each page of memory we use we need a vm_page structure.
402 * thus, the total number of pages we can use is the total size of
403 * the memory divided by the PAGE_SIZE plus the size of the vm_page
404 * structure. we add one to freepages as a fudge factor to avoid
405 * truncation errors (since we can only allocate in terms of whole
406 * pages).
407 */
408
409 bucketcount = uvmexp.ncolors * VM_NFREELIST;
410 pagecount = ((freepages + 1) << PAGE_SHIFT) /
411 (PAGE_SIZE + sizeof(struct vm_page));
412
413 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
414 sizeof(struct pgflbucket) * 2) + (pagecount *
415 sizeof(struct vm_page)));
416 cpuarray = bucketarray + bucketcount;
417 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418
419 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
420 uvm.page_free[lcv].pgfl_buckets =
421 (bucketarray + (lcv * uvmexp.ncolors));
422 uvm_page_init_buckets(&uvm.page_free[lcv]);
423 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
424 (cpuarray + (lcv * uvmexp.ncolors));
425 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
426 }
427 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
428
429 /*
430 * init the vm_page structures and put them in the correct place.
431 */
432 /* First init the extent */
433
434 for (bank = uvm_physseg_get_first(),
435 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
436 uvm_physseg_valid_p(bank);
437 bank = uvm_physseg_get_next(bank)) {
438
439 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
440 uvm_physseg_seg_alloc_from_slab(bank, n);
441 uvm_physseg_init_seg(bank, pagearray);
442
443 /* set up page array pointers */
444 pagearray += n;
445 pagecount -= n;
446 }
447
448 /*
449 * pass up the values of virtual_space_start and
450 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
451 * layers of the VM.
452 */
453
454 *kvm_startp = round_page(virtual_space_start);
455 *kvm_endp = trunc_page(virtual_space_end);
456 #ifdef DEBUG
457 /*
458 * steal kva for uvm_pagezerocheck().
459 */
460 uvm_zerocheckkva = *kvm_startp;
461 *kvm_startp += PAGE_SIZE;
462 #endif /* DEBUG */
463
464 /*
465 * init various thresholds.
466 */
467
468 uvmexp.reserve_pagedaemon = 1;
469 uvmexp.reserve_kernel = vm_page_reserve_kernel;
470
471 /*
472 * determine if we should zero pages in the idle loop.
473 */
474
475 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
476
477 /*
478 * done!
479 */
480
481 uvm.page_init_done = true;
482 }
483
484 /*
485 * uvm_setpagesize: set the page size
486 *
487 * => sets page_shift and page_mask from uvmexp.pagesize.
488 */
489
490 void
491 uvm_setpagesize(void)
492 {
493
494 /*
495 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
496 * to be a constant (indicated by being a non-zero value).
497 */
498 if (uvmexp.pagesize == 0) {
499 if (PAGE_SIZE == 0)
500 panic("uvm_setpagesize: uvmexp.pagesize not set");
501 uvmexp.pagesize = PAGE_SIZE;
502 }
503 uvmexp.pagemask = uvmexp.pagesize - 1;
504 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
505 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
506 uvmexp.pagesize, uvmexp.pagesize);
507 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 break;
510 }
511
512 /*
513 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514 */
515
516 vaddr_t
517 uvm_pageboot_alloc(vsize_t size)
518 {
519 static bool initialized = false;
520 vaddr_t addr;
521 #if !defined(PMAP_STEAL_MEMORY)
522 vaddr_t vaddr;
523 paddr_t paddr;
524 #endif
525
526 /*
527 * on first call to this function, initialize ourselves.
528 */
529 if (initialized == false) {
530 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531
532 /* round it the way we like it */
533 virtual_space_start = round_page(virtual_space_start);
534 virtual_space_end = trunc_page(virtual_space_end);
535
536 initialized = true;
537 }
538
539 /* round to page size */
540 size = round_page(size);
541 uvmexp.bootpages += atop(size);
542
543 #if defined(PMAP_STEAL_MEMORY)
544
545 /*
546 * defer bootstrap allocation to MD code (it may want to allocate
547 * from a direct-mapped segment). pmap_steal_memory should adjust
548 * virtual_space_start/virtual_space_end if necessary.
549 */
550
551 addr = pmap_steal_memory(size, &virtual_space_start,
552 &virtual_space_end);
553
554 return(addr);
555
556 #else /* !PMAP_STEAL_MEMORY */
557
558 /*
559 * allocate virtual memory for this request
560 */
561 if (virtual_space_start == virtual_space_end ||
562 (virtual_space_end - virtual_space_start) < size)
563 panic("uvm_pageboot_alloc: out of virtual space");
564
565 addr = virtual_space_start;
566
567 #ifdef PMAP_GROWKERNEL
568 /*
569 * If the kernel pmap can't map the requested space,
570 * then allocate more resources for it.
571 */
572 if (uvm_maxkaddr < (addr + size)) {
573 uvm_maxkaddr = pmap_growkernel(addr + size);
574 if (uvm_maxkaddr < (addr + size))
575 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
576 }
577 #endif
578
579 virtual_space_start += size;
580
581 /*
582 * allocate and mapin physical pages to back new virtual pages
583 */
584
585 for (vaddr = round_page(addr) ; vaddr < addr + size ;
586 vaddr += PAGE_SIZE) {
587
588 if (!uvm_page_physget(&paddr))
589 panic("uvm_pageboot_alloc: out of memory");
590
591 /*
592 * Note this memory is no longer managed, so using
593 * pmap_kenter is safe.
594 */
595 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
596 }
597 pmap_update(pmap_kernel());
598 return(addr);
599 #endif /* PMAP_STEAL_MEMORY */
600 }
601
602 #if !defined(PMAP_STEAL_MEMORY)
603 /*
604 * uvm_page_physget: "steal" one page from the vm_physmem structure.
605 *
606 * => attempt to allocate it off the end of a segment in which the "avail"
607 * values match the start/end values. if we can't do that, then we
608 * will advance both values (making them equal, and removing some
609 * vm_page structures from the non-avail area).
610 * => return false if out of memory.
611 */
612
613 /* subroutine: try to allocate from memory chunks on the specified freelist */
614 static bool uvm_page_physget_freelist(paddr_t *, int);
615
616 static bool
617 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
618 {
619 uvm_physseg_t lcv;
620
621 /* pass 1: try allocating from a matching end */
622 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
623 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
624 #else
625 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
626 #endif
627 {
628 if (uvm.page_init_done == true)
629 panic("uvm_page_physget: called _after_ bootstrap");
630
631 /* Try to match at front or back on unused segment */
632 if (uvm_page_physunload(lcv, freelist, paddrp) == false) {
633 if (paddrp == NULL) /* freelist fail, try next */
634 continue;
635 } else
636 return true;
637 }
638
639 /* pass2: forget about matching ends, just allocate something */
640 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
641 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
642 #else
643 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
644 #endif
645 {
646 /* Try the front regardless. */
647 if (uvm_page_physunload_force(lcv, freelist, paddrp) == false) {
648 if (paddrp == NULL) /* freelist fail, try next */
649 continue;
650 } else
651 return true;
652 }
653 return false;
654 }
655
656 bool
657 uvm_page_physget(paddr_t *paddrp)
658 {
659 int i;
660
661 /* try in the order of freelist preference */
662 for (i = 0; i < VM_NFREELIST; i++)
663 if (uvm_page_physget_freelist(paddrp, i) == true)
664 return (true);
665 return (false);
666 }
667 #endif /* PMAP_STEAL_MEMORY */
668
669 /*
670 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
671 * back from an I/O mapping (ugh!). used in some MD code as well.
672 */
673 struct vm_page *
674 uvm_phys_to_vm_page(paddr_t pa)
675 {
676 paddr_t pf = atop(pa);
677 paddr_t off;
678 uvm_physseg_t upm;
679
680 upm = uvm_physseg_find(pf, &off);
681 if (upm != UVM_PHYSSEG_TYPE_INVALID)
682 return uvm_physseg_get_pg(upm, off);
683 return(NULL);
684 }
685
686 paddr_t
687 uvm_vm_page_to_phys(const struct vm_page *pg)
688 {
689
690 return pg->phys_addr;
691 }
692
693 /*
694 * uvm_page_recolor: Recolor the pages if the new bucket count is
695 * larger than the old one.
696 */
697
698 void
699 uvm_page_recolor(int newncolors)
700 {
701 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
702 struct pgfreelist gpgfl, pgfl;
703 struct vm_page *pg;
704 vsize_t bucketcount;
705 size_t bucketmemsize, oldbucketmemsize;
706 int color, i, ocolors;
707 int lcv;
708 struct uvm_cpu *ucpu;
709
710 KASSERT(((newncolors - 1) & newncolors) == 0);
711
712 if (newncolors <= uvmexp.ncolors)
713 return;
714
715 if (uvm.page_init_done == false) {
716 uvmexp.ncolors = newncolors;
717 return;
718 }
719
720 bucketcount = newncolors * VM_NFREELIST;
721 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
722 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
723 cpuarray = bucketarray + bucketcount;
724
725 mutex_spin_enter(&uvm_fpageqlock);
726
727 /* Make sure we should still do this. */
728 if (newncolors <= uvmexp.ncolors) {
729 mutex_spin_exit(&uvm_fpageqlock);
730 kmem_free(bucketarray, bucketmemsize);
731 return;
732 }
733
734 oldbucketarray = uvm.page_free[0].pgfl_buckets;
735 ocolors = uvmexp.ncolors;
736
737 uvmexp.ncolors = newncolors;
738 uvmexp.colormask = uvmexp.ncolors - 1;
739
740 ucpu = curcpu()->ci_data.cpu_uvm;
741 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
742 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
743 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
744 uvm_page_init_buckets(&gpgfl);
745 uvm_page_init_buckets(&pgfl);
746 for (color = 0; color < ocolors; color++) {
747 for (i = 0; i < PGFL_NQUEUES; i++) {
748 while ((pg = LIST_FIRST(&uvm.page_free[
749 lcv].pgfl_buckets[color].pgfl_queues[i]))
750 != NULL) {
751 LIST_REMOVE(pg, pageq.list); /* global */
752 LIST_REMOVE(pg, listq.list); /* cpu */
753 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
754 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
755 i], pg, pageq.list);
756 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
757 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
758 i], pg, listq.list);
759 }
760 }
761 }
762 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
763 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
764 }
765
766 oldbucketmemsize = recolored_pages_memsize;
767
768 recolored_pages_memsize = bucketmemsize;
769 mutex_spin_exit(&uvm_fpageqlock);
770
771 if (oldbucketmemsize) {
772 kmem_free(oldbucketarray, oldbucketmemsize);
773 }
774
775 /*
776 * this calls uvm_km_alloc() which may want to hold
777 * uvm_fpageqlock.
778 */
779 uvm_pager_realloc_emerg();
780 }
781
782 /*
783 * uvm_cpu_attach: initialize per-CPU data structures.
784 */
785
786 void
787 uvm_cpu_attach(struct cpu_info *ci)
788 {
789 struct pgflbucket *bucketarray;
790 struct pgfreelist pgfl;
791 struct uvm_cpu *ucpu;
792 vsize_t bucketcount;
793 int lcv;
794
795 if (CPU_IS_PRIMARY(ci)) {
796 /* Already done in uvm_page_init(). */
797 goto attachrnd;
798 }
799
800 /* Add more reserve pages for this CPU. */
801 uvmexp.reserve_kernel += vm_page_reserve_kernel;
802
803 /* Configure this CPU's free lists. */
804 bucketcount = uvmexp.ncolors * VM_NFREELIST;
805 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
806 KM_SLEEP);
807 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
808 uvm.cpus[cpu_index(ci)] = ucpu;
809 ci->ci_data.cpu_uvm = ucpu;
810 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
811 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
812 uvm_page_init_buckets(&pgfl);
813 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
814 }
815
816 attachrnd:
817 /*
818 * Attach RNG source for this CPU's VM events
819 */
820 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
821 ci->ci_data.cpu_name, RND_TYPE_VM,
822 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
823 RND_FLAG_ESTIMATE_VALUE);
824
825 }
826
827 /*
828 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
829 */
830
831 static struct vm_page *
832 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
833 int *trycolorp)
834 {
835 struct pgflist *freeq;
836 struct vm_page *pg;
837 int color, trycolor = *trycolorp;
838 struct pgfreelist *gpgfl, *pgfl;
839
840 KASSERT(mutex_owned(&uvm_fpageqlock));
841
842 color = trycolor;
843 pgfl = &ucpu->page_free[flist];
844 gpgfl = &uvm.page_free[flist];
845 do {
846 /* cpu, try1 */
847 if ((pg = LIST_FIRST((freeq =
848 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
849 KASSERT(pg->pqflags & PQ_FREE);
850 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
851 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
852 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
853 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
854 uvmexp.cpuhit++;
855 goto gotit;
856 }
857 /* global, try1 */
858 if ((pg = LIST_FIRST((freeq =
859 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
860 KASSERT(pg->pqflags & PQ_FREE);
861 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
862 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
863 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
864 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
865 uvmexp.cpumiss++;
866 goto gotit;
867 }
868 /* cpu, try2 */
869 if ((pg = LIST_FIRST((freeq =
870 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
871 KASSERT(pg->pqflags & PQ_FREE);
872 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
873 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
874 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
875 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
876 uvmexp.cpuhit++;
877 goto gotit;
878 }
879 /* global, try2 */
880 if ((pg = LIST_FIRST((freeq =
881 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
882 KASSERT(pg->pqflags & PQ_FREE);
883 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
884 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
885 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
886 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
887 uvmexp.cpumiss++;
888 goto gotit;
889 }
890 color = (color + 1) & uvmexp.colormask;
891 } while (color != trycolor);
892
893 return (NULL);
894
895 gotit:
896 LIST_REMOVE(pg, pageq.list); /* global list */
897 LIST_REMOVE(pg, listq.list); /* per-cpu list */
898 uvmexp.free--;
899
900 /* update zero'd page count */
901 if (pg->flags & PG_ZERO)
902 uvmexp.zeropages--;
903
904 if (color == trycolor)
905 uvmexp.colorhit++;
906 else {
907 uvmexp.colormiss++;
908 *trycolorp = color;
909 }
910
911 return (pg);
912 }
913
914 /*
915 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
916 *
917 * => return null if no pages free
918 * => wake up pagedaemon if number of free pages drops below low water mark
919 * => if obj != NULL, obj must be locked (to put in obj's tree)
920 * => if anon != NULL, anon must be locked (to put in anon)
921 * => only one of obj or anon can be non-null
922 * => caller must activate/deactivate page if it is not wired.
923 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
924 * => policy decision: it is more important to pull a page off of the
925 * appropriate priority free list than it is to get a zero'd or
926 * unknown contents page. This is because we live with the
927 * consequences of a bad free list decision for the entire
928 * lifetime of the page, e.g. if the page comes from memory that
929 * is slower to access.
930 */
931
932 struct vm_page *
933 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
934 int flags, int strat, int free_list)
935 {
936 int try1, try2, zeroit = 0, color;
937 int lcv;
938 struct uvm_cpu *ucpu;
939 struct vm_page *pg;
940 lwp_t *l;
941
942 KASSERT(obj == NULL || anon == NULL);
943 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
944 KASSERT(off == trunc_page(off));
945 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
946 KASSERT(anon == NULL || anon->an_lock == NULL ||
947 mutex_owned(anon->an_lock));
948
949 mutex_spin_enter(&uvm_fpageqlock);
950
951 /*
952 * This implements a global round-robin page coloring
953 * algorithm.
954 */
955
956 ucpu = curcpu()->ci_data.cpu_uvm;
957 if (flags & UVM_FLAG_COLORMATCH) {
958 color = atop(off) & uvmexp.colormask;
959 } else {
960 color = ucpu->page_free_nextcolor;
961 }
962
963 /*
964 * check to see if we need to generate some free pages waking
965 * the pagedaemon.
966 */
967
968 uvm_kick_pdaemon();
969
970 /*
971 * fail if any of these conditions is true:
972 * [1] there really are no free pages, or
973 * [2] only kernel "reserved" pages remain and
974 * reserved pages have not been requested.
975 * [3] only pagedaemon "reserved" pages remain and
976 * the requestor isn't the pagedaemon.
977 * we make kernel reserve pages available if called by a
978 * kernel thread or a realtime thread.
979 */
980 l = curlwp;
981 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
982 flags |= UVM_PGA_USERESERVE;
983 }
984 if ((uvmexp.free <= uvmexp.reserve_kernel &&
985 (flags & UVM_PGA_USERESERVE) == 0) ||
986 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
987 curlwp != uvm.pagedaemon_lwp))
988 goto fail;
989
990 #if PGFL_NQUEUES != 2
991 #error uvm_pagealloc_strat needs to be updated
992 #endif
993
994 /*
995 * If we want a zero'd page, try the ZEROS queue first, otherwise
996 * we try the UNKNOWN queue first.
997 */
998 if (flags & UVM_PGA_ZERO) {
999 try1 = PGFL_ZEROS;
1000 try2 = PGFL_UNKNOWN;
1001 } else {
1002 try1 = PGFL_UNKNOWN;
1003 try2 = PGFL_ZEROS;
1004 }
1005
1006 again:
1007 switch (strat) {
1008 case UVM_PGA_STRAT_NORMAL:
1009 /* Check freelists: descending priority (ascending id) order */
1010 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1011 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1012 try1, try2, &color);
1013 if (pg != NULL)
1014 goto gotit;
1015 }
1016
1017 /* No pages free! */
1018 goto fail;
1019
1020 case UVM_PGA_STRAT_ONLY:
1021 case UVM_PGA_STRAT_FALLBACK:
1022 /* Attempt to allocate from the specified free list. */
1023 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1024 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1025 try1, try2, &color);
1026 if (pg != NULL)
1027 goto gotit;
1028
1029 /* Fall back, if possible. */
1030 if (strat == UVM_PGA_STRAT_FALLBACK) {
1031 strat = UVM_PGA_STRAT_NORMAL;
1032 goto again;
1033 }
1034
1035 /* No pages free! */
1036 goto fail;
1037
1038 default:
1039 panic("uvm_pagealloc_strat: bad strat %d", strat);
1040 /* NOTREACHED */
1041 }
1042
1043 gotit:
1044 /*
1045 * We now know which color we actually allocated from; set
1046 * the next color accordingly.
1047 */
1048
1049 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1050
1051 /*
1052 * update allocation statistics and remember if we have to
1053 * zero the page
1054 */
1055
1056 if (flags & UVM_PGA_ZERO) {
1057 if (pg->flags & PG_ZERO) {
1058 uvmexp.pga_zerohit++;
1059 zeroit = 0;
1060 } else {
1061 uvmexp.pga_zeromiss++;
1062 zeroit = 1;
1063 }
1064 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1065 ucpu->page_idle_zero = vm_page_zero_enable;
1066 }
1067 }
1068 KASSERT(pg->pqflags == PQ_FREE);
1069
1070 pg->offset = off;
1071 pg->uobject = obj;
1072 pg->uanon = anon;
1073 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1074 if (anon) {
1075 anon->an_page = pg;
1076 pg->pqflags = PQ_ANON;
1077 atomic_inc_uint(&uvmexp.anonpages);
1078 } else {
1079 if (obj) {
1080 uvm_pageinsert(obj, pg);
1081 }
1082 pg->pqflags = 0;
1083 }
1084 mutex_spin_exit(&uvm_fpageqlock);
1085
1086 #if defined(UVM_PAGE_TRKOWN)
1087 pg->owner_tag = NULL;
1088 #endif
1089 UVM_PAGE_OWN(pg, "new alloc");
1090
1091 if (flags & UVM_PGA_ZERO) {
1092 /*
1093 * A zero'd page is not clean. If we got a page not already
1094 * zero'd, then we have to zero it ourselves.
1095 */
1096 pg->flags &= ~PG_CLEAN;
1097 if (zeroit)
1098 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1099 }
1100
1101 return(pg);
1102
1103 fail:
1104 mutex_spin_exit(&uvm_fpageqlock);
1105 return (NULL);
1106 }
1107
1108 /*
1109 * uvm_pagereplace: replace a page with another
1110 *
1111 * => object must be locked
1112 */
1113
1114 void
1115 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1116 {
1117 struct uvm_object *uobj = oldpg->uobject;
1118
1119 KASSERT((oldpg->flags & PG_TABLED) != 0);
1120 KASSERT(uobj != NULL);
1121 KASSERT((newpg->flags & PG_TABLED) == 0);
1122 KASSERT(newpg->uobject == NULL);
1123 KASSERT(mutex_owned(uobj->vmobjlock));
1124
1125 newpg->uobject = uobj;
1126 newpg->offset = oldpg->offset;
1127
1128 uvm_pageremove_tree(uobj, oldpg);
1129 uvm_pageinsert_tree(uobj, newpg);
1130 uvm_pageinsert_list(uobj, newpg, oldpg);
1131 uvm_pageremove_list(uobj, oldpg);
1132 }
1133
1134 /*
1135 * uvm_pagerealloc: reallocate a page from one object to another
1136 *
1137 * => both objects must be locked
1138 */
1139
1140 void
1141 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1142 {
1143 /*
1144 * remove it from the old object
1145 */
1146
1147 if (pg->uobject) {
1148 uvm_pageremove(pg->uobject, pg);
1149 }
1150
1151 /*
1152 * put it in the new object
1153 */
1154
1155 if (newobj) {
1156 pg->uobject = newobj;
1157 pg->offset = newoff;
1158 uvm_pageinsert(newobj, pg);
1159 }
1160 }
1161
1162 #ifdef DEBUG
1163 /*
1164 * check if page is zero-filled
1165 *
1166 * - called with free page queue lock held.
1167 */
1168 void
1169 uvm_pagezerocheck(struct vm_page *pg)
1170 {
1171 int *p, *ep;
1172
1173 KASSERT(uvm_zerocheckkva != 0);
1174 KASSERT(mutex_owned(&uvm_fpageqlock));
1175
1176 /*
1177 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1178 * uvm page allocator.
1179 *
1180 * it might be better to have "CPU-local temporary map" pmap interface.
1181 */
1182 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1183 p = (int *)uvm_zerocheckkva;
1184 ep = (int *)((char *)p + PAGE_SIZE);
1185 pmap_update(pmap_kernel());
1186 while (p < ep) {
1187 if (*p != 0)
1188 panic("PG_ZERO page isn't zero-filled");
1189 p++;
1190 }
1191 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1192 /*
1193 * pmap_update() is not necessary here because no one except us
1194 * uses this VA.
1195 */
1196 }
1197 #endif /* DEBUG */
1198
1199 /*
1200 * uvm_pagefree: free page
1201 *
1202 * => erase page's identity (i.e. remove from object)
1203 * => put page on free list
1204 * => caller must lock owning object (either anon or uvm_object)
1205 * => caller must lock page queues
1206 * => assumes all valid mappings of pg are gone
1207 */
1208
1209 void
1210 uvm_pagefree(struct vm_page *pg)
1211 {
1212 struct pgflist *pgfl;
1213 struct uvm_cpu *ucpu;
1214 int index, color, queue;
1215 bool iszero;
1216
1217 #ifdef DEBUG
1218 if (pg->uobject == (void *)0xdeadbeef &&
1219 pg->uanon == (void *)0xdeadbeef) {
1220 panic("uvm_pagefree: freeing free page %p", pg);
1221 }
1222 #endif /* DEBUG */
1223
1224 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1225 KASSERT(!(pg->pqflags & PQ_FREE));
1226 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1227 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1228 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1229 mutex_owned(pg->uanon->an_lock));
1230
1231 /*
1232 * if the page is loaned, resolve the loan instead of freeing.
1233 */
1234
1235 if (pg->loan_count) {
1236 KASSERT(pg->wire_count == 0);
1237
1238 /*
1239 * if the page is owned by an anon then we just want to
1240 * drop anon ownership. the kernel will free the page when
1241 * it is done with it. if the page is owned by an object,
1242 * remove it from the object and mark it dirty for the benefit
1243 * of possible anon owners.
1244 *
1245 * regardless of previous ownership, wakeup any waiters,
1246 * unbusy the page, and we're done.
1247 */
1248
1249 if (pg->uobject != NULL) {
1250 uvm_pageremove(pg->uobject, pg);
1251 pg->flags &= ~PG_CLEAN;
1252 } else if (pg->uanon != NULL) {
1253 if ((pg->pqflags & PQ_ANON) == 0) {
1254 pg->loan_count--;
1255 } else {
1256 pg->pqflags &= ~PQ_ANON;
1257 atomic_dec_uint(&uvmexp.anonpages);
1258 }
1259 pg->uanon->an_page = NULL;
1260 pg->uanon = NULL;
1261 }
1262 if (pg->flags & PG_WANTED) {
1263 wakeup(pg);
1264 }
1265 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1266 #ifdef UVM_PAGE_TRKOWN
1267 pg->owner_tag = NULL;
1268 #endif
1269 if (pg->loan_count) {
1270 KASSERT(pg->uobject == NULL);
1271 if (pg->uanon == NULL) {
1272 KASSERT(mutex_owned(&uvm_pageqlock));
1273 uvm_pagedequeue(pg);
1274 }
1275 return;
1276 }
1277 }
1278
1279 /*
1280 * remove page from its object or anon.
1281 */
1282
1283 if (pg->uobject != NULL) {
1284 uvm_pageremove(pg->uobject, pg);
1285 } else if (pg->uanon != NULL) {
1286 pg->uanon->an_page = NULL;
1287 atomic_dec_uint(&uvmexp.anonpages);
1288 }
1289
1290 /*
1291 * now remove the page from the queues.
1292 */
1293 if (uvmpdpol_pageisqueued_p(pg)) {
1294 KASSERT(mutex_owned(&uvm_pageqlock));
1295 uvm_pagedequeue(pg);
1296 }
1297
1298 /*
1299 * if the page was wired, unwire it now.
1300 */
1301
1302 if (pg->wire_count) {
1303 pg->wire_count = 0;
1304 uvmexp.wired--;
1305 }
1306
1307 /*
1308 * and put on free queue
1309 */
1310
1311 iszero = (pg->flags & PG_ZERO);
1312 index = uvm_page_lookup_freelist(pg);
1313 color = VM_PGCOLOR_BUCKET(pg);
1314 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1315
1316 #ifdef DEBUG
1317 pg->uobject = (void *)0xdeadbeef;
1318 pg->uanon = (void *)0xdeadbeef;
1319 #endif
1320
1321 mutex_spin_enter(&uvm_fpageqlock);
1322 pg->pqflags = PQ_FREE;
1323
1324 #ifdef DEBUG
1325 if (iszero)
1326 uvm_pagezerocheck(pg);
1327 #endif /* DEBUG */
1328
1329
1330 /* global list */
1331 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1332 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1333 uvmexp.free++;
1334 if (iszero) {
1335 uvmexp.zeropages++;
1336 }
1337
1338 /* per-cpu list */
1339 ucpu = curcpu()->ci_data.cpu_uvm;
1340 pg->offset = (uintptr_t)ucpu;
1341 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1342 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1343 ucpu->pages[queue]++;
1344 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1345 ucpu->page_idle_zero = vm_page_zero_enable;
1346 }
1347
1348 mutex_spin_exit(&uvm_fpageqlock);
1349 }
1350
1351 /*
1352 * uvm_page_unbusy: unbusy an array of pages.
1353 *
1354 * => pages must either all belong to the same object, or all belong to anons.
1355 * => if pages are object-owned, object must be locked.
1356 * => if pages are anon-owned, anons must be locked.
1357 * => caller must lock page queues if pages may be released.
1358 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1359 */
1360
1361 void
1362 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1363 {
1364 struct vm_page *pg;
1365 int i;
1366 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1367
1368 for (i = 0; i < npgs; i++) {
1369 pg = pgs[i];
1370 if (pg == NULL || pg == PGO_DONTCARE) {
1371 continue;
1372 }
1373
1374 KASSERT(uvm_page_locked_p(pg));
1375 KASSERT(pg->flags & PG_BUSY);
1376 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1377 if (pg->flags & PG_WANTED) {
1378 wakeup(pg);
1379 }
1380 if (pg->flags & PG_RELEASED) {
1381 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1382 (uintptr_t)pg, 0, 0, 0);
1383 KASSERT(pg->uobject != NULL ||
1384 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1385 pg->flags &= ~PG_RELEASED;
1386 uvm_pagefree(pg);
1387 } else {
1388 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1389 (uintptr_t)pg, 0, 0, 0);
1390 KASSERT((pg->flags & PG_FAKE) == 0);
1391 pg->flags &= ~(PG_WANTED|PG_BUSY);
1392 UVM_PAGE_OWN(pg, NULL);
1393 }
1394 }
1395 }
1396
1397 #if defined(UVM_PAGE_TRKOWN)
1398 /*
1399 * uvm_page_own: set or release page ownership
1400 *
1401 * => this is a debugging function that keeps track of who sets PG_BUSY
1402 * and where they do it. it can be used to track down problems
1403 * such a process setting "PG_BUSY" and never releasing it.
1404 * => page's object [if any] must be locked
1405 * => if "tag" is NULL then we are releasing page ownership
1406 */
1407 void
1408 uvm_page_own(struct vm_page *pg, const char *tag)
1409 {
1410
1411 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1412 KASSERT((pg->flags & PG_WANTED) == 0);
1413 KASSERT(uvm_page_locked_p(pg));
1414
1415 /* gain ownership? */
1416 if (tag) {
1417 KASSERT((pg->flags & PG_BUSY) != 0);
1418 if (pg->owner_tag) {
1419 printf("uvm_page_own: page %p already owned "
1420 "by proc %d [%s]\n", pg,
1421 pg->owner, pg->owner_tag);
1422 panic("uvm_page_own");
1423 }
1424 pg->owner = curproc->p_pid;
1425 pg->lowner = curlwp->l_lid;
1426 pg->owner_tag = tag;
1427 return;
1428 }
1429
1430 /* drop ownership */
1431 KASSERT((pg->flags & PG_BUSY) == 0);
1432 if (pg->owner_tag == NULL) {
1433 printf("uvm_page_own: dropping ownership of an non-owned "
1434 "page (%p)\n", pg);
1435 panic("uvm_page_own");
1436 }
1437 if (!uvmpdpol_pageisqueued_p(pg)) {
1438 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1439 pg->wire_count > 0);
1440 } else {
1441 KASSERT(pg->wire_count == 0);
1442 }
1443 pg->owner_tag = NULL;
1444 }
1445 #endif
1446
1447 /*
1448 * uvm_pageidlezero: zero free pages while the system is idle.
1449 *
1450 * => try to complete one color bucket at a time, to reduce our impact
1451 * on the CPU cache.
1452 * => we loop until we either reach the target or there is a lwp ready
1453 * to run, or MD code detects a reason to break early.
1454 */
1455 void
1456 uvm_pageidlezero(void)
1457 {
1458 struct vm_page *pg;
1459 struct pgfreelist *pgfl, *gpgfl;
1460 struct uvm_cpu *ucpu;
1461 int free_list, firstbucket, nextbucket;
1462 bool lcont = false;
1463
1464 ucpu = curcpu()->ci_data.cpu_uvm;
1465 if (!ucpu->page_idle_zero ||
1466 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1467 ucpu->page_idle_zero = false;
1468 return;
1469 }
1470 if (!mutex_tryenter(&uvm_fpageqlock)) {
1471 /* Contention: let other CPUs to use the lock. */
1472 return;
1473 }
1474 firstbucket = ucpu->page_free_nextcolor;
1475 nextbucket = firstbucket;
1476 do {
1477 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1478 if (sched_curcpu_runnable_p()) {
1479 goto quit;
1480 }
1481 pgfl = &ucpu->page_free[free_list];
1482 gpgfl = &uvm.page_free[free_list];
1483 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1484 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1485 if (lcont || sched_curcpu_runnable_p()) {
1486 goto quit;
1487 }
1488 LIST_REMOVE(pg, pageq.list); /* global list */
1489 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1490 ucpu->pages[PGFL_UNKNOWN]--;
1491 uvmexp.free--;
1492 KASSERT(pg->pqflags == PQ_FREE);
1493 pg->pqflags = 0;
1494 mutex_spin_exit(&uvm_fpageqlock);
1495 #ifdef PMAP_PAGEIDLEZERO
1496 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1497
1498 /*
1499 * The machine-dependent code detected
1500 * some reason for us to abort zeroing
1501 * pages, probably because there is a
1502 * process now ready to run.
1503 */
1504
1505 mutex_spin_enter(&uvm_fpageqlock);
1506 pg->pqflags = PQ_FREE;
1507 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1508 nextbucket].pgfl_queues[
1509 PGFL_UNKNOWN], pg, pageq.list);
1510 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1511 nextbucket].pgfl_queues[
1512 PGFL_UNKNOWN], pg, listq.list);
1513 ucpu->pages[PGFL_UNKNOWN]++;
1514 uvmexp.free++;
1515 uvmexp.zeroaborts++;
1516 goto quit;
1517 }
1518 #else
1519 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1520 #endif /* PMAP_PAGEIDLEZERO */
1521 pg->flags |= PG_ZERO;
1522
1523 if (!mutex_tryenter(&uvm_fpageqlock)) {
1524 lcont = true;
1525 mutex_spin_enter(&uvm_fpageqlock);
1526 } else {
1527 lcont = false;
1528 }
1529 pg->pqflags = PQ_FREE;
1530 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1531 nextbucket].pgfl_queues[PGFL_ZEROS],
1532 pg, pageq.list);
1533 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1534 nextbucket].pgfl_queues[PGFL_ZEROS],
1535 pg, listq.list);
1536 ucpu->pages[PGFL_ZEROS]++;
1537 uvmexp.free++;
1538 uvmexp.zeropages++;
1539 }
1540 }
1541 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1542 break;
1543 }
1544 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1545 } while (nextbucket != firstbucket);
1546 ucpu->page_idle_zero = false;
1547 quit:
1548 mutex_spin_exit(&uvm_fpageqlock);
1549 }
1550
1551 /*
1552 * uvm_pagelookup: look up a page
1553 *
1554 * => caller should lock object to keep someone from pulling the page
1555 * out from under it
1556 */
1557
1558 struct vm_page *
1559 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1560 {
1561 struct vm_page *pg;
1562
1563 KASSERT(mutex_owned(obj->vmobjlock));
1564
1565 pg = rb_tree_find_node(&obj->rb_tree, &off);
1566
1567 KASSERT(pg == NULL || obj->uo_npages != 0);
1568 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1569 (pg->flags & PG_BUSY) != 0);
1570 return pg;
1571 }
1572
1573 /*
1574 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1575 *
1576 * => caller must lock page queues
1577 */
1578
1579 void
1580 uvm_pagewire(struct vm_page *pg)
1581 {
1582 KASSERT(mutex_owned(&uvm_pageqlock));
1583 #if defined(READAHEAD_STATS)
1584 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1585 uvm_ra_hit.ev_count++;
1586 pg->pqflags &= ~PQ_READAHEAD;
1587 }
1588 #endif /* defined(READAHEAD_STATS) */
1589 if (pg->wire_count == 0) {
1590 uvm_pagedequeue(pg);
1591 uvmexp.wired++;
1592 }
1593 pg->wire_count++;
1594 KASSERT(pg->wire_count > 0); /* detect wraparound */
1595 }
1596
1597 /*
1598 * uvm_pageunwire: unwire the page.
1599 *
1600 * => activate if wire count goes to zero.
1601 * => caller must lock page queues
1602 */
1603
1604 void
1605 uvm_pageunwire(struct vm_page *pg)
1606 {
1607 KASSERT(mutex_owned(&uvm_pageqlock));
1608 pg->wire_count--;
1609 if (pg->wire_count == 0) {
1610 uvm_pageactivate(pg);
1611 uvmexp.wired--;
1612 }
1613 }
1614
1615 /*
1616 * uvm_pagedeactivate: deactivate page
1617 *
1618 * => caller must lock page queues
1619 * => caller must check to make sure page is not wired
1620 * => object that page belongs to must be locked (so we can adjust pg->flags)
1621 * => caller must clear the reference on the page before calling
1622 */
1623
1624 void
1625 uvm_pagedeactivate(struct vm_page *pg)
1626 {
1627
1628 KASSERT(mutex_owned(&uvm_pageqlock));
1629 KASSERT(uvm_page_locked_p(pg));
1630 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1631 uvmpdpol_pagedeactivate(pg);
1632 }
1633
1634 /*
1635 * uvm_pageactivate: activate page
1636 *
1637 * => caller must lock page queues
1638 */
1639
1640 void
1641 uvm_pageactivate(struct vm_page *pg)
1642 {
1643
1644 KASSERT(mutex_owned(&uvm_pageqlock));
1645 KASSERT(uvm_page_locked_p(pg));
1646 #if defined(READAHEAD_STATS)
1647 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1648 uvm_ra_hit.ev_count++;
1649 pg->pqflags &= ~PQ_READAHEAD;
1650 }
1651 #endif /* defined(READAHEAD_STATS) */
1652 if (pg->wire_count != 0) {
1653 return;
1654 }
1655 uvmpdpol_pageactivate(pg);
1656 }
1657
1658 /*
1659 * uvm_pagedequeue: remove a page from any paging queue
1660 */
1661
1662 void
1663 uvm_pagedequeue(struct vm_page *pg)
1664 {
1665
1666 if (uvmpdpol_pageisqueued_p(pg)) {
1667 KASSERT(mutex_owned(&uvm_pageqlock));
1668 }
1669
1670 uvmpdpol_pagedequeue(pg);
1671 }
1672
1673 /*
1674 * uvm_pageenqueue: add a page to a paging queue without activating.
1675 * used where a page is not really demanded (yet). eg. read-ahead
1676 */
1677
1678 void
1679 uvm_pageenqueue(struct vm_page *pg)
1680 {
1681
1682 KASSERT(mutex_owned(&uvm_pageqlock));
1683 if (pg->wire_count != 0) {
1684 return;
1685 }
1686 uvmpdpol_pageenqueue(pg);
1687 }
1688
1689 /*
1690 * uvm_pagezero: zero fill a page
1691 *
1692 * => if page is part of an object then the object should be locked
1693 * to protect pg->flags.
1694 */
1695
1696 void
1697 uvm_pagezero(struct vm_page *pg)
1698 {
1699 pg->flags &= ~PG_CLEAN;
1700 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1701 }
1702
1703 /*
1704 * uvm_pagecopy: copy a page
1705 *
1706 * => if page is part of an object then the object should be locked
1707 * to protect pg->flags.
1708 */
1709
1710 void
1711 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1712 {
1713
1714 dst->flags &= ~PG_CLEAN;
1715 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1716 }
1717
1718 /*
1719 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1720 */
1721
1722 bool
1723 uvm_pageismanaged(paddr_t pa)
1724 {
1725
1726 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1727 }
1728
1729 /*
1730 * uvm_page_lookup_freelist: look up the free list for the specified page
1731 */
1732
1733 int
1734 uvm_page_lookup_freelist(struct vm_page *pg)
1735 {
1736 uvm_physseg_t upm;
1737
1738 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1739 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1740 return uvm_physseg_get_free_list(upm);
1741 }
1742
1743 /*
1744 * uvm_page_locked_p: return true if object associated with page is
1745 * locked. this is a weak check for runtime assertions only.
1746 */
1747
1748 bool
1749 uvm_page_locked_p(struct vm_page *pg)
1750 {
1751
1752 if (pg->uobject != NULL) {
1753 return mutex_owned(pg->uobject->vmobjlock);
1754 }
1755 if (pg->uanon != NULL) {
1756 return mutex_owned(pg->uanon->an_lock);
1757 }
1758 return true;
1759 }
1760
1761 #ifdef PMAP_DIRECT
1762 /*
1763 * Call pmap to translate physical address into a virtual and to run a callback
1764 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1765 * or equivalent.
1766 */
1767 int
1768 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1769 int (*process)(void *, size_t, void *), void *arg)
1770 {
1771 int error = 0;
1772 paddr_t pa;
1773 size_t todo;
1774 voff_t pgoff = (off & PAGE_MASK);
1775 struct vm_page *pg;
1776
1777 KASSERT(npages > 0 && len > 0);
1778
1779 for (int i = 0; i < npages; i++) {
1780 pg = pgs[i];
1781
1782 KASSERT(len > 0);
1783
1784 /*
1785 * Caller is responsible for ensuring all the pages are
1786 * available.
1787 */
1788 KASSERT(pg != NULL && pg != PGO_DONTCARE);
1789
1790 pa = VM_PAGE_TO_PHYS(pg);
1791 todo = MIN(len, PAGE_SIZE - pgoff);
1792
1793 error = pmap_direct_process(pa, pgoff, todo, process, arg);
1794 if (error)
1795 break;
1796
1797 pgoff = 0;
1798 len -= todo;
1799 }
1800
1801 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1802 return error;
1803 }
1804 #endif /* PMAP_DIRECT */
1805
1806 #if defined(DDB) || defined(DEBUGPRINT)
1807
1808 /*
1809 * uvm_page_printit: actually print the page
1810 */
1811
1812 static const char page_flagbits[] = UVM_PGFLAGBITS;
1813 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1814
1815 void
1816 uvm_page_printit(struct vm_page *pg, bool full,
1817 void (*pr)(const char *, ...))
1818 {
1819 struct vm_page *tpg;
1820 struct uvm_object *uobj;
1821 struct pgflist *pgl;
1822 char pgbuf[128];
1823 char pqbuf[128];
1824
1825 (*pr)("PAGE %p:\n", pg);
1826 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1827 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1828 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1829 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1830 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1831 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1832 #if defined(UVM_PAGE_TRKOWN)
1833 if (pg->flags & PG_BUSY)
1834 (*pr)(" owning process = %d, tag=%s\n",
1835 pg->owner, pg->owner_tag);
1836 else
1837 (*pr)(" page not busy, no owner\n");
1838 #else
1839 (*pr)(" [page ownership tracking disabled]\n");
1840 #endif
1841
1842 if (!full)
1843 return;
1844
1845 /* cross-verify object/anon */
1846 if ((pg->pqflags & PQ_FREE) == 0) {
1847 if (pg->pqflags & PQ_ANON) {
1848 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1849 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1850 (pg->uanon) ? pg->uanon->an_page : NULL);
1851 else
1852 (*pr)(" anon backpointer is OK\n");
1853 } else {
1854 uobj = pg->uobject;
1855 if (uobj) {
1856 (*pr)(" checking object list\n");
1857 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1858 if (tpg == pg) {
1859 break;
1860 }
1861 }
1862 if (tpg)
1863 (*pr)(" page found on object list\n");
1864 else
1865 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1866 }
1867 }
1868 }
1869
1870 /* cross-verify page queue */
1871 if (pg->pqflags & PQ_FREE) {
1872 int fl = uvm_page_lookup_freelist(pg);
1873 int color = VM_PGCOLOR_BUCKET(pg);
1874 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1875 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1876 } else {
1877 pgl = NULL;
1878 }
1879
1880 if (pgl) {
1881 (*pr)(" checking pageq list\n");
1882 LIST_FOREACH(tpg, pgl, pageq.list) {
1883 if (tpg == pg) {
1884 break;
1885 }
1886 }
1887 if (tpg)
1888 (*pr)(" page found on pageq list\n");
1889 else
1890 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1891 }
1892 }
1893
1894 /*
1895 * uvm_pages_printthem - print a summary of all managed pages
1896 */
1897
1898 void
1899 uvm_page_printall(void (*pr)(const char *, ...))
1900 {
1901 uvm_physseg_t i;
1902 paddr_t pfn;
1903 struct vm_page *pg;
1904
1905 (*pr)("%18s %4s %4s %18s %18s"
1906 #ifdef UVM_PAGE_TRKOWN
1907 " OWNER"
1908 #endif
1909 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1910 for (i = uvm_physseg_get_first();
1911 uvm_physseg_valid_p(i);
1912 i = uvm_physseg_get_next(i)) {
1913 for (pfn = uvm_physseg_get_start(i);
1914 pfn < uvm_physseg_get_end(i);
1915 pfn++) {
1916 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1917
1918 (*pr)("%18p %04x %04x %18p %18p",
1919 pg, pg->flags, pg->pqflags, pg->uobject,
1920 pg->uanon);
1921 #ifdef UVM_PAGE_TRKOWN
1922 if (pg->flags & PG_BUSY)
1923 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1924 #endif
1925 (*pr)("\n");
1926 }
1927 }
1928 }
1929
1930 #endif /* DDB || DEBUGPRINT */
1931