uvm_page.c revision 1.200 1 /* $NetBSD: uvm_page.c,v 1.200 2019/09/20 11:09:43 maxv Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_page.c: page ops.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.200 2019/09/20 11:09:43 maxv Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_uvm.h"
73 #include "opt_uvmhist.h"
74 #include "opt_readahead.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/extent.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_ddb.h>
88 #include <uvm/uvm_pdpolicy.h>
89
90 /*
91 * Some supported CPUs in a given architecture don't support all
92 * of the things necessary to do idle page zero'ing efficiently.
93 * We therefore provide a way to enable it from machdep code here.
94 */
95 bool vm_page_zero_enable = false;
96
97 /*
98 * number of pages per-CPU to reserve for the kernel.
99 */
100 #ifndef UVM_RESERVED_PAGES_PER_CPU
101 #define UVM_RESERVED_PAGES_PER_CPU 5
102 #endif
103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104
105 /*
106 * physical memory size;
107 */
108 psize_t physmem;
109
110 /*
111 * local variables
112 */
113
114 /*
115 * these variables record the values returned by vm_page_bootstrap,
116 * for debugging purposes. The implementation of uvm_pageboot_alloc
117 * and pmap_startup here also uses them internally.
118 */
119
120 static vaddr_t virtual_space_start;
121 static vaddr_t virtual_space_end;
122
123 /*
124 * we allocate an initial number of page colors in uvm_page_init(),
125 * and remember them. We may re-color pages as cache sizes are
126 * discovered during the autoconfiguration phase. But we can never
127 * free the initial set of buckets, since they are allocated using
128 * uvm_pageboot_alloc().
129 */
130
131 static size_t recolored_pages_memsize /* = 0 */;
132
133 #ifdef DEBUG
134 vaddr_t uvm_zerocheckkva;
135 #endif /* DEBUG */
136
137 /*
138 * These functions are reserved for uvm(9) internal use and are not
139 * exported in the header file uvm_physseg.h
140 *
141 * Thus they are redefined here.
142 */
143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145
146 /* returns a pgs array */
147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148
149 /*
150 * local prototypes
151 */
152
153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155
156 /*
157 * per-object tree of pages
158 */
159
160 static signed int
161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 {
163 const struct vm_page *pg1 = n1;
164 const struct vm_page *pg2 = n2;
165 const voff_t a = pg1->offset;
166 const voff_t b = pg2->offset;
167
168 if (a < b)
169 return -1;
170 if (a > b)
171 return 1;
172 return 0;
173 }
174
175 static signed int
176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 {
178 const struct vm_page *pg = n;
179 const voff_t a = pg->offset;
180 const voff_t b = *(const voff_t *)key;
181
182 if (a < b)
183 return -1;
184 if (a > b)
185 return 1;
186 return 0;
187 }
188
189 const rb_tree_ops_t uvm_page_tree_ops = {
190 .rbto_compare_nodes = uvm_page_compare_nodes,
191 .rbto_compare_key = uvm_page_compare_key,
192 .rbto_node_offset = offsetof(struct vm_page, rb_node),
193 .rbto_context = NULL
194 };
195
196 /*
197 * inline functions
198 */
199
200 /*
201 * uvm_pageinsert: insert a page in the object.
202 *
203 * => caller must lock object
204 * => caller must lock page queues
205 * => call should have already set pg's object and offset pointers
206 * and bumped the version counter
207 */
208
209 static inline void
210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211 struct vm_page *where)
212 {
213
214 KASSERT(uobj == pg->uobject);
215 KASSERT(mutex_owned(uobj->vmobjlock));
216 KASSERT((pg->flags & PG_TABLED) == 0);
217 KASSERT(where == NULL || (where->flags & PG_TABLED));
218 KASSERT(where == NULL || (where->uobject == uobj));
219
220 if (UVM_OBJ_IS_VNODE(uobj)) {
221 if (uobj->uo_npages == 0) {
222 struct vnode *vp = (struct vnode *)uobj;
223
224 vholdl(vp);
225 }
226 if (UVM_OBJ_IS_VTEXT(uobj)) {
227 atomic_inc_uint(&uvmexp.execpages);
228 } else {
229 atomic_inc_uint(&uvmexp.filepages);
230 }
231 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 atomic_inc_uint(&uvmexp.anonpages);
233 }
234
235 if (where)
236 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 else
238 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 pg->flags |= PG_TABLED;
240 uobj->uo_npages++;
241 }
242
243
244 static inline void
245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 {
247 struct vm_page *ret __diagused;
248
249 KASSERT(uobj == pg->uobject);
250 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
251 KASSERT(ret == pg);
252 }
253
254 static inline void
255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
256 {
257
258 KDASSERT(uobj != NULL);
259 uvm_pageinsert_tree(uobj, pg);
260 uvm_pageinsert_list(uobj, pg, NULL);
261 }
262
263 /*
264 * uvm_page_remove: remove page from object.
265 *
266 * => caller must lock object
267 * => caller must lock page queues
268 */
269
270 static inline void
271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 {
273
274 KASSERT(uobj == pg->uobject);
275 KASSERT(mutex_owned(uobj->vmobjlock));
276 KASSERT(pg->flags & PG_TABLED);
277
278 if (UVM_OBJ_IS_VNODE(uobj)) {
279 if (uobj->uo_npages == 1) {
280 struct vnode *vp = (struct vnode *)uobj;
281
282 holdrelel(vp);
283 }
284 if (UVM_OBJ_IS_VTEXT(uobj)) {
285 atomic_dec_uint(&uvmexp.execpages);
286 } else {
287 atomic_dec_uint(&uvmexp.filepages);
288 }
289 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 atomic_dec_uint(&uvmexp.anonpages);
291 }
292
293 /* object should be locked */
294 uobj->uo_npages--;
295 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 pg->flags &= ~PG_TABLED;
297 pg->uobject = NULL;
298 }
299
300 static inline void
301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 {
303
304 KASSERT(uobj == pg->uobject);
305 rb_tree_remove_node(&uobj->rb_tree, pg);
306 }
307
308 static inline void
309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
310 {
311
312 KDASSERT(uobj != NULL);
313 uvm_pageremove_tree(uobj, pg);
314 uvm_pageremove_list(uobj, pg);
315 }
316
317 static void
318 uvm_page_init_buckets(struct pgfreelist *pgfl)
319 {
320 int color, i;
321
322 for (color = 0; color < uvmexp.ncolors; color++) {
323 for (i = 0; i < PGFL_NQUEUES; i++) {
324 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 }
326 }
327 }
328
329 /*
330 * uvm_page_init: init the page system. called from uvm_init().
331 *
332 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333 */
334
335 void
336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 {
338 static struct uvm_cpu boot_cpu;
339 psize_t freepages, pagecount, bucketcount, n;
340 struct pgflbucket *bucketarray, *cpuarray;
341 struct vm_page *pagearray;
342 uvm_physseg_t bank;
343 int lcv;
344
345 KASSERT(ncpu <= 1);
346 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347
348 /*
349 * init the page queues and page queue locks, except the free
350 * list; we allocate that later (with the initial vm_page
351 * structures).
352 */
353
354 uvm.cpus[0] = &boot_cpu;
355 curcpu()->ci_data.cpu_uvm = &boot_cpu;
356 uvmpdpol_init();
357 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359
360 /*
361 * allocate vm_page structures.
362 */
363
364 /*
365 * sanity check:
366 * before calling this function the MD code is expected to register
367 * some free RAM with the uvm_page_physload() function. our job
368 * now is to allocate vm_page structures for this memory.
369 */
370
371 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
372 panic("uvm_page_bootstrap: no memory pre-allocated");
373
374 /*
375 * first calculate the number of free pages...
376 *
377 * note that we use start/end rather than avail_start/avail_end.
378 * this allows us to allocate extra vm_page structures in case we
379 * want to return some memory to the pool after booting.
380 */
381
382 freepages = 0;
383
384 for (bank = uvm_physseg_get_first();
385 uvm_physseg_valid_p(bank) ;
386 bank = uvm_physseg_get_next(bank)) {
387 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
388 }
389
390 /*
391 * Let MD code initialize the number of colors, or default
392 * to 1 color if MD code doesn't care.
393 */
394 if (uvmexp.ncolors == 0)
395 uvmexp.ncolors = 1;
396 uvmexp.colormask = uvmexp.ncolors - 1;
397 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
398
399 /*
400 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
401 * use. for each page of memory we use we need a vm_page structure.
402 * thus, the total number of pages we can use is the total size of
403 * the memory divided by the PAGE_SIZE plus the size of the vm_page
404 * structure. we add one to freepages as a fudge factor to avoid
405 * truncation errors (since we can only allocate in terms of whole
406 * pages).
407 */
408
409 bucketcount = uvmexp.ncolors * VM_NFREELIST;
410 pagecount = ((freepages + 1) << PAGE_SHIFT) /
411 (PAGE_SIZE + sizeof(struct vm_page));
412
413 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
414 sizeof(struct pgflbucket) * 2) + (pagecount *
415 sizeof(struct vm_page)));
416 cpuarray = bucketarray + bucketcount;
417 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418
419 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
420 uvm.page_free[lcv].pgfl_buckets =
421 (bucketarray + (lcv * uvmexp.ncolors));
422 uvm_page_init_buckets(&uvm.page_free[lcv]);
423 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
424 (cpuarray + (lcv * uvmexp.ncolors));
425 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
426 }
427 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
428
429 /*
430 * init the vm_page structures and put them in the correct place.
431 */
432 /* First init the extent */
433
434 for (bank = uvm_physseg_get_first(),
435 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
436 uvm_physseg_valid_p(bank);
437 bank = uvm_physseg_get_next(bank)) {
438
439 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
440 uvm_physseg_seg_alloc_from_slab(bank, n);
441 uvm_physseg_init_seg(bank, pagearray);
442
443 /* set up page array pointers */
444 pagearray += n;
445 pagecount -= n;
446 }
447
448 /*
449 * pass up the values of virtual_space_start and
450 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
451 * layers of the VM.
452 */
453
454 *kvm_startp = round_page(virtual_space_start);
455 *kvm_endp = trunc_page(virtual_space_end);
456 #ifdef DEBUG
457 /*
458 * steal kva for uvm_pagezerocheck().
459 */
460 uvm_zerocheckkva = *kvm_startp;
461 *kvm_startp += PAGE_SIZE;
462 #endif /* DEBUG */
463
464 /*
465 * init various thresholds.
466 */
467
468 uvmexp.reserve_pagedaemon = 1;
469 uvmexp.reserve_kernel = vm_page_reserve_kernel;
470
471 /*
472 * determine if we should zero pages in the idle loop.
473 */
474
475 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
476
477 /*
478 * done!
479 */
480
481 uvm.page_init_done = true;
482 }
483
484 /*
485 * uvm_setpagesize: set the page size
486 *
487 * => sets page_shift and page_mask from uvmexp.pagesize.
488 */
489
490 void
491 uvm_setpagesize(void)
492 {
493
494 /*
495 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
496 * to be a constant (indicated by being a non-zero value).
497 */
498 if (uvmexp.pagesize == 0) {
499 if (PAGE_SIZE == 0)
500 panic("uvm_setpagesize: uvmexp.pagesize not set");
501 uvmexp.pagesize = PAGE_SIZE;
502 }
503 uvmexp.pagemask = uvmexp.pagesize - 1;
504 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
505 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
506 uvmexp.pagesize, uvmexp.pagesize);
507 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 break;
510 }
511
512 /*
513 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514 */
515
516 vaddr_t
517 uvm_pageboot_alloc(vsize_t size)
518 {
519 static bool initialized = false;
520 vaddr_t addr;
521 #if !defined(PMAP_STEAL_MEMORY)
522 vaddr_t vaddr;
523 paddr_t paddr;
524 #endif
525
526 /*
527 * on first call to this function, initialize ourselves.
528 */
529 if (initialized == false) {
530 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531
532 /* round it the way we like it */
533 virtual_space_start = round_page(virtual_space_start);
534 virtual_space_end = trunc_page(virtual_space_end);
535
536 initialized = true;
537 }
538
539 /* round to page size */
540 size = round_page(size);
541 uvmexp.bootpages += atop(size);
542
543 #if defined(PMAP_STEAL_MEMORY)
544
545 /*
546 * defer bootstrap allocation to MD code (it may want to allocate
547 * from a direct-mapped segment). pmap_steal_memory should adjust
548 * virtual_space_start/virtual_space_end if necessary.
549 */
550
551 addr = pmap_steal_memory(size, &virtual_space_start,
552 &virtual_space_end);
553
554 return(addr);
555
556 #else /* !PMAP_STEAL_MEMORY */
557
558 /*
559 * allocate virtual memory for this request
560 */
561 if (virtual_space_start == virtual_space_end ||
562 (virtual_space_end - virtual_space_start) < size)
563 panic("uvm_pageboot_alloc: out of virtual space");
564
565 addr = virtual_space_start;
566
567 #ifdef PMAP_GROWKERNEL
568 /*
569 * If the kernel pmap can't map the requested space,
570 * then allocate more resources for it.
571 */
572 if (uvm_maxkaddr < (addr + size)) {
573 uvm_maxkaddr = pmap_growkernel(addr + size);
574 if (uvm_maxkaddr < (addr + size))
575 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
576 }
577 #endif
578
579 virtual_space_start += size;
580
581 /*
582 * allocate and mapin physical pages to back new virtual pages
583 */
584
585 for (vaddr = round_page(addr) ; vaddr < addr + size ;
586 vaddr += PAGE_SIZE) {
587
588 if (!uvm_page_physget(&paddr))
589 panic("uvm_pageboot_alloc: out of memory");
590
591 /*
592 * Note this memory is no longer managed, so using
593 * pmap_kenter is safe.
594 */
595 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
596 }
597 pmap_update(pmap_kernel());
598 return(addr);
599 #endif /* PMAP_STEAL_MEMORY */
600 }
601
602 #if !defined(PMAP_STEAL_MEMORY)
603 /*
604 * uvm_page_physget: "steal" one page from the vm_physmem structure.
605 *
606 * => attempt to allocate it off the end of a segment in which the "avail"
607 * values match the start/end values. if we can't do that, then we
608 * will advance both values (making them equal, and removing some
609 * vm_page structures from the non-avail area).
610 * => return false if out of memory.
611 */
612
613 /* subroutine: try to allocate from memory chunks on the specified freelist */
614 static bool uvm_page_physget_freelist(paddr_t *, int);
615
616 static bool
617 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
618 {
619 uvm_physseg_t lcv;
620
621 /* pass 1: try allocating from a matching end */
622 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
623 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
624 #else
625 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
626 #endif
627 {
628 if (uvm.page_init_done == true)
629 panic("uvm_page_physget: called _after_ bootstrap");
630
631 /* Try to match at front or back on unused segment */
632 if (uvm_page_physunload(lcv, freelist, paddrp))
633 return true;
634 }
635
636 /* pass2: forget about matching ends, just allocate something */
637 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
638 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
639 #else
640 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
641 #endif
642 {
643 /* Try the front regardless. */
644 if (uvm_page_physunload_force(lcv, freelist, paddrp))
645 return true;
646 }
647 return false;
648 }
649
650 bool
651 uvm_page_physget(paddr_t *paddrp)
652 {
653 int i;
654
655 /* try in the order of freelist preference */
656 for (i = 0; i < VM_NFREELIST; i++)
657 if (uvm_page_physget_freelist(paddrp, i) == true)
658 return (true);
659 return (false);
660 }
661 #endif /* PMAP_STEAL_MEMORY */
662
663 /*
664 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
665 * back from an I/O mapping (ugh!). used in some MD code as well.
666 */
667 struct vm_page *
668 uvm_phys_to_vm_page(paddr_t pa)
669 {
670 paddr_t pf = atop(pa);
671 paddr_t off;
672 uvm_physseg_t upm;
673
674 upm = uvm_physseg_find(pf, &off);
675 if (upm != UVM_PHYSSEG_TYPE_INVALID)
676 return uvm_physseg_get_pg(upm, off);
677 return(NULL);
678 }
679
680 paddr_t
681 uvm_vm_page_to_phys(const struct vm_page *pg)
682 {
683
684 return pg->phys_addr;
685 }
686
687 /*
688 * uvm_page_recolor: Recolor the pages if the new bucket count is
689 * larger than the old one.
690 */
691
692 void
693 uvm_page_recolor(int newncolors)
694 {
695 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
696 struct pgfreelist gpgfl, pgfl;
697 struct vm_page *pg;
698 vsize_t bucketcount;
699 size_t bucketmemsize, oldbucketmemsize;
700 int color, i, ocolors;
701 int lcv;
702 struct uvm_cpu *ucpu;
703
704 KASSERT(((newncolors - 1) & newncolors) == 0);
705
706 if (newncolors <= uvmexp.ncolors)
707 return;
708
709 if (uvm.page_init_done == false) {
710 uvmexp.ncolors = newncolors;
711 return;
712 }
713
714 bucketcount = newncolors * VM_NFREELIST;
715 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
716 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
717 cpuarray = bucketarray + bucketcount;
718
719 mutex_spin_enter(&uvm_fpageqlock);
720
721 /* Make sure we should still do this. */
722 if (newncolors <= uvmexp.ncolors) {
723 mutex_spin_exit(&uvm_fpageqlock);
724 kmem_free(bucketarray, bucketmemsize);
725 return;
726 }
727
728 oldbucketarray = uvm.page_free[0].pgfl_buckets;
729 ocolors = uvmexp.ncolors;
730
731 uvmexp.ncolors = newncolors;
732 uvmexp.colormask = uvmexp.ncolors - 1;
733
734 ucpu = curcpu()->ci_data.cpu_uvm;
735 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
736 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
737 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
738 uvm_page_init_buckets(&gpgfl);
739 uvm_page_init_buckets(&pgfl);
740 for (color = 0; color < ocolors; color++) {
741 for (i = 0; i < PGFL_NQUEUES; i++) {
742 while ((pg = LIST_FIRST(&uvm.page_free[
743 lcv].pgfl_buckets[color].pgfl_queues[i]))
744 != NULL) {
745 LIST_REMOVE(pg, pageq.list); /* global */
746 LIST_REMOVE(pg, listq.list); /* cpu */
747 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
748 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
749 i], pg, pageq.list);
750 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
751 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
752 i], pg, listq.list);
753 }
754 }
755 }
756 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
757 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
758 }
759
760 oldbucketmemsize = recolored_pages_memsize;
761
762 recolored_pages_memsize = bucketmemsize;
763 mutex_spin_exit(&uvm_fpageqlock);
764
765 if (oldbucketmemsize) {
766 kmem_free(oldbucketarray, oldbucketmemsize);
767 }
768
769 /*
770 * this calls uvm_km_alloc() which may want to hold
771 * uvm_fpageqlock.
772 */
773 uvm_pager_realloc_emerg();
774 }
775
776 /*
777 * uvm_cpu_attach: initialize per-CPU data structures.
778 */
779
780 void
781 uvm_cpu_attach(struct cpu_info *ci)
782 {
783 struct pgflbucket *bucketarray;
784 struct pgfreelist pgfl;
785 struct uvm_cpu *ucpu;
786 vsize_t bucketcount;
787 int lcv;
788
789 if (CPU_IS_PRIMARY(ci)) {
790 /* Already done in uvm_page_init(). */
791 goto attachrnd;
792 }
793
794 /* Add more reserve pages for this CPU. */
795 uvmexp.reserve_kernel += vm_page_reserve_kernel;
796
797 /* Configure this CPU's free lists. */
798 bucketcount = uvmexp.ncolors * VM_NFREELIST;
799 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
800 KM_SLEEP);
801 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
802 uvm.cpus[cpu_index(ci)] = ucpu;
803 ci->ci_data.cpu_uvm = ucpu;
804 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
805 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
806 uvm_page_init_buckets(&pgfl);
807 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
808 }
809
810 attachrnd:
811 /*
812 * Attach RNG source for this CPU's VM events
813 */
814 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
815 ci->ci_data.cpu_name, RND_TYPE_VM,
816 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
817 RND_FLAG_ESTIMATE_VALUE);
818
819 }
820
821 /*
822 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
823 */
824
825 static struct vm_page *
826 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
827 int *trycolorp)
828 {
829 struct pgflist *freeq;
830 struct vm_page *pg;
831 int color, trycolor = *trycolorp;
832 struct pgfreelist *gpgfl, *pgfl;
833
834 KASSERT(mutex_owned(&uvm_fpageqlock));
835
836 color = trycolor;
837 pgfl = &ucpu->page_free[flist];
838 gpgfl = &uvm.page_free[flist];
839 do {
840 /* cpu, try1 */
841 if ((pg = LIST_FIRST((freeq =
842 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
843 KASSERT(pg->pqflags & PQ_FREE);
844 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
845 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
846 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
847 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
848 uvmexp.cpuhit++;
849 goto gotit;
850 }
851 /* global, try1 */
852 if ((pg = LIST_FIRST((freeq =
853 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
854 KASSERT(pg->pqflags & PQ_FREE);
855 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
856 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
857 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
858 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
859 uvmexp.cpumiss++;
860 goto gotit;
861 }
862 /* cpu, try2 */
863 if ((pg = LIST_FIRST((freeq =
864 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
865 KASSERT(pg->pqflags & PQ_FREE);
866 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
867 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
868 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
869 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
870 uvmexp.cpuhit++;
871 goto gotit;
872 }
873 /* global, try2 */
874 if ((pg = LIST_FIRST((freeq =
875 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
876 KASSERT(pg->pqflags & PQ_FREE);
877 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
878 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
879 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
880 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
881 uvmexp.cpumiss++;
882 goto gotit;
883 }
884 color = (color + 1) & uvmexp.colormask;
885 } while (color != trycolor);
886
887 return (NULL);
888
889 gotit:
890 LIST_REMOVE(pg, pageq.list); /* global list */
891 LIST_REMOVE(pg, listq.list); /* per-cpu list */
892 uvmexp.free--;
893
894 /* update zero'd page count */
895 if (pg->flags & PG_ZERO)
896 uvmexp.zeropages--;
897
898 if (color == trycolor)
899 uvmexp.colorhit++;
900 else {
901 uvmexp.colormiss++;
902 *trycolorp = color;
903 }
904
905 return (pg);
906 }
907
908 /*
909 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
910 *
911 * => return null if no pages free
912 * => wake up pagedaemon if number of free pages drops below low water mark
913 * => if obj != NULL, obj must be locked (to put in obj's tree)
914 * => if anon != NULL, anon must be locked (to put in anon)
915 * => only one of obj or anon can be non-null
916 * => caller must activate/deactivate page if it is not wired.
917 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
918 * => policy decision: it is more important to pull a page off of the
919 * appropriate priority free list than it is to get a zero'd or
920 * unknown contents page. This is because we live with the
921 * consequences of a bad free list decision for the entire
922 * lifetime of the page, e.g. if the page comes from memory that
923 * is slower to access.
924 */
925
926 struct vm_page *
927 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
928 int flags, int strat, int free_list)
929 {
930 int try1, try2, zeroit = 0, color;
931 int lcv;
932 struct uvm_cpu *ucpu;
933 struct vm_page *pg;
934 lwp_t *l;
935
936 KASSERT(obj == NULL || anon == NULL);
937 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
938 KASSERT(off == trunc_page(off));
939 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
940 KASSERT(anon == NULL || anon->an_lock == NULL ||
941 mutex_owned(anon->an_lock));
942
943 mutex_spin_enter(&uvm_fpageqlock);
944
945 /*
946 * This implements a global round-robin page coloring
947 * algorithm.
948 */
949
950 ucpu = curcpu()->ci_data.cpu_uvm;
951 if (flags & UVM_FLAG_COLORMATCH) {
952 color = atop(off) & uvmexp.colormask;
953 } else {
954 color = ucpu->page_free_nextcolor;
955 }
956
957 /*
958 * check to see if we need to generate some free pages waking
959 * the pagedaemon.
960 */
961
962 uvm_kick_pdaemon();
963
964 /*
965 * fail if any of these conditions is true:
966 * [1] there really are no free pages, or
967 * [2] only kernel "reserved" pages remain and
968 * reserved pages have not been requested.
969 * [3] only pagedaemon "reserved" pages remain and
970 * the requestor isn't the pagedaemon.
971 * we make kernel reserve pages available if called by a
972 * kernel thread or a realtime thread.
973 */
974 l = curlwp;
975 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
976 flags |= UVM_PGA_USERESERVE;
977 }
978 if ((uvmexp.free <= uvmexp.reserve_kernel &&
979 (flags & UVM_PGA_USERESERVE) == 0) ||
980 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
981 curlwp != uvm.pagedaemon_lwp))
982 goto fail;
983
984 #if PGFL_NQUEUES != 2
985 #error uvm_pagealloc_strat needs to be updated
986 #endif
987
988 /*
989 * If we want a zero'd page, try the ZEROS queue first, otherwise
990 * we try the UNKNOWN queue first.
991 */
992 if (flags & UVM_PGA_ZERO) {
993 try1 = PGFL_ZEROS;
994 try2 = PGFL_UNKNOWN;
995 } else {
996 try1 = PGFL_UNKNOWN;
997 try2 = PGFL_ZEROS;
998 }
999
1000 again:
1001 switch (strat) {
1002 case UVM_PGA_STRAT_NORMAL:
1003 /* Check freelists: descending priority (ascending id) order */
1004 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1005 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1006 try1, try2, &color);
1007 if (pg != NULL)
1008 goto gotit;
1009 }
1010
1011 /* No pages free! */
1012 goto fail;
1013
1014 case UVM_PGA_STRAT_ONLY:
1015 case UVM_PGA_STRAT_FALLBACK:
1016 /* Attempt to allocate from the specified free list. */
1017 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1018 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1019 try1, try2, &color);
1020 if (pg != NULL)
1021 goto gotit;
1022
1023 /* Fall back, if possible. */
1024 if (strat == UVM_PGA_STRAT_FALLBACK) {
1025 strat = UVM_PGA_STRAT_NORMAL;
1026 goto again;
1027 }
1028
1029 /* No pages free! */
1030 goto fail;
1031
1032 default:
1033 panic("uvm_pagealloc_strat: bad strat %d", strat);
1034 /* NOTREACHED */
1035 }
1036
1037 gotit:
1038 /*
1039 * We now know which color we actually allocated from; set
1040 * the next color accordingly.
1041 */
1042
1043 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1044
1045 /*
1046 * update allocation statistics and remember if we have to
1047 * zero the page
1048 */
1049
1050 if (flags & UVM_PGA_ZERO) {
1051 if (pg->flags & PG_ZERO) {
1052 uvmexp.pga_zerohit++;
1053 zeroit = 0;
1054 } else {
1055 uvmexp.pga_zeromiss++;
1056 zeroit = 1;
1057 }
1058 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1059 ucpu->page_idle_zero = vm_page_zero_enable;
1060 }
1061 }
1062 KASSERT(pg->pqflags == PQ_FREE);
1063
1064 pg->offset = off;
1065 pg->uobject = obj;
1066 pg->uanon = anon;
1067 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1068 if (anon) {
1069 anon->an_page = pg;
1070 pg->pqflags = PQ_ANON;
1071 atomic_inc_uint(&uvmexp.anonpages);
1072 } else {
1073 if (obj) {
1074 uvm_pageinsert(obj, pg);
1075 }
1076 pg->pqflags = 0;
1077 }
1078 mutex_spin_exit(&uvm_fpageqlock);
1079
1080 #if defined(UVM_PAGE_TRKOWN)
1081 pg->owner_tag = NULL;
1082 #endif
1083 UVM_PAGE_OWN(pg, "new alloc");
1084
1085 if (flags & UVM_PGA_ZERO) {
1086 /*
1087 * A zero'd page is not clean. If we got a page not already
1088 * zero'd, then we have to zero it ourselves.
1089 */
1090 pg->flags &= ~PG_CLEAN;
1091 if (zeroit)
1092 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1093 }
1094
1095 return(pg);
1096
1097 fail:
1098 mutex_spin_exit(&uvm_fpageqlock);
1099 return (NULL);
1100 }
1101
1102 /*
1103 * uvm_pagereplace: replace a page with another
1104 *
1105 * => object must be locked
1106 */
1107
1108 void
1109 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1110 {
1111 struct uvm_object *uobj = oldpg->uobject;
1112
1113 KASSERT((oldpg->flags & PG_TABLED) != 0);
1114 KASSERT(uobj != NULL);
1115 KASSERT((newpg->flags & PG_TABLED) == 0);
1116 KASSERT(newpg->uobject == NULL);
1117 KASSERT(mutex_owned(uobj->vmobjlock));
1118
1119 newpg->uobject = uobj;
1120 newpg->offset = oldpg->offset;
1121
1122 uvm_pageremove_tree(uobj, oldpg);
1123 uvm_pageinsert_tree(uobj, newpg);
1124 uvm_pageinsert_list(uobj, newpg, oldpg);
1125 uvm_pageremove_list(uobj, oldpg);
1126 }
1127
1128 /*
1129 * uvm_pagerealloc: reallocate a page from one object to another
1130 *
1131 * => both objects must be locked
1132 */
1133
1134 void
1135 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1136 {
1137 /*
1138 * remove it from the old object
1139 */
1140
1141 if (pg->uobject) {
1142 uvm_pageremove(pg->uobject, pg);
1143 }
1144
1145 /*
1146 * put it in the new object
1147 */
1148
1149 if (newobj) {
1150 pg->uobject = newobj;
1151 pg->offset = newoff;
1152 uvm_pageinsert(newobj, pg);
1153 }
1154 }
1155
1156 #ifdef DEBUG
1157 /*
1158 * check if page is zero-filled
1159 *
1160 * - called with free page queue lock held.
1161 */
1162 void
1163 uvm_pagezerocheck(struct vm_page *pg)
1164 {
1165 int *p, *ep;
1166
1167 KASSERT(uvm_zerocheckkva != 0);
1168 KASSERT(mutex_owned(&uvm_fpageqlock));
1169
1170 /*
1171 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1172 * uvm page allocator.
1173 *
1174 * it might be better to have "CPU-local temporary map" pmap interface.
1175 */
1176 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1177 p = (int *)uvm_zerocheckkva;
1178 ep = (int *)((char *)p + PAGE_SIZE);
1179 pmap_update(pmap_kernel());
1180 while (p < ep) {
1181 if (*p != 0)
1182 panic("PG_ZERO page isn't zero-filled");
1183 p++;
1184 }
1185 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1186 /*
1187 * pmap_update() is not necessary here because no one except us
1188 * uses this VA.
1189 */
1190 }
1191 #endif /* DEBUG */
1192
1193 /*
1194 * uvm_pagefree: free page
1195 *
1196 * => erase page's identity (i.e. remove from object)
1197 * => put page on free list
1198 * => caller must lock owning object (either anon or uvm_object)
1199 * => caller must lock page queues
1200 * => assumes all valid mappings of pg are gone
1201 */
1202
1203 void
1204 uvm_pagefree(struct vm_page *pg)
1205 {
1206 struct pgflist *pgfl;
1207 struct uvm_cpu *ucpu;
1208 int index, color, queue;
1209 bool iszero;
1210
1211 #ifdef DEBUG
1212 if (pg->uobject == (void *)0xdeadbeef &&
1213 pg->uanon == (void *)0xdeadbeef) {
1214 panic("uvm_pagefree: freeing free page %p", pg);
1215 }
1216 #endif /* DEBUG */
1217
1218 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1219 KASSERT(!(pg->pqflags & PQ_FREE));
1220 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1221 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1222 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1223 mutex_owned(pg->uanon->an_lock));
1224
1225 /*
1226 * if the page is loaned, resolve the loan instead of freeing.
1227 */
1228
1229 if (pg->loan_count) {
1230 KASSERT(pg->wire_count == 0);
1231
1232 /*
1233 * if the page is owned by an anon then we just want to
1234 * drop anon ownership. the kernel will free the page when
1235 * it is done with it. if the page is owned by an object,
1236 * remove it from the object and mark it dirty for the benefit
1237 * of possible anon owners.
1238 *
1239 * regardless of previous ownership, wakeup any waiters,
1240 * unbusy the page, and we're done.
1241 */
1242
1243 if (pg->uobject != NULL) {
1244 uvm_pageremove(pg->uobject, pg);
1245 pg->flags &= ~PG_CLEAN;
1246 } else if (pg->uanon != NULL) {
1247 if ((pg->pqflags & PQ_ANON) == 0) {
1248 pg->loan_count--;
1249 } else {
1250 pg->pqflags &= ~PQ_ANON;
1251 atomic_dec_uint(&uvmexp.anonpages);
1252 }
1253 pg->uanon->an_page = NULL;
1254 pg->uanon = NULL;
1255 }
1256 if (pg->flags & PG_WANTED) {
1257 wakeup(pg);
1258 }
1259 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1260 #ifdef UVM_PAGE_TRKOWN
1261 pg->owner_tag = NULL;
1262 #endif
1263 if (pg->loan_count) {
1264 KASSERT(pg->uobject == NULL);
1265 if (pg->uanon == NULL) {
1266 KASSERT(mutex_owned(&uvm_pageqlock));
1267 uvm_pagedequeue(pg);
1268 }
1269 return;
1270 }
1271 }
1272
1273 /*
1274 * remove page from its object or anon.
1275 */
1276
1277 if (pg->uobject != NULL) {
1278 uvm_pageremove(pg->uobject, pg);
1279 } else if (pg->uanon != NULL) {
1280 pg->uanon->an_page = NULL;
1281 atomic_dec_uint(&uvmexp.anonpages);
1282 }
1283
1284 /*
1285 * now remove the page from the queues.
1286 */
1287 if (uvmpdpol_pageisqueued_p(pg)) {
1288 KASSERT(mutex_owned(&uvm_pageqlock));
1289 uvm_pagedequeue(pg);
1290 }
1291
1292 /*
1293 * if the page was wired, unwire it now.
1294 */
1295
1296 if (pg->wire_count) {
1297 pg->wire_count = 0;
1298 uvmexp.wired--;
1299 }
1300
1301 /*
1302 * and put on free queue
1303 */
1304
1305 iszero = (pg->flags & PG_ZERO);
1306 index = uvm_page_lookup_freelist(pg);
1307 color = VM_PGCOLOR_BUCKET(pg);
1308 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1309
1310 #ifdef DEBUG
1311 pg->uobject = (void *)0xdeadbeef;
1312 pg->uanon = (void *)0xdeadbeef;
1313 #endif
1314
1315 mutex_spin_enter(&uvm_fpageqlock);
1316 pg->pqflags = PQ_FREE;
1317
1318 #ifdef DEBUG
1319 if (iszero)
1320 uvm_pagezerocheck(pg);
1321 #endif /* DEBUG */
1322
1323
1324 /* global list */
1325 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1326 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1327 uvmexp.free++;
1328 if (iszero) {
1329 uvmexp.zeropages++;
1330 }
1331
1332 /* per-cpu list */
1333 ucpu = curcpu()->ci_data.cpu_uvm;
1334 pg->offset = (uintptr_t)ucpu;
1335 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1336 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1337 ucpu->pages[queue]++;
1338 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1339 ucpu->page_idle_zero = vm_page_zero_enable;
1340 }
1341
1342 mutex_spin_exit(&uvm_fpageqlock);
1343 }
1344
1345 /*
1346 * uvm_page_unbusy: unbusy an array of pages.
1347 *
1348 * => pages must either all belong to the same object, or all belong to anons.
1349 * => if pages are object-owned, object must be locked.
1350 * => if pages are anon-owned, anons must be locked.
1351 * => caller must lock page queues if pages may be released.
1352 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1353 */
1354
1355 void
1356 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1357 {
1358 struct vm_page *pg;
1359 int i;
1360 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1361
1362 for (i = 0; i < npgs; i++) {
1363 pg = pgs[i];
1364 if (pg == NULL || pg == PGO_DONTCARE) {
1365 continue;
1366 }
1367
1368 KASSERT(uvm_page_locked_p(pg));
1369 KASSERT(pg->flags & PG_BUSY);
1370 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1371 if (pg->flags & PG_WANTED) {
1372 wakeup(pg);
1373 }
1374 if (pg->flags & PG_RELEASED) {
1375 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1376 (uintptr_t)pg, 0, 0, 0);
1377 KASSERT(pg->uobject != NULL ||
1378 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1379 pg->flags &= ~PG_RELEASED;
1380 uvm_pagefree(pg);
1381 } else {
1382 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1383 (uintptr_t)pg, 0, 0, 0);
1384 KASSERT((pg->flags & PG_FAKE) == 0);
1385 pg->flags &= ~(PG_WANTED|PG_BUSY);
1386 UVM_PAGE_OWN(pg, NULL);
1387 }
1388 }
1389 }
1390
1391 #if defined(UVM_PAGE_TRKOWN)
1392 /*
1393 * uvm_page_own: set or release page ownership
1394 *
1395 * => this is a debugging function that keeps track of who sets PG_BUSY
1396 * and where they do it. it can be used to track down problems
1397 * such a process setting "PG_BUSY" and never releasing it.
1398 * => page's object [if any] must be locked
1399 * => if "tag" is NULL then we are releasing page ownership
1400 */
1401 void
1402 uvm_page_own(struct vm_page *pg, const char *tag)
1403 {
1404
1405 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1406 KASSERT((pg->flags & PG_WANTED) == 0);
1407 KASSERT(uvm_page_locked_p(pg));
1408
1409 /* gain ownership? */
1410 if (tag) {
1411 KASSERT((pg->flags & PG_BUSY) != 0);
1412 if (pg->owner_tag) {
1413 printf("uvm_page_own: page %p already owned "
1414 "by proc %d [%s]\n", pg,
1415 pg->owner, pg->owner_tag);
1416 panic("uvm_page_own");
1417 }
1418 pg->owner = curproc->p_pid;
1419 pg->lowner = curlwp->l_lid;
1420 pg->owner_tag = tag;
1421 return;
1422 }
1423
1424 /* drop ownership */
1425 KASSERT((pg->flags & PG_BUSY) == 0);
1426 if (pg->owner_tag == NULL) {
1427 printf("uvm_page_own: dropping ownership of an non-owned "
1428 "page (%p)\n", pg);
1429 panic("uvm_page_own");
1430 }
1431 if (!uvmpdpol_pageisqueued_p(pg)) {
1432 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1433 pg->wire_count > 0);
1434 } else {
1435 KASSERT(pg->wire_count == 0);
1436 }
1437 pg->owner_tag = NULL;
1438 }
1439 #endif
1440
1441 /*
1442 * uvm_pageidlezero: zero free pages while the system is idle.
1443 *
1444 * => try to complete one color bucket at a time, to reduce our impact
1445 * on the CPU cache.
1446 * => we loop until we either reach the target or there is a lwp ready
1447 * to run, or MD code detects a reason to break early.
1448 */
1449 void
1450 uvm_pageidlezero(void)
1451 {
1452 struct vm_page *pg;
1453 struct pgfreelist *pgfl, *gpgfl;
1454 struct uvm_cpu *ucpu;
1455 int free_list, firstbucket, nextbucket;
1456 bool lcont = false;
1457
1458 ucpu = curcpu()->ci_data.cpu_uvm;
1459 if (!ucpu->page_idle_zero ||
1460 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1461 ucpu->page_idle_zero = false;
1462 return;
1463 }
1464 if (!mutex_tryenter(&uvm_fpageqlock)) {
1465 /* Contention: let other CPUs to use the lock. */
1466 return;
1467 }
1468 firstbucket = ucpu->page_free_nextcolor;
1469 nextbucket = firstbucket;
1470 do {
1471 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1472 if (sched_curcpu_runnable_p()) {
1473 goto quit;
1474 }
1475 pgfl = &ucpu->page_free[free_list];
1476 gpgfl = &uvm.page_free[free_list];
1477 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1478 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1479 if (lcont || sched_curcpu_runnable_p()) {
1480 goto quit;
1481 }
1482 LIST_REMOVE(pg, pageq.list); /* global list */
1483 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1484 ucpu->pages[PGFL_UNKNOWN]--;
1485 uvmexp.free--;
1486 KASSERT(pg->pqflags == PQ_FREE);
1487 pg->pqflags = 0;
1488 mutex_spin_exit(&uvm_fpageqlock);
1489 #ifdef PMAP_PAGEIDLEZERO
1490 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1491
1492 /*
1493 * The machine-dependent code detected
1494 * some reason for us to abort zeroing
1495 * pages, probably because there is a
1496 * process now ready to run.
1497 */
1498
1499 mutex_spin_enter(&uvm_fpageqlock);
1500 pg->pqflags = PQ_FREE;
1501 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1502 nextbucket].pgfl_queues[
1503 PGFL_UNKNOWN], pg, pageq.list);
1504 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1505 nextbucket].pgfl_queues[
1506 PGFL_UNKNOWN], pg, listq.list);
1507 ucpu->pages[PGFL_UNKNOWN]++;
1508 uvmexp.free++;
1509 uvmexp.zeroaborts++;
1510 goto quit;
1511 }
1512 #else
1513 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1514 #endif /* PMAP_PAGEIDLEZERO */
1515 pg->flags |= PG_ZERO;
1516
1517 if (!mutex_tryenter(&uvm_fpageqlock)) {
1518 lcont = true;
1519 mutex_spin_enter(&uvm_fpageqlock);
1520 } else {
1521 lcont = false;
1522 }
1523 pg->pqflags = PQ_FREE;
1524 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1525 nextbucket].pgfl_queues[PGFL_ZEROS],
1526 pg, pageq.list);
1527 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1528 nextbucket].pgfl_queues[PGFL_ZEROS],
1529 pg, listq.list);
1530 ucpu->pages[PGFL_ZEROS]++;
1531 uvmexp.free++;
1532 uvmexp.zeropages++;
1533 }
1534 }
1535 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1536 break;
1537 }
1538 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1539 } while (nextbucket != firstbucket);
1540 ucpu->page_idle_zero = false;
1541 quit:
1542 mutex_spin_exit(&uvm_fpageqlock);
1543 }
1544
1545 /*
1546 * uvm_pagelookup: look up a page
1547 *
1548 * => caller should lock object to keep someone from pulling the page
1549 * out from under it
1550 */
1551
1552 struct vm_page *
1553 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1554 {
1555 struct vm_page *pg;
1556
1557 KASSERT(mutex_owned(obj->vmobjlock));
1558
1559 pg = rb_tree_find_node(&obj->rb_tree, &off);
1560
1561 KASSERT(pg == NULL || obj->uo_npages != 0);
1562 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1563 (pg->flags & PG_BUSY) != 0);
1564 return pg;
1565 }
1566
1567 /*
1568 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1569 *
1570 * => caller must lock page queues
1571 */
1572
1573 void
1574 uvm_pagewire(struct vm_page *pg)
1575 {
1576 KASSERT(mutex_owned(&uvm_pageqlock));
1577 #if defined(READAHEAD_STATS)
1578 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1579 uvm_ra_hit.ev_count++;
1580 pg->pqflags &= ~PQ_READAHEAD;
1581 }
1582 #endif /* defined(READAHEAD_STATS) */
1583 if (pg->wire_count == 0) {
1584 uvm_pagedequeue(pg);
1585 uvmexp.wired++;
1586 }
1587 pg->wire_count++;
1588 KASSERT(pg->wire_count > 0); /* detect wraparound */
1589 }
1590
1591 /*
1592 * uvm_pageunwire: unwire the page.
1593 *
1594 * => activate if wire count goes to zero.
1595 * => caller must lock page queues
1596 */
1597
1598 void
1599 uvm_pageunwire(struct vm_page *pg)
1600 {
1601 KASSERT(mutex_owned(&uvm_pageqlock));
1602 KASSERT(pg->wire_count != 0);
1603 pg->wire_count--;
1604 if (pg->wire_count == 0) {
1605 uvm_pageactivate(pg);
1606 KASSERT(uvmexp.wired != 0);
1607 uvmexp.wired--;
1608 }
1609 }
1610
1611 /*
1612 * uvm_pagedeactivate: deactivate page
1613 *
1614 * => caller must lock page queues
1615 * => caller must check to make sure page is not wired
1616 * => object that page belongs to must be locked (so we can adjust pg->flags)
1617 * => caller must clear the reference on the page before calling
1618 */
1619
1620 void
1621 uvm_pagedeactivate(struct vm_page *pg)
1622 {
1623
1624 KASSERT(mutex_owned(&uvm_pageqlock));
1625 KASSERT(uvm_page_locked_p(pg));
1626 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1627 uvmpdpol_pagedeactivate(pg);
1628 }
1629
1630 /*
1631 * uvm_pageactivate: activate page
1632 *
1633 * => caller must lock page queues
1634 */
1635
1636 void
1637 uvm_pageactivate(struct vm_page *pg)
1638 {
1639
1640 KASSERT(mutex_owned(&uvm_pageqlock));
1641 KASSERT(uvm_page_locked_p(pg));
1642 #if defined(READAHEAD_STATS)
1643 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1644 uvm_ra_hit.ev_count++;
1645 pg->pqflags &= ~PQ_READAHEAD;
1646 }
1647 #endif /* defined(READAHEAD_STATS) */
1648 if (pg->wire_count != 0) {
1649 return;
1650 }
1651 uvmpdpol_pageactivate(pg);
1652 }
1653
1654 /*
1655 * uvm_pagedequeue: remove a page from any paging queue
1656 */
1657
1658 void
1659 uvm_pagedequeue(struct vm_page *pg)
1660 {
1661
1662 if (uvmpdpol_pageisqueued_p(pg)) {
1663 KASSERT(mutex_owned(&uvm_pageqlock));
1664 }
1665
1666 uvmpdpol_pagedequeue(pg);
1667 }
1668
1669 /*
1670 * uvm_pageenqueue: add a page to a paging queue without activating.
1671 * used where a page is not really demanded (yet). eg. read-ahead
1672 */
1673
1674 void
1675 uvm_pageenqueue(struct vm_page *pg)
1676 {
1677
1678 KASSERT(mutex_owned(&uvm_pageqlock));
1679 if (pg->wire_count != 0) {
1680 return;
1681 }
1682 uvmpdpol_pageenqueue(pg);
1683 }
1684
1685 /*
1686 * uvm_pagezero: zero fill a page
1687 *
1688 * => if page is part of an object then the object should be locked
1689 * to protect pg->flags.
1690 */
1691
1692 void
1693 uvm_pagezero(struct vm_page *pg)
1694 {
1695 pg->flags &= ~PG_CLEAN;
1696 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1697 }
1698
1699 /*
1700 * uvm_pagecopy: copy a page
1701 *
1702 * => if page is part of an object then the object should be locked
1703 * to protect pg->flags.
1704 */
1705
1706 void
1707 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1708 {
1709
1710 dst->flags &= ~PG_CLEAN;
1711 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1712 }
1713
1714 /*
1715 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1716 */
1717
1718 bool
1719 uvm_pageismanaged(paddr_t pa)
1720 {
1721
1722 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1723 }
1724
1725 /*
1726 * uvm_page_lookup_freelist: look up the free list for the specified page
1727 */
1728
1729 int
1730 uvm_page_lookup_freelist(struct vm_page *pg)
1731 {
1732 uvm_physseg_t upm;
1733
1734 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1735 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1736 return uvm_physseg_get_free_list(upm);
1737 }
1738
1739 /*
1740 * uvm_page_locked_p: return true if object associated with page is
1741 * locked. this is a weak check for runtime assertions only.
1742 */
1743
1744 bool
1745 uvm_page_locked_p(struct vm_page *pg)
1746 {
1747
1748 if (pg->uobject != NULL) {
1749 return mutex_owned(pg->uobject->vmobjlock);
1750 }
1751 if (pg->uanon != NULL) {
1752 return mutex_owned(pg->uanon->an_lock);
1753 }
1754 return true;
1755 }
1756
1757 #ifdef PMAP_DIRECT
1758 /*
1759 * Call pmap to translate physical address into a virtual and to run a callback
1760 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1761 * or equivalent.
1762 */
1763 int
1764 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1765 int (*process)(void *, size_t, void *), void *arg)
1766 {
1767 int error = 0;
1768 paddr_t pa;
1769 size_t todo;
1770 voff_t pgoff = (off & PAGE_MASK);
1771 struct vm_page *pg;
1772
1773 KASSERT(npages > 0 && len > 0);
1774
1775 for (int i = 0; i < npages; i++) {
1776 pg = pgs[i];
1777
1778 KASSERT(len > 0);
1779
1780 /*
1781 * Caller is responsible for ensuring all the pages are
1782 * available.
1783 */
1784 KASSERT(pg != NULL && pg != PGO_DONTCARE);
1785
1786 pa = VM_PAGE_TO_PHYS(pg);
1787 todo = MIN(len, PAGE_SIZE - pgoff);
1788
1789 error = pmap_direct_process(pa, pgoff, todo, process, arg);
1790 if (error)
1791 break;
1792
1793 pgoff = 0;
1794 len -= todo;
1795 }
1796
1797 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1798 return error;
1799 }
1800 #endif /* PMAP_DIRECT */
1801
1802 #if defined(DDB) || defined(DEBUGPRINT)
1803
1804 /*
1805 * uvm_page_printit: actually print the page
1806 */
1807
1808 static const char page_flagbits[] = UVM_PGFLAGBITS;
1809 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1810
1811 void
1812 uvm_page_printit(struct vm_page *pg, bool full,
1813 void (*pr)(const char *, ...))
1814 {
1815 struct vm_page *tpg;
1816 struct uvm_object *uobj;
1817 struct pgflist *pgl;
1818 char pgbuf[128];
1819 char pqbuf[128];
1820
1821 (*pr)("PAGE %p:\n", pg);
1822 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1823 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1824 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1825 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1826 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1827 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1828 #if defined(UVM_PAGE_TRKOWN)
1829 if (pg->flags & PG_BUSY)
1830 (*pr)(" owning process = %d, tag=%s\n",
1831 pg->owner, pg->owner_tag);
1832 else
1833 (*pr)(" page not busy, no owner\n");
1834 #else
1835 (*pr)(" [page ownership tracking disabled]\n");
1836 #endif
1837
1838 if (!full)
1839 return;
1840
1841 /* cross-verify object/anon */
1842 if ((pg->pqflags & PQ_FREE) == 0) {
1843 if (pg->pqflags & PQ_ANON) {
1844 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1845 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1846 (pg->uanon) ? pg->uanon->an_page : NULL);
1847 else
1848 (*pr)(" anon backpointer is OK\n");
1849 } else {
1850 uobj = pg->uobject;
1851 if (uobj) {
1852 (*pr)(" checking object list\n");
1853 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1854 if (tpg == pg) {
1855 break;
1856 }
1857 }
1858 if (tpg)
1859 (*pr)(" page found on object list\n");
1860 else
1861 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1862 }
1863 }
1864 }
1865
1866 /* cross-verify page queue */
1867 if (pg->pqflags & PQ_FREE) {
1868 int fl = uvm_page_lookup_freelist(pg);
1869 int color = VM_PGCOLOR_BUCKET(pg);
1870 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1871 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1872 } else {
1873 pgl = NULL;
1874 }
1875
1876 if (pgl) {
1877 (*pr)(" checking pageq list\n");
1878 LIST_FOREACH(tpg, pgl, pageq.list) {
1879 if (tpg == pg) {
1880 break;
1881 }
1882 }
1883 if (tpg)
1884 (*pr)(" page found on pageq list\n");
1885 else
1886 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1887 }
1888 }
1889
1890 /*
1891 * uvm_pages_printthem - print a summary of all managed pages
1892 */
1893
1894 void
1895 uvm_page_printall(void (*pr)(const char *, ...))
1896 {
1897 uvm_physseg_t i;
1898 paddr_t pfn;
1899 struct vm_page *pg;
1900
1901 (*pr)("%18s %4s %4s %18s %18s"
1902 #ifdef UVM_PAGE_TRKOWN
1903 " OWNER"
1904 #endif
1905 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1906 for (i = uvm_physseg_get_first();
1907 uvm_physseg_valid_p(i);
1908 i = uvm_physseg_get_next(i)) {
1909 for (pfn = uvm_physseg_get_start(i);
1910 pfn < uvm_physseg_get_end(i);
1911 pfn++) {
1912 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1913
1914 (*pr)("%18p %04x %04x %18p %18p",
1915 pg, pg->flags, pg->pqflags, pg->uobject,
1916 pg->uanon);
1917 #ifdef UVM_PAGE_TRKOWN
1918 if (pg->flags & PG_BUSY)
1919 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1920 #endif
1921 (*pr)("\n");
1922 }
1923 }
1924 }
1925
1926 #endif /* DDB || DEBUGPRINT */
1927