uvm_page.c revision 1.201 1 /* $NetBSD: uvm_page.c,v 1.201 2019/12/13 20:10:22 ad Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_page.c: page ops.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.201 2019/12/13 20:10:22 ad Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_uvm.h"
73 #include "opt_uvmhist.h"
74 #include "opt_readahead.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/extent.h>
85
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_ddb.h>
88 #include <uvm/uvm_pdpolicy.h>
89
90 /*
91 * Some supported CPUs in a given architecture don't support all
92 * of the things necessary to do idle page zero'ing efficiently.
93 * We therefore provide a way to enable it from machdep code here.
94 */
95 bool vm_page_zero_enable = false;
96
97 /*
98 * number of pages per-CPU to reserve for the kernel.
99 */
100 #ifndef UVM_RESERVED_PAGES_PER_CPU
101 #define UVM_RESERVED_PAGES_PER_CPU 5
102 #endif
103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104
105 /*
106 * physical memory size;
107 */
108 psize_t physmem;
109
110 /*
111 * local variables
112 */
113
114 /*
115 * these variables record the values returned by vm_page_bootstrap,
116 * for debugging purposes. The implementation of uvm_pageboot_alloc
117 * and pmap_startup here also uses them internally.
118 */
119
120 static vaddr_t virtual_space_start;
121 static vaddr_t virtual_space_end;
122
123 /*
124 * we allocate an initial number of page colors in uvm_page_init(),
125 * and remember them. We may re-color pages as cache sizes are
126 * discovered during the autoconfiguration phase. But we can never
127 * free the initial set of buckets, since they are allocated using
128 * uvm_pageboot_alloc().
129 */
130
131 static size_t recolored_pages_memsize /* = 0 */;
132
133 #ifdef DEBUG
134 vaddr_t uvm_zerocheckkva;
135 #endif /* DEBUG */
136
137 /*
138 * These functions are reserved for uvm(9) internal use and are not
139 * exported in the header file uvm_physseg.h
140 *
141 * Thus they are redefined here.
142 */
143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145
146 /* returns a pgs array */
147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148
149 /*
150 * local prototypes
151 */
152
153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155
156 /*
157 * per-object tree of pages
158 */
159
160 static signed int
161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 {
163 const struct vm_page *pg1 = n1;
164 const struct vm_page *pg2 = n2;
165 const voff_t a = pg1->offset;
166 const voff_t b = pg2->offset;
167
168 if (a < b)
169 return -1;
170 if (a > b)
171 return 1;
172 return 0;
173 }
174
175 static signed int
176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 {
178 const struct vm_page *pg = n;
179 const voff_t a = pg->offset;
180 const voff_t b = *(const voff_t *)key;
181
182 if (a < b)
183 return -1;
184 if (a > b)
185 return 1;
186 return 0;
187 }
188
189 const rb_tree_ops_t uvm_page_tree_ops = {
190 .rbto_compare_nodes = uvm_page_compare_nodes,
191 .rbto_compare_key = uvm_page_compare_key,
192 .rbto_node_offset = offsetof(struct vm_page, rb_node),
193 .rbto_context = NULL
194 };
195
196 /*
197 * inline functions
198 */
199
200 /*
201 * uvm_pageinsert: insert a page in the object.
202 *
203 * => caller must lock object
204 * => call should have already set pg's object and offset pointers
205 * and bumped the version counter
206 */
207
208 static inline void
209 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
210 struct vm_page *where)
211 {
212
213 KASSERT(uobj == pg->uobject);
214 KASSERT(mutex_owned(uobj->vmobjlock));
215 KASSERT((pg->flags & PG_TABLED) == 0);
216 KASSERT(where == NULL || (where->flags & PG_TABLED));
217 KASSERT(where == NULL || (where->uobject == uobj));
218
219 if (UVM_OBJ_IS_VNODE(uobj)) {
220 if (uobj->uo_npages == 0) {
221 struct vnode *vp = (struct vnode *)uobj;
222
223 vholdl(vp);
224 }
225 if (UVM_OBJ_IS_VTEXT(uobj)) {
226 atomic_inc_uint(&uvmexp.execpages);
227 } else {
228 atomic_inc_uint(&uvmexp.filepages);
229 }
230 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
231 atomic_inc_uint(&uvmexp.anonpages);
232 }
233
234 if (where)
235 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
236 else
237 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
238 pg->flags |= PG_TABLED;
239 uobj->uo_npages++;
240 }
241
242
243 static inline void
244 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
245 {
246 struct vm_page *ret __diagused;
247
248 KASSERT(uobj == pg->uobject);
249 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
250 KASSERT(ret == pg);
251 }
252
253 static inline void
254 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
255 {
256
257 KDASSERT(uobj != NULL);
258 uvm_pageinsert_tree(uobj, pg);
259 uvm_pageinsert_list(uobj, pg, NULL);
260 }
261
262 /*
263 * uvm_page_remove: remove page from object.
264 *
265 * => caller must lock object
266 */
267
268 static inline void
269 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
270 {
271
272 KASSERT(uobj == pg->uobject);
273 KASSERT(mutex_owned(uobj->vmobjlock));
274 KASSERT(pg->flags & PG_TABLED);
275
276 if (UVM_OBJ_IS_VNODE(uobj)) {
277 if (uobj->uo_npages == 1) {
278 struct vnode *vp = (struct vnode *)uobj;
279
280 holdrelel(vp);
281 }
282 if (UVM_OBJ_IS_VTEXT(uobj)) {
283 atomic_dec_uint(&uvmexp.execpages);
284 } else {
285 atomic_dec_uint(&uvmexp.filepages);
286 }
287 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
288 atomic_dec_uint(&uvmexp.anonpages);
289 }
290
291 /* object should be locked */
292 uobj->uo_npages--;
293 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
294 pg->flags &= ~PG_TABLED;
295 pg->uobject = NULL;
296 }
297
298 static inline void
299 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
300 {
301
302 KASSERT(uobj == pg->uobject);
303 rb_tree_remove_node(&uobj->rb_tree, pg);
304 }
305
306 static inline void
307 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
308 {
309
310 KDASSERT(uobj != NULL);
311 uvm_pageremove_tree(uobj, pg);
312 uvm_pageremove_list(uobj, pg);
313 }
314
315 static void
316 uvm_page_init_buckets(struct pgfreelist *pgfl)
317 {
318 int color, i;
319
320 for (color = 0; color < uvmexp.ncolors; color++) {
321 for (i = 0; i < PGFL_NQUEUES; i++) {
322 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
323 }
324 }
325 }
326
327 /*
328 * uvm_page_init: init the page system. called from uvm_init().
329 *
330 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
331 */
332
333 void
334 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
335 {
336 static struct uvm_cpu boot_cpu;
337 psize_t freepages, pagecount, bucketcount, n;
338 struct pgflbucket *bucketarray, *cpuarray;
339 struct vm_page *pagearray;
340 uvm_physseg_t bank;
341 int lcv;
342
343 KASSERT(ncpu <= 1);
344 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
345
346 /*
347 * init the page queues and free page queue lock, except the
348 * free list; we allocate that later (with the initial vm_page
349 * structures).
350 */
351
352 uvm.cpus[0] = &boot_cpu;
353 curcpu()->ci_data.cpu_uvm = &boot_cpu;
354 uvmpdpol_init();
355 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
356
357 /*
358 * allocate vm_page structures.
359 */
360
361 /*
362 * sanity check:
363 * before calling this function the MD code is expected to register
364 * some free RAM with the uvm_page_physload() function. our job
365 * now is to allocate vm_page structures for this memory.
366 */
367
368 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
369 panic("uvm_page_bootstrap: no memory pre-allocated");
370
371 /*
372 * first calculate the number of free pages...
373 *
374 * note that we use start/end rather than avail_start/avail_end.
375 * this allows us to allocate extra vm_page structures in case we
376 * want to return some memory to the pool after booting.
377 */
378
379 freepages = 0;
380
381 for (bank = uvm_physseg_get_first();
382 uvm_physseg_valid_p(bank) ;
383 bank = uvm_physseg_get_next(bank)) {
384 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
385 }
386
387 /*
388 * Let MD code initialize the number of colors, or default
389 * to 1 color if MD code doesn't care.
390 */
391 if (uvmexp.ncolors == 0)
392 uvmexp.ncolors = 1;
393 uvmexp.colormask = uvmexp.ncolors - 1;
394 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
395
396 /*
397 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
398 * use. for each page of memory we use we need a vm_page structure.
399 * thus, the total number of pages we can use is the total size of
400 * the memory divided by the PAGE_SIZE plus the size of the vm_page
401 * structure. we add one to freepages as a fudge factor to avoid
402 * truncation errors (since we can only allocate in terms of whole
403 * pages).
404 */
405
406 bucketcount = uvmexp.ncolors * VM_NFREELIST;
407 pagecount = ((freepages + 1) << PAGE_SHIFT) /
408 (PAGE_SIZE + sizeof(struct vm_page));
409
410 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
411 sizeof(struct pgflbucket) * 2) + (pagecount *
412 sizeof(struct vm_page)));
413 cpuarray = bucketarray + bucketcount;
414 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
415
416 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
417 uvm.page_free[lcv].pgfl_buckets =
418 (bucketarray + (lcv * uvmexp.ncolors));
419 uvm_page_init_buckets(&uvm.page_free[lcv]);
420 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
421 (cpuarray + (lcv * uvmexp.ncolors));
422 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
423 }
424 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
425
426 /*
427 * init the vm_page structures and put them in the correct place.
428 */
429 /* First init the extent */
430
431 for (bank = uvm_physseg_get_first(),
432 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
433 uvm_physseg_valid_p(bank);
434 bank = uvm_physseg_get_next(bank)) {
435
436 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
437 uvm_physseg_seg_alloc_from_slab(bank, n);
438 uvm_physseg_init_seg(bank, pagearray);
439
440 /* set up page array pointers */
441 pagearray += n;
442 pagecount -= n;
443 }
444
445 /*
446 * pass up the values of virtual_space_start and
447 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
448 * layers of the VM.
449 */
450
451 *kvm_startp = round_page(virtual_space_start);
452 *kvm_endp = trunc_page(virtual_space_end);
453 #ifdef DEBUG
454 /*
455 * steal kva for uvm_pagezerocheck().
456 */
457 uvm_zerocheckkva = *kvm_startp;
458 *kvm_startp += PAGE_SIZE;
459 #endif /* DEBUG */
460
461 /*
462 * init various thresholds.
463 */
464
465 uvmexp.reserve_pagedaemon = 1;
466 uvmexp.reserve_kernel = vm_page_reserve_kernel;
467
468 /*
469 * determine if we should zero pages in the idle loop.
470 */
471
472 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
473
474 /*
475 * done!
476 */
477
478 uvm.page_init_done = true;
479 }
480
481 /*
482 * uvm_setpagesize: set the page size
483 *
484 * => sets page_shift and page_mask from uvmexp.pagesize.
485 */
486
487 void
488 uvm_setpagesize(void)
489 {
490
491 /*
492 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
493 * to be a constant (indicated by being a non-zero value).
494 */
495 if (uvmexp.pagesize == 0) {
496 if (PAGE_SIZE == 0)
497 panic("uvm_setpagesize: uvmexp.pagesize not set");
498 uvmexp.pagesize = PAGE_SIZE;
499 }
500 uvmexp.pagemask = uvmexp.pagesize - 1;
501 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
502 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
503 uvmexp.pagesize, uvmexp.pagesize);
504 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
505 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
506 break;
507 }
508
509 /*
510 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
511 */
512
513 vaddr_t
514 uvm_pageboot_alloc(vsize_t size)
515 {
516 static bool initialized = false;
517 vaddr_t addr;
518 #if !defined(PMAP_STEAL_MEMORY)
519 vaddr_t vaddr;
520 paddr_t paddr;
521 #endif
522
523 /*
524 * on first call to this function, initialize ourselves.
525 */
526 if (initialized == false) {
527 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
528
529 /* round it the way we like it */
530 virtual_space_start = round_page(virtual_space_start);
531 virtual_space_end = trunc_page(virtual_space_end);
532
533 initialized = true;
534 }
535
536 /* round to page size */
537 size = round_page(size);
538 uvmexp.bootpages += atop(size);
539
540 #if defined(PMAP_STEAL_MEMORY)
541
542 /*
543 * defer bootstrap allocation to MD code (it may want to allocate
544 * from a direct-mapped segment). pmap_steal_memory should adjust
545 * virtual_space_start/virtual_space_end if necessary.
546 */
547
548 addr = pmap_steal_memory(size, &virtual_space_start,
549 &virtual_space_end);
550
551 return(addr);
552
553 #else /* !PMAP_STEAL_MEMORY */
554
555 /*
556 * allocate virtual memory for this request
557 */
558 if (virtual_space_start == virtual_space_end ||
559 (virtual_space_end - virtual_space_start) < size)
560 panic("uvm_pageboot_alloc: out of virtual space");
561
562 addr = virtual_space_start;
563
564 #ifdef PMAP_GROWKERNEL
565 /*
566 * If the kernel pmap can't map the requested space,
567 * then allocate more resources for it.
568 */
569 if (uvm_maxkaddr < (addr + size)) {
570 uvm_maxkaddr = pmap_growkernel(addr + size);
571 if (uvm_maxkaddr < (addr + size))
572 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
573 }
574 #endif
575
576 virtual_space_start += size;
577
578 /*
579 * allocate and mapin physical pages to back new virtual pages
580 */
581
582 for (vaddr = round_page(addr) ; vaddr < addr + size ;
583 vaddr += PAGE_SIZE) {
584
585 if (!uvm_page_physget(&paddr))
586 panic("uvm_pageboot_alloc: out of memory");
587
588 /*
589 * Note this memory is no longer managed, so using
590 * pmap_kenter is safe.
591 */
592 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
593 }
594 pmap_update(pmap_kernel());
595 return(addr);
596 #endif /* PMAP_STEAL_MEMORY */
597 }
598
599 #if !defined(PMAP_STEAL_MEMORY)
600 /*
601 * uvm_page_physget: "steal" one page from the vm_physmem structure.
602 *
603 * => attempt to allocate it off the end of a segment in which the "avail"
604 * values match the start/end values. if we can't do that, then we
605 * will advance both values (making them equal, and removing some
606 * vm_page structures from the non-avail area).
607 * => return false if out of memory.
608 */
609
610 /* subroutine: try to allocate from memory chunks on the specified freelist */
611 static bool uvm_page_physget_freelist(paddr_t *, int);
612
613 static bool
614 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
615 {
616 uvm_physseg_t lcv;
617
618 /* pass 1: try allocating from a matching end */
619 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
620 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
621 #else
622 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
623 #endif
624 {
625 if (uvm.page_init_done == true)
626 panic("uvm_page_physget: called _after_ bootstrap");
627
628 /* Try to match at front or back on unused segment */
629 if (uvm_page_physunload(lcv, freelist, paddrp))
630 return true;
631 }
632
633 /* pass2: forget about matching ends, just allocate something */
634 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
635 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
636 #else
637 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
638 #endif
639 {
640 /* Try the front regardless. */
641 if (uvm_page_physunload_force(lcv, freelist, paddrp))
642 return true;
643 }
644 return false;
645 }
646
647 bool
648 uvm_page_physget(paddr_t *paddrp)
649 {
650 int i;
651
652 /* try in the order of freelist preference */
653 for (i = 0; i < VM_NFREELIST; i++)
654 if (uvm_page_physget_freelist(paddrp, i) == true)
655 return (true);
656 return (false);
657 }
658 #endif /* PMAP_STEAL_MEMORY */
659
660 /*
661 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
662 * back from an I/O mapping (ugh!). used in some MD code as well.
663 */
664 struct vm_page *
665 uvm_phys_to_vm_page(paddr_t pa)
666 {
667 paddr_t pf = atop(pa);
668 paddr_t off;
669 uvm_physseg_t upm;
670
671 upm = uvm_physseg_find(pf, &off);
672 if (upm != UVM_PHYSSEG_TYPE_INVALID)
673 return uvm_physseg_get_pg(upm, off);
674 return(NULL);
675 }
676
677 paddr_t
678 uvm_vm_page_to_phys(const struct vm_page *pg)
679 {
680
681 return pg->phys_addr;
682 }
683
684 /*
685 * uvm_page_recolor: Recolor the pages if the new bucket count is
686 * larger than the old one.
687 */
688
689 void
690 uvm_page_recolor(int newncolors)
691 {
692 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
693 struct pgfreelist gpgfl, pgfl;
694 struct vm_page *pg;
695 vsize_t bucketcount;
696 size_t bucketmemsize, oldbucketmemsize;
697 int color, i, ocolors;
698 int lcv;
699 struct uvm_cpu *ucpu;
700
701 KASSERT(((newncolors - 1) & newncolors) == 0);
702
703 if (newncolors <= uvmexp.ncolors)
704 return;
705
706 if (uvm.page_init_done == false) {
707 uvmexp.ncolors = newncolors;
708 return;
709 }
710
711 bucketcount = newncolors * VM_NFREELIST;
712 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
713 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
714 cpuarray = bucketarray + bucketcount;
715
716 mutex_spin_enter(&uvm_fpageqlock);
717
718 /* Make sure we should still do this. */
719 if (newncolors <= uvmexp.ncolors) {
720 mutex_spin_exit(&uvm_fpageqlock);
721 kmem_free(bucketarray, bucketmemsize);
722 return;
723 }
724
725 oldbucketarray = uvm.page_free[0].pgfl_buckets;
726 ocolors = uvmexp.ncolors;
727
728 uvmexp.ncolors = newncolors;
729 uvmexp.colormask = uvmexp.ncolors - 1;
730
731 ucpu = curcpu()->ci_data.cpu_uvm;
732 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
733 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
734 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
735 uvm_page_init_buckets(&gpgfl);
736 uvm_page_init_buckets(&pgfl);
737 for (color = 0; color < ocolors; color++) {
738 for (i = 0; i < PGFL_NQUEUES; i++) {
739 while ((pg = LIST_FIRST(&uvm.page_free[
740 lcv].pgfl_buckets[color].pgfl_queues[i]))
741 != NULL) {
742 LIST_REMOVE(pg, pageq.list); /* global */
743 LIST_REMOVE(pg, listq.list); /* cpu */
744 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
745 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
746 i], pg, pageq.list);
747 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
748 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
749 i], pg, listq.list);
750 }
751 }
752 }
753 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
754 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
755 }
756
757 oldbucketmemsize = recolored_pages_memsize;
758
759 recolored_pages_memsize = bucketmemsize;
760 mutex_spin_exit(&uvm_fpageqlock);
761
762 if (oldbucketmemsize) {
763 kmem_free(oldbucketarray, oldbucketmemsize);
764 }
765
766 /*
767 * this calls uvm_km_alloc() which may want to hold
768 * uvm_fpageqlock.
769 */
770 uvm_pager_realloc_emerg();
771 }
772
773 /*
774 * uvm_cpu_attach: initialize per-CPU data structures.
775 */
776
777 void
778 uvm_cpu_attach(struct cpu_info *ci)
779 {
780 struct pgflbucket *bucketarray;
781 struct pgfreelist pgfl;
782 struct uvm_cpu *ucpu;
783 vsize_t bucketcount;
784 int lcv;
785
786 if (CPU_IS_PRIMARY(ci)) {
787 /* Already done in uvm_page_init(). */
788 goto attachrnd;
789 }
790
791 /* Add more reserve pages for this CPU. */
792 uvmexp.reserve_kernel += vm_page_reserve_kernel;
793
794 /* Configure this CPU's free lists. */
795 bucketcount = uvmexp.ncolors * VM_NFREELIST;
796 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
797 KM_SLEEP);
798 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
799 uvm.cpus[cpu_index(ci)] = ucpu;
800 ci->ci_data.cpu_uvm = ucpu;
801 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
802 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
803 uvm_page_init_buckets(&pgfl);
804 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
805 }
806
807 attachrnd:
808 /*
809 * Attach RNG source for this CPU's VM events
810 */
811 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
812 ci->ci_data.cpu_name, RND_TYPE_VM,
813 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
814 RND_FLAG_ESTIMATE_VALUE);
815
816 }
817
818 /*
819 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
820 */
821
822 static struct vm_page *
823 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
824 int *trycolorp)
825 {
826 struct pgflist *freeq;
827 struct vm_page *pg;
828 int color, trycolor = *trycolorp;
829 struct pgfreelist *gpgfl, *pgfl;
830
831 KASSERT(mutex_owned(&uvm_fpageqlock));
832
833 color = trycolor;
834 pgfl = &ucpu->page_free[flist];
835 gpgfl = &uvm.page_free[flist];
836 do {
837 /* cpu, try1 */
838 if ((pg = LIST_FIRST((freeq =
839 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
840 KASSERT(pg->flags & PG_FREE);
841 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
842 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
843 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
844 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
845 uvmexp.cpuhit++;
846 goto gotit;
847 }
848 /* global, try1 */
849 if ((pg = LIST_FIRST((freeq =
850 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
851 KASSERT(pg->flags & PG_FREE);
852 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
853 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
854 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
855 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
856 uvmexp.cpumiss++;
857 goto gotit;
858 }
859 /* cpu, try2 */
860 if ((pg = LIST_FIRST((freeq =
861 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
862 KASSERT(pg->flags & PG_FREE);
863 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
864 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
865 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
866 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
867 uvmexp.cpuhit++;
868 goto gotit;
869 }
870 /* global, try2 */
871 if ((pg = LIST_FIRST((freeq =
872 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
873 KASSERT(pg->flags & PG_FREE);
874 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
875 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
876 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
877 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
878 uvmexp.cpumiss++;
879 goto gotit;
880 }
881 color = (color + 1) & uvmexp.colormask;
882 } while (color != trycolor);
883
884 return (NULL);
885
886 gotit:
887 LIST_REMOVE(pg, pageq.list); /* global list */
888 LIST_REMOVE(pg, listq.list); /* per-cpu list */
889 uvmexp.free--;
890
891 /* update zero'd page count */
892 if (pg->flags & PG_ZERO)
893 uvmexp.zeropages--;
894
895 if (color == trycolor)
896 uvmexp.colorhit++;
897 else {
898 uvmexp.colormiss++;
899 *trycolorp = color;
900 }
901
902 return (pg);
903 }
904
905 /*
906 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
907 *
908 * => return null if no pages free
909 * => wake up pagedaemon if number of free pages drops below low water mark
910 * => if obj != NULL, obj must be locked (to put in obj's tree)
911 * => if anon != NULL, anon must be locked (to put in anon)
912 * => only one of obj or anon can be non-null
913 * => caller must activate/deactivate page if it is not wired.
914 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
915 * => policy decision: it is more important to pull a page off of the
916 * appropriate priority free list than it is to get a zero'd or
917 * unknown contents page. This is because we live with the
918 * consequences of a bad free list decision for the entire
919 * lifetime of the page, e.g. if the page comes from memory that
920 * is slower to access.
921 */
922
923 struct vm_page *
924 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
925 int flags, int strat, int free_list)
926 {
927 int try1, try2, zeroit = 0, color;
928 int lcv;
929 struct uvm_cpu *ucpu;
930 struct vm_page *pg;
931 lwp_t *l;
932
933 KASSERT(obj == NULL || anon == NULL);
934 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
935 KASSERT(off == trunc_page(off));
936 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
937 KASSERT(anon == NULL || anon->an_lock == NULL ||
938 mutex_owned(anon->an_lock));
939
940 mutex_spin_enter(&uvm_fpageqlock);
941
942 /*
943 * This implements a global round-robin page coloring
944 * algorithm.
945 */
946
947 ucpu = curcpu()->ci_data.cpu_uvm;
948 if (flags & UVM_FLAG_COLORMATCH) {
949 color = atop(off) & uvmexp.colormask;
950 } else {
951 color = ucpu->page_free_nextcolor;
952 }
953
954 /*
955 * check to see if we need to generate some free pages waking
956 * the pagedaemon.
957 */
958
959 uvm_kick_pdaemon();
960
961 /*
962 * fail if any of these conditions is true:
963 * [1] there really are no free pages, or
964 * [2] only kernel "reserved" pages remain and
965 * reserved pages have not been requested.
966 * [3] only pagedaemon "reserved" pages remain and
967 * the requestor isn't the pagedaemon.
968 * we make kernel reserve pages available if called by a
969 * kernel thread or a realtime thread.
970 */
971 l = curlwp;
972 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
973 flags |= UVM_PGA_USERESERVE;
974 }
975 if ((uvmexp.free <= uvmexp.reserve_kernel &&
976 (flags & UVM_PGA_USERESERVE) == 0) ||
977 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
978 curlwp != uvm.pagedaemon_lwp))
979 goto fail;
980
981 #if PGFL_NQUEUES != 2
982 #error uvm_pagealloc_strat needs to be updated
983 #endif
984
985 /*
986 * If we want a zero'd page, try the ZEROS queue first, otherwise
987 * we try the UNKNOWN queue first.
988 */
989 if (flags & UVM_PGA_ZERO) {
990 try1 = PGFL_ZEROS;
991 try2 = PGFL_UNKNOWN;
992 } else {
993 try1 = PGFL_UNKNOWN;
994 try2 = PGFL_ZEROS;
995 }
996
997 again:
998 switch (strat) {
999 case UVM_PGA_STRAT_NORMAL:
1000 /* Check freelists: descending priority (ascending id) order */
1001 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1002 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1003 try1, try2, &color);
1004 if (pg != NULL)
1005 goto gotit;
1006 }
1007
1008 /* No pages free! */
1009 goto fail;
1010
1011 case UVM_PGA_STRAT_ONLY:
1012 case UVM_PGA_STRAT_FALLBACK:
1013 /* Attempt to allocate from the specified free list. */
1014 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1015 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1016 try1, try2, &color);
1017 if (pg != NULL)
1018 goto gotit;
1019
1020 /* Fall back, if possible. */
1021 if (strat == UVM_PGA_STRAT_FALLBACK) {
1022 strat = UVM_PGA_STRAT_NORMAL;
1023 goto again;
1024 }
1025
1026 /* No pages free! */
1027 goto fail;
1028
1029 default:
1030 panic("uvm_pagealloc_strat: bad strat %d", strat);
1031 /* NOTREACHED */
1032 }
1033
1034 gotit:
1035 /*
1036 * We now know which color we actually allocated from; set
1037 * the next color accordingly.
1038 */
1039
1040 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1041
1042 /*
1043 * update allocation statistics and remember if we have to
1044 * zero the page
1045 */
1046
1047 if (flags & UVM_PGA_ZERO) {
1048 if (pg->flags & PG_ZERO) {
1049 uvmexp.pga_zerohit++;
1050 zeroit = 0;
1051 } else {
1052 uvmexp.pga_zeromiss++;
1053 zeroit = 1;
1054 }
1055 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1056 ucpu->page_idle_zero = vm_page_zero_enable;
1057 }
1058 }
1059 KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1060
1061 /*
1062 * For now check this - later on we may do lazy dequeue, but need
1063 * to get page.queue used only by the pagedaemon policy first.
1064 */
1065 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1066
1067 /*
1068 * assign the page to the object. we don't need to lock the page's
1069 * identity to do this, as the caller holds the objects locked, and
1070 * the page is not on any paging queues at this time.
1071 */
1072 pg->offset = off;
1073 pg->uobject = obj;
1074 pg->uanon = anon;
1075 KASSERT(uvm_page_locked_p(pg));
1076 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1077 if (anon) {
1078 anon->an_page = pg;
1079 pg->flags |= PG_ANON;
1080 atomic_inc_uint(&uvmexp.anonpages);
1081 } else if (obj) {
1082 uvm_pageinsert(obj, pg);
1083 }
1084 mutex_spin_exit(&uvm_fpageqlock);
1085
1086 #if defined(UVM_PAGE_TRKOWN)
1087 pg->owner_tag = NULL;
1088 #endif
1089 UVM_PAGE_OWN(pg, "new alloc");
1090
1091 if (flags & UVM_PGA_ZERO) {
1092 /*
1093 * A zero'd page is not clean. If we got a page not already
1094 * zero'd, then we have to zero it ourselves.
1095 */
1096 pg->flags &= ~PG_CLEAN;
1097 if (zeroit)
1098 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1099 }
1100
1101 return(pg);
1102
1103 fail:
1104 mutex_spin_exit(&uvm_fpageqlock);
1105 return (NULL);
1106 }
1107
1108 /*
1109 * uvm_pagereplace: replace a page with another
1110 *
1111 * => object must be locked
1112 * => interlock must be held
1113 */
1114
1115 void
1116 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1117 {
1118 struct uvm_object *uobj = oldpg->uobject;
1119
1120 KASSERT((oldpg->flags & PG_TABLED) != 0);
1121 KASSERT(uobj != NULL);
1122 KASSERT((newpg->flags & PG_TABLED) == 0);
1123 KASSERT(newpg->uobject == NULL);
1124 KASSERT(mutex_owned(uobj->vmobjlock));
1125
1126 newpg->uobject = uobj;
1127 newpg->offset = oldpg->offset;
1128
1129 uvm_pageremove_tree(uobj, oldpg);
1130 uvm_pageinsert_tree(uobj, newpg);
1131 uvm_pageinsert_list(uobj, newpg, oldpg);
1132 uvm_pageremove_list(uobj, oldpg);
1133 }
1134
1135 /*
1136 * uvm_pagerealloc: reallocate a page from one object to another
1137 *
1138 * => both objects must be locked
1139 * => both interlocks must be held
1140 */
1141
1142 void
1143 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1144 {
1145 /*
1146 * remove it from the old object
1147 */
1148
1149 if (pg->uobject) {
1150 uvm_pageremove(pg->uobject, pg);
1151 }
1152
1153 /*
1154 * put it in the new object
1155 */
1156
1157 if (newobj) {
1158 pg->uobject = newobj;
1159 pg->offset = newoff;
1160 uvm_pageinsert(newobj, pg);
1161 }
1162 }
1163
1164 #ifdef DEBUG
1165 /*
1166 * check if page is zero-filled
1167 */
1168 void
1169 uvm_pagezerocheck(struct vm_page *pg)
1170 {
1171 int *p, *ep;
1172
1173 KASSERT(uvm_zerocheckkva != 0);
1174 KASSERT(mutex_owned(&uvm_fpageqlock));
1175
1176 /*
1177 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1178 * uvm page allocator.
1179 *
1180 * it might be better to have "CPU-local temporary map" pmap interface.
1181 */
1182 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1183 p = (int *)uvm_zerocheckkva;
1184 ep = (int *)((char *)p + PAGE_SIZE);
1185 pmap_update(pmap_kernel());
1186 while (p < ep) {
1187 if (*p != 0)
1188 panic("PG_ZERO page isn't zero-filled");
1189 p++;
1190 }
1191 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1192 /*
1193 * pmap_update() is not necessary here because no one except us
1194 * uses this VA.
1195 */
1196 }
1197 #endif /* DEBUG */
1198
1199 /*
1200 * uvm_pagefree: free page
1201 *
1202 * => erase page's identity (i.e. remove from object)
1203 * => put page on free list
1204 * => caller must lock owning object (either anon or uvm_object)
1205 * => assumes all valid mappings of pg are gone
1206 */
1207
1208 void
1209 uvm_pagefree(struct vm_page *pg)
1210 {
1211 struct pgflist *pgfl;
1212 struct uvm_cpu *ucpu;
1213 int index, color, queue;
1214 bool iszero, locked;
1215
1216 #ifdef DEBUG
1217 if (pg->uobject == (void *)0xdeadbeef &&
1218 pg->uanon == (void *)0xdeadbeef) {
1219 panic("uvm_pagefree: freeing free page %p", pg);
1220 }
1221 #endif /* DEBUG */
1222
1223 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1224 KASSERT(!(pg->flags & PG_FREE));
1225 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1226 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1227 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1228 mutex_owned(pg->uanon->an_lock));
1229
1230 /*
1231 * if the page is loaned, resolve the loan instead of freeing.
1232 */
1233
1234 if (pg->loan_count) {
1235 KASSERT(pg->wire_count == 0);
1236
1237 /*
1238 * if the page is owned by an anon then we just want to
1239 * drop anon ownership. the kernel will free the page when
1240 * it is done with it. if the page is owned by an object,
1241 * remove it from the object and mark it dirty for the benefit
1242 * of possible anon owners.
1243 *
1244 * regardless of previous ownership, wakeup any waiters,
1245 * unbusy the page, and we're done.
1246 */
1247
1248 mutex_enter(&pg->interlock);
1249 locked = true;
1250 if (pg->uobject != NULL) {
1251 uvm_pageremove(pg->uobject, pg);
1252 pg->flags &= ~PG_CLEAN;
1253 } else if (pg->uanon != NULL) {
1254 if ((pg->flags & PG_ANON) == 0) {
1255 pg->loan_count--;
1256 } else {
1257 pg->flags &= ~PG_ANON;
1258 atomic_dec_uint(&uvmexp.anonpages);
1259 }
1260 pg->uanon->an_page = NULL;
1261 pg->uanon = NULL;
1262 }
1263 if (pg->flags & PG_WANTED) {
1264 wakeup(pg);
1265 }
1266 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1267 #ifdef UVM_PAGE_TRKOWN
1268 pg->owner_tag = NULL;
1269 #endif
1270 if (pg->loan_count) {
1271 KASSERT(pg->uobject == NULL);
1272 mutex_exit(&pg->interlock);
1273 if (pg->uanon == NULL) {
1274 uvm_pagedequeue(pg);
1275 }
1276 return;
1277 }
1278 } else if (pg->uobject != NULL || pg->uanon != NULL ||
1279 pg->wire_count != 0) {
1280 mutex_enter(&pg->interlock);
1281 locked = true;
1282 } else {
1283 locked = false;
1284 }
1285
1286 /*
1287 * remove page from its object or anon.
1288 */
1289 if (pg->uobject != NULL) {
1290 uvm_pageremove(pg->uobject, pg);
1291 } else if (pg->uanon != NULL) {
1292 pg->uanon->an_page = NULL;
1293 pg->uanon = NULL;
1294 atomic_dec_uint(&uvmexp.anonpages);
1295 }
1296
1297 /*
1298 * if the page was wired, unwire it now.
1299 */
1300
1301 if (pg->wire_count) {
1302 pg->wire_count = 0;
1303 atomic_dec_uint(&uvmexp.wired);
1304 }
1305 if (locked) {
1306 mutex_exit(&pg->interlock);
1307 }
1308
1309 /*
1310 * now remove the page from the queues.
1311 */
1312 uvm_pagedequeue(pg);
1313
1314 /*
1315 * and put on free queue
1316 */
1317
1318 iszero = (pg->flags & PG_ZERO);
1319 index = uvm_page_lookup_freelist(pg);
1320 color = VM_PGCOLOR_BUCKET(pg);
1321 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1322
1323 #ifdef DEBUG
1324 pg->uobject = (void *)0xdeadbeef;
1325 pg->uanon = (void *)0xdeadbeef;
1326 #endif
1327
1328 mutex_spin_enter(&uvm_fpageqlock);
1329 pg->flags = PG_FREE;
1330
1331 #ifdef DEBUG
1332 if (iszero)
1333 uvm_pagezerocheck(pg);
1334 #endif /* DEBUG */
1335
1336
1337 /* global list */
1338 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1339 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1340 uvmexp.free++;
1341 if (iszero) {
1342 uvmexp.zeropages++;
1343 }
1344
1345 /* per-cpu list */
1346 ucpu = curcpu()->ci_data.cpu_uvm;
1347 pg->offset = (uintptr_t)ucpu;
1348 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1349 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1350 ucpu->pages[queue]++;
1351 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1352 ucpu->page_idle_zero = vm_page_zero_enable;
1353 }
1354
1355 mutex_spin_exit(&uvm_fpageqlock);
1356 }
1357
1358 /*
1359 * uvm_page_unbusy: unbusy an array of pages.
1360 *
1361 * => pages must either all belong to the same object, or all belong to anons.
1362 * => if pages are object-owned, object must be locked.
1363 * => if pages are anon-owned, anons must be locked.
1364 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1365 */
1366
1367 void
1368 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1369 {
1370 struct vm_page *pg;
1371 int i;
1372 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1373
1374 for (i = 0; i < npgs; i++) {
1375 pg = pgs[i];
1376 if (pg == NULL || pg == PGO_DONTCARE) {
1377 continue;
1378 }
1379
1380 KASSERT(uvm_page_locked_p(pg));
1381 KASSERT(pg->flags & PG_BUSY);
1382 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1383 if (pg->flags & PG_WANTED) {
1384 /* XXXAD thundering herd problem. */
1385 wakeup(pg);
1386 }
1387 if (pg->flags & PG_RELEASED) {
1388 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1389 (uintptr_t)pg, 0, 0, 0);
1390 KASSERT(pg->uobject != NULL ||
1391 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1392 pg->flags &= ~PG_RELEASED;
1393 uvm_pagefree(pg);
1394 } else {
1395 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1396 (uintptr_t)pg, 0, 0, 0);
1397 KASSERT((pg->flags & PG_FAKE) == 0);
1398 pg->flags &= ~(PG_WANTED|PG_BUSY);
1399 UVM_PAGE_OWN(pg, NULL);
1400 }
1401 }
1402 }
1403
1404 #if defined(UVM_PAGE_TRKOWN)
1405 /*
1406 * uvm_page_own: set or release page ownership
1407 *
1408 * => this is a debugging function that keeps track of who sets PG_BUSY
1409 * and where they do it. it can be used to track down problems
1410 * such a process setting "PG_BUSY" and never releasing it.
1411 * => page's object [if any] must be locked
1412 * => if "tag" is NULL then we are releasing page ownership
1413 */
1414 void
1415 uvm_page_own(struct vm_page *pg, const char *tag)
1416 {
1417
1418 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1419 KASSERT((pg->flags & PG_WANTED) == 0);
1420 KASSERT(uvm_page_locked_p(pg));
1421
1422 /* gain ownership? */
1423 if (tag) {
1424 KASSERT((pg->flags & PG_BUSY) != 0);
1425 if (pg->owner_tag) {
1426 printf("uvm_page_own: page %p already owned "
1427 "by proc %d [%s]\n", pg,
1428 pg->owner, pg->owner_tag);
1429 panic("uvm_page_own");
1430 }
1431 pg->owner = curproc->p_pid;
1432 pg->lowner = curlwp->l_lid;
1433 pg->owner_tag = tag;
1434 return;
1435 }
1436
1437 /* drop ownership */
1438 KASSERT((pg->flags & PG_BUSY) == 0);
1439 if (pg->owner_tag == NULL) {
1440 printf("uvm_page_own: dropping ownership of an non-owned "
1441 "page (%p)\n", pg);
1442 panic("uvm_page_own");
1443 }
1444 if (!uvmpdpol_pageisqueued_p(pg)) {
1445 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1446 pg->wire_count > 0);
1447 } else {
1448 KASSERT(pg->wire_count == 0);
1449 }
1450 pg->owner_tag = NULL;
1451 }
1452 #endif
1453
1454 /*
1455 * uvm_pageidlezero: zero free pages while the system is idle.
1456 *
1457 * => try to complete one color bucket at a time, to reduce our impact
1458 * on the CPU cache.
1459 * => we loop until we either reach the target or there is a lwp ready
1460 * to run, or MD code detects a reason to break early.
1461 */
1462 void
1463 uvm_pageidlezero(void)
1464 {
1465 struct vm_page *pg;
1466 struct pgfreelist *pgfl, *gpgfl;
1467 struct uvm_cpu *ucpu;
1468 int free_list, firstbucket, nextbucket;
1469 bool lcont = false;
1470
1471 ucpu = curcpu()->ci_data.cpu_uvm;
1472 if (!ucpu->page_idle_zero ||
1473 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1474 ucpu->page_idle_zero = false;
1475 return;
1476 }
1477 if (!mutex_tryenter(&uvm_fpageqlock)) {
1478 /* Contention: let other CPUs to use the lock. */
1479 return;
1480 }
1481 firstbucket = ucpu->page_free_nextcolor;
1482 nextbucket = firstbucket;
1483 do {
1484 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1485 if (sched_curcpu_runnable_p()) {
1486 goto quit;
1487 }
1488 pgfl = &ucpu->page_free[free_list];
1489 gpgfl = &uvm.page_free[free_list];
1490 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1491 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1492 if (lcont || sched_curcpu_runnable_p()) {
1493 goto quit;
1494 }
1495 LIST_REMOVE(pg, pageq.list); /* global list */
1496 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1497 ucpu->pages[PGFL_UNKNOWN]--;
1498 uvmexp.free--;
1499 KASSERT(pg->flags == PG_FREE);
1500 pg->flags = 0;
1501 mutex_spin_exit(&uvm_fpageqlock);
1502 #ifdef PMAP_PAGEIDLEZERO
1503 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1504
1505 /*
1506 * The machine-dependent code detected
1507 * some reason for us to abort zeroing
1508 * pages, probably because there is a
1509 * process now ready to run.
1510 */
1511
1512 mutex_spin_enter(&uvm_fpageqlock);
1513 pg->flags = PG_FREE;
1514 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1515 nextbucket].pgfl_queues[
1516 PGFL_UNKNOWN], pg, pageq.list);
1517 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1518 nextbucket].pgfl_queues[
1519 PGFL_UNKNOWN], pg, listq.list);
1520 ucpu->pages[PGFL_UNKNOWN]++;
1521 uvmexp.free++;
1522 uvmexp.zeroaborts++;
1523 goto quit;
1524 }
1525 #else
1526 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1527 #endif /* PMAP_PAGEIDLEZERO */
1528 if (!mutex_tryenter(&uvm_fpageqlock)) {
1529 lcont = true;
1530 mutex_spin_enter(&uvm_fpageqlock);
1531 } else {
1532 lcont = false;
1533 }
1534 pg->flags = PG_FREE | PG_ZERO;
1535 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1536 nextbucket].pgfl_queues[PGFL_ZEROS],
1537 pg, pageq.list);
1538 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1539 nextbucket].pgfl_queues[PGFL_ZEROS],
1540 pg, listq.list);
1541 ucpu->pages[PGFL_ZEROS]++;
1542 uvmexp.free++;
1543 uvmexp.zeropages++;
1544 }
1545 }
1546 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1547 break;
1548 }
1549 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1550 } while (nextbucket != firstbucket);
1551 ucpu->page_idle_zero = false;
1552 quit:
1553 mutex_spin_exit(&uvm_fpageqlock);
1554 }
1555
1556 /*
1557 * uvm_pagelookup: look up a page
1558 *
1559 * => caller should lock object to keep someone from pulling the page
1560 * out from under it
1561 */
1562
1563 struct vm_page *
1564 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1565 {
1566 struct vm_page *pg;
1567
1568 KASSERT(mutex_owned(obj->vmobjlock));
1569
1570 pg = rb_tree_find_node(&obj->rb_tree, &off);
1571
1572 KASSERT(pg == NULL || obj->uo_npages != 0);
1573 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1574 (pg->flags & PG_BUSY) != 0);
1575 return pg;
1576 }
1577
1578 /*
1579 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1580 *
1581 * => caller must lock objects
1582 */
1583
1584 void
1585 uvm_pagewire(struct vm_page *pg)
1586 {
1587
1588 KASSERT(uvm_page_locked_p(pg));
1589 #if defined(READAHEAD_STATS)
1590 if ((pg->flags & PG_READAHEAD) != 0) {
1591 uvm_ra_hit.ev_count++;
1592 pg->flags &= ~PG_READAHEAD;
1593 }
1594 #endif /* defined(READAHEAD_STATS) */
1595 if (pg->wire_count == 0) {
1596 uvm_pagedequeue(pg);
1597 atomic_inc_uint(&uvmexp.wired);
1598 }
1599 mutex_enter(&pg->interlock);
1600 pg->wire_count++;
1601 mutex_exit(&pg->interlock);
1602 KASSERT(pg->wire_count > 0); /* detect wraparound */
1603 }
1604
1605 /*
1606 * uvm_pageunwire: unwire the page.
1607 *
1608 * => activate if wire count goes to zero.
1609 * => caller must lock objects
1610 */
1611
1612 void
1613 uvm_pageunwire(struct vm_page *pg)
1614 {
1615
1616 KASSERT(uvm_page_locked_p(pg));
1617 KASSERT(pg->wire_count != 0);
1618 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1619 mutex_enter(&pg->interlock);
1620 pg->wire_count--;
1621 mutex_exit(&pg->interlock);
1622 if (pg->wire_count == 0) {
1623 uvm_pageactivate(pg);
1624 KASSERT(uvmexp.wired != 0);
1625 atomic_dec_uint(&uvmexp.wired);
1626 }
1627 }
1628
1629 /*
1630 * uvm_pagedeactivate: deactivate page
1631 *
1632 * => caller must lock objects
1633 * => caller must check to make sure page is not wired
1634 * => object that page belongs to must be locked (so we can adjust pg->flags)
1635 * => caller must clear the reference on the page before calling
1636 */
1637
1638 void
1639 uvm_pagedeactivate(struct vm_page *pg)
1640 {
1641
1642 KASSERT(uvm_page_locked_p(pg));
1643 if (pg->wire_count == 0) {
1644 KASSERT(uvmpdpol_pageisqueued_p(pg));
1645 uvmpdpol_pagedeactivate(pg);
1646 }
1647 }
1648
1649 /*
1650 * uvm_pageactivate: activate page
1651 *
1652 * => caller must lock objects
1653 */
1654
1655 void
1656 uvm_pageactivate(struct vm_page *pg)
1657 {
1658
1659 KASSERT(uvm_page_locked_p(pg));
1660 #if defined(READAHEAD_STATS)
1661 if ((pg->flags & PG_READAHEAD) != 0) {
1662 uvm_ra_hit.ev_count++;
1663 pg->flags &= ~PG_READAHEAD;
1664 }
1665 #endif /* defined(READAHEAD_STATS) */
1666 if (pg->wire_count == 0) {
1667 uvmpdpol_pageactivate(pg);
1668 }
1669 }
1670
1671 /*
1672 * uvm_pagedequeue: remove a page from any paging queue
1673 *
1674 * => caller must lock objects
1675 */
1676 void
1677 uvm_pagedequeue(struct vm_page *pg)
1678 {
1679
1680 KASSERT(uvm_page_locked_p(pg));
1681 if (uvmpdpol_pageisqueued_p(pg)) {
1682 uvmpdpol_pagedequeue(pg);
1683 }
1684 }
1685
1686 /*
1687 * uvm_pageenqueue: add a page to a paging queue without activating.
1688 * used where a page is not really demanded (yet). eg. read-ahead
1689 *
1690 * => caller must lock objects
1691 */
1692 void
1693 uvm_pageenqueue(struct vm_page *pg)
1694 {
1695
1696 KASSERT(uvm_page_locked_p(pg));
1697 if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1698 uvmpdpol_pageenqueue(pg);
1699 }
1700 }
1701
1702 /*
1703 * uvm_pagezero: zero fill a page
1704 *
1705 * => if page is part of an object then the object should be locked
1706 * to protect pg->flags.
1707 */
1708
1709 void
1710 uvm_pagezero(struct vm_page *pg)
1711 {
1712 pg->flags &= ~PG_CLEAN;
1713 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1714 }
1715
1716 /*
1717 * uvm_pagecopy: copy a page
1718 *
1719 * => if page is part of an object then the object should be locked
1720 * to protect pg->flags.
1721 */
1722
1723 void
1724 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1725 {
1726
1727 dst->flags &= ~PG_CLEAN;
1728 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1729 }
1730
1731 /*
1732 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1733 */
1734
1735 bool
1736 uvm_pageismanaged(paddr_t pa)
1737 {
1738
1739 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1740 }
1741
1742 /*
1743 * uvm_page_lookup_freelist: look up the free list for the specified page
1744 */
1745
1746 int
1747 uvm_page_lookup_freelist(struct vm_page *pg)
1748 {
1749 uvm_physseg_t upm;
1750
1751 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1752 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1753 return uvm_physseg_get_free_list(upm);
1754 }
1755
1756 /*
1757 * uvm_page_locked_p: return true if object associated with page is
1758 * locked. this is a weak check for runtime assertions only.
1759 */
1760
1761 bool
1762 uvm_page_locked_p(struct vm_page *pg)
1763 {
1764
1765 if (pg->uobject != NULL) {
1766 return mutex_owned(pg->uobject->vmobjlock);
1767 }
1768 if (pg->uanon != NULL) {
1769 return mutex_owned(pg->uanon->an_lock);
1770 }
1771 return true;
1772 }
1773
1774 #ifdef PMAP_DIRECT
1775 /*
1776 * Call pmap to translate physical address into a virtual and to run a callback
1777 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1778 * or equivalent.
1779 */
1780 int
1781 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1782 int (*process)(void *, size_t, void *), void *arg)
1783 {
1784 int error = 0;
1785 paddr_t pa;
1786 size_t todo;
1787 voff_t pgoff = (off & PAGE_MASK);
1788 struct vm_page *pg;
1789
1790 KASSERT(npages > 0 && len > 0);
1791
1792 for (int i = 0; i < npages; i++) {
1793 pg = pgs[i];
1794
1795 KASSERT(len > 0);
1796
1797 /*
1798 * Caller is responsible for ensuring all the pages are
1799 * available.
1800 */
1801 KASSERT(pg != NULL && pg != PGO_DONTCARE);
1802
1803 pa = VM_PAGE_TO_PHYS(pg);
1804 todo = MIN(len, PAGE_SIZE - pgoff);
1805
1806 error = pmap_direct_process(pa, pgoff, todo, process, arg);
1807 if (error)
1808 break;
1809
1810 pgoff = 0;
1811 len -= todo;
1812 }
1813
1814 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1815 return error;
1816 }
1817 #endif /* PMAP_DIRECT */
1818
1819 #if defined(DDB) || defined(DEBUGPRINT)
1820
1821 /*
1822 * uvm_page_printit: actually print the page
1823 */
1824
1825 static const char page_flagbits[] = UVM_PGFLAGBITS;
1826
1827 void
1828 uvm_page_printit(struct vm_page *pg, bool full,
1829 void (*pr)(const char *, ...))
1830 {
1831 struct vm_page *tpg;
1832 struct uvm_object *uobj;
1833 struct pgflist *pgl;
1834 char pgbuf[128];
1835
1836 (*pr)("PAGE %p:\n", pg);
1837 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1838 (*pr)(" flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
1839 pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1840 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1841 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1842 #if defined(UVM_PAGE_TRKOWN)
1843 if (pg->flags & PG_BUSY)
1844 (*pr)(" owning process = %d, tag=%s\n",
1845 pg->owner, pg->owner_tag);
1846 else
1847 (*pr)(" page not busy, no owner\n");
1848 #else
1849 (*pr)(" [page ownership tracking disabled]\n");
1850 #endif
1851
1852 if (!full)
1853 return;
1854
1855 /* cross-verify object/anon */
1856 if ((pg->flags & PG_FREE) == 0) {
1857 if (pg->flags & PG_ANON) {
1858 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1859 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1860 (pg->uanon) ? pg->uanon->an_page : NULL);
1861 else
1862 (*pr)(" anon backpointer is OK\n");
1863 } else {
1864 uobj = pg->uobject;
1865 if (uobj) {
1866 (*pr)(" checking object list\n");
1867 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1868 if (tpg == pg) {
1869 break;
1870 }
1871 }
1872 if (tpg)
1873 (*pr)(" page found on object list\n");
1874 else
1875 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1876 }
1877 }
1878 }
1879
1880 /* cross-verify page queue */
1881 if (pg->flags & PG_FREE) {
1882 int fl = uvm_page_lookup_freelist(pg);
1883 int color = VM_PGCOLOR_BUCKET(pg);
1884 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1885 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1886 } else {
1887 pgl = NULL;
1888 }
1889
1890 if (pgl) {
1891 (*pr)(" checking pageq list\n");
1892 LIST_FOREACH(tpg, pgl, pageq.list) {
1893 if (tpg == pg) {
1894 break;
1895 }
1896 }
1897 if (tpg)
1898 (*pr)(" page found on pageq list\n");
1899 else
1900 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1901 }
1902 }
1903
1904 /*
1905 * uvm_page_printall - print a summary of all managed pages
1906 */
1907
1908 void
1909 uvm_page_printall(void (*pr)(const char *, ...))
1910 {
1911 uvm_physseg_t i;
1912 paddr_t pfn;
1913 struct vm_page *pg;
1914
1915 (*pr)("%18s %4s %4s %18s %18s"
1916 #ifdef UVM_PAGE_TRKOWN
1917 " OWNER"
1918 #endif
1919 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1920 for (i = uvm_physseg_get_first();
1921 uvm_physseg_valid_p(i);
1922 i = uvm_physseg_get_next(i)) {
1923 for (pfn = uvm_physseg_get_start(i);
1924 pfn < uvm_physseg_get_end(i);
1925 pfn++) {
1926 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1927
1928 (*pr)("%18p %04x %08x %18p %18p",
1929 pg, pg->flags, pg->pqflags, pg->uobject,
1930 pg->uanon);
1931 #ifdef UVM_PAGE_TRKOWN
1932 if (pg->flags & PG_BUSY)
1933 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1934 #endif
1935 (*pr)("\n");
1936 }
1937 }
1938 }
1939
1940 #endif /* DDB || DEBUGPRINT */
1941