Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.223
      1 /*	$NetBSD: uvm_page.c,v 1.223 2020/01/11 19:51:01 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     34  * Copyright (c) 1991, 1993, The Regents of the University of California.
     35  *
     36  * All rights reserved.
     37  *
     38  * This code is derived from software contributed to Berkeley by
     39  * The Mach Operating System project at Carnegie-Mellon University.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     67  *
     68  *
     69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     70  * All rights reserved.
     71  *
     72  * Permission to use, copy, modify and distribute this software and
     73  * its documentation is hereby granted, provided that both the copyright
     74  * notice and this permission notice appear in all copies of the
     75  * software, derivative works or modified versions, and any portions
     76  * thereof, and that both notices appear in supporting documentation.
     77  *
     78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     81  *
     82  * Carnegie Mellon requests users of this software to return to
     83  *
     84  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     85  *  School of Computer Science
     86  *  Carnegie Mellon University
     87  *  Pittsburgh PA 15213-3890
     88  *
     89  * any improvements or extensions that they make and grant Carnegie the
     90  * rights to redistribute these changes.
     91  */
     92 
     93 /*
     94  * uvm_page.c: page ops.
     95  */
     96 
     97 #include <sys/cdefs.h>
     98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.223 2020/01/11 19:51:01 ad Exp $");
     99 
    100 #include "opt_ddb.h"
    101 #include "opt_uvm.h"
    102 #include "opt_uvmhist.h"
    103 #include "opt_readahead.h"
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/sched.h>
    108 #include <sys/kernel.h>
    109 #include <sys/vnode.h>
    110 #include <sys/proc.h>
    111 #include <sys/radixtree.h>
    112 #include <sys/atomic.h>
    113 #include <sys/cpu.h>
    114 #include <sys/extent.h>
    115 
    116 #include <uvm/uvm.h>
    117 #include <uvm/uvm_ddb.h>
    118 #include <uvm/uvm_pdpolicy.h>
    119 #include <uvm/uvm_pgflcache.h>
    120 
    121 /*
    122  * Some supported CPUs in a given architecture don't support all
    123  * of the things necessary to do idle page zero'ing efficiently.
    124  * We therefore provide a way to enable it from machdep code here.
    125  */
    126 bool vm_page_zero_enable = false;
    127 
    128 /*
    129  * number of pages per-CPU to reserve for the kernel.
    130  */
    131 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    132 #define	UVM_RESERVED_PAGES_PER_CPU	5
    133 #endif
    134 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    135 
    136 /*
    137  * physical memory size;
    138  */
    139 psize_t physmem;
    140 
    141 /*
    142  * local variables
    143  */
    144 
    145 /*
    146  * these variables record the values returned by vm_page_bootstrap,
    147  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    148  * and pmap_startup here also uses them internally.
    149  */
    150 
    151 static vaddr_t      virtual_space_start;
    152 static vaddr_t      virtual_space_end;
    153 
    154 /*
    155  * we allocate an initial number of page colors in uvm_page_init(),
    156  * and remember them.  We may re-color pages as cache sizes are
    157  * discovered during the autoconfiguration phase.  But we can never
    158  * free the initial set of buckets, since they are allocated using
    159  * uvm_pageboot_alloc().
    160  */
    161 
    162 static size_t recolored_pages_memsize /* = 0 */;
    163 static char *recolored_pages_mem;
    164 
    165 /*
    166  * freelist locks - one per bucket.
    167  */
    168 
    169 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
    170     __cacheline_aligned;
    171 
    172 /*
    173  * basic NUMA information.
    174  */
    175 
    176 static struct uvm_page_numa_region {
    177 	struct uvm_page_numa_region	*next;
    178 	paddr_t				start;
    179 	paddr_t				size;
    180 	u_int				numa_id;
    181 } *uvm_page_numa_region;
    182 
    183 #ifdef DEBUG
    184 kmutex_t uvm_zerochecklock __cacheline_aligned;
    185 vaddr_t uvm_zerocheckkva;
    186 #endif /* DEBUG */
    187 
    188 /*
    189  * These functions are reserved for uvm(9) internal use and are not
    190  * exported in the header file uvm_physseg.h
    191  *
    192  * Thus they are redefined here.
    193  */
    194 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    195 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    196 
    197 /* returns a pgs array */
    198 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    199 
    200 /*
    201  * inline functions
    202  */
    203 
    204 /*
    205  * uvm_pageinsert: insert a page in the object.
    206  *
    207  * => caller must lock object
    208  * => call should have already set pg's object and offset pointers
    209  *    and bumped the version counter
    210  */
    211 
    212 static inline void
    213 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    214 {
    215 
    216 	KASSERT(uobj == pg->uobject);
    217 	KASSERT(mutex_owned(uobj->vmobjlock));
    218 	KASSERT((pg->flags & PG_TABLED) == 0);
    219 
    220 	if (UVM_OBJ_IS_VNODE(uobj)) {
    221 		if (uobj->uo_npages == 0) {
    222 			struct vnode *vp = (struct vnode *)uobj;
    223 
    224 			vholdl(vp);
    225 		}
    226 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    227 			cpu_count(CPU_COUNT_EXECPAGES, 1);
    228 		} else {
    229 			cpu_count(CPU_COUNT_FILEPAGES, 1);
    230 		}
    231 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    232 		cpu_count(CPU_COUNT_ANONPAGES, 1);
    233 	}
    234 	pg->flags |= PG_TABLED;
    235 	uobj->uo_npages++;
    236 }
    237 
    238 static inline int
    239 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    240 {
    241 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    242 	int error;
    243 
    244 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    245 	if (error != 0) {
    246 		return error;
    247 	}
    248 	return 0;
    249 }
    250 
    251 /*
    252  * uvm_page_remove: remove page from object.
    253  *
    254  * => caller must lock object
    255  */
    256 
    257 static inline void
    258 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    259 {
    260 
    261 	KASSERT(uobj == pg->uobject);
    262 	KASSERT(mutex_owned(uobj->vmobjlock));
    263 	KASSERT(pg->flags & PG_TABLED);
    264 
    265 	if (UVM_OBJ_IS_VNODE(uobj)) {
    266 		if (uobj->uo_npages == 1) {
    267 			struct vnode *vp = (struct vnode *)uobj;
    268 
    269 			holdrelel(vp);
    270 		}
    271 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    272 			cpu_count(CPU_COUNT_EXECPAGES, -1);
    273 		} else {
    274 			cpu_count(CPU_COUNT_FILEPAGES, -1);
    275 		}
    276 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    277 		cpu_count(CPU_COUNT_ANONPAGES, -1);
    278 	}
    279 
    280 	/* object should be locked */
    281 	uobj->uo_npages--;
    282 	pg->flags &= ~PG_TABLED;
    283 	pg->uobject = NULL;
    284 }
    285 
    286 static inline void
    287 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    288 {
    289 	struct vm_page *opg __unused;
    290 
    291 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    292 	KASSERT(pg == opg);
    293 }
    294 
    295 static void
    296 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
    297 {
    298 	int i;
    299 
    300 	pgb->pgb_nfree = 0;
    301 	for (i = 0; i < uvmexp.ncolors; i++) {
    302 		LIST_INIT(&pgb->pgb_colors[i]);
    303 	}
    304 	pgfl->pgfl_buckets[num] = pgb;
    305 }
    306 
    307 /*
    308  * uvm_page_init: init the page system.   called from uvm_init().
    309  *
    310  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    311  */
    312 
    313 void
    314 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    315 {
    316 	static struct uvm_cpu boot_cpu __cacheline_aligned;
    317 	psize_t freepages, pagecount, bucketsize, n;
    318 	struct pgflbucket *pgb;
    319 	struct vm_page *pagearray;
    320 	char *bucketarray;
    321 	uvm_physseg_t bank;
    322 	int fl, b;
    323 
    324 	KASSERT(ncpu <= 1);
    325 
    326 	/*
    327 	 * init the page queues and free page queue locks, except the
    328 	 * free list; we allocate that later (with the initial vm_page
    329 	 * structures).
    330 	 */
    331 
    332 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    333 	uvmpdpol_init();
    334 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
    335 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
    336 	}
    337 
    338 	/*
    339 	 * allocate vm_page structures.
    340 	 */
    341 
    342 	/*
    343 	 * sanity check:
    344 	 * before calling this function the MD code is expected to register
    345 	 * some free RAM with the uvm_page_physload() function.   our job
    346 	 * now is to allocate vm_page structures for this memory.
    347 	 */
    348 
    349 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    350 		panic("uvm_page_bootstrap: no memory pre-allocated");
    351 
    352 	/*
    353 	 * first calculate the number of free pages...
    354 	 *
    355 	 * note that we use start/end rather than avail_start/avail_end.
    356 	 * this allows us to allocate extra vm_page structures in case we
    357 	 * want to return some memory to the pool after booting.
    358 	 */
    359 
    360 	freepages = 0;
    361 
    362 	for (bank = uvm_physseg_get_first();
    363 	     uvm_physseg_valid_p(bank) ;
    364 	     bank = uvm_physseg_get_next(bank)) {
    365 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    366 	}
    367 
    368 	/*
    369 	 * Let MD code initialize the number of colors, or default
    370 	 * to 1 color if MD code doesn't care.
    371 	 */
    372 	if (uvmexp.ncolors == 0)
    373 		uvmexp.ncolors = 1;
    374 	uvmexp.colormask = uvmexp.ncolors - 1;
    375 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    376 
    377 	/* We always start with only 1 bucket. */
    378 	uvm.bucketcount = 1;
    379 
    380 	/*
    381 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    382 	 * use.   for each page of memory we use we need a vm_page structure.
    383 	 * thus, the total number of pages we can use is the total size of
    384 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    385 	 * structure.   we add one to freepages as a fudge factor to avoid
    386 	 * truncation errors (since we can only allocate in terms of whole
    387 	 * pages).
    388 	 */
    389 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    390 	    (PAGE_SIZE + sizeof(struct vm_page));
    391 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
    392 	bucketsize = roundup2(bucketsize, coherency_unit);
    393 	bucketarray = (void *)uvm_pageboot_alloc(
    394 	    bucketsize * VM_NFREELIST +
    395 	    pagecount * sizeof(struct vm_page));
    396 	pagearray = (struct vm_page *)
    397 	    (bucketarray + bucketsize * VM_NFREELIST);
    398 
    399 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    400 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
    401 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
    402 	}
    403 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    404 
    405 	/*
    406 	 * init the freelist cache in the disabled state.
    407 	 */
    408 	uvm_pgflcache_init();
    409 
    410 	/*
    411 	 * init the vm_page structures and put them in the correct place.
    412 	 */
    413 	/* First init the extent */
    414 
    415 	for (bank = uvm_physseg_get_first(),
    416 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    417 	     uvm_physseg_valid_p(bank);
    418 	     bank = uvm_physseg_get_next(bank)) {
    419 
    420 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    421 		uvm_physseg_seg_alloc_from_slab(bank, n);
    422 		uvm_physseg_init_seg(bank, pagearray);
    423 
    424 		/* set up page array pointers */
    425 		pagearray += n;
    426 		pagecount -= n;
    427 	}
    428 
    429 	/*
    430 	 * pass up the values of virtual_space_start and
    431 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    432 	 * layers of the VM.
    433 	 */
    434 
    435 	*kvm_startp = round_page(virtual_space_start);
    436 	*kvm_endp = trunc_page(virtual_space_end);
    437 #ifdef DEBUG
    438 	/*
    439 	 * steal kva for uvm_pagezerocheck().
    440 	 */
    441 	uvm_zerocheckkva = *kvm_startp;
    442 	*kvm_startp += PAGE_SIZE;
    443 	mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
    444 #endif /* DEBUG */
    445 
    446 	/*
    447 	 * init various thresholds.
    448 	 */
    449 
    450 	uvmexp.reserve_pagedaemon = 1;
    451 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    452 
    453 	/*
    454 	 * done!
    455 	 */
    456 
    457 	uvm.page_init_done = true;
    458 }
    459 
    460 /*
    461  * uvm_pgfl_lock: lock all freelist buckets
    462  */
    463 
    464 void
    465 uvm_pgfl_lock(void)
    466 {
    467 	int i;
    468 
    469 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    470 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
    471 	}
    472 }
    473 
    474 /*
    475  * uvm_pgfl_unlock: unlock all freelist buckets
    476  */
    477 
    478 void
    479 uvm_pgfl_unlock(void)
    480 {
    481 	int i;
    482 
    483 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    484 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
    485 	}
    486 }
    487 
    488 /*
    489  * uvm_setpagesize: set the page size
    490  *
    491  * => sets page_shift and page_mask from uvmexp.pagesize.
    492  */
    493 
    494 void
    495 uvm_setpagesize(void)
    496 {
    497 
    498 	/*
    499 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    500 	 * to be a constant (indicated by being a non-zero value).
    501 	 */
    502 	if (uvmexp.pagesize == 0) {
    503 		if (PAGE_SIZE == 0)
    504 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    505 		uvmexp.pagesize = PAGE_SIZE;
    506 	}
    507 	uvmexp.pagemask = uvmexp.pagesize - 1;
    508 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    509 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    510 		    uvmexp.pagesize, uvmexp.pagesize);
    511 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    512 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    513 			break;
    514 }
    515 
    516 /*
    517  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    518  */
    519 
    520 vaddr_t
    521 uvm_pageboot_alloc(vsize_t size)
    522 {
    523 	static bool initialized = false;
    524 	vaddr_t addr;
    525 #if !defined(PMAP_STEAL_MEMORY)
    526 	vaddr_t vaddr;
    527 	paddr_t paddr;
    528 #endif
    529 
    530 	/*
    531 	 * on first call to this function, initialize ourselves.
    532 	 */
    533 	if (initialized == false) {
    534 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    535 
    536 		/* round it the way we like it */
    537 		virtual_space_start = round_page(virtual_space_start);
    538 		virtual_space_end = trunc_page(virtual_space_end);
    539 
    540 		initialized = true;
    541 	}
    542 
    543 	/* round to page size */
    544 	size = round_page(size);
    545 	uvmexp.bootpages += atop(size);
    546 
    547 #if defined(PMAP_STEAL_MEMORY)
    548 
    549 	/*
    550 	 * defer bootstrap allocation to MD code (it may want to allocate
    551 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    552 	 * virtual_space_start/virtual_space_end if necessary.
    553 	 */
    554 
    555 	addr = pmap_steal_memory(size, &virtual_space_start,
    556 	    &virtual_space_end);
    557 
    558 	return(addr);
    559 
    560 #else /* !PMAP_STEAL_MEMORY */
    561 
    562 	/*
    563 	 * allocate virtual memory for this request
    564 	 */
    565 	if (virtual_space_start == virtual_space_end ||
    566 	    (virtual_space_end - virtual_space_start) < size)
    567 		panic("uvm_pageboot_alloc: out of virtual space");
    568 
    569 	addr = virtual_space_start;
    570 
    571 #ifdef PMAP_GROWKERNEL
    572 	/*
    573 	 * If the kernel pmap can't map the requested space,
    574 	 * then allocate more resources for it.
    575 	 */
    576 	if (uvm_maxkaddr < (addr + size)) {
    577 		uvm_maxkaddr = pmap_growkernel(addr + size);
    578 		if (uvm_maxkaddr < (addr + size))
    579 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    580 	}
    581 #endif
    582 
    583 	virtual_space_start += size;
    584 
    585 	/*
    586 	 * allocate and mapin physical pages to back new virtual pages
    587 	 */
    588 
    589 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    590 	    vaddr += PAGE_SIZE) {
    591 
    592 		if (!uvm_page_physget(&paddr))
    593 			panic("uvm_pageboot_alloc: out of memory");
    594 
    595 		/*
    596 		 * Note this memory is no longer managed, so using
    597 		 * pmap_kenter is safe.
    598 		 */
    599 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    600 	}
    601 	pmap_update(pmap_kernel());
    602 	return(addr);
    603 #endif	/* PMAP_STEAL_MEMORY */
    604 }
    605 
    606 #if !defined(PMAP_STEAL_MEMORY)
    607 /*
    608  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    609  *
    610  * => attempt to allocate it off the end of a segment in which the "avail"
    611  *    values match the start/end values.   if we can't do that, then we
    612  *    will advance both values (making them equal, and removing some
    613  *    vm_page structures from the non-avail area).
    614  * => return false if out of memory.
    615  */
    616 
    617 /* subroutine: try to allocate from memory chunks on the specified freelist */
    618 static bool uvm_page_physget_freelist(paddr_t *, int);
    619 
    620 static bool
    621 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    622 {
    623 	uvm_physseg_t lcv;
    624 
    625 	/* pass 1: try allocating from a matching end */
    626 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    627 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    628 #else
    629 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    630 #endif
    631 	{
    632 		if (uvm.page_init_done == true)
    633 			panic("uvm_page_physget: called _after_ bootstrap");
    634 
    635 		/* Try to match at front or back on unused segment */
    636 		if (uvm_page_physunload(lcv, freelist, paddrp))
    637 			return true;
    638 	}
    639 
    640 	/* pass2: forget about matching ends, just allocate something */
    641 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    642 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    643 #else
    644 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    645 #endif
    646 	{
    647 		/* Try the front regardless. */
    648 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    649 			return true;
    650 	}
    651 	return false;
    652 }
    653 
    654 bool
    655 uvm_page_physget(paddr_t *paddrp)
    656 {
    657 	int i;
    658 
    659 	/* try in the order of freelist preference */
    660 	for (i = 0; i < VM_NFREELIST; i++)
    661 		if (uvm_page_physget_freelist(paddrp, i) == true)
    662 			return (true);
    663 	return (false);
    664 }
    665 #endif /* PMAP_STEAL_MEMORY */
    666 
    667 /*
    668  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    669  * back from an I/O mapping (ugh!).   used in some MD code as well.
    670  */
    671 struct vm_page *
    672 uvm_phys_to_vm_page(paddr_t pa)
    673 {
    674 	paddr_t pf = atop(pa);
    675 	paddr_t	off;
    676 	uvm_physseg_t	upm;
    677 
    678 	upm = uvm_physseg_find(pf, &off);
    679 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    680 		return uvm_physseg_get_pg(upm, off);
    681 	return(NULL);
    682 }
    683 
    684 paddr_t
    685 uvm_vm_page_to_phys(const struct vm_page *pg)
    686 {
    687 
    688 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    689 }
    690 
    691 /*
    692  * uvm_page_numa_load: load NUMA range description.
    693  */
    694 void
    695 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
    696 {
    697 	struct uvm_page_numa_region *d;
    698 
    699 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
    700 
    701 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
    702 	d->start = start;
    703 	d->size = size;
    704 	d->numa_id = numa_id;
    705 	d->next = uvm_page_numa_region;
    706 	uvm_page_numa_region = d;
    707 }
    708 
    709 /*
    710  * uvm_page_numa_lookup: lookup NUMA node for the given page.
    711  */
    712 static u_int
    713 uvm_page_numa_lookup(struct vm_page *pg)
    714 {
    715 	struct uvm_page_numa_region *d;
    716 	static bool warned;
    717 	paddr_t pa;
    718 
    719 	KASSERT(uvm.numa_alloc);
    720 	KASSERT(uvm_page_numa_region != NULL);
    721 
    722 	pa = VM_PAGE_TO_PHYS(pg);
    723 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
    724 		if (pa >= d->start && pa < d->start + d->size) {
    725 			return d->numa_id;
    726 		}
    727 	}
    728 
    729 	if (!warned) {
    730 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
    731 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
    732 		warned = true;
    733 	}
    734 
    735 	return 0;
    736 }
    737 
    738 /*
    739  * uvm_page_redim: adjust freelist dimensions if they have changed.
    740  */
    741 
    742 static void
    743 uvm_page_redim(int newncolors, int newnbuckets)
    744 {
    745 	struct pgfreelist npgfl;
    746 	struct pgflbucket *opgb, *npgb;
    747 	struct pgflist *ohead, *nhead;
    748 	struct vm_page *pg;
    749 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
    750 	int fl, ob, oc, nb, nc, obuckets, ocolors;
    751 	char *bucketarray, *oldbucketmem, *bucketmem;
    752 
    753 	KASSERT(((newncolors - 1) & newncolors) == 0);
    754 
    755 	/* Anything to do? */
    756 	if (newncolors <= uvmexp.ncolors &&
    757 	    newnbuckets == uvm.bucketcount) {
    758 		return;
    759 	}
    760 	if (uvm.page_init_done == false) {
    761 		uvmexp.ncolors = newncolors;
    762 		return;
    763 	}
    764 
    765 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
    766 	bucketsize = roundup2(bucketsize, coherency_unit);
    767 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
    768 	    coherency_unit - 1;
    769 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
    770 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
    771 
    772 	ocolors = uvmexp.ncolors;
    773 	obuckets = uvm.bucketcount;
    774 
    775 	/* Freelist cache musn't be enabled. */
    776 	uvm_pgflcache_pause();
    777 
    778 	/* Make sure we should still do this. */
    779 	uvm_pgfl_lock();
    780 	if (newncolors <= uvmexp.ncolors &&
    781 	    newnbuckets == uvm.bucketcount) {
    782 		uvm_pgfl_unlock();
    783 		uvm_pgflcache_resume();
    784 		kmem_free(bucketmem, bucketmemsize);
    785 		return;
    786 	}
    787 
    788 	uvmexp.ncolors = newncolors;
    789 	uvmexp.colormask = uvmexp.ncolors - 1;
    790 	uvm.bucketcount = newnbuckets;
    791 
    792 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    793 		/* Init new buckets in new freelist. */
    794 		memset(&npgfl, 0, sizeof(npgfl));
    795 		for (nb = 0; nb < newnbuckets; nb++) {
    796 			npgb = (struct pgflbucket *)bucketarray;
    797 			uvm_page_init_bucket(&npgfl, npgb, nb);
    798 			bucketarray += bucketsize;
    799 		}
    800 		/* Now transfer pages from the old freelist. */
    801 		for (nb = ob = 0; ob < obuckets; ob++) {
    802 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
    803 			for (oc = 0; oc < ocolors; oc++) {
    804 				ohead = &opgb->pgb_colors[oc];
    805 				while ((pg = LIST_FIRST(ohead)) != NULL) {
    806 					LIST_REMOVE(pg, pageq.list);
    807 					/*
    808 					 * Here we decide on the NEW color &
    809 					 * bucket for the page.  For NUMA
    810 					 * we'll use the info that the
    811 					 * hardware gave us.  For non-NUMA
    812 					 * assign take physical page frame
    813 					 * number and cache color into
    814 					 * account.  We do this to try and
    815 					 * avoid defeating any memory
    816 					 * interleaving in the hardware.
    817 					 */
    818 					KASSERT(
    819 					    uvm_page_get_bucket(pg) == ob);
    820 					KASSERT(fl ==
    821 					    uvm_page_get_freelist(pg));
    822 					if (uvm.numa_alloc) {
    823 						nb = uvm_page_numa_lookup(pg);
    824 					} else {
    825 						nb = atop(VM_PAGE_TO_PHYS(pg))
    826 						    / uvmexp.ncolors / 8
    827 						    % newnbuckets;
    828 					}
    829 					uvm_page_set_bucket(pg, nb);
    830 					npgb = npgfl.pgfl_buckets[nb];
    831 					npgb->pgb_nfree++;
    832 					nc = VM_PGCOLOR(pg);
    833 					nhead = &npgb->pgb_colors[nc];
    834 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
    835 				}
    836 			}
    837 		}
    838 		/* Install the new freelist. */
    839 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
    840 	}
    841 
    842 	/* Unlock and free the old memory. */
    843 	oldbucketmemsize = recolored_pages_memsize;
    844 	oldbucketmem = recolored_pages_mem;
    845 	recolored_pages_memsize = bucketmemsize;
    846 	recolored_pages_mem = bucketmem;
    847 
    848 	uvm_pgfl_unlock();
    849 	uvm_pgflcache_resume();
    850 
    851 	if (oldbucketmemsize) {
    852 		kmem_free(oldbucketmem, oldbucketmemsize);
    853 	}
    854 
    855 	/*
    856 	 * this calls uvm_km_alloc() which may want to hold
    857 	 * uvm_freelist_lock.
    858 	 */
    859 	uvm_pager_realloc_emerg();
    860 }
    861 
    862 /*
    863  * uvm_page_recolor: Recolor the pages if the new color count is
    864  * larger than the old one.
    865  */
    866 
    867 void
    868 uvm_page_recolor(int newncolors)
    869 {
    870 
    871 	uvm_page_redim(newncolors, uvm.bucketcount);
    872 }
    873 
    874 /*
    875  * uvm_page_rebucket: Determine a bucket structure and redim the free
    876  * lists to match.
    877  */
    878 
    879 void
    880 uvm_page_rebucket(void)
    881 {
    882 	u_int min_numa, max_numa, npackage, shift;
    883 	struct cpu_info *ci, *ci2, *ci3;
    884 	CPU_INFO_ITERATOR cii;
    885 
    886 	/*
    887 	 * If we have more than one NUMA node, and the maximum NUMA node ID
    888 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
    889 	 * for free pages.  uvm_pagefree() will not reassign pages to a
    890 	 * different bucket on free.
    891 	 */
    892 	min_numa = (u_int)-1;
    893 	max_numa = 0;
    894 	for (CPU_INFO_FOREACH(cii, ci)) {
    895 		if (ci->ci_numa_id < min_numa) {
    896 			min_numa = ci->ci_numa_id;
    897 		}
    898 		if (ci->ci_numa_id > max_numa) {
    899 			max_numa = ci->ci_numa_id;
    900 		}
    901 	}
    902 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
    903 #ifdef NUMA
    904 		/*
    905 		 * We can do this, and it seems to work well, but until
    906 		 * further experiments are done we'll stick with the cache
    907 		 * locality strategy.
    908 		 */
    909 		aprint_debug("UVM: using NUMA allocation scheme\n");
    910 		for (CPU_INFO_FOREACH(cii, ci)) {
    911 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
    912 		}
    913 		uvm.numa_alloc = true;
    914 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
    915 	 	return;
    916 #endif
    917 	}
    918 
    919 	/*
    920 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
    921 	 * and minimise lock contention.  Count the total number of CPU
    922 	 * packages, and then try to distribute the buckets among CPU
    923 	 * packages evenly.  uvm_pagefree() will reassign pages to the
    924 	 * freeing CPU's preferred bucket on free.
    925 	 */
    926 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
    927 
    928 	/*
    929 	 * Figure out how to arrange the packages & buckets, and the total
    930 	 * number of buckets we need.  XXX 2 may not be the best factor.
    931 	 */
    932 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
    933 		npackage >>= 1;
    934 	}
    935  	uvm_page_redim(uvmexp.ncolors, npackage);
    936 
    937  	/*
    938  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
    939  	 * through all CPU packages.
    940  	 */
    941  	npackage = 0;
    942 	ci = curcpu();
    943 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
    944 	do {
    945 		/*
    946 		 * In the inner loop, scroll through all CPUs in the package
    947 		 * and assign the same bucket ID.
    948 		 */
    949 		ci3 = ci2;
    950 		do {
    951 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
    952 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
    953 		} while (ci3 != ci2);
    954 		npackage++;
    955 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
    956 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
    957 
    958 	aprint_debug("UVM: using package allocation scheme, "
    959 	    "%d package(s) per bucket\n", 1 << shift);
    960 }
    961 
    962 /*
    963  * uvm_cpu_attach: initialize per-CPU data structures.
    964  */
    965 
    966 void
    967 uvm_cpu_attach(struct cpu_info *ci)
    968 {
    969 	struct uvm_cpu *ucpu;
    970 
    971 	/* Already done in uvm_page_init(). */
    972 	if (!CPU_IS_PRIMARY(ci)) {
    973 		/* Add more reserve pages for this CPU. */
    974 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
    975 
    976 		/* Allocate per-CPU data structures. */
    977 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
    978 		    KM_SLEEP);
    979 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
    980 		    coherency_unit);
    981 		ci->ci_data.cpu_uvm = ucpu;
    982 	} else {
    983 		ucpu = ci->ci_data.cpu_uvm;
    984 	}
    985 
    986 	uvmpdpol_init_cpu(ucpu);
    987 
    988 	/*
    989 	 * Attach RNG source for this CPU's VM events
    990 	 */
    991         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
    992 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    993 	    RND_FLAG_ESTIMATE_VALUE);
    994 }
    995 
    996 /*
    997  * uvm_availmem: fetch the total amount of free memory in pages.  this can
    998  * have a detrimental effect on performance due to false sharing; don't call
    999  * unless needed.
   1000  */
   1001 
   1002 int
   1003 uvm_availmem(void)
   1004 {
   1005 	struct pgfreelist *pgfl;
   1006 	int fl, b, fpages;
   1007 
   1008 	fpages = 0;
   1009 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   1010 		pgfl = &uvm.page_free[fl];
   1011 		for (b = 0; b < uvm.bucketcount; b++) {
   1012 			fpages += pgfl->pgfl_buckets[b]->pgb_nfree;
   1013 		}
   1014 	}
   1015 	return fpages;
   1016 }
   1017 
   1018 /*
   1019  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
   1020  * specific freelist and specific bucket only.
   1021  *
   1022  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1023  */
   1024 
   1025 static struct vm_page *
   1026 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
   1027 {
   1028 	int c, trycolor, colormask;
   1029 	struct pgflbucket *pgb;
   1030 	struct vm_page *pg;
   1031 	kmutex_t *lock;
   1032 	bool fill;
   1033 
   1034 	/*
   1035 	 * Skip the bucket if empty, no lock needed.  There could be many
   1036 	 * empty freelists/buckets.
   1037 	 */
   1038 	pgb = uvm.page_free[f].pgfl_buckets[b];
   1039 	if (pgb->pgb_nfree == 0) {
   1040 		return NULL;
   1041 	}
   1042 
   1043 	/* Skip bucket if low on memory. */
   1044 	lock = &uvm_freelist_locks[b].lock;
   1045 	mutex_spin_enter(lock);
   1046 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
   1047 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
   1048 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
   1049 		     curlwp != uvm.pagedaemon_lwp)) {
   1050 			mutex_spin_exit(lock);
   1051 		     	return NULL;
   1052 		}
   1053 		fill = false;
   1054 	} else {
   1055 		fill = true;
   1056 	}
   1057 
   1058 	/* Try all page colors as needed. */
   1059 	c = trycolor = *trycolorp;
   1060 	colormask = uvmexp.colormask;
   1061 	do {
   1062 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
   1063 		if (__predict_true(pg != NULL)) {
   1064 			/*
   1065 			 * Got a free page!  PG_FREE must be cleared under
   1066 			 * lock because of uvm_pglistalloc().
   1067 			 */
   1068 			LIST_REMOVE(pg, pageq.list);
   1069 			KASSERT(pg->flags & PG_FREE);
   1070 			pg->flags &= PG_ZERO;
   1071 			pgb->pgb_nfree--;
   1072 
   1073 			/*
   1074 			 * While we have the bucket locked and our data
   1075 			 * structures fresh in L1 cache, we have an ideal
   1076 			 * opportunity to grab some pages for the freelist
   1077 			 * cache without causing extra contention.  Only do
   1078 			 * so if we found pages in this CPU's preferred
   1079 			 * bucket.
   1080 			 */
   1081 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
   1082 				uvm_pgflcache_fill(ucpu, f, b, c);
   1083 			}
   1084 			mutex_spin_exit(lock);
   1085 			KASSERT(uvm_page_get_bucket(pg) == b);
   1086 			CPU_COUNT(c == trycolor ?
   1087 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
   1088 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
   1089 			*trycolorp = c;
   1090 			return pg;
   1091 		}
   1092 		c = (c + 1) & colormask;
   1093 	} while (c != trycolor);
   1094 	mutex_spin_exit(lock);
   1095 
   1096 	return NULL;
   1097 }
   1098 
   1099 /*
   1100  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
   1101  * any color from any bucket, in a specific freelist.
   1102  *
   1103  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1104  */
   1105 
   1106 static struct vm_page *
   1107 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
   1108 {
   1109 	int b, trybucket, bucketcount;
   1110 	struct vm_page *pg;
   1111 
   1112 	/* Try for the exact thing in the per-CPU cache. */
   1113 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
   1114 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1115 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1116 		return pg;
   1117 	}
   1118 
   1119 	/* Walk through all buckets, trying our preferred bucket first. */
   1120 	trybucket = ucpu->pgflbucket;
   1121 	b = trybucket;
   1122 	bucketcount = uvm.bucketcount;
   1123 	do {
   1124 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
   1125 		if (pg != NULL) {
   1126 			return pg;
   1127 		}
   1128 		b = (b + 1 == bucketcount ? 0 : b + 1);
   1129 	} while (b != trybucket);
   1130 
   1131 	return NULL;
   1132 }
   1133 
   1134 /*
   1135  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1136  *
   1137  * => return null if no pages free
   1138  * => wake up pagedaemon if number of free pages drops below low water mark
   1139  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1140  * => if anon != NULL, anon must be locked (to put in anon)
   1141  * => only one of obj or anon can be non-null
   1142  * => caller must activate/deactivate page if it is not wired.
   1143  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1144  * => policy decision: it is more important to pull a page off of the
   1145  *	appropriate priority free list than it is to get a zero'd or
   1146  *	unknown contents page.  This is because we live with the
   1147  *	consequences of a bad free list decision for the entire
   1148  *	lifetime of the page, e.g. if the page comes from memory that
   1149  *	is slower to access.
   1150  */
   1151 
   1152 struct vm_page *
   1153 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1154     int flags, int strat, int free_list)
   1155 {
   1156 	int zeroit = 0, color;
   1157 	int lcv, error, s;
   1158 	struct uvm_cpu *ucpu;
   1159 	struct vm_page *pg;
   1160 	lwp_t *l;
   1161 
   1162 	KASSERT(obj == NULL || anon == NULL);
   1163 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1164 	KASSERT(off == trunc_page(off));
   1165 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
   1166 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1167 	    mutex_owned(anon->an_lock));
   1168 
   1169 	/*
   1170 	 * This implements a global round-robin page coloring
   1171 	 * algorithm.
   1172 	 */
   1173 
   1174 	s = splvm();
   1175 	ucpu = curcpu()->ci_data.cpu_uvm;
   1176 	if (flags & UVM_FLAG_COLORMATCH) {
   1177 		color = atop(off) & uvmexp.colormask;
   1178 	} else {
   1179 		color = ucpu->pgflcolor;
   1180 	}
   1181 
   1182 	/*
   1183 	 * fail if any of these conditions is true:
   1184 	 * [1]  there really are no free pages, or
   1185 	 * [2]  only kernel "reserved" pages remain and
   1186 	 *        reserved pages have not been requested.
   1187 	 * [3]  only pagedaemon "reserved" pages remain and
   1188 	 *        the requestor isn't the pagedaemon.
   1189 	 * we make kernel reserve pages available if called by a
   1190 	 * kernel thread or a realtime thread.
   1191 	 */
   1192 	l = curlwp;
   1193 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
   1194 		flags |= UVM_PGA_USERESERVE;
   1195 	}
   1196 
   1197 	/* If the allocator's running in NUMA mode, go with NUMA strategy. */
   1198 	if (uvm.numa_alloc && strat == UVM_PGA_STRAT_NORMAL) {
   1199 		strat = UVM_PGA_STRAT_NUMA;
   1200 	}
   1201 
   1202  again:
   1203 	switch (strat) {
   1204 	case UVM_PGA_STRAT_NORMAL:
   1205 		/* Check freelists: descending priority (ascending id) order. */
   1206 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1207 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
   1208 			if (pg != NULL) {
   1209 				goto gotit;
   1210 			}
   1211 		}
   1212 
   1213 		/* No pages free!  Have pagedaemon free some memory. */
   1214 		splx(s);
   1215 		uvm_kick_pdaemon();
   1216 		return NULL;
   1217 
   1218 	case UVM_PGA_STRAT_ONLY:
   1219 	case UVM_PGA_STRAT_FALLBACK:
   1220 		/* Attempt to allocate from the specified free list. */
   1221 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1222 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
   1223 		if (pg != NULL) {
   1224 			goto gotit;
   1225 		}
   1226 
   1227 		/* Fall back, if possible. */
   1228 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1229 			strat = UVM_PGA_STRAT_NORMAL;
   1230 			goto again;
   1231 		}
   1232 
   1233 		/* No pages free!  Have pagedaemon free some memory. */
   1234 		splx(s);
   1235 		uvm_kick_pdaemon();
   1236 		return NULL;
   1237 
   1238 	case UVM_PGA_STRAT_NUMA:
   1239 		/*
   1240 		 * NUMA strategy: allocating from the correct bucket is more
   1241 		 * important than observing freelist priority.  Look only to
   1242 		 * the current NUMA node; if that fails, we need to look to
   1243 		 * other NUMA nodes, so retry with the normal strategy.
   1244 		 */
   1245 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1246 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
   1247 			if (pg != NULL) {
   1248 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1249 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1250 				goto gotit;
   1251 			}
   1252 			pg = uvm_pagealloc_pgb(ucpu, lcv,
   1253 			    ucpu->pgflbucket, &color, flags);
   1254 			if (pg != NULL) {
   1255 				goto gotit;
   1256 			}
   1257 		}
   1258 		strat = UVM_PGA_STRAT_NORMAL;
   1259 		goto again;
   1260 
   1261 	default:
   1262 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1263 		/* NOTREACHED */
   1264 	}
   1265 
   1266  gotit:
   1267 	/*
   1268 	 * We now know which color we actually allocated from; set
   1269 	 * the next color accordingly.
   1270 	 */
   1271 
   1272 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
   1273 
   1274 	/*
   1275 	 * while still at IPL_VM, update allocation statistics and remember
   1276 	 * if we have to zero the page
   1277 	 */
   1278 
   1279 	if (flags & UVM_PGA_ZERO) {
   1280 		if (pg->flags & PG_ZERO) {
   1281 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
   1282 			zeroit = 0;
   1283 		} else {
   1284 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
   1285 			zeroit = 1;
   1286 		}
   1287 	}
   1288 	if (pg->flags & PG_ZERO) {
   1289 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
   1290 	}
   1291 	if (anon) {
   1292 		CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
   1293 	}
   1294 	splx(s);
   1295 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1296 
   1297 	/*
   1298 	 * assign the page to the object.  as the page was free, we know
   1299 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
   1300 	 * the page's interlock if we are changing the values.
   1301 	 */
   1302 	if (anon != NULL || obj != NULL) {
   1303 		mutex_enter(&pg->interlock);
   1304 	}
   1305 	pg->offset = off;
   1306 	pg->uobject = obj;
   1307 	pg->uanon = anon;
   1308 	KASSERT(uvm_page_owner_locked_p(pg));
   1309 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1310 	if (anon) {
   1311 		anon->an_page = pg;
   1312 		pg->flags |= PG_ANON;
   1313 		mutex_exit(&pg->interlock);
   1314 	} else if (obj) {
   1315 		uvm_pageinsert_object(obj, pg);
   1316 		mutex_exit(&pg->interlock);
   1317 		error = uvm_pageinsert_tree(obj, pg);
   1318 		if (error != 0) {
   1319 			mutex_enter(&pg->interlock);
   1320 			uvm_pageremove_object(obj, pg);
   1321 			mutex_exit(&pg->interlock);
   1322 			uvm_pagefree(pg);
   1323 			return NULL;
   1324 		}
   1325 	}
   1326 
   1327 #if defined(UVM_PAGE_TRKOWN)
   1328 	pg->owner_tag = NULL;
   1329 #endif
   1330 	UVM_PAGE_OWN(pg, "new alloc");
   1331 
   1332 	if (flags & UVM_PGA_ZERO) {
   1333 		/*
   1334 		 * A zero'd page is not clean.  If we got a page not already
   1335 		 * zero'd, then we have to zero it ourselves.
   1336 		 */
   1337 		pg->flags &= ~PG_CLEAN;
   1338 		if (zeroit)
   1339 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1340 	}
   1341 
   1342 	return(pg);
   1343 }
   1344 
   1345 /*
   1346  * uvm_pagereplace: replace a page with another
   1347  *
   1348  * => object must be locked
   1349  * => page interlocks must be held
   1350  */
   1351 
   1352 void
   1353 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1354 {
   1355 	struct uvm_object *uobj = oldpg->uobject;
   1356 	struct vm_page *pg __diagused;
   1357 
   1358 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1359 	KASSERT(uobj != NULL);
   1360 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1361 	KASSERT(newpg->uobject == NULL);
   1362 	KASSERT(mutex_owned(uobj->vmobjlock));
   1363 	KASSERT(mutex_owned(&oldpg->interlock));
   1364 	KASSERT(mutex_owned(&newpg->interlock));
   1365 
   1366 	newpg->offset = oldpg->offset;
   1367 	pg = radix_tree_replace_node(&uobj->uo_pages,
   1368 	    newpg->offset >> PAGE_SHIFT, newpg);
   1369 	KASSERT(pg == oldpg);
   1370 
   1371 	newpg->uobject = uobj;
   1372 	uvm_pageinsert_object(uobj, newpg);
   1373 	uvm_pageremove_object(uobj, oldpg);
   1374 }
   1375 
   1376 /*
   1377  * uvm_pagerealloc: reallocate a page from one object to another
   1378  *
   1379  * => both objects must be locked
   1380  * => both interlocks must be held
   1381  */
   1382 
   1383 void
   1384 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1385 {
   1386 	/*
   1387 	 * remove it from the old object
   1388 	 */
   1389 
   1390 	if (pg->uobject) {
   1391 		uvm_pageremove_tree(pg->uobject, pg);
   1392 		uvm_pageremove_object(pg->uobject, pg);
   1393 	}
   1394 
   1395 	/*
   1396 	 * put it in the new object
   1397 	 */
   1398 
   1399 	if (newobj) {
   1400 		/*
   1401 		 * XXX we have no in-tree users of this functionality
   1402 		 */
   1403 		panic("uvm_pagerealloc: no impl");
   1404 	}
   1405 }
   1406 
   1407 #ifdef DEBUG
   1408 /*
   1409  * check if page is zero-filled
   1410  */
   1411 void
   1412 uvm_pagezerocheck(struct vm_page *pg)
   1413 {
   1414 	int *p, *ep;
   1415 
   1416 	KASSERT(uvm_zerocheckkva != 0);
   1417 
   1418 	/*
   1419 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1420 	 * uvm page allocator.
   1421 	 *
   1422 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1423 	 */
   1424 	mutex_spin_enter(&uvm_zerochecklock);
   1425 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1426 	p = (int *)uvm_zerocheckkva;
   1427 	ep = (int *)((char *)p + PAGE_SIZE);
   1428 	pmap_update(pmap_kernel());
   1429 	while (p < ep) {
   1430 		if (*p != 0)
   1431 			panic("PG_ZERO page isn't zero-filled");
   1432 		p++;
   1433 	}
   1434 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1435 	mutex_spin_exit(&uvm_zerochecklock);
   1436 	/*
   1437 	 * pmap_update() is not necessary here because no one except us
   1438 	 * uses this VA.
   1439 	 */
   1440 }
   1441 #endif /* DEBUG */
   1442 
   1443 /*
   1444  * uvm_pagefree: free page
   1445  *
   1446  * => erase page's identity (i.e. remove from object)
   1447  * => put page on free list
   1448  * => caller must lock owning object (either anon or uvm_object)
   1449  * => assumes all valid mappings of pg are gone
   1450  */
   1451 
   1452 void
   1453 uvm_pagefree(struct vm_page *pg)
   1454 {
   1455 	struct pgfreelist *pgfl;
   1456 	struct pgflbucket *pgb;
   1457 	struct uvm_cpu *ucpu;
   1458 	kmutex_t *lock;
   1459 	int bucket, s;
   1460 	bool locked;
   1461 
   1462 #ifdef DEBUG
   1463 	if (pg->uobject == (void *)0xdeadbeef &&
   1464 	    pg->uanon == (void *)0xdeadbeef) {
   1465 		panic("uvm_pagefree: freeing free page %p", pg);
   1466 	}
   1467 #endif /* DEBUG */
   1468 
   1469 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1470 	KASSERT(!(pg->flags & PG_FREE));
   1471 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
   1472 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1473 		mutex_owned(pg->uanon->an_lock));
   1474 
   1475 	/*
   1476 	 * remove the page from the object's tree beore acquiring any page
   1477 	 * interlocks: this can acquire locks to free radixtree nodes.
   1478 	 */
   1479 	if (pg->uobject != NULL) {
   1480 		uvm_pageremove_tree(pg->uobject, pg);
   1481 	}
   1482 
   1483 	/*
   1484 	 * if the page is loaned, resolve the loan instead of freeing.
   1485 	 */
   1486 
   1487 	if (pg->loan_count) {
   1488 		KASSERT(pg->wire_count == 0);
   1489 
   1490 		/*
   1491 		 * if the page is owned by an anon then we just want to
   1492 		 * drop anon ownership.  the kernel will free the page when
   1493 		 * it is done with it.  if the page is owned by an object,
   1494 		 * remove it from the object and mark it dirty for the benefit
   1495 		 * of possible anon owners.
   1496 		 *
   1497 		 * regardless of previous ownership, wakeup any waiters,
   1498 		 * unbusy the page, and we're done.
   1499 		 */
   1500 
   1501 		uvm_pagelock(pg);
   1502 		locked = true;
   1503 		if (pg->uobject != NULL) {
   1504 			uvm_pageremove_object(pg->uobject, pg);
   1505 			pg->flags &= ~PG_CLEAN;
   1506 		} else if (pg->uanon != NULL) {
   1507 			if ((pg->flags & PG_ANON) == 0) {
   1508 				pg->loan_count--;
   1509 			} else {
   1510 				pg->flags &= ~PG_ANON;
   1511 				cpu_count(CPU_COUNT_ANONPAGES, -1);
   1512 			}
   1513 			pg->uanon->an_page = NULL;
   1514 			pg->uanon = NULL;
   1515 		}
   1516 		if (pg->flags & PG_WANTED) {
   1517 			wakeup(pg);
   1518 		}
   1519 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1520 #ifdef UVM_PAGE_TRKOWN
   1521 		pg->owner_tag = NULL;
   1522 #endif
   1523 		if (pg->loan_count) {
   1524 			KASSERT(pg->uobject == NULL);
   1525 			if (pg->uanon == NULL) {
   1526 				uvm_pagedequeue(pg);
   1527 			}
   1528 			uvm_pageunlock(pg);
   1529 			return;
   1530 		}
   1531 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1532 	           pg->wire_count != 0) {
   1533 		uvm_pagelock(pg);
   1534 		locked = true;
   1535 	} else {
   1536 		locked = false;
   1537 	}
   1538 
   1539 	/*
   1540 	 * remove page from its object or anon.
   1541 	 */
   1542 	if (pg->uobject != NULL) {
   1543 		uvm_pageremove_object(pg->uobject, pg);
   1544 	} else if (pg->uanon != NULL) {
   1545 		pg->uanon->an_page = NULL;
   1546 		pg->uanon = NULL;
   1547 		cpu_count(CPU_COUNT_ANONPAGES, -1);
   1548 	}
   1549 
   1550 	/*
   1551 	 * if the page was wired, unwire it now.
   1552 	 */
   1553 
   1554 	if (pg->wire_count) {
   1555 		pg->wire_count = 0;
   1556 		atomic_dec_uint(&uvmexp.wired);
   1557 	}
   1558 	if (locked) {
   1559 		/*
   1560 		 * now remove the page from the queues.
   1561 		 */
   1562 		uvm_pagedequeue(pg);
   1563 		uvm_pageunlock(pg);
   1564 	} else {
   1565 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1566 	}
   1567 
   1568 	/*
   1569 	 * and put on free queue
   1570 	 */
   1571 
   1572 #ifdef DEBUG
   1573 	pg->uobject = (void *)0xdeadbeef;
   1574 	pg->uanon = (void *)0xdeadbeef;
   1575 	if (pg->flags & PG_ZERO)
   1576 		uvm_pagezerocheck(pg);
   1577 #endif /* DEBUG */
   1578 
   1579 	/* Try to send the page to the per-CPU cache. */
   1580 	s = splvm();
   1581 	if (pg->flags & PG_ZERO) {
   1582 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
   1583 	}
   1584 	ucpu = curcpu()->ci_data.cpu_uvm;
   1585 	bucket = uvm_page_get_bucket(pg);
   1586 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
   1587 		splx(s);
   1588 		return;
   1589 	}
   1590 
   1591 	/* Didn't work.  Never mind, send it to a global bucket. */
   1592 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
   1593 	pgb = pgfl->pgfl_buckets[bucket];
   1594 	lock = &uvm_freelist_locks[bucket].lock;
   1595 
   1596 	mutex_spin_enter(lock);
   1597 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
   1598 	pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
   1599 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
   1600 	pgb->pgb_nfree++;
   1601 	mutex_spin_exit(lock);
   1602 	splx(s);
   1603 }
   1604 
   1605 /*
   1606  * uvm_page_unbusy: unbusy an array of pages.
   1607  *
   1608  * => pages must either all belong to the same object, or all belong to anons.
   1609  * => if pages are object-owned, object must be locked.
   1610  * => if pages are anon-owned, anons must be locked.
   1611  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1612  */
   1613 
   1614 void
   1615 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1616 {
   1617 	struct vm_page *pg;
   1618 	int i;
   1619 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1620 
   1621 	for (i = 0; i < npgs; i++) {
   1622 		pg = pgs[i];
   1623 		if (pg == NULL || pg == PGO_DONTCARE) {
   1624 			continue;
   1625 		}
   1626 
   1627 		KASSERT(uvm_page_owner_locked_p(pg));
   1628 		KASSERT(pg->flags & PG_BUSY);
   1629 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1630 		if (pg->flags & PG_WANTED) {
   1631 			/* XXXAD thundering herd problem. */
   1632 			wakeup(pg);
   1633 		}
   1634 		if (pg->flags & PG_RELEASED) {
   1635 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1636 			    (uintptr_t)pg, 0, 0, 0);
   1637 			KASSERT(pg->uobject != NULL ||
   1638 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1639 			pg->flags &= ~PG_RELEASED;
   1640 			uvm_pagefree(pg);
   1641 		} else {
   1642 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1643 			    (uintptr_t)pg, 0, 0, 0);
   1644 			KASSERT((pg->flags & PG_FAKE) == 0);
   1645 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1646 			UVM_PAGE_OWN(pg, NULL);
   1647 		}
   1648 	}
   1649 }
   1650 
   1651 #if defined(UVM_PAGE_TRKOWN)
   1652 /*
   1653  * uvm_page_own: set or release page ownership
   1654  *
   1655  * => this is a debugging function that keeps track of who sets PG_BUSY
   1656  *	and where they do it.   it can be used to track down problems
   1657  *	such a process setting "PG_BUSY" and never releasing it.
   1658  * => page's object [if any] must be locked
   1659  * => if "tag" is NULL then we are releasing page ownership
   1660  */
   1661 void
   1662 uvm_page_own(struct vm_page *pg, const char *tag)
   1663 {
   1664 
   1665 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1666 	KASSERT((pg->flags & PG_WANTED) == 0);
   1667 	KASSERT(uvm_page_owner_locked_p(pg));
   1668 
   1669 	/* gain ownership? */
   1670 	if (tag) {
   1671 		KASSERT((pg->flags & PG_BUSY) != 0);
   1672 		if (pg->owner_tag) {
   1673 			printf("uvm_page_own: page %p already owned "
   1674 			    "by proc %d [%s]\n", pg,
   1675 			    pg->owner, pg->owner_tag);
   1676 			panic("uvm_page_own");
   1677 		}
   1678 		pg->owner = curproc->p_pid;
   1679 		pg->lowner = curlwp->l_lid;
   1680 		pg->owner_tag = tag;
   1681 		return;
   1682 	}
   1683 
   1684 	/* drop ownership */
   1685 	KASSERT((pg->flags & PG_BUSY) == 0);
   1686 	if (pg->owner_tag == NULL) {
   1687 		printf("uvm_page_own: dropping ownership of an non-owned "
   1688 		    "page (%p)\n", pg);
   1689 		panic("uvm_page_own");
   1690 	}
   1691 	pg->owner_tag = NULL;
   1692 }
   1693 #endif
   1694 
   1695 /*
   1696  * uvm_pageidlezero: zero free pages while the system is idle.
   1697  */
   1698 void
   1699 uvm_pageidlezero(void)
   1700 {
   1701 
   1702 	/*
   1703 	 * Disabled for the moment.  Previous strategy too cache heavy.  In
   1704 	 * the future we may experiment with zeroing the pages held in the
   1705 	 * per-CPU cache (uvm_pgflcache).
   1706 	 */
   1707 }
   1708 
   1709 /*
   1710  * uvm_pagelookup: look up a page
   1711  *
   1712  * => caller should lock object to keep someone from pulling the page
   1713  *	out from under it
   1714  */
   1715 
   1716 struct vm_page *
   1717 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1718 {
   1719 	struct vm_page *pg;
   1720 
   1721 	/* No - used from DDB. KASSERT(mutex_owned(obj->vmobjlock)); */
   1722 
   1723 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1724 
   1725 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1726 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1727 		(pg->flags & PG_BUSY) != 0);
   1728 	return pg;
   1729 }
   1730 
   1731 /*
   1732  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1733  *
   1734  * => caller must lock objects
   1735  * => caller must hold pg->interlock
   1736  */
   1737 
   1738 void
   1739 uvm_pagewire(struct vm_page *pg)
   1740 {
   1741 
   1742 	KASSERT(uvm_page_owner_locked_p(pg));
   1743 	KASSERT(mutex_owned(&pg->interlock));
   1744 #if defined(READAHEAD_STATS)
   1745 	if ((pg->flags & PG_READAHEAD) != 0) {
   1746 		uvm_ra_hit.ev_count++;
   1747 		pg->flags &= ~PG_READAHEAD;
   1748 	}
   1749 #endif /* defined(READAHEAD_STATS) */
   1750 	if (pg->wire_count == 0) {
   1751 		uvm_pagedequeue(pg);
   1752 		atomic_inc_uint(&uvmexp.wired);
   1753 	}
   1754 	pg->wire_count++;
   1755 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1756 }
   1757 
   1758 /*
   1759  * uvm_pageunwire: unwire the page.
   1760  *
   1761  * => activate if wire count goes to zero.
   1762  * => caller must lock objects
   1763  * => caller must hold pg->interlock
   1764  */
   1765 
   1766 void
   1767 uvm_pageunwire(struct vm_page *pg)
   1768 {
   1769 
   1770 	KASSERT(uvm_page_owner_locked_p(pg));
   1771 	KASSERT(pg->wire_count != 0);
   1772 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1773 	KASSERT(mutex_owned(&pg->interlock));
   1774 	pg->wire_count--;
   1775 	if (pg->wire_count == 0) {
   1776 		uvm_pageactivate(pg);
   1777 		KASSERT(uvmexp.wired != 0);
   1778 		atomic_dec_uint(&uvmexp.wired);
   1779 	}
   1780 }
   1781 
   1782 /*
   1783  * uvm_pagedeactivate: deactivate page
   1784  *
   1785  * => caller must lock objects
   1786  * => caller must check to make sure page is not wired
   1787  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1788  * => caller must clear the reference on the page before calling
   1789  * => caller must hold pg->interlock
   1790  */
   1791 
   1792 void
   1793 uvm_pagedeactivate(struct vm_page *pg)
   1794 {
   1795 
   1796 	KASSERT(uvm_page_owner_locked_p(pg));
   1797 	KASSERT(mutex_owned(&pg->interlock));
   1798 	if (pg->wire_count == 0) {
   1799 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1800 		uvmpdpol_pagedeactivate(pg);
   1801 	}
   1802 }
   1803 
   1804 /*
   1805  * uvm_pageactivate: activate page
   1806  *
   1807  * => caller must lock objects
   1808  * => caller must hold pg->interlock
   1809  */
   1810 
   1811 void
   1812 uvm_pageactivate(struct vm_page *pg)
   1813 {
   1814 
   1815 	KASSERT(uvm_page_owner_locked_p(pg));
   1816 	KASSERT(mutex_owned(&pg->interlock));
   1817 #if defined(READAHEAD_STATS)
   1818 	if ((pg->flags & PG_READAHEAD) != 0) {
   1819 		uvm_ra_hit.ev_count++;
   1820 		pg->flags &= ~PG_READAHEAD;
   1821 	}
   1822 #endif /* defined(READAHEAD_STATS) */
   1823 	if (pg->wire_count == 0) {
   1824 		uvmpdpol_pageactivate(pg);
   1825 	}
   1826 }
   1827 
   1828 /*
   1829  * uvm_pagedequeue: remove a page from any paging queue
   1830  *
   1831  * => caller must lock objects
   1832  * => caller must hold pg->interlock
   1833  */
   1834 void
   1835 uvm_pagedequeue(struct vm_page *pg)
   1836 {
   1837 
   1838 	KASSERT(uvm_page_owner_locked_p(pg));
   1839 	KASSERT(mutex_owned(&pg->interlock));
   1840 	if (uvmpdpol_pageisqueued_p(pg)) {
   1841 		uvmpdpol_pagedequeue(pg);
   1842 	}
   1843 }
   1844 
   1845 /*
   1846  * uvm_pageenqueue: add a page to a paging queue without activating.
   1847  * used where a page is not really demanded (yet).  eg. read-ahead
   1848  *
   1849  * => caller must lock objects
   1850  * => caller must hold pg->interlock
   1851  */
   1852 void
   1853 uvm_pageenqueue(struct vm_page *pg)
   1854 {
   1855 
   1856 	KASSERT(uvm_page_owner_locked_p(pg));
   1857 	KASSERT(mutex_owned(&pg->interlock));
   1858 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1859 		uvmpdpol_pageenqueue(pg);
   1860 	}
   1861 }
   1862 
   1863 /*
   1864  * uvm_pagelock: acquire page interlock
   1865  */
   1866 void
   1867 uvm_pagelock(struct vm_page *pg)
   1868 {
   1869 
   1870 	mutex_enter(&pg->interlock);
   1871 }
   1872 
   1873 /*
   1874  * uvm_pagelock2: acquire two page interlocks
   1875  */
   1876 void
   1877 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
   1878 {
   1879 
   1880 	if (pg1 < pg2) {
   1881 		mutex_enter(&pg1->interlock);
   1882 		mutex_enter(&pg2->interlock);
   1883 	} else {
   1884 		mutex_enter(&pg2->interlock);
   1885 		mutex_enter(&pg1->interlock);
   1886 	}
   1887 }
   1888 
   1889 /*
   1890  * uvm_pageunlock: release page interlock, and if a page replacement intent
   1891  * is set on the page, pass it to uvmpdpol to make real.
   1892  *
   1893  * => caller must hold pg->interlock
   1894  */
   1895 void
   1896 uvm_pageunlock(struct vm_page *pg)
   1897 {
   1898 
   1899 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
   1900 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
   1901 	    	mutex_exit(&pg->interlock);
   1902 	    	return;
   1903 	}
   1904 	pg->pqflags |= PQ_INTENT_QUEUED;
   1905 	mutex_exit(&pg->interlock);
   1906 	uvmpdpol_pagerealize(pg);
   1907 }
   1908 
   1909 /*
   1910  * uvm_pageunlock2: release two page interlocks, and for both pages if a
   1911  * page replacement intent is set on the page, pass it to uvmpdpol to make
   1912  * real.
   1913  *
   1914  * => caller must hold pg->interlock
   1915  */
   1916 void
   1917 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
   1918 {
   1919 
   1920 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
   1921 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
   1922 	    	mutex_exit(&pg1->interlock);
   1923 	    	pg1 = NULL;
   1924 	} else {
   1925 		pg1->pqflags |= PQ_INTENT_QUEUED;
   1926 		mutex_exit(&pg1->interlock);
   1927 	}
   1928 
   1929 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
   1930 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
   1931 	    	mutex_exit(&pg2->interlock);
   1932 	    	pg2 = NULL;
   1933 	} else {
   1934 		pg2->pqflags |= PQ_INTENT_QUEUED;
   1935 		mutex_exit(&pg2->interlock);
   1936 	}
   1937 
   1938 	if (pg1 != NULL) {
   1939 		uvmpdpol_pagerealize(pg1);
   1940 	}
   1941 	if (pg2 != NULL) {
   1942 		uvmpdpol_pagerealize(pg2);
   1943 	}
   1944 }
   1945 
   1946 /*
   1947  * uvm_pagezero: zero fill a page
   1948  *
   1949  * => if page is part of an object then the object should be locked
   1950  *	to protect pg->flags.
   1951  */
   1952 
   1953 void
   1954 uvm_pagezero(struct vm_page *pg)
   1955 {
   1956 	pg->flags &= ~PG_CLEAN;
   1957 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1958 }
   1959 
   1960 /*
   1961  * uvm_pagecopy: copy a page
   1962  *
   1963  * => if page is part of an object then the object should be locked
   1964  *	to protect pg->flags.
   1965  */
   1966 
   1967 void
   1968 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   1969 {
   1970 
   1971 	dst->flags &= ~PG_CLEAN;
   1972 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   1973 }
   1974 
   1975 /*
   1976  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   1977  */
   1978 
   1979 bool
   1980 uvm_pageismanaged(paddr_t pa)
   1981 {
   1982 
   1983 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   1984 }
   1985 
   1986 /*
   1987  * uvm_page_lookup_freelist: look up the free list for the specified page
   1988  */
   1989 
   1990 int
   1991 uvm_page_lookup_freelist(struct vm_page *pg)
   1992 {
   1993 	uvm_physseg_t upm;
   1994 
   1995 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   1996 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   1997 	return uvm_physseg_get_free_list(upm);
   1998 }
   1999 
   2000 /*
   2001  * uvm_page_owner_locked_p: return true if object associated with page is
   2002  * locked.  this is a weak check for runtime assertions only.
   2003  */
   2004 
   2005 bool
   2006 uvm_page_owner_locked_p(struct vm_page *pg)
   2007 {
   2008 
   2009 	if (pg->uobject != NULL) {
   2010 		return mutex_owned(pg->uobject->vmobjlock);
   2011 	}
   2012 	if (pg->uanon != NULL) {
   2013 		return mutex_owned(pg->uanon->an_lock);
   2014 	}
   2015 	return true;
   2016 }
   2017 
   2018 #ifdef PMAP_DIRECT
   2019 /*
   2020  * Call pmap to translate physical address into a virtual and to run a callback
   2021  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   2022  * or equivalent.
   2023  */
   2024 int
   2025 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   2026             int (*process)(void *, size_t, void *), void *arg)
   2027 {
   2028 	int error = 0;
   2029 	paddr_t pa;
   2030 	size_t todo;
   2031 	voff_t pgoff = (off & PAGE_MASK);
   2032 	struct vm_page *pg;
   2033 
   2034 	KASSERT(npages > 0 && len > 0);
   2035 
   2036 	for (int i = 0; i < npages; i++) {
   2037 		pg = pgs[i];
   2038 
   2039 		KASSERT(len > 0);
   2040 
   2041 		/*
   2042 		 * Caller is responsible for ensuring all the pages are
   2043 		 * available.
   2044 		 */
   2045 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   2046 
   2047 		pa = VM_PAGE_TO_PHYS(pg);
   2048 		todo = MIN(len, PAGE_SIZE - pgoff);
   2049 
   2050 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   2051 		if (error)
   2052 			break;
   2053 
   2054 		pgoff = 0;
   2055 		len -= todo;
   2056 	}
   2057 
   2058 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   2059 	return error;
   2060 }
   2061 #endif /* PMAP_DIRECT */
   2062 
   2063 #if defined(DDB) || defined(DEBUGPRINT)
   2064 
   2065 /*
   2066  * uvm_page_printit: actually print the page
   2067  */
   2068 
   2069 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2070 
   2071 void
   2072 uvm_page_printit(struct vm_page *pg, bool full,
   2073     void (*pr)(const char *, ...))
   2074 {
   2075 	struct vm_page *tpg;
   2076 	struct uvm_object *uobj;
   2077 	struct pgflbucket *pgb;
   2078 	struct pgflist *pgl;
   2079 	char pgbuf[128];
   2080 
   2081 	(*pr)("PAGE %p:\n", pg);
   2082 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2083 	(*pr)("  flags=%s, pqflags=%x, wire_count=%d, pa=0x%lx\n",
   2084 	    pgbuf, pg->pqflags, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
   2085 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
   2086 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
   2087 	(*pr)("  bucket=%d freelist=%d\n",
   2088 	    uvm_page_get_bucket(pg), uvm_page_get_freelist(pg));
   2089 #if defined(UVM_PAGE_TRKOWN)
   2090 	if (pg->flags & PG_BUSY)
   2091 		(*pr)("  owning process = %d, tag=%s\n",
   2092 		    pg->owner, pg->owner_tag);
   2093 	else
   2094 		(*pr)("  page not busy, no owner\n");
   2095 #else
   2096 	(*pr)("  [page ownership tracking disabled]\n");
   2097 #endif
   2098 
   2099 	if (!full)
   2100 		return;
   2101 
   2102 	/* cross-verify object/anon */
   2103 	if ((pg->flags & PG_FREE) == 0) {
   2104 		if (pg->flags & PG_ANON) {
   2105 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2106 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2107 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2108 			else
   2109 				(*pr)("  anon backpointer is OK\n");
   2110 		} else {
   2111 			uobj = pg->uobject;
   2112 			if (uobj) {
   2113 				(*pr)("  checking object list\n");
   2114 				tpg = uvm_pagelookup(uobj, pg->offset);
   2115 				if (tpg)
   2116 					(*pr)("  page found on object list\n");
   2117 				else
   2118 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2119 			}
   2120 		}
   2121 	}
   2122 
   2123 	/* cross-verify page queue */
   2124 	if (pg->flags & PG_FREE) {
   2125 		int fl = uvm_page_get_freelist(pg);
   2126 		int b = uvm_page_get_bucket(pg);
   2127 		pgb = uvm.page_free[fl].pgfl_buckets[b];
   2128 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
   2129 		(*pr)("  checking pageq list\n");
   2130 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2131 			if (tpg == pg) {
   2132 				break;
   2133 			}
   2134 		}
   2135 		if (tpg)
   2136 			(*pr)("  page found on pageq list\n");
   2137 		else
   2138 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2139 	}
   2140 }
   2141 
   2142 /*
   2143  * uvm_page_printall - print a summary of all managed pages
   2144  */
   2145 
   2146 void
   2147 uvm_page_printall(void (*pr)(const char *, ...))
   2148 {
   2149 	uvm_physseg_t i;
   2150 	paddr_t pfn;
   2151 	struct vm_page *pg;
   2152 
   2153 	(*pr)("%18s %4s %4s %18s %18s"
   2154 #ifdef UVM_PAGE_TRKOWN
   2155 	    " OWNER"
   2156 #endif
   2157 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2158 	for (i = uvm_physseg_get_first();
   2159 	     uvm_physseg_valid_p(i);
   2160 	     i = uvm_physseg_get_next(i)) {
   2161 		for (pfn = uvm_physseg_get_start(i);
   2162 		     pfn < uvm_physseg_get_end(i);
   2163 		     pfn++) {
   2164 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   2165 
   2166 			(*pr)("%18p %04x %08x %18p %18p",
   2167 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2168 			    pg->uanon);
   2169 #ifdef UVM_PAGE_TRKOWN
   2170 			if (pg->flags & PG_BUSY)
   2171 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2172 #endif
   2173 			(*pr)("\n");
   2174 		}
   2175 	}
   2176 }
   2177 
   2178 /*
   2179  * uvm_page_print_freelists - print a summary freelists
   2180  */
   2181 
   2182 void
   2183 uvm_page_print_freelists(void (*pr)(const char *, ...))
   2184 {
   2185 	struct pgfreelist *pgfl;
   2186 	struct pgflbucket *pgb;
   2187 	int fl, b, c;
   2188 
   2189 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
   2190 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
   2191 
   2192 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   2193 		pgfl = &uvm.page_free[fl];
   2194 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
   2195 		for (b = 0; b < uvm.bucketcount; b++) {
   2196 			pgb = uvm.page_free[fl].pgfl_buckets[b];
   2197 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
   2198 			    b, pgb, pgb->pgb_nfree,
   2199 			    &uvm_freelist_locks[b].lock);
   2200 			for (c = 0; c < uvmexp.ncolors; c++) {
   2201 				(*pr)("        color(%d) @ %p, ", c,
   2202 				    &pgb->pgb_colors[c]);
   2203 				(*pr)("first page = %p\n",
   2204 				    LIST_FIRST(&pgb->pgb_colors[c]));
   2205 			}
   2206 		}
   2207 	}
   2208 }
   2209 
   2210 #endif /* DDB || DEBUGPRINT */
   2211