uvm_page.c revision 1.234 1 /* $NetBSD: uvm_page.c,v 1.234 2020/03/17 18:31:39 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1997 Charles D. Cranor and Washington University.
34 * Copyright (c) 1991, 1993, The Regents of the University of California.
35 *
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * The Mach Operating System project at Carnegie-Mellon University.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
66 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67 *
68 *
69 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70 * All rights reserved.
71 *
72 * Permission to use, copy, modify and distribute this software and
73 * its documentation is hereby granted, provided that both the copyright
74 * notice and this permission notice appear in all copies of the
75 * software, derivative works or modified versions, and any portions
76 * thereof, and that both notices appear in supporting documentation.
77 *
78 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81 *
82 * Carnegie Mellon requests users of this software to return to
83 *
84 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
85 * School of Computer Science
86 * Carnegie Mellon University
87 * Pittsburgh PA 15213-3890
88 *
89 * any improvements or extensions that they make and grant Carnegie the
90 * rights to redistribute these changes.
91 */
92
93 /*
94 * uvm_page.c: page ops.
95 */
96
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.234 2020/03/17 18:31:39 ad Exp $");
99
100 #include "opt_ddb.h"
101 #include "opt_uvm.h"
102 #include "opt_uvmhist.h"
103 #include "opt_readahead.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sched.h>
108 #include <sys/kernel.h>
109 #include <sys/vnode.h>
110 #include <sys/proc.h>
111 #include <sys/radixtree.h>
112 #include <sys/atomic.h>
113 #include <sys/cpu.h>
114 #include <sys/extent.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119 #include <uvm/uvm_pgflcache.h>
120
121 /*
122 * Some supported CPUs in a given architecture don't support all
123 * of the things necessary to do idle page zero'ing efficiently.
124 * We therefore provide a way to enable it from machdep code here.
125 */
126 bool vm_page_zero_enable = false;
127
128 /*
129 * number of pages per-CPU to reserve for the kernel.
130 */
131 #ifndef UVM_RESERVED_PAGES_PER_CPU
132 #define UVM_RESERVED_PAGES_PER_CPU 5
133 #endif
134 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
135
136 /*
137 * physical memory size;
138 */
139 psize_t physmem;
140
141 /*
142 * local variables
143 */
144
145 /*
146 * these variables record the values returned by vm_page_bootstrap,
147 * for debugging purposes. The implementation of uvm_pageboot_alloc
148 * and pmap_startup here also uses them internally.
149 */
150
151 static vaddr_t virtual_space_start;
152 static vaddr_t virtual_space_end;
153
154 /*
155 * we allocate an initial number of page colors in uvm_page_init(),
156 * and remember them. We may re-color pages as cache sizes are
157 * discovered during the autoconfiguration phase. But we can never
158 * free the initial set of buckets, since they are allocated using
159 * uvm_pageboot_alloc().
160 */
161
162 static size_t recolored_pages_memsize /* = 0 */;
163 static char *recolored_pages_mem;
164
165 /*
166 * freelist locks - one per bucket.
167 */
168
169 union uvm_freelist_lock uvm_freelist_locks[PGFL_MAX_BUCKETS]
170 __cacheline_aligned;
171
172 /*
173 * basic NUMA information.
174 */
175
176 static struct uvm_page_numa_region {
177 struct uvm_page_numa_region *next;
178 paddr_t start;
179 paddr_t size;
180 u_int numa_id;
181 } *uvm_page_numa_region;
182
183 #ifdef DEBUG
184 kmutex_t uvm_zerochecklock __cacheline_aligned;
185 vaddr_t uvm_zerocheckkva;
186 #endif /* DEBUG */
187
188 /*
189 * These functions are reserved for uvm(9) internal use and are not
190 * exported in the header file uvm_physseg.h
191 *
192 * Thus they are redefined here.
193 */
194 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
195 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
196
197 /* returns a pgs array */
198 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
199
200 /*
201 * inline functions
202 */
203
204 /*
205 * uvm_pageinsert: insert a page in the object.
206 *
207 * => caller must lock object
208 * => call should have already set pg's object and offset pointers
209 * and bumped the version counter
210 */
211
212 static inline void
213 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
214 {
215
216 KASSERT(uobj == pg->uobject);
217 KASSERT(rw_write_held(uobj->vmobjlock));
218 KASSERT((pg->flags & PG_TABLED) == 0);
219
220 if ((pg->flags & PG_STAT) != 0) {
221 /* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
222 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
223 const bool isaobj = (pg->flags & PG_AOBJ) != 0;
224
225 if (!isaobj) {
226 KASSERT((pg->flags & PG_FILE) != 0);
227 if (uobj->uo_npages == 0) {
228 struct vnode *vp = (struct vnode *)uobj;
229 mutex_enter(vp->v_interlock);
230 KASSERT((vp->v_iflag & VI_PAGES) == 0);
231 vp->v_iflag |= VI_PAGES;
232 vholdl(vp);
233 mutex_exit(vp->v_interlock);
234 }
235 kpreempt_disable();
236 if (UVM_OBJ_IS_VTEXT(uobj)) {
237 CPU_COUNT(CPU_COUNT_EXECPAGES, 1);
238 } else {
239 CPU_COUNT(CPU_COUNT_FILEPAGES, 1);
240 }
241 CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, 1);
242 } else {
243 kpreempt_disable();
244 CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
245 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, 1);
246 }
247 kpreempt_enable();
248 }
249 pg->flags |= PG_TABLED;
250 uobj->uo_npages++;
251 }
252
253 static inline int
254 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
255 {
256 const uint64_t idx = pg->offset >> PAGE_SHIFT;
257 int error;
258
259 error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
260 if (error != 0) {
261 return error;
262 }
263 if ((pg->flags & PG_CLEAN) == 0) {
264 radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
265 }
266 KASSERT(((pg->flags & PG_CLEAN) == 0) ==
267 radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
268 return 0;
269 }
270
271 /*
272 * uvm_page_remove: remove page from object.
273 *
274 * => caller must lock object
275 */
276
277 static inline void
278 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
279 {
280
281 KASSERT(uobj == pg->uobject);
282 KASSERT(rw_write_held(uobj->vmobjlock));
283 KASSERT(pg->flags & PG_TABLED);
284
285 if ((pg->flags & PG_STAT) != 0) {
286 /* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
287 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
288 const bool isaobj = (pg->flags & PG_AOBJ) != 0;
289
290 if (!isaobj) {
291 KASSERT((pg->flags & PG_FILE) != 0);
292 if (uobj->uo_npages == 1) {
293 struct vnode *vp = (struct vnode *)uobj;
294 mutex_enter(vp->v_interlock);
295 KASSERT((vp->v_iflag & VI_PAGES) != 0);
296 vp->v_iflag &= ~VI_PAGES;
297 holdrelel(vp);
298 mutex_exit(vp->v_interlock);
299 }
300 kpreempt_disable();
301 if (UVM_OBJ_IS_VTEXT(uobj)) {
302 CPU_COUNT(CPU_COUNT_EXECPAGES, -1);
303 } else {
304 CPU_COUNT(CPU_COUNT_FILEPAGES, -1);
305 }
306 CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, -1);
307 } else {
308 kpreempt_disable();
309 CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
310 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
311 }
312 kpreempt_enable();
313 }
314 uobj->uo_npages--;
315 pg->flags &= ~PG_TABLED;
316 pg->uobject = NULL;
317 }
318
319 static inline void
320 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
321 {
322 struct vm_page *opg __unused;
323
324 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
325 KASSERT(pg == opg);
326 }
327
328 static void
329 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
330 {
331 int i;
332
333 pgb->pgb_nfree = 0;
334 for (i = 0; i < uvmexp.ncolors; i++) {
335 LIST_INIT(&pgb->pgb_colors[i]);
336 }
337 pgfl->pgfl_buckets[num] = pgb;
338 }
339
340 /*
341 * uvm_page_init: init the page system. called from uvm_init().
342 *
343 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
344 */
345
346 void
347 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
348 {
349 static struct uvm_cpu boot_cpu __cacheline_aligned;
350 psize_t freepages, pagecount, bucketsize, n;
351 struct pgflbucket *pgb;
352 struct vm_page *pagearray;
353 char *bucketarray;
354 uvm_physseg_t bank;
355 int fl, b;
356
357 KASSERT(ncpu <= 1);
358
359 /*
360 * init the page queues and free page queue locks, except the
361 * free list; we allocate that later (with the initial vm_page
362 * structures).
363 */
364
365 curcpu()->ci_data.cpu_uvm = &boot_cpu;
366 uvmpdpol_init();
367 for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
368 mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
369 }
370
371 /*
372 * allocate vm_page structures.
373 */
374
375 /*
376 * sanity check:
377 * before calling this function the MD code is expected to register
378 * some free RAM with the uvm_page_physload() function. our job
379 * now is to allocate vm_page structures for this memory.
380 */
381
382 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
383 panic("uvm_page_bootstrap: no memory pre-allocated");
384
385 /*
386 * first calculate the number of free pages...
387 *
388 * note that we use start/end rather than avail_start/avail_end.
389 * this allows us to allocate extra vm_page structures in case we
390 * want to return some memory to the pool after booting.
391 */
392
393 freepages = 0;
394
395 for (bank = uvm_physseg_get_first();
396 uvm_physseg_valid_p(bank) ;
397 bank = uvm_physseg_get_next(bank)) {
398 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
399 }
400
401 /*
402 * Let MD code initialize the number of colors, or default
403 * to 1 color if MD code doesn't care.
404 */
405 if (uvmexp.ncolors == 0)
406 uvmexp.ncolors = 1;
407 uvmexp.colormask = uvmexp.ncolors - 1;
408 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
409
410 /* We always start with only 1 bucket. */
411 uvm.bucketcount = 1;
412
413 /*
414 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
415 * use. for each page of memory we use we need a vm_page structure.
416 * thus, the total number of pages we can use is the total size of
417 * the memory divided by the PAGE_SIZE plus the size of the vm_page
418 * structure. we add one to freepages as a fudge factor to avoid
419 * truncation errors (since we can only allocate in terms of whole
420 * pages).
421 */
422 pagecount = ((freepages + 1) << PAGE_SHIFT) /
423 (PAGE_SIZE + sizeof(struct vm_page));
424 bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
425 bucketsize = roundup2(bucketsize, coherency_unit);
426 bucketarray = (void *)uvm_pageboot_alloc(
427 bucketsize * VM_NFREELIST +
428 pagecount * sizeof(struct vm_page));
429 pagearray = (struct vm_page *)
430 (bucketarray + bucketsize * VM_NFREELIST);
431
432 for (fl = 0; fl < VM_NFREELIST; fl++) {
433 pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
434 uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
435 }
436 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
437
438 /*
439 * init the freelist cache in the disabled state.
440 */
441 uvm_pgflcache_init();
442
443 /*
444 * init the vm_page structures and put them in the correct place.
445 */
446 /* First init the extent */
447
448 for (bank = uvm_physseg_get_first(),
449 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
450 uvm_physseg_valid_p(bank);
451 bank = uvm_physseg_get_next(bank)) {
452
453 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
454 uvm_physseg_seg_alloc_from_slab(bank, n);
455 uvm_physseg_init_seg(bank, pagearray);
456
457 /* set up page array pointers */
458 pagearray += n;
459 pagecount -= n;
460 }
461
462 /*
463 * pass up the values of virtual_space_start and
464 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
465 * layers of the VM.
466 */
467
468 *kvm_startp = round_page(virtual_space_start);
469 *kvm_endp = trunc_page(virtual_space_end);
470 #ifdef DEBUG
471 /*
472 * steal kva for uvm_pagezerocheck().
473 */
474 uvm_zerocheckkva = *kvm_startp;
475 *kvm_startp += PAGE_SIZE;
476 mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
477 #endif /* DEBUG */
478
479 /*
480 * init various thresholds.
481 */
482
483 uvmexp.reserve_pagedaemon = 1;
484 uvmexp.reserve_kernel = vm_page_reserve_kernel;
485
486 /*
487 * done!
488 */
489
490 uvm.page_init_done = true;
491 }
492
493 /*
494 * uvm_pgfl_lock: lock all freelist buckets
495 */
496
497 void
498 uvm_pgfl_lock(void)
499 {
500 int i;
501
502 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
503 mutex_spin_enter(&uvm_freelist_locks[i].lock);
504 }
505 }
506
507 /*
508 * uvm_pgfl_unlock: unlock all freelist buckets
509 */
510
511 void
512 uvm_pgfl_unlock(void)
513 {
514 int i;
515
516 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
517 mutex_spin_exit(&uvm_freelist_locks[i].lock);
518 }
519 }
520
521 /*
522 * uvm_setpagesize: set the page size
523 *
524 * => sets page_shift and page_mask from uvmexp.pagesize.
525 */
526
527 void
528 uvm_setpagesize(void)
529 {
530
531 /*
532 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
533 * to be a constant (indicated by being a non-zero value).
534 */
535 if (uvmexp.pagesize == 0) {
536 if (PAGE_SIZE == 0)
537 panic("uvm_setpagesize: uvmexp.pagesize not set");
538 uvmexp.pagesize = PAGE_SIZE;
539 }
540 uvmexp.pagemask = uvmexp.pagesize - 1;
541 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
542 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
543 uvmexp.pagesize, uvmexp.pagesize);
544 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
545 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
546 break;
547 }
548
549 /*
550 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
551 */
552
553 vaddr_t
554 uvm_pageboot_alloc(vsize_t size)
555 {
556 static bool initialized = false;
557 vaddr_t addr;
558 #if !defined(PMAP_STEAL_MEMORY)
559 vaddr_t vaddr;
560 paddr_t paddr;
561 #endif
562
563 /*
564 * on first call to this function, initialize ourselves.
565 */
566 if (initialized == false) {
567 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
568
569 /* round it the way we like it */
570 virtual_space_start = round_page(virtual_space_start);
571 virtual_space_end = trunc_page(virtual_space_end);
572
573 initialized = true;
574 }
575
576 /* round to page size */
577 size = round_page(size);
578 uvmexp.bootpages += atop(size);
579
580 #if defined(PMAP_STEAL_MEMORY)
581
582 /*
583 * defer bootstrap allocation to MD code (it may want to allocate
584 * from a direct-mapped segment). pmap_steal_memory should adjust
585 * virtual_space_start/virtual_space_end if necessary.
586 */
587
588 addr = pmap_steal_memory(size, &virtual_space_start,
589 &virtual_space_end);
590
591 return(addr);
592
593 #else /* !PMAP_STEAL_MEMORY */
594
595 /*
596 * allocate virtual memory for this request
597 */
598 if (virtual_space_start == virtual_space_end ||
599 (virtual_space_end - virtual_space_start) < size)
600 panic("uvm_pageboot_alloc: out of virtual space");
601
602 addr = virtual_space_start;
603
604 #ifdef PMAP_GROWKERNEL
605 /*
606 * If the kernel pmap can't map the requested space,
607 * then allocate more resources for it.
608 */
609 if (uvm_maxkaddr < (addr + size)) {
610 uvm_maxkaddr = pmap_growkernel(addr + size);
611 if (uvm_maxkaddr < (addr + size))
612 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
613 }
614 #endif
615
616 virtual_space_start += size;
617
618 /*
619 * allocate and mapin physical pages to back new virtual pages
620 */
621
622 for (vaddr = round_page(addr) ; vaddr < addr + size ;
623 vaddr += PAGE_SIZE) {
624
625 if (!uvm_page_physget(&paddr))
626 panic("uvm_pageboot_alloc: out of memory");
627
628 /*
629 * Note this memory is no longer managed, so using
630 * pmap_kenter is safe.
631 */
632 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
633 }
634 pmap_update(pmap_kernel());
635 return(addr);
636 #endif /* PMAP_STEAL_MEMORY */
637 }
638
639 #if !defined(PMAP_STEAL_MEMORY)
640 /*
641 * uvm_page_physget: "steal" one page from the vm_physmem structure.
642 *
643 * => attempt to allocate it off the end of a segment in which the "avail"
644 * values match the start/end values. if we can't do that, then we
645 * will advance both values (making them equal, and removing some
646 * vm_page structures from the non-avail area).
647 * => return false if out of memory.
648 */
649
650 /* subroutine: try to allocate from memory chunks on the specified freelist */
651 static bool uvm_page_physget_freelist(paddr_t *, int);
652
653 static bool
654 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
655 {
656 uvm_physseg_t lcv;
657
658 /* pass 1: try allocating from a matching end */
659 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
660 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
661 #else
662 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
663 #endif
664 {
665 if (uvm.page_init_done == true)
666 panic("uvm_page_physget: called _after_ bootstrap");
667
668 /* Try to match at front or back on unused segment */
669 if (uvm_page_physunload(lcv, freelist, paddrp))
670 return true;
671 }
672
673 /* pass2: forget about matching ends, just allocate something */
674 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
675 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
676 #else
677 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
678 #endif
679 {
680 /* Try the front regardless. */
681 if (uvm_page_physunload_force(lcv, freelist, paddrp))
682 return true;
683 }
684 return false;
685 }
686
687 bool
688 uvm_page_physget(paddr_t *paddrp)
689 {
690 int i;
691
692 /* try in the order of freelist preference */
693 for (i = 0; i < VM_NFREELIST; i++)
694 if (uvm_page_physget_freelist(paddrp, i) == true)
695 return (true);
696 return (false);
697 }
698 #endif /* PMAP_STEAL_MEMORY */
699
700 /*
701 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
702 * back from an I/O mapping (ugh!). used in some MD code as well.
703 */
704 struct vm_page *
705 uvm_phys_to_vm_page(paddr_t pa)
706 {
707 paddr_t pf = atop(pa);
708 paddr_t off;
709 uvm_physseg_t upm;
710
711 upm = uvm_physseg_find(pf, &off);
712 if (upm != UVM_PHYSSEG_TYPE_INVALID)
713 return uvm_physseg_get_pg(upm, off);
714 return(NULL);
715 }
716
717 paddr_t
718 uvm_vm_page_to_phys(const struct vm_page *pg)
719 {
720
721 return pg->phys_addr & ~(PAGE_SIZE - 1);
722 }
723
724 /*
725 * uvm_page_numa_load: load NUMA range description.
726 */
727 void
728 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
729 {
730 struct uvm_page_numa_region *d;
731
732 KASSERT(numa_id < PGFL_MAX_BUCKETS);
733
734 d = kmem_alloc(sizeof(*d), KM_SLEEP);
735 d->start = start;
736 d->size = size;
737 d->numa_id = numa_id;
738 d->next = uvm_page_numa_region;
739 uvm_page_numa_region = d;
740 }
741
742 /*
743 * uvm_page_numa_lookup: lookup NUMA node for the given page.
744 */
745 static u_int
746 uvm_page_numa_lookup(struct vm_page *pg)
747 {
748 struct uvm_page_numa_region *d;
749 static bool warned;
750 paddr_t pa;
751
752 KASSERT(uvm.numa_alloc);
753 KASSERT(uvm_page_numa_region != NULL);
754
755 pa = VM_PAGE_TO_PHYS(pg);
756 for (d = uvm_page_numa_region; d != NULL; d = d->next) {
757 if (pa >= d->start && pa < d->start + d->size) {
758 return d->numa_id;
759 }
760 }
761
762 if (!warned) {
763 printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
764 PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
765 warned = true;
766 }
767
768 return 0;
769 }
770
771 /*
772 * uvm_page_redim: adjust freelist dimensions if they have changed.
773 */
774
775 static void
776 uvm_page_redim(int newncolors, int newnbuckets)
777 {
778 struct pgfreelist npgfl;
779 struct pgflbucket *opgb, *npgb;
780 struct pgflist *ohead, *nhead;
781 struct vm_page *pg;
782 size_t bucketsize, bucketmemsize, oldbucketmemsize;
783 int fl, ob, oc, nb, nc, obuckets, ocolors;
784 char *bucketarray, *oldbucketmem, *bucketmem;
785
786 KASSERT(((newncolors - 1) & newncolors) == 0);
787
788 /* Anything to do? */
789 if (newncolors <= uvmexp.ncolors &&
790 newnbuckets == uvm.bucketcount) {
791 return;
792 }
793 if (uvm.page_init_done == false) {
794 uvmexp.ncolors = newncolors;
795 return;
796 }
797
798 bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
799 bucketsize = roundup2(bucketsize, coherency_unit);
800 bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
801 coherency_unit - 1;
802 bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
803 bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
804
805 ocolors = uvmexp.ncolors;
806 obuckets = uvm.bucketcount;
807
808 /* Freelist cache musn't be enabled. */
809 uvm_pgflcache_pause();
810
811 /* Make sure we should still do this. */
812 uvm_pgfl_lock();
813 if (newncolors <= uvmexp.ncolors &&
814 newnbuckets == uvm.bucketcount) {
815 uvm_pgfl_unlock();
816 uvm_pgflcache_resume();
817 kmem_free(bucketmem, bucketmemsize);
818 return;
819 }
820
821 uvmexp.ncolors = newncolors;
822 uvmexp.colormask = uvmexp.ncolors - 1;
823 uvm.bucketcount = newnbuckets;
824
825 for (fl = 0; fl < VM_NFREELIST; fl++) {
826 /* Init new buckets in new freelist. */
827 memset(&npgfl, 0, sizeof(npgfl));
828 for (nb = 0; nb < newnbuckets; nb++) {
829 npgb = (struct pgflbucket *)bucketarray;
830 uvm_page_init_bucket(&npgfl, npgb, nb);
831 bucketarray += bucketsize;
832 }
833 /* Now transfer pages from the old freelist. */
834 for (nb = ob = 0; ob < obuckets; ob++) {
835 opgb = uvm.page_free[fl].pgfl_buckets[ob];
836 for (oc = 0; oc < ocolors; oc++) {
837 ohead = &opgb->pgb_colors[oc];
838 while ((pg = LIST_FIRST(ohead)) != NULL) {
839 LIST_REMOVE(pg, pageq.list);
840 /*
841 * Here we decide on the NEW color &
842 * bucket for the page. For NUMA
843 * we'll use the info that the
844 * hardware gave us. For non-NUMA
845 * assign take physical page frame
846 * number and cache color into
847 * account. We do this to try and
848 * avoid defeating any memory
849 * interleaving in the hardware.
850 */
851 KASSERT(
852 uvm_page_get_bucket(pg) == ob);
853 KASSERT(fl ==
854 uvm_page_get_freelist(pg));
855 if (uvm.numa_alloc) {
856 nb = uvm_page_numa_lookup(pg);
857 } else {
858 nb = atop(VM_PAGE_TO_PHYS(pg))
859 / uvmexp.ncolors / 8
860 % newnbuckets;
861 }
862 uvm_page_set_bucket(pg, nb);
863 npgb = npgfl.pgfl_buckets[nb];
864 npgb->pgb_nfree++;
865 nc = VM_PGCOLOR(pg);
866 nhead = &npgb->pgb_colors[nc];
867 LIST_INSERT_HEAD(nhead, pg, pageq.list);
868 }
869 }
870 }
871 /* Install the new freelist. */
872 memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
873 }
874
875 /* Unlock and free the old memory. */
876 oldbucketmemsize = recolored_pages_memsize;
877 oldbucketmem = recolored_pages_mem;
878 recolored_pages_memsize = bucketmemsize;
879 recolored_pages_mem = bucketmem;
880
881 uvm_pgfl_unlock();
882 uvm_pgflcache_resume();
883
884 if (oldbucketmemsize) {
885 kmem_free(oldbucketmem, oldbucketmemsize);
886 }
887
888 /*
889 * this calls uvm_km_alloc() which may want to hold
890 * uvm_freelist_lock.
891 */
892 uvm_pager_realloc_emerg();
893 }
894
895 /*
896 * uvm_page_recolor: Recolor the pages if the new color count is
897 * larger than the old one.
898 */
899
900 void
901 uvm_page_recolor(int newncolors)
902 {
903
904 uvm_page_redim(newncolors, uvm.bucketcount);
905 }
906
907 /*
908 * uvm_page_rebucket: Determine a bucket structure and redim the free
909 * lists to match.
910 */
911
912 void
913 uvm_page_rebucket(void)
914 {
915 u_int min_numa, max_numa, npackage, shift;
916 struct cpu_info *ci, *ci2, *ci3;
917 CPU_INFO_ITERATOR cii;
918
919 /*
920 * If we have more than one NUMA node, and the maximum NUMA node ID
921 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
922 * for free pages. uvm_pagefree() will not reassign pages to a
923 * different bucket on free.
924 */
925 min_numa = (u_int)-1;
926 max_numa = 0;
927 for (CPU_INFO_FOREACH(cii, ci)) {
928 if (ci->ci_numa_id < min_numa) {
929 min_numa = ci->ci_numa_id;
930 }
931 if (ci->ci_numa_id > max_numa) {
932 max_numa = ci->ci_numa_id;
933 }
934 }
935 if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
936 #ifdef NUMA
937 /*
938 * We can do this, and it seems to work well, but until
939 * further experiments are done we'll stick with the cache
940 * locality strategy.
941 */
942 aprint_debug("UVM: using NUMA allocation scheme\n");
943 for (CPU_INFO_FOREACH(cii, ci)) {
944 ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
945 }
946 uvm.numa_alloc = true;
947 uvm_page_redim(uvmexp.ncolors, max_numa + 1);
948 return;
949 #endif
950 }
951
952 /*
953 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
954 * and minimise lock contention. Count the total number of CPU
955 * packages, and then try to distribute the buckets among CPU
956 * packages evenly. uvm_pagefree() will reassign pages to the
957 * freeing CPU's preferred bucket on free.
958 */
959 npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
960
961 /*
962 * Figure out how to arrange the packages & buckets, and the total
963 * number of buckets we need. XXX 2 may not be the best factor.
964 */
965 for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
966 npackage >>= 1;
967 }
968 uvm_page_redim(uvmexp.ncolors, npackage);
969
970 /*
971 * Now tell each CPU which bucket to use. In the outer loop, scroll
972 * through all CPU packages.
973 */
974 npackage = 0;
975 ci = curcpu();
976 ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
977 do {
978 /*
979 * In the inner loop, scroll through all CPUs in the package
980 * and assign the same bucket ID.
981 */
982 ci3 = ci2;
983 do {
984 ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
985 ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
986 } while (ci3 != ci2);
987 npackage++;
988 ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
989 } while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
990
991 aprint_debug("UVM: using package allocation scheme, "
992 "%d package(s) per bucket\n", 1 << shift);
993 }
994
995 /*
996 * uvm_cpu_attach: initialize per-CPU data structures.
997 */
998
999 void
1000 uvm_cpu_attach(struct cpu_info *ci)
1001 {
1002 struct uvm_cpu *ucpu;
1003
1004 /* Already done in uvm_page_init(). */
1005 if (!CPU_IS_PRIMARY(ci)) {
1006 /* Add more reserve pages for this CPU. */
1007 uvmexp.reserve_kernel += vm_page_reserve_kernel;
1008
1009 /* Allocate per-CPU data structures. */
1010 ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
1011 KM_SLEEP);
1012 ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
1013 coherency_unit);
1014 ci->ci_data.cpu_uvm = ucpu;
1015 } else {
1016 ucpu = ci->ci_data.cpu_uvm;
1017 }
1018
1019 uvmpdpol_init_cpu(ucpu);
1020
1021 /*
1022 * Attach RNG source for this CPU's VM events
1023 */
1024 rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
1025 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
1026 RND_FLAG_ESTIMATE_VALUE);
1027 }
1028
1029 /*
1030 * uvm_availmem: fetch the total amount of free memory in pages. this can
1031 * have a detrimental effect on performance due to false sharing; don't call
1032 * unless needed.
1033 */
1034
1035 int
1036 uvm_availmem(void)
1037 {
1038 struct pgfreelist *pgfl;
1039 int fl, b, fpages;
1040
1041 fpages = 0;
1042 for (fl = 0; fl < VM_NFREELIST; fl++) {
1043 pgfl = &uvm.page_free[fl];
1044 for (b = 0; b < uvm.bucketcount; b++) {
1045 fpages += pgfl->pgfl_buckets[b]->pgb_nfree;
1046 }
1047 }
1048 return fpages;
1049 }
1050
1051 /*
1052 * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
1053 * specific freelist and specific bucket only.
1054 *
1055 * => must be at IPL_VM or higher to protect per-CPU data structures.
1056 */
1057
1058 static struct vm_page *
1059 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1060 {
1061 int c, trycolor, colormask;
1062 struct pgflbucket *pgb;
1063 struct vm_page *pg;
1064 kmutex_t *lock;
1065 bool fill;
1066
1067 /*
1068 * Skip the bucket if empty, no lock needed. There could be many
1069 * empty freelists/buckets.
1070 */
1071 pgb = uvm.page_free[f].pgfl_buckets[b];
1072 if (pgb->pgb_nfree == 0) {
1073 return NULL;
1074 }
1075
1076 /* Skip bucket if low on memory. */
1077 lock = &uvm_freelist_locks[b].lock;
1078 mutex_spin_enter(lock);
1079 if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1080 if ((flags & UVM_PGA_USERESERVE) == 0 ||
1081 (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1082 curlwp != uvm.pagedaemon_lwp)) {
1083 mutex_spin_exit(lock);
1084 return NULL;
1085 }
1086 fill = false;
1087 } else {
1088 fill = true;
1089 }
1090
1091 /* Try all page colors as needed. */
1092 c = trycolor = *trycolorp;
1093 colormask = uvmexp.colormask;
1094 do {
1095 pg = LIST_FIRST(&pgb->pgb_colors[c]);
1096 if (__predict_true(pg != NULL)) {
1097 /*
1098 * Got a free page! PG_FREE must be cleared under
1099 * lock because of uvm_pglistalloc().
1100 */
1101 LIST_REMOVE(pg, pageq.list);
1102 KASSERT(pg->flags & PG_FREE);
1103 pg->flags &= PG_ZERO;
1104 pgb->pgb_nfree--;
1105
1106 /*
1107 * While we have the bucket locked and our data
1108 * structures fresh in L1 cache, we have an ideal
1109 * opportunity to grab some pages for the freelist
1110 * cache without causing extra contention. Only do
1111 * so if we found pages in this CPU's preferred
1112 * bucket.
1113 */
1114 if (__predict_true(b == ucpu->pgflbucket && fill)) {
1115 uvm_pgflcache_fill(ucpu, f, b, c);
1116 }
1117 mutex_spin_exit(lock);
1118 KASSERT(uvm_page_get_bucket(pg) == b);
1119 CPU_COUNT(c == trycolor ?
1120 CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1121 CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1122 *trycolorp = c;
1123 return pg;
1124 }
1125 c = (c + 1) & colormask;
1126 } while (c != trycolor);
1127 mutex_spin_exit(lock);
1128
1129 return NULL;
1130 }
1131
1132 /*
1133 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1134 * any color from any bucket, in a specific freelist.
1135 *
1136 * => must be at IPL_VM or higher to protect per-CPU data structures.
1137 */
1138
1139 static struct vm_page *
1140 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1141 {
1142 int b, trybucket, bucketcount;
1143 struct vm_page *pg;
1144
1145 /* Try for the exact thing in the per-CPU cache. */
1146 if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1147 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1148 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1149 return pg;
1150 }
1151
1152 /* Walk through all buckets, trying our preferred bucket first. */
1153 trybucket = ucpu->pgflbucket;
1154 b = trybucket;
1155 bucketcount = uvm.bucketcount;
1156 do {
1157 pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1158 if (pg != NULL) {
1159 return pg;
1160 }
1161 b = (b + 1 == bucketcount ? 0 : b + 1);
1162 } while (b != trybucket);
1163
1164 return NULL;
1165 }
1166
1167 /*
1168 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1169 *
1170 * => return null if no pages free
1171 * => wake up pagedaemon if number of free pages drops below low water mark
1172 * => if obj != NULL, obj must be locked (to put in obj's tree)
1173 * => if anon != NULL, anon must be locked (to put in anon)
1174 * => only one of obj or anon can be non-null
1175 * => caller must activate/deactivate page if it is not wired.
1176 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1177 * => policy decision: it is more important to pull a page off of the
1178 * appropriate priority free list than it is to get a zero'd or
1179 * unknown contents page. This is because we live with the
1180 * consequences of a bad free list decision for the entire
1181 * lifetime of the page, e.g. if the page comes from memory that
1182 * is slower to access.
1183 */
1184
1185 struct vm_page *
1186 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1187 int flags, int strat, int free_list)
1188 {
1189 int zeroit = 0, color;
1190 int lcv, error, s;
1191 struct uvm_cpu *ucpu;
1192 struct vm_page *pg;
1193 lwp_t *l;
1194
1195 KASSERT(obj == NULL || anon == NULL);
1196 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1197 KASSERT(off == trunc_page(off));
1198 KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1199 KASSERT(anon == NULL || anon->an_lock == NULL ||
1200 rw_write_held(anon->an_lock));
1201
1202 /*
1203 * This implements a global round-robin page coloring
1204 * algorithm.
1205 */
1206
1207 s = splvm();
1208 ucpu = curcpu()->ci_data.cpu_uvm;
1209 if (flags & UVM_FLAG_COLORMATCH) {
1210 color = atop(off) & uvmexp.colormask;
1211 } else {
1212 color = ucpu->pgflcolor;
1213 }
1214
1215 /*
1216 * fail if any of these conditions is true:
1217 * [1] there really are no free pages, or
1218 * [2] only kernel "reserved" pages remain and
1219 * reserved pages have not been requested.
1220 * [3] only pagedaemon "reserved" pages remain and
1221 * the requestor isn't the pagedaemon.
1222 * we make kernel reserve pages available if called by a
1223 * kernel thread or a realtime thread.
1224 */
1225 l = curlwp;
1226 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1227 flags |= UVM_PGA_USERESERVE;
1228 }
1229
1230 /* If the allocator's running in NUMA mode, go with NUMA strategy. */
1231 if (uvm.numa_alloc && strat == UVM_PGA_STRAT_NORMAL) {
1232 strat = UVM_PGA_STRAT_NUMA;
1233 }
1234
1235 again:
1236 switch (strat) {
1237 case UVM_PGA_STRAT_NORMAL:
1238 /* Check freelists: descending priority (ascending id) order. */
1239 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1240 pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1241 if (pg != NULL) {
1242 goto gotit;
1243 }
1244 }
1245
1246 /* No pages free! Have pagedaemon free some memory. */
1247 splx(s);
1248 uvm_kick_pdaemon();
1249 return NULL;
1250
1251 case UVM_PGA_STRAT_ONLY:
1252 case UVM_PGA_STRAT_FALLBACK:
1253 /* Attempt to allocate from the specified free list. */
1254 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1255 pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1256 if (pg != NULL) {
1257 goto gotit;
1258 }
1259
1260 /* Fall back, if possible. */
1261 if (strat == UVM_PGA_STRAT_FALLBACK) {
1262 strat = UVM_PGA_STRAT_NORMAL;
1263 goto again;
1264 }
1265
1266 /* No pages free! Have pagedaemon free some memory. */
1267 splx(s);
1268 uvm_kick_pdaemon();
1269 return NULL;
1270
1271 case UVM_PGA_STRAT_NUMA:
1272 /*
1273 * NUMA strategy: allocating from the correct bucket is more
1274 * important than observing freelist priority. Look only to
1275 * the current NUMA node; if that fails, we need to look to
1276 * other NUMA nodes, so retry with the normal strategy.
1277 */
1278 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1279 pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1280 if (pg != NULL) {
1281 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1282 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1283 goto gotit;
1284 }
1285 pg = uvm_pagealloc_pgb(ucpu, lcv,
1286 ucpu->pgflbucket, &color, flags);
1287 if (pg != NULL) {
1288 goto gotit;
1289 }
1290 }
1291 strat = UVM_PGA_STRAT_NORMAL;
1292 goto again;
1293
1294 default:
1295 panic("uvm_pagealloc_strat: bad strat %d", strat);
1296 /* NOTREACHED */
1297 }
1298
1299 gotit:
1300 /*
1301 * We now know which color we actually allocated from; set
1302 * the next color accordingly.
1303 */
1304
1305 ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1306
1307 /*
1308 * while still at IPL_VM, update allocation statistics and remember
1309 * if we have to zero the page
1310 */
1311
1312 if (flags & UVM_PGA_ZERO) {
1313 if (pg->flags & PG_ZERO) {
1314 CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
1315 zeroit = 0;
1316 } else {
1317 CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
1318 zeroit = 1;
1319 }
1320 }
1321 if (pg->flags & PG_ZERO) {
1322 CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
1323 }
1324 if (anon) {
1325 CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
1326 CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1327 }
1328 splx(s);
1329 KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1330
1331 /*
1332 * assign the page to the object. as the page was free, we know
1333 * that pg->uobject and pg->uanon are NULL. we only need to take
1334 * the page's interlock if we are changing the values.
1335 */
1336 if (anon != NULL || obj != NULL) {
1337 mutex_enter(&pg->interlock);
1338 }
1339 pg->offset = off;
1340 pg->uobject = obj;
1341 pg->uanon = anon;
1342 KASSERT(uvm_page_owner_locked_p(pg, true));
1343 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1344 if (anon) {
1345 anon->an_page = pg;
1346 pg->flags |= PG_ANON;
1347 mutex_exit(&pg->interlock);
1348 } else if (obj) {
1349 /*
1350 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1351 */
1352 if (UVM_OBJ_IS_VNODE(obj)) {
1353 pg->flags |= PG_FILE;
1354 } else {
1355 pg->flags |= PG_AOBJ;
1356 }
1357 uvm_pageinsert_object(obj, pg);
1358 mutex_exit(&pg->interlock);
1359 error = uvm_pageinsert_tree(obj, pg);
1360 if (error != 0) {
1361 mutex_enter(&pg->interlock);
1362 uvm_pageremove_object(obj, pg);
1363 mutex_exit(&pg->interlock);
1364 uvm_pagefree(pg);
1365 return NULL;
1366 }
1367 }
1368
1369 #if defined(UVM_PAGE_TRKOWN)
1370 pg->owner_tag = NULL;
1371 #endif
1372 UVM_PAGE_OWN(pg, "new alloc");
1373
1374 if (flags & UVM_PGA_ZERO) {
1375 /*
1376 * A zero'd page is not clean. If we got a page not already
1377 * zero'd, then we have to zero it ourselves.
1378 */
1379 if (obj != NULL || anon != NULL) {
1380 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1381 }
1382 if (zeroit) {
1383 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1384 }
1385 }
1386
1387 return(pg);
1388 }
1389
1390 /*
1391 * uvm_pagereplace: replace a page with another
1392 *
1393 * => object must be locked
1394 * => page interlocks must be held
1395 */
1396
1397 void
1398 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1399 {
1400 struct uvm_object *uobj = oldpg->uobject;
1401 struct vm_page *pg __diagused;
1402 uint64_t idx;
1403
1404 KASSERT((oldpg->flags & PG_TABLED) != 0);
1405 KASSERT(uobj != NULL);
1406 KASSERT((newpg->flags & PG_TABLED) == 0);
1407 KASSERT(newpg->uobject == NULL);
1408 KASSERT(rw_write_held(uobj->vmobjlock));
1409 KASSERT(mutex_owned(&oldpg->interlock));
1410 KASSERT(mutex_owned(&newpg->interlock));
1411
1412 newpg->uobject = uobj;
1413 newpg->offset = oldpg->offset;
1414 idx = newpg->offset >> PAGE_SHIFT;
1415 pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1416 KASSERT(pg == oldpg);
1417 if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1418 if ((newpg->flags & PG_CLEAN) != 0) {
1419 radix_tree_clear_tag(&uobj->uo_pages, idx,
1420 UVM_PAGE_DIRTY_TAG);
1421 } else {
1422 radix_tree_set_tag(&uobj->uo_pages, idx,
1423 UVM_PAGE_DIRTY_TAG);
1424 }
1425 }
1426 /*
1427 * oldpg's PG_STAT is stable. newpg is not reachable by others yet.
1428 */
1429 newpg->flags |=
1430 (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1431 uvm_pageinsert_object(uobj, newpg);
1432 uvm_pageremove_object(uobj, oldpg);
1433 }
1434
1435 /*
1436 * uvm_pagerealloc: reallocate a page from one object to another
1437 *
1438 * => both objects must be locked
1439 * => both interlocks must be held
1440 */
1441
1442 void
1443 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1444 {
1445 /*
1446 * remove it from the old object
1447 */
1448
1449 if (pg->uobject) {
1450 uvm_pageremove_tree(pg->uobject, pg);
1451 uvm_pageremove_object(pg->uobject, pg);
1452 }
1453
1454 /*
1455 * put it in the new object
1456 */
1457
1458 if (newobj) {
1459 /*
1460 * XXX we have no in-tree users of this functionality
1461 */
1462 panic("uvm_pagerealloc: no impl");
1463 }
1464 }
1465
1466 #ifdef DEBUG
1467 /*
1468 * check if page is zero-filled
1469 */
1470 void
1471 uvm_pagezerocheck(struct vm_page *pg)
1472 {
1473 int *p, *ep;
1474
1475 KASSERT(uvm_zerocheckkva != 0);
1476
1477 /*
1478 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1479 * uvm page allocator.
1480 *
1481 * it might be better to have "CPU-local temporary map" pmap interface.
1482 */
1483 mutex_spin_enter(&uvm_zerochecklock);
1484 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1485 p = (int *)uvm_zerocheckkva;
1486 ep = (int *)((char *)p + PAGE_SIZE);
1487 pmap_update(pmap_kernel());
1488 while (p < ep) {
1489 if (*p != 0)
1490 panic("PG_ZERO page isn't zero-filled");
1491 p++;
1492 }
1493 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1494 mutex_spin_exit(&uvm_zerochecklock);
1495 /*
1496 * pmap_update() is not necessary here because no one except us
1497 * uses this VA.
1498 */
1499 }
1500 #endif /* DEBUG */
1501
1502 /*
1503 * uvm_pagefree: free page
1504 *
1505 * => erase page's identity (i.e. remove from object)
1506 * => put page on free list
1507 * => caller must lock owning object (either anon or uvm_object)
1508 * => assumes all valid mappings of pg are gone
1509 */
1510
1511 void
1512 uvm_pagefree(struct vm_page *pg)
1513 {
1514 struct pgfreelist *pgfl;
1515 struct pgflbucket *pgb;
1516 struct uvm_cpu *ucpu;
1517 kmutex_t *lock;
1518 int bucket, s;
1519 bool locked;
1520
1521 #ifdef DEBUG
1522 if (pg->uobject == (void *)0xdeadbeef &&
1523 pg->uanon == (void *)0xdeadbeef) {
1524 panic("uvm_pagefree: freeing free page %p", pg);
1525 }
1526 #endif /* DEBUG */
1527
1528 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1529 KASSERT(!(pg->flags & PG_FREE));
1530 KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1531 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1532 rw_write_held(pg->uanon->an_lock));
1533
1534 /*
1535 * remove the page from the object's tree before acquiring any page
1536 * interlocks: this can acquire locks to free radixtree nodes.
1537 */
1538 if (pg->uobject != NULL) {
1539 uvm_pageremove_tree(pg->uobject, pg);
1540 }
1541
1542 /*
1543 * if the page is loaned, resolve the loan instead of freeing.
1544 */
1545
1546 if (pg->loan_count) {
1547 KASSERT(pg->wire_count == 0);
1548
1549 /*
1550 * if the page is owned by an anon then we just want to
1551 * drop anon ownership. the kernel will free the page when
1552 * it is done with it. if the page is owned by an object,
1553 * remove it from the object and mark it dirty for the benefit
1554 * of possible anon owners.
1555 *
1556 * regardless of previous ownership, wakeup any waiters,
1557 * unbusy the page, and we're done.
1558 */
1559
1560 uvm_pagelock(pg);
1561 locked = true;
1562 if (pg->uobject != NULL) {
1563 uvm_pageremove_object(pg->uobject, pg);
1564 pg->flags &= ~(PG_FILE|PG_AOBJ);
1565 } else if (pg->uanon != NULL) {
1566 if ((pg->flags & PG_ANON) == 0) {
1567 pg->loan_count--;
1568 } else {
1569 pg->flags &= ~PG_ANON;
1570 cpu_count(CPU_COUNT_ANONPAGES, -1);
1571 }
1572 pg->uanon->an_page = NULL;
1573 pg->uanon = NULL;
1574 }
1575 if (pg->pqflags & PQ_WANTED) {
1576 wakeup(pg);
1577 }
1578 pg->pqflags &= ~PQ_WANTED;
1579 pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1580 #ifdef UVM_PAGE_TRKOWN
1581 pg->owner_tag = NULL;
1582 #endif
1583 KASSERT((pg->flags & PG_STAT) == 0);
1584 if (pg->loan_count) {
1585 KASSERT(pg->uobject == NULL);
1586 if (pg->uanon == NULL) {
1587 uvm_pagedequeue(pg);
1588 }
1589 uvm_pageunlock(pg);
1590 return;
1591 }
1592 } else if (pg->uobject != NULL || pg->uanon != NULL ||
1593 pg->wire_count != 0) {
1594 uvm_pagelock(pg);
1595 locked = true;
1596 } else {
1597 locked = false;
1598 }
1599
1600 /*
1601 * remove page from its object or anon.
1602 */
1603 if (pg->uobject != NULL) {
1604 uvm_pageremove_object(pg->uobject, pg);
1605 } else if (pg->uanon != NULL) {
1606 const unsigned int status = uvm_pagegetdirty(pg);
1607 pg->uanon->an_page = NULL;
1608 pg->uanon = NULL;
1609 kpreempt_disable();
1610 CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
1611 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
1612 kpreempt_enable();
1613 }
1614
1615 /*
1616 * if the page was wired, unwire it now.
1617 */
1618
1619 if (pg->wire_count) {
1620 pg->wire_count = 0;
1621 atomic_dec_uint(&uvmexp.wired);
1622 }
1623 if (locked) {
1624 /*
1625 * wake anyone waiting on the page.
1626 */
1627 if ((pg->pqflags & PQ_WANTED) != 0) {
1628 pg->pqflags &= ~PQ_WANTED;
1629 wakeup(pg);
1630 }
1631
1632 /*
1633 * now remove the page from the queues.
1634 */
1635 uvm_pagedequeue(pg);
1636 uvm_pageunlock(pg);
1637 } else {
1638 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1639 }
1640
1641 /*
1642 * and put on free queue
1643 */
1644
1645 #ifdef DEBUG
1646 pg->uobject = (void *)0xdeadbeef;
1647 pg->uanon = (void *)0xdeadbeef;
1648 if (pg->flags & PG_ZERO)
1649 uvm_pagezerocheck(pg);
1650 #endif /* DEBUG */
1651
1652 /* Try to send the page to the per-CPU cache. */
1653 s = splvm();
1654 if (pg->flags & PG_ZERO) {
1655 CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
1656 }
1657 ucpu = curcpu()->ci_data.cpu_uvm;
1658 bucket = uvm_page_get_bucket(pg);
1659 if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1660 splx(s);
1661 return;
1662 }
1663
1664 /* Didn't work. Never mind, send it to a global bucket. */
1665 pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1666 pgb = pgfl->pgfl_buckets[bucket];
1667 lock = &uvm_freelist_locks[bucket].lock;
1668
1669 mutex_spin_enter(lock);
1670 /* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1671 pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
1672 LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1673 pgb->pgb_nfree++;
1674 mutex_spin_exit(lock);
1675 splx(s);
1676 }
1677
1678 /*
1679 * uvm_page_unbusy: unbusy an array of pages.
1680 *
1681 * => pages must either all belong to the same object, or all belong to anons.
1682 * => if pages are object-owned, object must be locked.
1683 * => if pages are anon-owned, anons must be locked.
1684 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1685 */
1686
1687 void
1688 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1689 {
1690 struct vm_page *pg;
1691 int i;
1692 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1693
1694 for (i = 0; i < npgs; i++) {
1695 pg = pgs[i];
1696 if (pg == NULL || pg == PGO_DONTCARE) {
1697 continue;
1698 }
1699
1700 KASSERT(uvm_page_owner_locked_p(pg, true));
1701 KASSERT(pg->flags & PG_BUSY);
1702 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1703 if (pg->flags & PG_RELEASED) {
1704 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1705 (uintptr_t)pg, 0, 0, 0);
1706 KASSERT(pg->uobject != NULL ||
1707 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1708 pg->flags &= ~PG_RELEASED;
1709 uvm_pagefree(pg);
1710 } else {
1711 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1712 (uintptr_t)pg, 0, 0, 0);
1713 KASSERT((pg->flags & PG_FAKE) == 0);
1714 pg->flags &= ~PG_BUSY;
1715 uvm_pagelock(pg);
1716 uvm_pagewakeup(pg);
1717 uvm_pageunlock(pg);
1718 UVM_PAGE_OWN(pg, NULL);
1719 }
1720 }
1721 }
1722
1723 /*
1724 * uvm_pagewait: wait for a busy page
1725 *
1726 * => page must be known PG_BUSY
1727 * => object must be read or write locked
1728 * => object will be unlocked on return
1729 */
1730
1731 void
1732 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1733 {
1734
1735 KASSERT(rw_lock_held(lock));
1736 KASSERT((pg->flags & PG_BUSY) != 0);
1737 KASSERT(uvm_page_owner_locked_p(pg, false));
1738
1739 mutex_enter(&pg->interlock);
1740 rw_exit(lock);
1741 pg->pqflags |= PQ_WANTED;
1742 UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1743 }
1744
1745 /*
1746 * uvm_pagewakeup: wake anyone waiting on a page
1747 *
1748 * => page interlock must be held
1749 */
1750
1751 void
1752 uvm_pagewakeup(struct vm_page *pg)
1753 {
1754 UVMHIST_FUNC("uvm_pagewakeup"); UVMHIST_CALLED(ubchist);
1755
1756 KASSERT(mutex_owned(&pg->interlock));
1757
1758 UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1759
1760 if ((pg->pqflags & PQ_WANTED) != 0) {
1761 wakeup(pg);
1762 pg->pqflags &= ~PQ_WANTED;
1763 }
1764 }
1765
1766 #if defined(UVM_PAGE_TRKOWN)
1767 /*
1768 * uvm_page_own: set or release page ownership
1769 *
1770 * => this is a debugging function that keeps track of who sets PG_BUSY
1771 * and where they do it. it can be used to track down problems
1772 * such a process setting "PG_BUSY" and never releasing it.
1773 * => page's object [if any] must be locked
1774 * => if "tag" is NULL then we are releasing page ownership
1775 */
1776 void
1777 uvm_page_own(struct vm_page *pg, const char *tag)
1778 {
1779
1780 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1781 KASSERT(uvm_page_owner_locked_p(pg, true));
1782
1783 /* gain ownership? */
1784 if (tag) {
1785 KASSERT((pg->flags & PG_BUSY) != 0);
1786 if (pg->owner_tag) {
1787 printf("uvm_page_own: page %p already owned "
1788 "by proc %d [%s]\n", pg,
1789 pg->owner, pg->owner_tag);
1790 panic("uvm_page_own");
1791 }
1792 pg->owner = curproc->p_pid;
1793 pg->lowner = curlwp->l_lid;
1794 pg->owner_tag = tag;
1795 return;
1796 }
1797
1798 /* drop ownership */
1799 KASSERT((pg->flags & PG_BUSY) == 0);
1800 if (pg->owner_tag == NULL) {
1801 printf("uvm_page_own: dropping ownership of an non-owned "
1802 "page (%p)\n", pg);
1803 panic("uvm_page_own");
1804 }
1805 pg->owner_tag = NULL;
1806 }
1807 #endif
1808
1809 /*
1810 * uvm_pageidlezero: zero free pages while the system is idle.
1811 */
1812 void
1813 uvm_pageidlezero(void)
1814 {
1815
1816 /*
1817 * Disabled for the moment. Previous strategy too cache heavy. In
1818 * the future we may experiment with zeroing the pages held in the
1819 * per-CPU cache (uvm_pgflcache).
1820 */
1821 }
1822
1823 /*
1824 * uvm_pagelookup: look up a page
1825 *
1826 * => caller should lock object to keep someone from pulling the page
1827 * out from under it
1828 */
1829
1830 struct vm_page *
1831 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1832 {
1833 struct vm_page *pg;
1834
1835 /* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
1836
1837 pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1838
1839 KASSERT(pg == NULL || obj->uo_npages != 0);
1840 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1841 (pg->flags & PG_BUSY) != 0);
1842 return pg;
1843 }
1844
1845 /*
1846 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1847 *
1848 * => caller must lock objects
1849 * => caller must hold pg->interlock
1850 */
1851
1852 void
1853 uvm_pagewire(struct vm_page *pg)
1854 {
1855
1856 KASSERT(uvm_page_owner_locked_p(pg, true));
1857 KASSERT(mutex_owned(&pg->interlock));
1858 #if defined(READAHEAD_STATS)
1859 if ((pg->flags & PG_READAHEAD) != 0) {
1860 uvm_ra_hit.ev_count++;
1861 pg->flags &= ~PG_READAHEAD;
1862 }
1863 #endif /* defined(READAHEAD_STATS) */
1864 if (pg->wire_count == 0) {
1865 uvm_pagedequeue(pg);
1866 atomic_inc_uint(&uvmexp.wired);
1867 }
1868 pg->wire_count++;
1869 KASSERT(pg->wire_count > 0); /* detect wraparound */
1870 }
1871
1872 /*
1873 * uvm_pageunwire: unwire the page.
1874 *
1875 * => activate if wire count goes to zero.
1876 * => caller must lock objects
1877 * => caller must hold pg->interlock
1878 */
1879
1880 void
1881 uvm_pageunwire(struct vm_page *pg)
1882 {
1883
1884 KASSERT(uvm_page_owner_locked_p(pg, true));
1885 KASSERT(pg->wire_count != 0);
1886 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1887 KASSERT(mutex_owned(&pg->interlock));
1888 pg->wire_count--;
1889 if (pg->wire_count == 0) {
1890 uvm_pageactivate(pg);
1891 KASSERT(uvmexp.wired != 0);
1892 atomic_dec_uint(&uvmexp.wired);
1893 }
1894 }
1895
1896 /*
1897 * uvm_pagedeactivate: deactivate page
1898 *
1899 * => caller must lock objects
1900 * => caller must check to make sure page is not wired
1901 * => object that page belongs to must be locked (so we can adjust pg->flags)
1902 * => caller must clear the reference on the page before calling
1903 * => caller must hold pg->interlock
1904 */
1905
1906 void
1907 uvm_pagedeactivate(struct vm_page *pg)
1908 {
1909
1910 KASSERT(uvm_page_owner_locked_p(pg, false));
1911 KASSERT(mutex_owned(&pg->interlock));
1912 if (pg->wire_count == 0) {
1913 KASSERT(uvmpdpol_pageisqueued_p(pg));
1914 uvmpdpol_pagedeactivate(pg);
1915 }
1916 }
1917
1918 /*
1919 * uvm_pageactivate: activate page
1920 *
1921 * => caller must lock objects
1922 * => caller must hold pg->interlock
1923 */
1924
1925 void
1926 uvm_pageactivate(struct vm_page *pg)
1927 {
1928
1929 KASSERT(uvm_page_owner_locked_p(pg, false));
1930 KASSERT(mutex_owned(&pg->interlock));
1931 #if defined(READAHEAD_STATS)
1932 if ((pg->flags & PG_READAHEAD) != 0) {
1933 uvm_ra_hit.ev_count++;
1934 pg->flags &= ~PG_READAHEAD;
1935 }
1936 #endif /* defined(READAHEAD_STATS) */
1937 if (pg->wire_count == 0) {
1938 uvmpdpol_pageactivate(pg);
1939 }
1940 }
1941
1942 /*
1943 * uvm_pagedequeue: remove a page from any paging queue
1944 *
1945 * => caller must lock objects
1946 * => caller must hold pg->interlock
1947 */
1948 void
1949 uvm_pagedequeue(struct vm_page *pg)
1950 {
1951
1952 KASSERT(uvm_page_owner_locked_p(pg, true));
1953 KASSERT(mutex_owned(&pg->interlock));
1954 if (uvmpdpol_pageisqueued_p(pg)) {
1955 uvmpdpol_pagedequeue(pg);
1956 }
1957 }
1958
1959 /*
1960 * uvm_pageenqueue: add a page to a paging queue without activating.
1961 * used where a page is not really demanded (yet). eg. read-ahead
1962 *
1963 * => caller must lock objects
1964 * => caller must hold pg->interlock
1965 */
1966 void
1967 uvm_pageenqueue(struct vm_page *pg)
1968 {
1969
1970 KASSERT(uvm_page_owner_locked_p(pg, false));
1971 KASSERT(mutex_owned(&pg->interlock));
1972 if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1973 uvmpdpol_pageenqueue(pg);
1974 }
1975 }
1976
1977 /*
1978 * uvm_pagelock: acquire page interlock
1979 */
1980 void
1981 uvm_pagelock(struct vm_page *pg)
1982 {
1983
1984 mutex_enter(&pg->interlock);
1985 }
1986
1987 /*
1988 * uvm_pagelock2: acquire two page interlocks
1989 */
1990 void
1991 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1992 {
1993
1994 if (pg1 < pg2) {
1995 mutex_enter(&pg1->interlock);
1996 mutex_enter(&pg2->interlock);
1997 } else {
1998 mutex_enter(&pg2->interlock);
1999 mutex_enter(&pg1->interlock);
2000 }
2001 }
2002
2003 /*
2004 * uvm_pageunlock: release page interlock, and if a page replacement intent
2005 * is set on the page, pass it to uvmpdpol to make real.
2006 *
2007 * => caller must hold pg->interlock
2008 */
2009 void
2010 uvm_pageunlock(struct vm_page *pg)
2011 {
2012
2013 if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
2014 (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
2015 mutex_exit(&pg->interlock);
2016 return;
2017 }
2018 pg->pqflags |= PQ_INTENT_QUEUED;
2019 mutex_exit(&pg->interlock);
2020 uvmpdpol_pagerealize(pg);
2021 }
2022
2023 /*
2024 * uvm_pageunlock2: release two page interlocks, and for both pages if a
2025 * page replacement intent is set on the page, pass it to uvmpdpol to make
2026 * real.
2027 *
2028 * => caller must hold pg->interlock
2029 */
2030 void
2031 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
2032 {
2033
2034 if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
2035 (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
2036 mutex_exit(&pg1->interlock);
2037 pg1 = NULL;
2038 } else {
2039 pg1->pqflags |= PQ_INTENT_QUEUED;
2040 mutex_exit(&pg1->interlock);
2041 }
2042
2043 if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
2044 (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
2045 mutex_exit(&pg2->interlock);
2046 pg2 = NULL;
2047 } else {
2048 pg2->pqflags |= PQ_INTENT_QUEUED;
2049 mutex_exit(&pg2->interlock);
2050 }
2051
2052 if (pg1 != NULL) {
2053 uvmpdpol_pagerealize(pg1);
2054 }
2055 if (pg2 != NULL) {
2056 uvmpdpol_pagerealize(pg2);
2057 }
2058 }
2059
2060 /*
2061 * uvm_pagezero: zero fill a page
2062 *
2063 * => if page is part of an object then the object should be locked
2064 * to protect pg->flags.
2065 */
2066
2067 void
2068 uvm_pagezero(struct vm_page *pg)
2069 {
2070
2071 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2072 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2073 }
2074
2075 /*
2076 * uvm_pagecopy: copy a page
2077 *
2078 * => if page is part of an object then the object should be locked
2079 * to protect pg->flags.
2080 */
2081
2082 void
2083 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2084 {
2085
2086 uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
2087 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2088 }
2089
2090 /*
2091 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2092 */
2093
2094 bool
2095 uvm_pageismanaged(paddr_t pa)
2096 {
2097
2098 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2099 }
2100
2101 /*
2102 * uvm_page_lookup_freelist: look up the free list for the specified page
2103 */
2104
2105 int
2106 uvm_page_lookup_freelist(struct vm_page *pg)
2107 {
2108 uvm_physseg_t upm;
2109
2110 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2111 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2112 return uvm_physseg_get_free_list(upm);
2113 }
2114
2115 /*
2116 * uvm_page_owner_locked_p: return true if object associated with page is
2117 * locked. this is a weak check for runtime assertions only.
2118 */
2119
2120 bool
2121 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2122 {
2123
2124 if (pg->uobject != NULL) {
2125 return exclusive
2126 ? rw_write_held(pg->uobject->vmobjlock)
2127 : rw_lock_held(pg->uobject->vmobjlock);
2128 }
2129 if (pg->uanon != NULL) {
2130 return exclusive
2131 ? rw_write_held(pg->uanon->an_lock)
2132 : rw_lock_held(pg->uanon->an_lock);
2133 }
2134 return true;
2135 }
2136
2137 /*
2138 * uvm_pagereadonly_p: return if the page should be mapped read-only
2139 */
2140
2141 bool
2142 uvm_pagereadonly_p(struct vm_page *pg)
2143 {
2144 struct uvm_object * const uobj = pg->uobject;
2145
2146 KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2147 KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2148 if ((pg->flags & PG_RDONLY) != 0) {
2149 return true;
2150 }
2151 if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2152 return true;
2153 }
2154 if (uobj == NULL) {
2155 return false;
2156 }
2157 return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2158 }
2159
2160 #ifdef PMAP_DIRECT
2161 /*
2162 * Call pmap to translate physical address into a virtual and to run a callback
2163 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2164 * or equivalent.
2165 */
2166 int
2167 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2168 int (*process)(void *, size_t, void *), void *arg)
2169 {
2170 int error = 0;
2171 paddr_t pa;
2172 size_t todo;
2173 voff_t pgoff = (off & PAGE_MASK);
2174 struct vm_page *pg;
2175
2176 KASSERT(npages > 0 && len > 0);
2177
2178 for (int i = 0; i < npages; i++) {
2179 pg = pgs[i];
2180
2181 KASSERT(len > 0);
2182
2183 /*
2184 * Caller is responsible for ensuring all the pages are
2185 * available.
2186 */
2187 KASSERT(pg != NULL && pg != PGO_DONTCARE);
2188
2189 pa = VM_PAGE_TO_PHYS(pg);
2190 todo = MIN(len, PAGE_SIZE - pgoff);
2191
2192 error = pmap_direct_process(pa, pgoff, todo, process, arg);
2193 if (error)
2194 break;
2195
2196 pgoff = 0;
2197 len -= todo;
2198 }
2199
2200 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2201 return error;
2202 }
2203 #endif /* PMAP_DIRECT */
2204
2205 #if defined(DDB) || defined(DEBUGPRINT)
2206
2207 /*
2208 * uvm_page_printit: actually print the page
2209 */
2210
2211 static const char page_flagbits[] = UVM_PGFLAGBITS;
2212 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2213
2214 void
2215 uvm_page_printit(struct vm_page *pg, bool full,
2216 void (*pr)(const char *, ...))
2217 {
2218 struct vm_page *tpg;
2219 struct uvm_object *uobj;
2220 struct pgflbucket *pgb;
2221 struct pgflist *pgl;
2222 char pgbuf[128];
2223
2224 (*pr)("PAGE %p:\n", pg);
2225 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2226 (*pr)(" flags=%s\n", pgbuf);
2227 snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2228 (*pr)(" pqflags=%s\n", pgbuf);
2229 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx\n",
2230 pg->uobject, pg->uanon, (long long)pg->offset);
2231 (*pr)(" loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2232 pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2233 uvm_page_get_freelist(pg));
2234 (*pr)(" pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2235 #if defined(UVM_PAGE_TRKOWN)
2236 if (pg->flags & PG_BUSY)
2237 (*pr)(" owning process = %d, tag=%s\n",
2238 pg->owner, pg->owner_tag);
2239 else
2240 (*pr)(" page not busy, no owner\n");
2241 #else
2242 (*pr)(" [page ownership tracking disabled]\n");
2243 #endif
2244
2245 if (!full)
2246 return;
2247
2248 /* cross-verify object/anon */
2249 if ((pg->flags & PG_FREE) == 0) {
2250 if (pg->flags & PG_ANON) {
2251 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2252 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2253 (pg->uanon) ? pg->uanon->an_page : NULL);
2254 else
2255 (*pr)(" anon backpointer is OK\n");
2256 } else {
2257 uobj = pg->uobject;
2258 if (uobj) {
2259 (*pr)(" checking object list\n");
2260 tpg = uvm_pagelookup(uobj, pg->offset);
2261 if (tpg)
2262 (*pr)(" page found on object list\n");
2263 else
2264 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2265 }
2266 }
2267 }
2268
2269 /* cross-verify page queue */
2270 if (pg->flags & PG_FREE) {
2271 int fl = uvm_page_get_freelist(pg);
2272 int b = uvm_page_get_bucket(pg);
2273 pgb = uvm.page_free[fl].pgfl_buckets[b];
2274 pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2275 (*pr)(" checking pageq list\n");
2276 LIST_FOREACH(tpg, pgl, pageq.list) {
2277 if (tpg == pg) {
2278 break;
2279 }
2280 }
2281 if (tpg)
2282 (*pr)(" page found on pageq list\n");
2283 else
2284 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2285 }
2286 }
2287
2288 /*
2289 * uvm_page_printall - print a summary of all managed pages
2290 */
2291
2292 void
2293 uvm_page_printall(void (*pr)(const char *, ...))
2294 {
2295 uvm_physseg_t i;
2296 paddr_t pfn;
2297 struct vm_page *pg;
2298
2299 (*pr)("%18s %4s %4s %18s %18s"
2300 #ifdef UVM_PAGE_TRKOWN
2301 " OWNER"
2302 #endif
2303 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2304 for (i = uvm_physseg_get_first();
2305 uvm_physseg_valid_p(i);
2306 i = uvm_physseg_get_next(i)) {
2307 for (pfn = uvm_physseg_get_start(i);
2308 pfn < uvm_physseg_get_end(i);
2309 pfn++) {
2310 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2311
2312 (*pr)("%18p %04x %08x %18p %18p",
2313 pg, pg->flags, pg->pqflags, pg->uobject,
2314 pg->uanon);
2315 #ifdef UVM_PAGE_TRKOWN
2316 if (pg->flags & PG_BUSY)
2317 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2318 #endif
2319 (*pr)("\n");
2320 }
2321 }
2322 }
2323
2324 /*
2325 * uvm_page_print_freelists - print a summary freelists
2326 */
2327
2328 void
2329 uvm_page_print_freelists(void (*pr)(const char *, ...))
2330 {
2331 struct pgfreelist *pgfl;
2332 struct pgflbucket *pgb;
2333 int fl, b, c;
2334
2335 (*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2336 VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2337
2338 for (fl = 0; fl < VM_NFREELIST; fl++) {
2339 pgfl = &uvm.page_free[fl];
2340 (*pr)("freelist(%d) @ %p\n", fl, pgfl);
2341 for (b = 0; b < uvm.bucketcount; b++) {
2342 pgb = uvm.page_free[fl].pgfl_buckets[b];
2343 (*pr)(" bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2344 b, pgb, pgb->pgb_nfree,
2345 &uvm_freelist_locks[b].lock);
2346 for (c = 0; c < uvmexp.ncolors; c++) {
2347 (*pr)(" color(%d) @ %p, ", c,
2348 &pgb->pgb_colors[c]);
2349 (*pr)("first page = %p\n",
2350 LIST_FIRST(&pgb->pgb_colors[c]));
2351 }
2352 }
2353 }
2354 }
2355
2356 #endif /* DDB || DEBUGPRINT */
2357