uvm_page.c revision 1.235 1 /* $NetBSD: uvm_page.c,v 1.235 2020/05/17 15:11:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1997 Charles D. Cranor and Washington University.
34 * Copyright (c) 1991, 1993, The Regents of the University of California.
35 *
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * The Mach Operating System project at Carnegie-Mellon University.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
66 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67 *
68 *
69 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70 * All rights reserved.
71 *
72 * Permission to use, copy, modify and distribute this software and
73 * its documentation is hereby granted, provided that both the copyright
74 * notice and this permission notice appear in all copies of the
75 * software, derivative works or modified versions, and any portions
76 * thereof, and that both notices appear in supporting documentation.
77 *
78 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81 *
82 * Carnegie Mellon requests users of this software to return to
83 *
84 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
85 * School of Computer Science
86 * Carnegie Mellon University
87 * Pittsburgh PA 15213-3890
88 *
89 * any improvements or extensions that they make and grant Carnegie the
90 * rights to redistribute these changes.
91 */
92
93 /*
94 * uvm_page.c: page ops.
95 */
96
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.235 2020/05/17 15:11:57 ad Exp $");
99
100 #include "opt_ddb.h"
101 #include "opt_uvm.h"
102 #include "opt_uvmhist.h"
103 #include "opt_readahead.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sched.h>
108 #include <sys/kernel.h>
109 #include <sys/vnode.h>
110 #include <sys/proc.h>
111 #include <sys/radixtree.h>
112 #include <sys/atomic.h>
113 #include <sys/cpu.h>
114 #include <sys/extent.h>
115
116 #include <uvm/uvm.h>
117 #include <uvm/uvm_ddb.h>
118 #include <uvm/uvm_pdpolicy.h>
119 #include <uvm/uvm_pgflcache.h>
120
121 /*
122 * Some supported CPUs in a given architecture don't support all
123 * of the things necessary to do idle page zero'ing efficiently.
124 * We therefore provide a way to enable it from machdep code here.
125 */
126 bool vm_page_zero_enable = false;
127
128 /*
129 * number of pages per-CPU to reserve for the kernel.
130 */
131 #ifndef UVM_RESERVED_PAGES_PER_CPU
132 #define UVM_RESERVED_PAGES_PER_CPU 5
133 #endif
134 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
135
136 /*
137 * physical memory size;
138 */
139 psize_t physmem;
140
141 /*
142 * local variables
143 */
144
145 /*
146 * these variables record the values returned by vm_page_bootstrap,
147 * for debugging purposes. The implementation of uvm_pageboot_alloc
148 * and pmap_startup here also uses them internally.
149 */
150
151 static vaddr_t virtual_space_start;
152 static vaddr_t virtual_space_end;
153
154 /*
155 * we allocate an initial number of page colors in uvm_page_init(),
156 * and remember them. We may re-color pages as cache sizes are
157 * discovered during the autoconfiguration phase. But we can never
158 * free the initial set of buckets, since they are allocated using
159 * uvm_pageboot_alloc().
160 */
161
162 static size_t recolored_pages_memsize /* = 0 */;
163 static char *recolored_pages_mem;
164
165 /*
166 * freelist locks - one per bucket.
167 */
168
169 union uvm_freelist_lock uvm_freelist_locks[PGFL_MAX_BUCKETS]
170 __cacheline_aligned;
171
172 /*
173 * basic NUMA information.
174 */
175
176 static struct uvm_page_numa_region {
177 struct uvm_page_numa_region *next;
178 paddr_t start;
179 paddr_t size;
180 u_int numa_id;
181 } *uvm_page_numa_region;
182
183 #ifdef DEBUG
184 kmutex_t uvm_zerochecklock __cacheline_aligned;
185 vaddr_t uvm_zerocheckkva;
186 #endif /* DEBUG */
187
188 /*
189 * These functions are reserved for uvm(9) internal use and are not
190 * exported in the header file uvm_physseg.h
191 *
192 * Thus they are redefined here.
193 */
194 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
195 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
196
197 /* returns a pgs array */
198 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
199
200 /*
201 * inline functions
202 */
203
204 /*
205 * uvm_pageinsert: insert a page in the object.
206 *
207 * => caller must lock object
208 * => call should have already set pg's object and offset pointers
209 * and bumped the version counter
210 */
211
212 static inline void
213 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
214 {
215
216 KASSERT(uobj == pg->uobject);
217 KASSERT(rw_write_held(uobj->vmobjlock));
218 KASSERT((pg->flags & PG_TABLED) == 0);
219
220 if ((pg->flags & PG_STAT) != 0) {
221 /* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
222 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
223 const bool isaobj = (pg->flags & PG_AOBJ) != 0;
224
225 if (!isaobj) {
226 KASSERT((pg->flags & PG_FILE) != 0);
227 if (uobj->uo_npages == 0) {
228 struct vnode *vp = (struct vnode *)uobj;
229 mutex_enter(vp->v_interlock);
230 KASSERT((vp->v_iflag & VI_PAGES) == 0);
231 vp->v_iflag |= VI_PAGES;
232 vholdl(vp);
233 mutex_exit(vp->v_interlock);
234 }
235 kpreempt_disable();
236 if (UVM_OBJ_IS_VTEXT(uobj)) {
237 CPU_COUNT(CPU_COUNT_EXECPAGES, 1);
238 } else {
239 CPU_COUNT(CPU_COUNT_FILEPAGES, 1);
240 }
241 CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, 1);
242 } else {
243 kpreempt_disable();
244 CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
245 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, 1);
246 }
247 kpreempt_enable();
248 }
249 pg->flags |= PG_TABLED;
250 uobj->uo_npages++;
251 }
252
253 static inline int
254 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
255 {
256 const uint64_t idx = pg->offset >> PAGE_SHIFT;
257 int error;
258
259 error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
260 if (error != 0) {
261 return error;
262 }
263 if ((pg->flags & PG_CLEAN) == 0) {
264 radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
265 }
266 KASSERT(((pg->flags & PG_CLEAN) == 0) ==
267 radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
268 return 0;
269 }
270
271 /*
272 * uvm_page_remove: remove page from object.
273 *
274 * => caller must lock object
275 */
276
277 static inline void
278 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
279 {
280
281 KASSERT(uobj == pg->uobject);
282 KASSERT(rw_write_held(uobj->vmobjlock));
283 KASSERT(pg->flags & PG_TABLED);
284
285 if ((pg->flags & PG_STAT) != 0) {
286 /* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
287 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
288 const bool isaobj = (pg->flags & PG_AOBJ) != 0;
289
290 if (!isaobj) {
291 KASSERT((pg->flags & PG_FILE) != 0);
292 if (uobj->uo_npages == 1) {
293 struct vnode *vp = (struct vnode *)uobj;
294 mutex_enter(vp->v_interlock);
295 KASSERT((vp->v_iflag & VI_PAGES) != 0);
296 vp->v_iflag &= ~VI_PAGES;
297 holdrelel(vp);
298 mutex_exit(vp->v_interlock);
299 }
300 kpreempt_disable();
301 if (UVM_OBJ_IS_VTEXT(uobj)) {
302 CPU_COUNT(CPU_COUNT_EXECPAGES, -1);
303 } else {
304 CPU_COUNT(CPU_COUNT_FILEPAGES, -1);
305 }
306 CPU_COUNT(CPU_COUNT_FILEUNKNOWN + status, -1);
307 } else {
308 kpreempt_disable();
309 CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
310 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
311 }
312 kpreempt_enable();
313 }
314 uobj->uo_npages--;
315 pg->flags &= ~PG_TABLED;
316 pg->uobject = NULL;
317 }
318
319 static inline void
320 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
321 {
322 struct vm_page *opg __unused;
323
324 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
325 KASSERT(pg == opg);
326 }
327
328 static void
329 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
330 {
331 int i;
332
333 pgb->pgb_nfree = 0;
334 for (i = 0; i < uvmexp.ncolors; i++) {
335 LIST_INIT(&pgb->pgb_colors[i]);
336 }
337 pgfl->pgfl_buckets[num] = pgb;
338 }
339
340 /*
341 * uvm_page_init: init the page system. called from uvm_init().
342 *
343 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
344 */
345
346 void
347 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
348 {
349 static struct uvm_cpu boot_cpu __cacheline_aligned;
350 psize_t freepages, pagecount, bucketsize, n;
351 struct pgflbucket *pgb;
352 struct vm_page *pagearray;
353 char *bucketarray;
354 uvm_physseg_t bank;
355 int fl, b;
356
357 KASSERT(ncpu <= 1);
358
359 /*
360 * init the page queues and free page queue locks, except the
361 * free list; we allocate that later (with the initial vm_page
362 * structures).
363 */
364
365 curcpu()->ci_data.cpu_uvm = &boot_cpu;
366 uvmpdpol_init();
367 for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
368 mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
369 }
370
371 /*
372 * allocate vm_page structures.
373 */
374
375 /*
376 * sanity check:
377 * before calling this function the MD code is expected to register
378 * some free RAM with the uvm_page_physload() function. our job
379 * now is to allocate vm_page structures for this memory.
380 */
381
382 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
383 panic("uvm_page_bootstrap: no memory pre-allocated");
384
385 /*
386 * first calculate the number of free pages...
387 *
388 * note that we use start/end rather than avail_start/avail_end.
389 * this allows us to allocate extra vm_page structures in case we
390 * want to return some memory to the pool after booting.
391 */
392
393 freepages = 0;
394
395 for (bank = uvm_physseg_get_first();
396 uvm_physseg_valid_p(bank) ;
397 bank = uvm_physseg_get_next(bank)) {
398 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
399 }
400
401 /*
402 * Let MD code initialize the number of colors, or default
403 * to 1 color if MD code doesn't care.
404 */
405 if (uvmexp.ncolors == 0)
406 uvmexp.ncolors = 1;
407 uvmexp.colormask = uvmexp.ncolors - 1;
408 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
409
410 /* We always start with only 1 bucket. */
411 uvm.bucketcount = 1;
412
413 /*
414 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
415 * use. for each page of memory we use we need a vm_page structure.
416 * thus, the total number of pages we can use is the total size of
417 * the memory divided by the PAGE_SIZE plus the size of the vm_page
418 * structure. we add one to freepages as a fudge factor to avoid
419 * truncation errors (since we can only allocate in terms of whole
420 * pages).
421 */
422 pagecount = ((freepages + 1) << PAGE_SHIFT) /
423 (PAGE_SIZE + sizeof(struct vm_page));
424 bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
425 bucketsize = roundup2(bucketsize, coherency_unit);
426 bucketarray = (void *)uvm_pageboot_alloc(
427 bucketsize * VM_NFREELIST +
428 pagecount * sizeof(struct vm_page));
429 pagearray = (struct vm_page *)
430 (bucketarray + bucketsize * VM_NFREELIST);
431
432 for (fl = 0; fl < VM_NFREELIST; fl++) {
433 pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
434 uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
435 }
436 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
437
438 /*
439 * init the freelist cache in the disabled state.
440 */
441 uvm_pgflcache_init();
442
443 /*
444 * init the vm_page structures and put them in the correct place.
445 */
446 /* First init the extent */
447
448 for (bank = uvm_physseg_get_first(),
449 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
450 uvm_physseg_valid_p(bank);
451 bank = uvm_physseg_get_next(bank)) {
452
453 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
454 uvm_physseg_seg_alloc_from_slab(bank, n);
455 uvm_physseg_init_seg(bank, pagearray);
456
457 /* set up page array pointers */
458 pagearray += n;
459 pagecount -= n;
460 }
461
462 /*
463 * pass up the values of virtual_space_start and
464 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
465 * layers of the VM.
466 */
467
468 *kvm_startp = round_page(virtual_space_start);
469 *kvm_endp = trunc_page(virtual_space_end);
470 #ifdef DEBUG
471 /*
472 * steal kva for uvm_pagezerocheck().
473 */
474 uvm_zerocheckkva = *kvm_startp;
475 *kvm_startp += PAGE_SIZE;
476 mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
477 #endif /* DEBUG */
478
479 /*
480 * init various thresholds.
481 */
482
483 uvmexp.reserve_pagedaemon = 1;
484 uvmexp.reserve_kernel = vm_page_reserve_kernel;
485
486 /*
487 * done!
488 */
489
490 uvm.page_init_done = true;
491 }
492
493 /*
494 * uvm_pgfl_lock: lock all freelist buckets
495 */
496
497 void
498 uvm_pgfl_lock(void)
499 {
500 int i;
501
502 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
503 mutex_spin_enter(&uvm_freelist_locks[i].lock);
504 }
505 }
506
507 /*
508 * uvm_pgfl_unlock: unlock all freelist buckets
509 */
510
511 void
512 uvm_pgfl_unlock(void)
513 {
514 int i;
515
516 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
517 mutex_spin_exit(&uvm_freelist_locks[i].lock);
518 }
519 }
520
521 /*
522 * uvm_setpagesize: set the page size
523 *
524 * => sets page_shift and page_mask from uvmexp.pagesize.
525 */
526
527 void
528 uvm_setpagesize(void)
529 {
530
531 /*
532 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
533 * to be a constant (indicated by being a non-zero value).
534 */
535 if (uvmexp.pagesize == 0) {
536 if (PAGE_SIZE == 0)
537 panic("uvm_setpagesize: uvmexp.pagesize not set");
538 uvmexp.pagesize = PAGE_SIZE;
539 }
540 uvmexp.pagemask = uvmexp.pagesize - 1;
541 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
542 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
543 uvmexp.pagesize, uvmexp.pagesize);
544 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
545 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
546 break;
547 }
548
549 /*
550 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
551 */
552
553 vaddr_t
554 uvm_pageboot_alloc(vsize_t size)
555 {
556 static bool initialized = false;
557 vaddr_t addr;
558 #if !defined(PMAP_STEAL_MEMORY)
559 vaddr_t vaddr;
560 paddr_t paddr;
561 #endif
562
563 /*
564 * on first call to this function, initialize ourselves.
565 */
566 if (initialized == false) {
567 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
568
569 /* round it the way we like it */
570 virtual_space_start = round_page(virtual_space_start);
571 virtual_space_end = trunc_page(virtual_space_end);
572
573 initialized = true;
574 }
575
576 /* round to page size */
577 size = round_page(size);
578 uvmexp.bootpages += atop(size);
579
580 #if defined(PMAP_STEAL_MEMORY)
581
582 /*
583 * defer bootstrap allocation to MD code (it may want to allocate
584 * from a direct-mapped segment). pmap_steal_memory should adjust
585 * virtual_space_start/virtual_space_end if necessary.
586 */
587
588 addr = pmap_steal_memory(size, &virtual_space_start,
589 &virtual_space_end);
590
591 return(addr);
592
593 #else /* !PMAP_STEAL_MEMORY */
594
595 /*
596 * allocate virtual memory for this request
597 */
598 if (virtual_space_start == virtual_space_end ||
599 (virtual_space_end - virtual_space_start) < size)
600 panic("uvm_pageboot_alloc: out of virtual space");
601
602 addr = virtual_space_start;
603
604 #ifdef PMAP_GROWKERNEL
605 /*
606 * If the kernel pmap can't map the requested space,
607 * then allocate more resources for it.
608 */
609 if (uvm_maxkaddr < (addr + size)) {
610 uvm_maxkaddr = pmap_growkernel(addr + size);
611 if (uvm_maxkaddr < (addr + size))
612 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
613 }
614 #endif
615
616 virtual_space_start += size;
617
618 /*
619 * allocate and mapin physical pages to back new virtual pages
620 */
621
622 for (vaddr = round_page(addr) ; vaddr < addr + size ;
623 vaddr += PAGE_SIZE) {
624
625 if (!uvm_page_physget(&paddr))
626 panic("uvm_pageboot_alloc: out of memory");
627
628 /*
629 * Note this memory is no longer managed, so using
630 * pmap_kenter is safe.
631 */
632 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
633 }
634 pmap_update(pmap_kernel());
635 return(addr);
636 #endif /* PMAP_STEAL_MEMORY */
637 }
638
639 #if !defined(PMAP_STEAL_MEMORY)
640 /*
641 * uvm_page_physget: "steal" one page from the vm_physmem structure.
642 *
643 * => attempt to allocate it off the end of a segment in which the "avail"
644 * values match the start/end values. if we can't do that, then we
645 * will advance both values (making them equal, and removing some
646 * vm_page structures from the non-avail area).
647 * => return false if out of memory.
648 */
649
650 /* subroutine: try to allocate from memory chunks on the specified freelist */
651 static bool uvm_page_physget_freelist(paddr_t *, int);
652
653 static bool
654 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
655 {
656 uvm_physseg_t lcv;
657
658 /* pass 1: try allocating from a matching end */
659 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
660 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
661 #else
662 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
663 #endif
664 {
665 if (uvm.page_init_done == true)
666 panic("uvm_page_physget: called _after_ bootstrap");
667
668 /* Try to match at front or back on unused segment */
669 if (uvm_page_physunload(lcv, freelist, paddrp))
670 return true;
671 }
672
673 /* pass2: forget about matching ends, just allocate something */
674 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
675 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
676 #else
677 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
678 #endif
679 {
680 /* Try the front regardless. */
681 if (uvm_page_physunload_force(lcv, freelist, paddrp))
682 return true;
683 }
684 return false;
685 }
686
687 bool
688 uvm_page_physget(paddr_t *paddrp)
689 {
690 int i;
691
692 /* try in the order of freelist preference */
693 for (i = 0; i < VM_NFREELIST; i++)
694 if (uvm_page_physget_freelist(paddrp, i) == true)
695 return (true);
696 return (false);
697 }
698 #endif /* PMAP_STEAL_MEMORY */
699
700 /*
701 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
702 * back from an I/O mapping (ugh!). used in some MD code as well.
703 */
704 struct vm_page *
705 uvm_phys_to_vm_page(paddr_t pa)
706 {
707 paddr_t pf = atop(pa);
708 paddr_t off;
709 uvm_physseg_t upm;
710
711 upm = uvm_physseg_find(pf, &off);
712 if (upm != UVM_PHYSSEG_TYPE_INVALID)
713 return uvm_physseg_get_pg(upm, off);
714 return(NULL);
715 }
716
717 paddr_t
718 uvm_vm_page_to_phys(const struct vm_page *pg)
719 {
720
721 return pg->phys_addr & ~(PAGE_SIZE - 1);
722 }
723
724 /*
725 * uvm_page_numa_load: load NUMA range description.
726 */
727 void
728 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
729 {
730 struct uvm_page_numa_region *d;
731
732 KASSERT(numa_id < PGFL_MAX_BUCKETS);
733
734 d = kmem_alloc(sizeof(*d), KM_SLEEP);
735 d->start = start;
736 d->size = size;
737 d->numa_id = numa_id;
738 d->next = uvm_page_numa_region;
739 uvm_page_numa_region = d;
740 }
741
742 /*
743 * uvm_page_numa_lookup: lookup NUMA node for the given page.
744 */
745 static u_int
746 uvm_page_numa_lookup(struct vm_page *pg)
747 {
748 struct uvm_page_numa_region *d;
749 static bool warned;
750 paddr_t pa;
751
752 KASSERT(uvm_page_numa_region != NULL);
753
754 pa = VM_PAGE_TO_PHYS(pg);
755 for (d = uvm_page_numa_region; d != NULL; d = d->next) {
756 if (pa >= d->start && pa < d->start + d->size) {
757 return d->numa_id;
758 }
759 }
760
761 if (!warned) {
762 printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
763 PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
764 warned = true;
765 }
766
767 return 0;
768 }
769
770 /*
771 * uvm_page_redim: adjust freelist dimensions if they have changed.
772 */
773
774 static void
775 uvm_page_redim(int newncolors, int newnbuckets)
776 {
777 struct pgfreelist npgfl;
778 struct pgflbucket *opgb, *npgb;
779 struct pgflist *ohead, *nhead;
780 struct vm_page *pg;
781 size_t bucketsize, bucketmemsize, oldbucketmemsize;
782 int fl, ob, oc, nb, nc, obuckets, ocolors;
783 char *bucketarray, *oldbucketmem, *bucketmem;
784
785 KASSERT(((newncolors - 1) & newncolors) == 0);
786
787 /* Anything to do? */
788 if (newncolors <= uvmexp.ncolors &&
789 newnbuckets == uvm.bucketcount) {
790 return;
791 }
792 if (uvm.page_init_done == false) {
793 uvmexp.ncolors = newncolors;
794 return;
795 }
796
797 bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
798 bucketsize = roundup2(bucketsize, coherency_unit);
799 bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
800 coherency_unit - 1;
801 bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
802 bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
803
804 ocolors = uvmexp.ncolors;
805 obuckets = uvm.bucketcount;
806
807 /* Freelist cache musn't be enabled. */
808 uvm_pgflcache_pause();
809
810 /* Make sure we should still do this. */
811 uvm_pgfl_lock();
812 if (newncolors <= uvmexp.ncolors &&
813 newnbuckets == uvm.bucketcount) {
814 uvm_pgfl_unlock();
815 uvm_pgflcache_resume();
816 kmem_free(bucketmem, bucketmemsize);
817 return;
818 }
819
820 uvmexp.ncolors = newncolors;
821 uvmexp.colormask = uvmexp.ncolors - 1;
822 uvm.bucketcount = newnbuckets;
823
824 for (fl = 0; fl < VM_NFREELIST; fl++) {
825 /* Init new buckets in new freelist. */
826 memset(&npgfl, 0, sizeof(npgfl));
827 for (nb = 0; nb < newnbuckets; nb++) {
828 npgb = (struct pgflbucket *)bucketarray;
829 uvm_page_init_bucket(&npgfl, npgb, nb);
830 bucketarray += bucketsize;
831 }
832 /* Now transfer pages from the old freelist. */
833 for (nb = ob = 0; ob < obuckets; ob++) {
834 opgb = uvm.page_free[fl].pgfl_buckets[ob];
835 for (oc = 0; oc < ocolors; oc++) {
836 ohead = &opgb->pgb_colors[oc];
837 while ((pg = LIST_FIRST(ohead)) != NULL) {
838 LIST_REMOVE(pg, pageq.list);
839 /*
840 * Here we decide on the NEW color &
841 * bucket for the page. For NUMA
842 * we'll use the info that the
843 * hardware gave us. For non-NUMA
844 * assign take physical page frame
845 * number and cache color into
846 * account. We do this to try and
847 * avoid defeating any memory
848 * interleaving in the hardware.
849 */
850 KASSERT(
851 uvm_page_get_bucket(pg) == ob);
852 KASSERT(fl ==
853 uvm_page_get_freelist(pg));
854 if (uvm_page_numa_region != NULL) {
855 nb = uvm_page_numa_lookup(pg);
856 } else {
857 nb = atop(VM_PAGE_TO_PHYS(pg))
858 / uvmexp.ncolors / 8
859 % newnbuckets;
860 }
861 uvm_page_set_bucket(pg, nb);
862 npgb = npgfl.pgfl_buckets[nb];
863 npgb->pgb_nfree++;
864 nc = VM_PGCOLOR(pg);
865 nhead = &npgb->pgb_colors[nc];
866 LIST_INSERT_HEAD(nhead, pg, pageq.list);
867 }
868 }
869 }
870 /* Install the new freelist. */
871 memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
872 }
873
874 /* Unlock and free the old memory. */
875 oldbucketmemsize = recolored_pages_memsize;
876 oldbucketmem = recolored_pages_mem;
877 recolored_pages_memsize = bucketmemsize;
878 recolored_pages_mem = bucketmem;
879
880 uvm_pgfl_unlock();
881 uvm_pgflcache_resume();
882
883 if (oldbucketmemsize) {
884 kmem_free(oldbucketmem, oldbucketmemsize);
885 }
886
887 /*
888 * this calls uvm_km_alloc() which may want to hold
889 * uvm_freelist_lock.
890 */
891 uvm_pager_realloc_emerg();
892 }
893
894 /*
895 * uvm_page_recolor: Recolor the pages if the new color count is
896 * larger than the old one.
897 */
898
899 void
900 uvm_page_recolor(int newncolors)
901 {
902
903 uvm_page_redim(newncolors, uvm.bucketcount);
904 }
905
906 /*
907 * uvm_page_rebucket: Determine a bucket structure and redim the free
908 * lists to match.
909 */
910
911 void
912 uvm_page_rebucket(void)
913 {
914 u_int min_numa, max_numa, npackage, shift;
915 struct cpu_info *ci, *ci2, *ci3;
916 CPU_INFO_ITERATOR cii;
917
918 /*
919 * If we have more than one NUMA node, and the maximum NUMA node ID
920 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
921 * for free pages.
922 */
923 min_numa = (u_int)-1;
924 max_numa = 0;
925 for (CPU_INFO_FOREACH(cii, ci)) {
926 if (ci->ci_numa_id < min_numa) {
927 min_numa = ci->ci_numa_id;
928 }
929 if (ci->ci_numa_id > max_numa) {
930 max_numa = ci->ci_numa_id;
931 }
932 }
933 if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
934 aprint_debug("UVM: using NUMA allocation scheme\n");
935 for (CPU_INFO_FOREACH(cii, ci)) {
936 ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
937 }
938 uvm_page_redim(uvmexp.ncolors, max_numa + 1);
939 return;
940 }
941
942 /*
943 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
944 * and minimise lock contention. Count the total number of CPU
945 * packages, and then try to distribute the buckets among CPU
946 * packages evenly.
947 */
948 npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
949
950 /*
951 * Figure out how to arrange the packages & buckets, and the total
952 * number of buckets we need. XXX 2 may not be the best factor.
953 */
954 for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
955 npackage >>= 1;
956 }
957 uvm_page_redim(uvmexp.ncolors, npackage);
958
959 /*
960 * Now tell each CPU which bucket to use. In the outer loop, scroll
961 * through all CPU packages.
962 */
963 npackage = 0;
964 ci = curcpu();
965 ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
966 do {
967 /*
968 * In the inner loop, scroll through all CPUs in the package
969 * and assign the same bucket ID.
970 */
971 ci3 = ci2;
972 do {
973 ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
974 ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
975 } while (ci3 != ci2);
976 npackage++;
977 ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
978 } while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
979
980 aprint_debug("UVM: using package allocation scheme, "
981 "%d package(s) per bucket\n", 1 << shift);
982 }
983
984 /*
985 * uvm_cpu_attach: initialize per-CPU data structures.
986 */
987
988 void
989 uvm_cpu_attach(struct cpu_info *ci)
990 {
991 struct uvm_cpu *ucpu;
992
993 /* Already done in uvm_page_init(). */
994 if (!CPU_IS_PRIMARY(ci)) {
995 /* Add more reserve pages for this CPU. */
996 uvmexp.reserve_kernel += vm_page_reserve_kernel;
997
998 /* Allocate per-CPU data structures. */
999 ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
1000 KM_SLEEP);
1001 ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
1002 coherency_unit);
1003 ci->ci_data.cpu_uvm = ucpu;
1004 } else {
1005 ucpu = ci->ci_data.cpu_uvm;
1006 }
1007
1008 uvmpdpol_init_cpu(ucpu);
1009
1010 /*
1011 * Attach RNG source for this CPU's VM events
1012 */
1013 rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
1014 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
1015 RND_FLAG_ESTIMATE_VALUE);
1016 }
1017
1018 /*
1019 * uvm_availmem: fetch the total amount of free memory in pages. this can
1020 * have a detrimental effect on performance due to false sharing; don't call
1021 * unless needed.
1022 */
1023
1024 int
1025 uvm_availmem(void)
1026 {
1027 struct pgfreelist *pgfl;
1028 int fl, b, fpages;
1029
1030 fpages = 0;
1031 for (fl = 0; fl < VM_NFREELIST; fl++) {
1032 pgfl = &uvm.page_free[fl];
1033 for (b = 0; b < uvm.bucketcount; b++) {
1034 fpages += pgfl->pgfl_buckets[b]->pgb_nfree;
1035 }
1036 }
1037 return fpages;
1038 }
1039
1040 /*
1041 * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
1042 * specific freelist and specific bucket only.
1043 *
1044 * => must be at IPL_VM or higher to protect per-CPU data structures.
1045 */
1046
1047 static struct vm_page *
1048 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1049 {
1050 int c, trycolor, colormask;
1051 struct pgflbucket *pgb;
1052 struct vm_page *pg;
1053 kmutex_t *lock;
1054 bool fill;
1055
1056 /*
1057 * Skip the bucket if empty, no lock needed. There could be many
1058 * empty freelists/buckets.
1059 */
1060 pgb = uvm.page_free[f].pgfl_buckets[b];
1061 if (pgb->pgb_nfree == 0) {
1062 return NULL;
1063 }
1064
1065 /* Skip bucket if low on memory. */
1066 lock = &uvm_freelist_locks[b].lock;
1067 mutex_spin_enter(lock);
1068 if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1069 if ((flags & UVM_PGA_USERESERVE) == 0 ||
1070 (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1071 curlwp != uvm.pagedaemon_lwp)) {
1072 mutex_spin_exit(lock);
1073 return NULL;
1074 }
1075 fill = false;
1076 } else {
1077 fill = true;
1078 }
1079
1080 /* Try all page colors as needed. */
1081 c = trycolor = *trycolorp;
1082 colormask = uvmexp.colormask;
1083 do {
1084 pg = LIST_FIRST(&pgb->pgb_colors[c]);
1085 if (__predict_true(pg != NULL)) {
1086 /*
1087 * Got a free page! PG_FREE must be cleared under
1088 * lock because of uvm_pglistalloc().
1089 */
1090 LIST_REMOVE(pg, pageq.list);
1091 KASSERT(pg->flags & PG_FREE);
1092 pg->flags &= PG_ZERO;
1093 pgb->pgb_nfree--;
1094
1095 /*
1096 * While we have the bucket locked and our data
1097 * structures fresh in L1 cache, we have an ideal
1098 * opportunity to grab some pages for the freelist
1099 * cache without causing extra contention. Only do
1100 * so if we found pages in this CPU's preferred
1101 * bucket.
1102 */
1103 if (__predict_true(b == ucpu->pgflbucket && fill)) {
1104 uvm_pgflcache_fill(ucpu, f, b, c);
1105 }
1106 mutex_spin_exit(lock);
1107 KASSERT(uvm_page_get_bucket(pg) == b);
1108 CPU_COUNT(c == trycolor ?
1109 CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1110 CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1111 *trycolorp = c;
1112 return pg;
1113 }
1114 c = (c + 1) & colormask;
1115 } while (c != trycolor);
1116 mutex_spin_exit(lock);
1117
1118 return NULL;
1119 }
1120
1121 /*
1122 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1123 * any color from any bucket, in a specific freelist.
1124 *
1125 * => must be at IPL_VM or higher to protect per-CPU data structures.
1126 */
1127
1128 static struct vm_page *
1129 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1130 {
1131 int b, trybucket, bucketcount;
1132 struct vm_page *pg;
1133
1134 /* Try for the exact thing in the per-CPU cache. */
1135 if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1136 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1137 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1138 return pg;
1139 }
1140
1141 /* Walk through all buckets, trying our preferred bucket first. */
1142 trybucket = ucpu->pgflbucket;
1143 b = trybucket;
1144 bucketcount = uvm.bucketcount;
1145 do {
1146 pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1147 if (pg != NULL) {
1148 return pg;
1149 }
1150 b = (b + 1 == bucketcount ? 0 : b + 1);
1151 } while (b != trybucket);
1152
1153 return NULL;
1154 }
1155
1156 /*
1157 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1158 *
1159 * => return null if no pages free
1160 * => wake up pagedaemon if number of free pages drops below low water mark
1161 * => if obj != NULL, obj must be locked (to put in obj's tree)
1162 * => if anon != NULL, anon must be locked (to put in anon)
1163 * => only one of obj or anon can be non-null
1164 * => caller must activate/deactivate page if it is not wired.
1165 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1166 * => policy decision: it is more important to pull a page off of the
1167 * appropriate priority free list than it is to get a zero'd or
1168 * unknown contents page. This is because we live with the
1169 * consequences of a bad free list decision for the entire
1170 * lifetime of the page, e.g. if the page comes from memory that
1171 * is slower to access.
1172 */
1173
1174 struct vm_page *
1175 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1176 int flags, int strat, int free_list)
1177 {
1178 int zeroit = 0, color;
1179 int lcv, error, s;
1180 struct uvm_cpu *ucpu;
1181 struct vm_page *pg;
1182 lwp_t *l;
1183
1184 KASSERT(obj == NULL || anon == NULL);
1185 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1186 KASSERT(off == trunc_page(off));
1187 KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1188 KASSERT(anon == NULL || anon->an_lock == NULL ||
1189 rw_write_held(anon->an_lock));
1190
1191 /*
1192 * This implements a global round-robin page coloring
1193 * algorithm.
1194 */
1195
1196 s = splvm();
1197 ucpu = curcpu()->ci_data.cpu_uvm;
1198 if (flags & UVM_FLAG_COLORMATCH) {
1199 color = atop(off) & uvmexp.colormask;
1200 } else {
1201 color = ucpu->pgflcolor;
1202 }
1203
1204 /*
1205 * fail if any of these conditions is true:
1206 * [1] there really are no free pages, or
1207 * [2] only kernel "reserved" pages remain and
1208 * reserved pages have not been requested.
1209 * [3] only pagedaemon "reserved" pages remain and
1210 * the requestor isn't the pagedaemon.
1211 * we make kernel reserve pages available if called by a
1212 * kernel thread.
1213 */
1214 l = curlwp;
1215 if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
1216 flags |= UVM_PGA_USERESERVE;
1217 }
1218
1219 again:
1220 switch (strat) {
1221 case UVM_PGA_STRAT_NORMAL:
1222 /* Check freelists: descending priority (ascending id) order. */
1223 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1224 pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1225 if (pg != NULL) {
1226 goto gotit;
1227 }
1228 }
1229
1230 /* No pages free! Have pagedaemon free some memory. */
1231 splx(s);
1232 uvm_kick_pdaemon();
1233 return NULL;
1234
1235 case UVM_PGA_STRAT_ONLY:
1236 case UVM_PGA_STRAT_FALLBACK:
1237 /* Attempt to allocate from the specified free list. */
1238 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1239 pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1240 if (pg != NULL) {
1241 goto gotit;
1242 }
1243
1244 /* Fall back, if possible. */
1245 if (strat == UVM_PGA_STRAT_FALLBACK) {
1246 strat = UVM_PGA_STRAT_NORMAL;
1247 goto again;
1248 }
1249
1250 /* No pages free! Have pagedaemon free some memory. */
1251 splx(s);
1252 uvm_kick_pdaemon();
1253 return NULL;
1254
1255 case UVM_PGA_STRAT_NUMA:
1256 /*
1257 * NUMA strategy (experimental): allocating from the correct
1258 * bucket is more important than observing freelist
1259 * priority. Look only to the current NUMA node; if that
1260 * fails, we need to look to other NUMA nodes, so retry with
1261 * the normal strategy.
1262 */
1263 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1264 pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1265 if (pg != NULL) {
1266 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1267 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1268 goto gotit;
1269 }
1270 pg = uvm_pagealloc_pgb(ucpu, lcv,
1271 ucpu->pgflbucket, &color, flags);
1272 if (pg != NULL) {
1273 goto gotit;
1274 }
1275 }
1276 strat = UVM_PGA_STRAT_NORMAL;
1277 goto again;
1278
1279 default:
1280 panic("uvm_pagealloc_strat: bad strat %d", strat);
1281 /* NOTREACHED */
1282 }
1283
1284 gotit:
1285 /*
1286 * We now know which color we actually allocated from; set
1287 * the next color accordingly.
1288 */
1289
1290 ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1291
1292 /*
1293 * while still at IPL_VM, update allocation statistics and remember
1294 * if we have to zero the page
1295 */
1296
1297 if (flags & UVM_PGA_ZERO) {
1298 if (pg->flags & PG_ZERO) {
1299 CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
1300 zeroit = 0;
1301 } else {
1302 CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
1303 zeroit = 1;
1304 }
1305 }
1306 if (pg->flags & PG_ZERO) {
1307 CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
1308 }
1309 if (anon) {
1310 CPU_COUNT(CPU_COUNT_ANONPAGES, 1);
1311 CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1312 }
1313 splx(s);
1314 KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
1315
1316 /*
1317 * assign the page to the object. as the page was free, we know
1318 * that pg->uobject and pg->uanon are NULL. we only need to take
1319 * the page's interlock if we are changing the values.
1320 */
1321 if (anon != NULL || obj != NULL) {
1322 mutex_enter(&pg->interlock);
1323 }
1324 pg->offset = off;
1325 pg->uobject = obj;
1326 pg->uanon = anon;
1327 KASSERT(uvm_page_owner_locked_p(pg, true));
1328 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1329 if (anon) {
1330 anon->an_page = pg;
1331 pg->flags |= PG_ANON;
1332 mutex_exit(&pg->interlock);
1333 } else if (obj) {
1334 /*
1335 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1336 */
1337 if (UVM_OBJ_IS_VNODE(obj)) {
1338 pg->flags |= PG_FILE;
1339 } else {
1340 pg->flags |= PG_AOBJ;
1341 }
1342 uvm_pageinsert_object(obj, pg);
1343 mutex_exit(&pg->interlock);
1344 error = uvm_pageinsert_tree(obj, pg);
1345 if (error != 0) {
1346 mutex_enter(&pg->interlock);
1347 uvm_pageremove_object(obj, pg);
1348 mutex_exit(&pg->interlock);
1349 uvm_pagefree(pg);
1350 return NULL;
1351 }
1352 }
1353
1354 #if defined(UVM_PAGE_TRKOWN)
1355 pg->owner_tag = NULL;
1356 #endif
1357 UVM_PAGE_OWN(pg, "new alloc");
1358
1359 if (flags & UVM_PGA_ZERO) {
1360 /*
1361 * A zero'd page is not clean. If we got a page not already
1362 * zero'd, then we have to zero it ourselves.
1363 */
1364 if (obj != NULL || anon != NULL) {
1365 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1366 }
1367 if (zeroit) {
1368 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1369 }
1370 }
1371
1372 return(pg);
1373 }
1374
1375 /*
1376 * uvm_pagereplace: replace a page with another
1377 *
1378 * => object must be locked
1379 * => page interlocks must be held
1380 */
1381
1382 void
1383 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1384 {
1385 struct uvm_object *uobj = oldpg->uobject;
1386 struct vm_page *pg __diagused;
1387 uint64_t idx;
1388
1389 KASSERT((oldpg->flags & PG_TABLED) != 0);
1390 KASSERT(uobj != NULL);
1391 KASSERT((newpg->flags & PG_TABLED) == 0);
1392 KASSERT(newpg->uobject == NULL);
1393 KASSERT(rw_write_held(uobj->vmobjlock));
1394 KASSERT(mutex_owned(&oldpg->interlock));
1395 KASSERT(mutex_owned(&newpg->interlock));
1396
1397 newpg->uobject = uobj;
1398 newpg->offset = oldpg->offset;
1399 idx = newpg->offset >> PAGE_SHIFT;
1400 pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1401 KASSERT(pg == oldpg);
1402 if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1403 if ((newpg->flags & PG_CLEAN) != 0) {
1404 radix_tree_clear_tag(&uobj->uo_pages, idx,
1405 UVM_PAGE_DIRTY_TAG);
1406 } else {
1407 radix_tree_set_tag(&uobj->uo_pages, idx,
1408 UVM_PAGE_DIRTY_TAG);
1409 }
1410 }
1411 /*
1412 * oldpg's PG_STAT is stable. newpg is not reachable by others yet.
1413 */
1414 newpg->flags |=
1415 (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1416 uvm_pageinsert_object(uobj, newpg);
1417 uvm_pageremove_object(uobj, oldpg);
1418 }
1419
1420 /*
1421 * uvm_pagerealloc: reallocate a page from one object to another
1422 *
1423 * => both objects must be locked
1424 * => both interlocks must be held
1425 */
1426
1427 void
1428 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1429 {
1430 /*
1431 * remove it from the old object
1432 */
1433
1434 if (pg->uobject) {
1435 uvm_pageremove_tree(pg->uobject, pg);
1436 uvm_pageremove_object(pg->uobject, pg);
1437 }
1438
1439 /*
1440 * put it in the new object
1441 */
1442
1443 if (newobj) {
1444 /*
1445 * XXX we have no in-tree users of this functionality
1446 */
1447 panic("uvm_pagerealloc: no impl");
1448 }
1449 }
1450
1451 #ifdef DEBUG
1452 /*
1453 * check if page is zero-filled
1454 */
1455 void
1456 uvm_pagezerocheck(struct vm_page *pg)
1457 {
1458 int *p, *ep;
1459
1460 KASSERT(uvm_zerocheckkva != 0);
1461
1462 /*
1463 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1464 * uvm page allocator.
1465 *
1466 * it might be better to have "CPU-local temporary map" pmap interface.
1467 */
1468 mutex_spin_enter(&uvm_zerochecklock);
1469 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1470 p = (int *)uvm_zerocheckkva;
1471 ep = (int *)((char *)p + PAGE_SIZE);
1472 pmap_update(pmap_kernel());
1473 while (p < ep) {
1474 if (*p != 0)
1475 panic("PG_ZERO page isn't zero-filled");
1476 p++;
1477 }
1478 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1479 mutex_spin_exit(&uvm_zerochecklock);
1480 /*
1481 * pmap_update() is not necessary here because no one except us
1482 * uses this VA.
1483 */
1484 }
1485 #endif /* DEBUG */
1486
1487 /*
1488 * uvm_pagefree: free page
1489 *
1490 * => erase page's identity (i.e. remove from object)
1491 * => put page on free list
1492 * => caller must lock owning object (either anon or uvm_object)
1493 * => assumes all valid mappings of pg are gone
1494 */
1495
1496 void
1497 uvm_pagefree(struct vm_page *pg)
1498 {
1499 struct pgfreelist *pgfl;
1500 struct pgflbucket *pgb;
1501 struct uvm_cpu *ucpu;
1502 kmutex_t *lock;
1503 int bucket, s;
1504 bool locked;
1505
1506 #ifdef DEBUG
1507 if (pg->uobject == (void *)0xdeadbeef &&
1508 pg->uanon == (void *)0xdeadbeef) {
1509 panic("uvm_pagefree: freeing free page %p", pg);
1510 }
1511 #endif /* DEBUG */
1512
1513 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1514 KASSERT(!(pg->flags & PG_FREE));
1515 KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1516 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1517 rw_write_held(pg->uanon->an_lock));
1518
1519 /*
1520 * remove the page from the object's tree before acquiring any page
1521 * interlocks: this can acquire locks to free radixtree nodes.
1522 */
1523 if (pg->uobject != NULL) {
1524 uvm_pageremove_tree(pg->uobject, pg);
1525 }
1526
1527 /*
1528 * if the page is loaned, resolve the loan instead of freeing.
1529 */
1530
1531 if (pg->loan_count) {
1532 KASSERT(pg->wire_count == 0);
1533
1534 /*
1535 * if the page is owned by an anon then we just want to
1536 * drop anon ownership. the kernel will free the page when
1537 * it is done with it. if the page is owned by an object,
1538 * remove it from the object and mark it dirty for the benefit
1539 * of possible anon owners.
1540 *
1541 * regardless of previous ownership, wakeup any waiters,
1542 * unbusy the page, and we're done.
1543 */
1544
1545 uvm_pagelock(pg);
1546 locked = true;
1547 if (pg->uobject != NULL) {
1548 uvm_pageremove_object(pg->uobject, pg);
1549 pg->flags &= ~(PG_FILE|PG_AOBJ);
1550 } else if (pg->uanon != NULL) {
1551 if ((pg->flags & PG_ANON) == 0) {
1552 pg->loan_count--;
1553 } else {
1554 pg->flags &= ~PG_ANON;
1555 cpu_count(CPU_COUNT_ANONPAGES, -1);
1556 }
1557 pg->uanon->an_page = NULL;
1558 pg->uanon = NULL;
1559 }
1560 if (pg->pqflags & PQ_WANTED) {
1561 wakeup(pg);
1562 }
1563 pg->pqflags &= ~PQ_WANTED;
1564 pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1565 #ifdef UVM_PAGE_TRKOWN
1566 pg->owner_tag = NULL;
1567 #endif
1568 KASSERT((pg->flags & PG_STAT) == 0);
1569 if (pg->loan_count) {
1570 KASSERT(pg->uobject == NULL);
1571 if (pg->uanon == NULL) {
1572 uvm_pagedequeue(pg);
1573 }
1574 uvm_pageunlock(pg);
1575 return;
1576 }
1577 } else if (pg->uobject != NULL || pg->uanon != NULL ||
1578 pg->wire_count != 0) {
1579 uvm_pagelock(pg);
1580 locked = true;
1581 } else {
1582 locked = false;
1583 }
1584
1585 /*
1586 * remove page from its object or anon.
1587 */
1588 if (pg->uobject != NULL) {
1589 uvm_pageremove_object(pg->uobject, pg);
1590 } else if (pg->uanon != NULL) {
1591 const unsigned int status = uvm_pagegetdirty(pg);
1592 pg->uanon->an_page = NULL;
1593 pg->uanon = NULL;
1594 kpreempt_disable();
1595 CPU_COUNT(CPU_COUNT_ANONPAGES, -1);
1596 CPU_COUNT(CPU_COUNT_ANONUNKNOWN + status, -1);
1597 kpreempt_enable();
1598 }
1599
1600 /*
1601 * if the page was wired, unwire it now.
1602 */
1603
1604 if (pg->wire_count) {
1605 pg->wire_count = 0;
1606 atomic_dec_uint(&uvmexp.wired);
1607 }
1608 if (locked) {
1609 /*
1610 * wake anyone waiting on the page.
1611 */
1612 if ((pg->pqflags & PQ_WANTED) != 0) {
1613 pg->pqflags &= ~PQ_WANTED;
1614 wakeup(pg);
1615 }
1616
1617 /*
1618 * now remove the page from the queues.
1619 */
1620 uvm_pagedequeue(pg);
1621 uvm_pageunlock(pg);
1622 } else {
1623 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1624 }
1625
1626 /*
1627 * and put on free queue
1628 */
1629
1630 #ifdef DEBUG
1631 pg->uobject = (void *)0xdeadbeef;
1632 pg->uanon = (void *)0xdeadbeef;
1633 if (pg->flags & PG_ZERO)
1634 uvm_pagezerocheck(pg);
1635 #endif /* DEBUG */
1636
1637 /* Try to send the page to the per-CPU cache. */
1638 s = splvm();
1639 if (pg->flags & PG_ZERO) {
1640 CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
1641 }
1642 ucpu = curcpu()->ci_data.cpu_uvm;
1643 bucket = uvm_page_get_bucket(pg);
1644 if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1645 splx(s);
1646 return;
1647 }
1648
1649 /* Didn't work. Never mind, send it to a global bucket. */
1650 pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1651 pgb = pgfl->pgfl_buckets[bucket];
1652 lock = &uvm_freelist_locks[bucket].lock;
1653
1654 mutex_spin_enter(lock);
1655 /* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1656 pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
1657 LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1658 pgb->pgb_nfree++;
1659 mutex_spin_exit(lock);
1660 splx(s);
1661 }
1662
1663 /*
1664 * uvm_page_unbusy: unbusy an array of pages.
1665 *
1666 * => pages must either all belong to the same object, or all belong to anons.
1667 * => if pages are object-owned, object must be locked.
1668 * => if pages are anon-owned, anons must be locked.
1669 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1670 */
1671
1672 void
1673 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1674 {
1675 struct vm_page *pg;
1676 int i;
1677 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1678
1679 for (i = 0; i < npgs; i++) {
1680 pg = pgs[i];
1681 if (pg == NULL || pg == PGO_DONTCARE) {
1682 continue;
1683 }
1684
1685 KASSERT(uvm_page_owner_locked_p(pg, true));
1686 KASSERT(pg->flags & PG_BUSY);
1687 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1688 if (pg->flags & PG_RELEASED) {
1689 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1690 (uintptr_t)pg, 0, 0, 0);
1691 KASSERT(pg->uobject != NULL ||
1692 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1693 pg->flags &= ~PG_RELEASED;
1694 uvm_pagefree(pg);
1695 } else {
1696 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1697 (uintptr_t)pg, 0, 0, 0);
1698 KASSERT((pg->flags & PG_FAKE) == 0);
1699 pg->flags &= ~PG_BUSY;
1700 uvm_pagelock(pg);
1701 uvm_pagewakeup(pg);
1702 uvm_pageunlock(pg);
1703 UVM_PAGE_OWN(pg, NULL);
1704 }
1705 }
1706 }
1707
1708 /*
1709 * uvm_pagewait: wait for a busy page
1710 *
1711 * => page must be known PG_BUSY
1712 * => object must be read or write locked
1713 * => object will be unlocked on return
1714 */
1715
1716 void
1717 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1718 {
1719
1720 KASSERT(rw_lock_held(lock));
1721 KASSERT((pg->flags & PG_BUSY) != 0);
1722 KASSERT(uvm_page_owner_locked_p(pg, false));
1723
1724 mutex_enter(&pg->interlock);
1725 rw_exit(lock);
1726 pg->pqflags |= PQ_WANTED;
1727 UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1728 }
1729
1730 /*
1731 * uvm_pagewakeup: wake anyone waiting on a page
1732 *
1733 * => page interlock must be held
1734 */
1735
1736 void
1737 uvm_pagewakeup(struct vm_page *pg)
1738 {
1739 UVMHIST_FUNC("uvm_pagewakeup"); UVMHIST_CALLED(ubchist);
1740
1741 KASSERT(mutex_owned(&pg->interlock));
1742
1743 UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1744
1745 if ((pg->pqflags & PQ_WANTED) != 0) {
1746 wakeup(pg);
1747 pg->pqflags &= ~PQ_WANTED;
1748 }
1749 }
1750
1751 #if defined(UVM_PAGE_TRKOWN)
1752 /*
1753 * uvm_page_own: set or release page ownership
1754 *
1755 * => this is a debugging function that keeps track of who sets PG_BUSY
1756 * and where they do it. it can be used to track down problems
1757 * such a process setting "PG_BUSY" and never releasing it.
1758 * => page's object [if any] must be locked
1759 * => if "tag" is NULL then we are releasing page ownership
1760 */
1761 void
1762 uvm_page_own(struct vm_page *pg, const char *tag)
1763 {
1764
1765 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1766 KASSERT(uvm_page_owner_locked_p(pg, true));
1767
1768 /* gain ownership? */
1769 if (tag) {
1770 KASSERT((pg->flags & PG_BUSY) != 0);
1771 if (pg->owner_tag) {
1772 printf("uvm_page_own: page %p already owned "
1773 "by proc %d [%s]\n", pg,
1774 pg->owner, pg->owner_tag);
1775 panic("uvm_page_own");
1776 }
1777 pg->owner = curproc->p_pid;
1778 pg->lowner = curlwp->l_lid;
1779 pg->owner_tag = tag;
1780 return;
1781 }
1782
1783 /* drop ownership */
1784 KASSERT((pg->flags & PG_BUSY) == 0);
1785 if (pg->owner_tag == NULL) {
1786 printf("uvm_page_own: dropping ownership of an non-owned "
1787 "page (%p)\n", pg);
1788 panic("uvm_page_own");
1789 }
1790 pg->owner_tag = NULL;
1791 }
1792 #endif
1793
1794 /*
1795 * uvm_pageidlezero: zero free pages while the system is idle.
1796 */
1797 void
1798 uvm_pageidlezero(void)
1799 {
1800
1801 /*
1802 * Disabled for the moment. Previous strategy too cache heavy. In
1803 * the future we may experiment with zeroing the pages held in the
1804 * per-CPU cache (uvm_pgflcache).
1805 */
1806 }
1807
1808 /*
1809 * uvm_pagelookup: look up a page
1810 *
1811 * => caller should lock object to keep someone from pulling the page
1812 * out from under it
1813 */
1814
1815 struct vm_page *
1816 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1817 {
1818 struct vm_page *pg;
1819
1820 /* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
1821
1822 pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1823
1824 KASSERT(pg == NULL || obj->uo_npages != 0);
1825 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1826 (pg->flags & PG_BUSY) != 0);
1827 return pg;
1828 }
1829
1830 /*
1831 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1832 *
1833 * => caller must lock objects
1834 * => caller must hold pg->interlock
1835 */
1836
1837 void
1838 uvm_pagewire(struct vm_page *pg)
1839 {
1840
1841 KASSERT(uvm_page_owner_locked_p(pg, true));
1842 KASSERT(mutex_owned(&pg->interlock));
1843 #if defined(READAHEAD_STATS)
1844 if ((pg->flags & PG_READAHEAD) != 0) {
1845 uvm_ra_hit.ev_count++;
1846 pg->flags &= ~PG_READAHEAD;
1847 }
1848 #endif /* defined(READAHEAD_STATS) */
1849 if (pg->wire_count == 0) {
1850 uvm_pagedequeue(pg);
1851 atomic_inc_uint(&uvmexp.wired);
1852 }
1853 pg->wire_count++;
1854 KASSERT(pg->wire_count > 0); /* detect wraparound */
1855 }
1856
1857 /*
1858 * uvm_pageunwire: unwire the page.
1859 *
1860 * => activate if wire count goes to zero.
1861 * => caller must lock objects
1862 * => caller must hold pg->interlock
1863 */
1864
1865 void
1866 uvm_pageunwire(struct vm_page *pg)
1867 {
1868
1869 KASSERT(uvm_page_owner_locked_p(pg, true));
1870 KASSERT(pg->wire_count != 0);
1871 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1872 KASSERT(mutex_owned(&pg->interlock));
1873 pg->wire_count--;
1874 if (pg->wire_count == 0) {
1875 uvm_pageactivate(pg);
1876 KASSERT(uvmexp.wired != 0);
1877 atomic_dec_uint(&uvmexp.wired);
1878 }
1879 }
1880
1881 /*
1882 * uvm_pagedeactivate: deactivate page
1883 *
1884 * => caller must lock objects
1885 * => caller must check to make sure page is not wired
1886 * => object that page belongs to must be locked (so we can adjust pg->flags)
1887 * => caller must clear the reference on the page before calling
1888 * => caller must hold pg->interlock
1889 */
1890
1891 void
1892 uvm_pagedeactivate(struct vm_page *pg)
1893 {
1894
1895 KASSERT(uvm_page_owner_locked_p(pg, false));
1896 KASSERT(mutex_owned(&pg->interlock));
1897 if (pg->wire_count == 0) {
1898 KASSERT(uvmpdpol_pageisqueued_p(pg));
1899 uvmpdpol_pagedeactivate(pg);
1900 }
1901 }
1902
1903 /*
1904 * uvm_pageactivate: activate page
1905 *
1906 * => caller must lock objects
1907 * => caller must hold pg->interlock
1908 */
1909
1910 void
1911 uvm_pageactivate(struct vm_page *pg)
1912 {
1913
1914 KASSERT(uvm_page_owner_locked_p(pg, false));
1915 KASSERT(mutex_owned(&pg->interlock));
1916 #if defined(READAHEAD_STATS)
1917 if ((pg->flags & PG_READAHEAD) != 0) {
1918 uvm_ra_hit.ev_count++;
1919 pg->flags &= ~PG_READAHEAD;
1920 }
1921 #endif /* defined(READAHEAD_STATS) */
1922 if (pg->wire_count == 0) {
1923 uvmpdpol_pageactivate(pg);
1924 }
1925 }
1926
1927 /*
1928 * uvm_pagedequeue: remove a page from any paging queue
1929 *
1930 * => caller must lock objects
1931 * => caller must hold pg->interlock
1932 */
1933 void
1934 uvm_pagedequeue(struct vm_page *pg)
1935 {
1936
1937 KASSERT(uvm_page_owner_locked_p(pg, true));
1938 KASSERT(mutex_owned(&pg->interlock));
1939 if (uvmpdpol_pageisqueued_p(pg)) {
1940 uvmpdpol_pagedequeue(pg);
1941 }
1942 }
1943
1944 /*
1945 * uvm_pageenqueue: add a page to a paging queue without activating.
1946 * used where a page is not really demanded (yet). eg. read-ahead
1947 *
1948 * => caller must lock objects
1949 * => caller must hold pg->interlock
1950 */
1951 void
1952 uvm_pageenqueue(struct vm_page *pg)
1953 {
1954
1955 KASSERT(uvm_page_owner_locked_p(pg, false));
1956 KASSERT(mutex_owned(&pg->interlock));
1957 if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1958 uvmpdpol_pageenqueue(pg);
1959 }
1960 }
1961
1962 /*
1963 * uvm_pagelock: acquire page interlock
1964 */
1965 void
1966 uvm_pagelock(struct vm_page *pg)
1967 {
1968
1969 mutex_enter(&pg->interlock);
1970 }
1971
1972 /*
1973 * uvm_pagelock2: acquire two page interlocks
1974 */
1975 void
1976 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1977 {
1978
1979 if (pg1 < pg2) {
1980 mutex_enter(&pg1->interlock);
1981 mutex_enter(&pg2->interlock);
1982 } else {
1983 mutex_enter(&pg2->interlock);
1984 mutex_enter(&pg1->interlock);
1985 }
1986 }
1987
1988 /*
1989 * uvm_pageunlock: release page interlock, and if a page replacement intent
1990 * is set on the page, pass it to uvmpdpol to make real.
1991 *
1992 * => caller must hold pg->interlock
1993 */
1994 void
1995 uvm_pageunlock(struct vm_page *pg)
1996 {
1997
1998 if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
1999 (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
2000 mutex_exit(&pg->interlock);
2001 return;
2002 }
2003 pg->pqflags |= PQ_INTENT_QUEUED;
2004 mutex_exit(&pg->interlock);
2005 uvmpdpol_pagerealize(pg);
2006 }
2007
2008 /*
2009 * uvm_pageunlock2: release two page interlocks, and for both pages if a
2010 * page replacement intent is set on the page, pass it to uvmpdpol to make
2011 * real.
2012 *
2013 * => caller must hold pg->interlock
2014 */
2015 void
2016 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
2017 {
2018
2019 if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
2020 (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
2021 mutex_exit(&pg1->interlock);
2022 pg1 = NULL;
2023 } else {
2024 pg1->pqflags |= PQ_INTENT_QUEUED;
2025 mutex_exit(&pg1->interlock);
2026 }
2027
2028 if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
2029 (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
2030 mutex_exit(&pg2->interlock);
2031 pg2 = NULL;
2032 } else {
2033 pg2->pqflags |= PQ_INTENT_QUEUED;
2034 mutex_exit(&pg2->interlock);
2035 }
2036
2037 if (pg1 != NULL) {
2038 uvmpdpol_pagerealize(pg1);
2039 }
2040 if (pg2 != NULL) {
2041 uvmpdpol_pagerealize(pg2);
2042 }
2043 }
2044
2045 /*
2046 * uvm_pagezero: zero fill a page
2047 *
2048 * => if page is part of an object then the object should be locked
2049 * to protect pg->flags.
2050 */
2051
2052 void
2053 uvm_pagezero(struct vm_page *pg)
2054 {
2055
2056 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2057 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2058 }
2059
2060 /*
2061 * uvm_pagecopy: copy a page
2062 *
2063 * => if page is part of an object then the object should be locked
2064 * to protect pg->flags.
2065 */
2066
2067 void
2068 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2069 {
2070
2071 uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
2072 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2073 }
2074
2075 /*
2076 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2077 */
2078
2079 bool
2080 uvm_pageismanaged(paddr_t pa)
2081 {
2082
2083 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2084 }
2085
2086 /*
2087 * uvm_page_lookup_freelist: look up the free list for the specified page
2088 */
2089
2090 int
2091 uvm_page_lookup_freelist(struct vm_page *pg)
2092 {
2093 uvm_physseg_t upm;
2094
2095 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2096 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2097 return uvm_physseg_get_free_list(upm);
2098 }
2099
2100 /*
2101 * uvm_page_owner_locked_p: return true if object associated with page is
2102 * locked. this is a weak check for runtime assertions only.
2103 */
2104
2105 bool
2106 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2107 {
2108
2109 if (pg->uobject != NULL) {
2110 return exclusive
2111 ? rw_write_held(pg->uobject->vmobjlock)
2112 : rw_lock_held(pg->uobject->vmobjlock);
2113 }
2114 if (pg->uanon != NULL) {
2115 return exclusive
2116 ? rw_write_held(pg->uanon->an_lock)
2117 : rw_lock_held(pg->uanon->an_lock);
2118 }
2119 return true;
2120 }
2121
2122 /*
2123 * uvm_pagereadonly_p: return if the page should be mapped read-only
2124 */
2125
2126 bool
2127 uvm_pagereadonly_p(struct vm_page *pg)
2128 {
2129 struct uvm_object * const uobj = pg->uobject;
2130
2131 KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2132 KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2133 if ((pg->flags & PG_RDONLY) != 0) {
2134 return true;
2135 }
2136 if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2137 return true;
2138 }
2139 if (uobj == NULL) {
2140 return false;
2141 }
2142 return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2143 }
2144
2145 #ifdef PMAP_DIRECT
2146 /*
2147 * Call pmap to translate physical address into a virtual and to run a callback
2148 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2149 * or equivalent.
2150 */
2151 int
2152 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2153 int (*process)(void *, size_t, void *), void *arg)
2154 {
2155 int error = 0;
2156 paddr_t pa;
2157 size_t todo;
2158 voff_t pgoff = (off & PAGE_MASK);
2159 struct vm_page *pg;
2160
2161 KASSERT(npages > 0 && len > 0);
2162
2163 for (int i = 0; i < npages; i++) {
2164 pg = pgs[i];
2165
2166 KASSERT(len > 0);
2167
2168 /*
2169 * Caller is responsible for ensuring all the pages are
2170 * available.
2171 */
2172 KASSERT(pg != NULL && pg != PGO_DONTCARE);
2173
2174 pa = VM_PAGE_TO_PHYS(pg);
2175 todo = MIN(len, PAGE_SIZE - pgoff);
2176
2177 error = pmap_direct_process(pa, pgoff, todo, process, arg);
2178 if (error)
2179 break;
2180
2181 pgoff = 0;
2182 len -= todo;
2183 }
2184
2185 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2186 return error;
2187 }
2188 #endif /* PMAP_DIRECT */
2189
2190 #if defined(DDB) || defined(DEBUGPRINT)
2191
2192 /*
2193 * uvm_page_printit: actually print the page
2194 */
2195
2196 static const char page_flagbits[] = UVM_PGFLAGBITS;
2197 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2198
2199 void
2200 uvm_page_printit(struct vm_page *pg, bool full,
2201 void (*pr)(const char *, ...))
2202 {
2203 struct vm_page *tpg;
2204 struct uvm_object *uobj;
2205 struct pgflbucket *pgb;
2206 struct pgflist *pgl;
2207 char pgbuf[128];
2208
2209 (*pr)("PAGE %p:\n", pg);
2210 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2211 (*pr)(" flags=%s\n", pgbuf);
2212 snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2213 (*pr)(" pqflags=%s\n", pgbuf);
2214 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx\n",
2215 pg->uobject, pg->uanon, (long long)pg->offset);
2216 (*pr)(" loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2217 pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2218 uvm_page_get_freelist(pg));
2219 (*pr)(" pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2220 #if defined(UVM_PAGE_TRKOWN)
2221 if (pg->flags & PG_BUSY)
2222 (*pr)(" owning process = %d, tag=%s\n",
2223 pg->owner, pg->owner_tag);
2224 else
2225 (*pr)(" page not busy, no owner\n");
2226 #else
2227 (*pr)(" [page ownership tracking disabled]\n");
2228 #endif
2229
2230 if (!full)
2231 return;
2232
2233 /* cross-verify object/anon */
2234 if ((pg->flags & PG_FREE) == 0) {
2235 if (pg->flags & PG_ANON) {
2236 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2237 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2238 (pg->uanon) ? pg->uanon->an_page : NULL);
2239 else
2240 (*pr)(" anon backpointer is OK\n");
2241 } else {
2242 uobj = pg->uobject;
2243 if (uobj) {
2244 (*pr)(" checking object list\n");
2245 tpg = uvm_pagelookup(uobj, pg->offset);
2246 if (tpg)
2247 (*pr)(" page found on object list\n");
2248 else
2249 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2250 }
2251 }
2252 }
2253
2254 /* cross-verify page queue */
2255 if (pg->flags & PG_FREE) {
2256 int fl = uvm_page_get_freelist(pg);
2257 int b = uvm_page_get_bucket(pg);
2258 pgb = uvm.page_free[fl].pgfl_buckets[b];
2259 pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2260 (*pr)(" checking pageq list\n");
2261 LIST_FOREACH(tpg, pgl, pageq.list) {
2262 if (tpg == pg) {
2263 break;
2264 }
2265 }
2266 if (tpg)
2267 (*pr)(" page found on pageq list\n");
2268 else
2269 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2270 }
2271 }
2272
2273 /*
2274 * uvm_page_printall - print a summary of all managed pages
2275 */
2276
2277 void
2278 uvm_page_printall(void (*pr)(const char *, ...))
2279 {
2280 uvm_physseg_t i;
2281 paddr_t pfn;
2282 struct vm_page *pg;
2283
2284 (*pr)("%18s %4s %4s %18s %18s"
2285 #ifdef UVM_PAGE_TRKOWN
2286 " OWNER"
2287 #endif
2288 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2289 for (i = uvm_physseg_get_first();
2290 uvm_physseg_valid_p(i);
2291 i = uvm_physseg_get_next(i)) {
2292 for (pfn = uvm_physseg_get_start(i);
2293 pfn < uvm_physseg_get_end(i);
2294 pfn++) {
2295 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2296
2297 (*pr)("%18p %04x %08x %18p %18p",
2298 pg, pg->flags, pg->pqflags, pg->uobject,
2299 pg->uanon);
2300 #ifdef UVM_PAGE_TRKOWN
2301 if (pg->flags & PG_BUSY)
2302 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2303 #endif
2304 (*pr)("\n");
2305 }
2306 }
2307 }
2308
2309 /*
2310 * uvm_page_print_freelists - print a summary freelists
2311 */
2312
2313 void
2314 uvm_page_print_freelists(void (*pr)(const char *, ...))
2315 {
2316 struct pgfreelist *pgfl;
2317 struct pgflbucket *pgb;
2318 int fl, b, c;
2319
2320 (*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2321 VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2322
2323 for (fl = 0; fl < VM_NFREELIST; fl++) {
2324 pgfl = &uvm.page_free[fl];
2325 (*pr)("freelist(%d) @ %p\n", fl, pgfl);
2326 for (b = 0; b < uvm.bucketcount; b++) {
2327 pgb = uvm.page_free[fl].pgfl_buckets[b];
2328 (*pr)(" bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2329 b, pgb, pgb->pgb_nfree,
2330 &uvm_freelist_locks[b].lock);
2331 for (c = 0; c < uvmexp.ncolors; c++) {
2332 (*pr)(" color(%d) @ %p, ", c,
2333 &pgb->pgb_colors[c]);
2334 (*pr)("first page = %p\n",
2335 LIST_FIRST(&pgb->pgb_colors[c]));
2336 }
2337 }
2338 }
2339 }
2340
2341 #endif /* DDB || DEBUGPRINT */
2342