Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.241
      1 /*	$NetBSD: uvm_page.c,v 1.241 2020/06/13 19:55:39 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     34  * Copyright (c) 1991, 1993, The Regents of the University of California.
     35  *
     36  * All rights reserved.
     37  *
     38  * This code is derived from software contributed to Berkeley by
     39  * The Mach Operating System project at Carnegie-Mellon University.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     67  *
     68  *
     69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     70  * All rights reserved.
     71  *
     72  * Permission to use, copy, modify and distribute this software and
     73  * its documentation is hereby granted, provided that both the copyright
     74  * notice and this permission notice appear in all copies of the
     75  * software, derivative works or modified versions, and any portions
     76  * thereof, and that both notices appear in supporting documentation.
     77  *
     78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     81  *
     82  * Carnegie Mellon requests users of this software to return to
     83  *
     84  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     85  *  School of Computer Science
     86  *  Carnegie Mellon University
     87  *  Pittsburgh PA 15213-3890
     88  *
     89  * any improvements or extensions that they make and grant Carnegie the
     90  * rights to redistribute these changes.
     91  */
     92 
     93 /*
     94  * uvm_page.c: page ops.
     95  */
     96 
     97 #include <sys/cdefs.h>
     98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.241 2020/06/13 19:55:39 ad Exp $");
     99 
    100 #include "opt_ddb.h"
    101 #include "opt_uvm.h"
    102 #include "opt_uvmhist.h"
    103 #include "opt_readahead.h"
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/sched.h>
    108 #include <sys/kernel.h>
    109 #include <sys/vnode.h>
    110 #include <sys/proc.h>
    111 #include <sys/radixtree.h>
    112 #include <sys/atomic.h>
    113 #include <sys/cpu.h>
    114 #include <sys/extent.h>
    115 
    116 #include <uvm/uvm.h>
    117 #include <uvm/uvm_ddb.h>
    118 #include <uvm/uvm_pdpolicy.h>
    119 #include <uvm/uvm_pgflcache.h>
    120 
    121 /*
    122  * Some supported CPUs in a given architecture don't support all
    123  * of the things necessary to do idle page zero'ing efficiently.
    124  * We therefore provide a way to enable it from machdep code here.
    125  */
    126 bool vm_page_zero_enable = false;
    127 
    128 /*
    129  * number of pages per-CPU to reserve for the kernel.
    130  */
    131 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    132 #define	UVM_RESERVED_PAGES_PER_CPU	5
    133 #endif
    134 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    135 
    136 /*
    137  * physical memory size;
    138  */
    139 psize_t physmem;
    140 
    141 /*
    142  * local variables
    143  */
    144 
    145 /*
    146  * these variables record the values returned by vm_page_bootstrap,
    147  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    148  * and pmap_startup here also uses them internally.
    149  */
    150 
    151 static vaddr_t      virtual_space_start;
    152 static vaddr_t      virtual_space_end;
    153 
    154 /*
    155  * we allocate an initial number of page colors in uvm_page_init(),
    156  * and remember them.  We may re-color pages as cache sizes are
    157  * discovered during the autoconfiguration phase.  But we can never
    158  * free the initial set of buckets, since they are allocated using
    159  * uvm_pageboot_alloc().
    160  */
    161 
    162 static size_t recolored_pages_memsize /* = 0 */;
    163 static char *recolored_pages_mem;
    164 
    165 /*
    166  * freelist locks - one per bucket.
    167  */
    168 
    169 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
    170     __cacheline_aligned;
    171 
    172 /*
    173  * basic NUMA information.
    174  */
    175 
    176 static struct uvm_page_numa_region {
    177 	struct uvm_page_numa_region	*next;
    178 	paddr_t				start;
    179 	paddr_t				size;
    180 	u_int				numa_id;
    181 } *uvm_page_numa_region;
    182 
    183 #ifdef DEBUG
    184 kmutex_t uvm_zerochecklock __cacheline_aligned;
    185 vaddr_t uvm_zerocheckkva;
    186 #endif /* DEBUG */
    187 
    188 /*
    189  * These functions are reserved for uvm(9) internal use and are not
    190  * exported in the header file uvm_physseg.h
    191  *
    192  * Thus they are redefined here.
    193  */
    194 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    195 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    196 
    197 /* returns a pgs array */
    198 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    199 
    200 /*
    201  * inline functions
    202  */
    203 
    204 /*
    205  * uvm_pageinsert: insert a page in the object.
    206  *
    207  * => caller must lock object
    208  * => call should have already set pg's object and offset pointers
    209  *    and bumped the version counter
    210  */
    211 
    212 static inline void
    213 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    214 {
    215 
    216 	KASSERT(uobj == pg->uobject);
    217 	KASSERT(rw_write_held(uobj->vmobjlock));
    218 	KASSERT((pg->flags & PG_TABLED) == 0);
    219 
    220 	if ((pg->flags & PG_STAT) != 0) {
    221 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
    222 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    223 
    224 		if ((pg->flags & PG_FILE) != 0) {
    225 			if (uobj->uo_npages == 0) {
    226 				struct vnode *vp = (struct vnode *)uobj;
    227 				mutex_enter(vp->v_interlock);
    228 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
    229 				vp->v_iflag |= VI_PAGES;
    230 				vholdl(vp);
    231 				mutex_exit(vp->v_interlock);
    232 			}
    233 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    234 				cpu_count(CPU_COUNT_EXECPAGES, 1);
    235 			}
    236 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
    237 		} else {
    238 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
    239 		}
    240 	}
    241 	pg->flags |= PG_TABLED;
    242 	uobj->uo_npages++;
    243 }
    244 
    245 static inline int
    246 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    247 {
    248 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    249 	int error;
    250 
    251 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    252 	if (error != 0) {
    253 		return error;
    254 	}
    255 	if ((pg->flags & PG_CLEAN) == 0) {
    256 		radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
    257 	}
    258 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
    259 	    radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
    260 	return 0;
    261 }
    262 
    263 /*
    264  * uvm_page_remove: remove page from object.
    265  *
    266  * => caller must lock object
    267  */
    268 
    269 static inline void
    270 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    271 {
    272 
    273 	KASSERT(uobj == pg->uobject);
    274 	KASSERT(rw_write_held(uobj->vmobjlock));
    275 	KASSERT(pg->flags & PG_TABLED);
    276 
    277 	if ((pg->flags & PG_STAT) != 0) {
    278 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
    279 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    280 
    281 		if ((pg->flags & PG_FILE) != 0) {
    282 			if (uobj->uo_npages == 1) {
    283 				struct vnode *vp = (struct vnode *)uobj;
    284 				mutex_enter(vp->v_interlock);
    285 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
    286 				vp->v_iflag &= ~VI_PAGES;
    287 				holdrelel(vp);
    288 				mutex_exit(vp->v_interlock);
    289 			}
    290 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    291 				cpu_count(CPU_COUNT_EXECPAGES, -1);
    292 			}
    293 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
    294 		} else {
    295 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
    296 		}
    297 	}
    298 	uobj->uo_npages--;
    299 	pg->flags &= ~PG_TABLED;
    300 	pg->uobject = NULL;
    301 }
    302 
    303 static inline void
    304 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    305 {
    306 	struct vm_page *opg __unused;
    307 
    308 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    309 	KASSERT(pg == opg);
    310 }
    311 
    312 static void
    313 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
    314 {
    315 	int i;
    316 
    317 	pgb->pgb_nfree = 0;
    318 	for (i = 0; i < uvmexp.ncolors; i++) {
    319 		LIST_INIT(&pgb->pgb_colors[i]);
    320 	}
    321 	pgfl->pgfl_buckets[num] = pgb;
    322 }
    323 
    324 /*
    325  * uvm_page_init: init the page system.   called from uvm_init().
    326  *
    327  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    328  */
    329 
    330 void
    331 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    332 {
    333 	static struct uvm_cpu boot_cpu __cacheline_aligned;
    334 	psize_t freepages, pagecount, bucketsize, n;
    335 	struct pgflbucket *pgb;
    336 	struct vm_page *pagearray;
    337 	char *bucketarray;
    338 	uvm_physseg_t bank;
    339 	int fl, b;
    340 
    341 	KASSERT(ncpu <= 1);
    342 
    343 	/*
    344 	 * init the page queues and free page queue locks, except the
    345 	 * free list; we allocate that later (with the initial vm_page
    346 	 * structures).
    347 	 */
    348 
    349 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    350 	uvmpdpol_init();
    351 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
    352 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
    353 	}
    354 
    355 	/*
    356 	 * allocate vm_page structures.
    357 	 */
    358 
    359 	/*
    360 	 * sanity check:
    361 	 * before calling this function the MD code is expected to register
    362 	 * some free RAM with the uvm_page_physload() function.   our job
    363 	 * now is to allocate vm_page structures for this memory.
    364 	 */
    365 
    366 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    367 		panic("uvm_page_bootstrap: no memory pre-allocated");
    368 
    369 	/*
    370 	 * first calculate the number of free pages...
    371 	 *
    372 	 * note that we use start/end rather than avail_start/avail_end.
    373 	 * this allows us to allocate extra vm_page structures in case we
    374 	 * want to return some memory to the pool after booting.
    375 	 */
    376 
    377 	freepages = 0;
    378 
    379 	for (bank = uvm_physseg_get_first();
    380 	     uvm_physseg_valid_p(bank) ;
    381 	     bank = uvm_physseg_get_next(bank)) {
    382 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    383 	}
    384 
    385 	/*
    386 	 * Let MD code initialize the number of colors, or default
    387 	 * to 1 color if MD code doesn't care.
    388 	 */
    389 	if (uvmexp.ncolors == 0)
    390 		uvmexp.ncolors = 1;
    391 	uvmexp.colormask = uvmexp.ncolors - 1;
    392 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    393 
    394 	/* We always start with only 1 bucket. */
    395 	uvm.bucketcount = 1;
    396 
    397 	/*
    398 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    399 	 * use.   for each page of memory we use we need a vm_page structure.
    400 	 * thus, the total number of pages we can use is the total size of
    401 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    402 	 * structure.   we add one to freepages as a fudge factor to avoid
    403 	 * truncation errors (since we can only allocate in terms of whole
    404 	 * pages).
    405 	 */
    406 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    407 	    (PAGE_SIZE + sizeof(struct vm_page));
    408 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
    409 	bucketsize = roundup2(bucketsize, coherency_unit);
    410 	bucketarray = (void *)uvm_pageboot_alloc(
    411 	    bucketsize * VM_NFREELIST +
    412 	    pagecount * sizeof(struct vm_page));
    413 	pagearray = (struct vm_page *)
    414 	    (bucketarray + bucketsize * VM_NFREELIST);
    415 
    416 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    417 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
    418 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
    419 	}
    420 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    421 
    422 	/*
    423 	 * init the freelist cache in the disabled state.
    424 	 */
    425 	uvm_pgflcache_init();
    426 
    427 	/*
    428 	 * init the vm_page structures and put them in the correct place.
    429 	 */
    430 	/* First init the extent */
    431 
    432 	for (bank = uvm_physseg_get_first(),
    433 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    434 	     uvm_physseg_valid_p(bank);
    435 	     bank = uvm_physseg_get_next(bank)) {
    436 
    437 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    438 		uvm_physseg_seg_alloc_from_slab(bank, n);
    439 		uvm_physseg_init_seg(bank, pagearray);
    440 
    441 		/* set up page array pointers */
    442 		pagearray += n;
    443 		pagecount -= n;
    444 	}
    445 
    446 	/*
    447 	 * pass up the values of virtual_space_start and
    448 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    449 	 * layers of the VM.
    450 	 */
    451 
    452 	*kvm_startp = round_page(virtual_space_start);
    453 	*kvm_endp = trunc_page(virtual_space_end);
    454 #ifdef DEBUG
    455 	/*
    456 	 * steal kva for uvm_pagezerocheck().
    457 	 */
    458 	uvm_zerocheckkva = *kvm_startp;
    459 	*kvm_startp += PAGE_SIZE;
    460 	mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
    461 #endif /* DEBUG */
    462 
    463 	/*
    464 	 * init various thresholds.
    465 	 */
    466 
    467 	uvmexp.reserve_pagedaemon = 1;
    468 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    469 
    470 	/*
    471 	 * done!
    472 	 */
    473 
    474 	uvm.page_init_done = true;
    475 }
    476 
    477 /*
    478  * uvm_pgfl_lock: lock all freelist buckets
    479  */
    480 
    481 void
    482 uvm_pgfl_lock(void)
    483 {
    484 	int i;
    485 
    486 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    487 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
    488 	}
    489 }
    490 
    491 /*
    492  * uvm_pgfl_unlock: unlock all freelist buckets
    493  */
    494 
    495 void
    496 uvm_pgfl_unlock(void)
    497 {
    498 	int i;
    499 
    500 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    501 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
    502 	}
    503 }
    504 
    505 /*
    506  * uvm_setpagesize: set the page size
    507  *
    508  * => sets page_shift and page_mask from uvmexp.pagesize.
    509  */
    510 
    511 void
    512 uvm_setpagesize(void)
    513 {
    514 
    515 	/*
    516 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    517 	 * to be a constant (indicated by being a non-zero value).
    518 	 */
    519 	if (uvmexp.pagesize == 0) {
    520 		if (PAGE_SIZE == 0)
    521 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    522 		uvmexp.pagesize = PAGE_SIZE;
    523 	}
    524 	uvmexp.pagemask = uvmexp.pagesize - 1;
    525 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    526 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    527 		    uvmexp.pagesize, uvmexp.pagesize);
    528 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    529 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    530 			break;
    531 }
    532 
    533 /*
    534  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    535  */
    536 
    537 vaddr_t
    538 uvm_pageboot_alloc(vsize_t size)
    539 {
    540 	static bool initialized = false;
    541 	vaddr_t addr;
    542 #if !defined(PMAP_STEAL_MEMORY)
    543 	vaddr_t vaddr;
    544 	paddr_t paddr;
    545 #endif
    546 
    547 	/*
    548 	 * on first call to this function, initialize ourselves.
    549 	 */
    550 	if (initialized == false) {
    551 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    552 
    553 		/* round it the way we like it */
    554 		virtual_space_start = round_page(virtual_space_start);
    555 		virtual_space_end = trunc_page(virtual_space_end);
    556 
    557 		initialized = true;
    558 	}
    559 
    560 	/* round to page size */
    561 	size = round_page(size);
    562 	uvmexp.bootpages += atop(size);
    563 
    564 #if defined(PMAP_STEAL_MEMORY)
    565 
    566 	/*
    567 	 * defer bootstrap allocation to MD code (it may want to allocate
    568 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    569 	 * virtual_space_start/virtual_space_end if necessary.
    570 	 */
    571 
    572 	addr = pmap_steal_memory(size, &virtual_space_start,
    573 	    &virtual_space_end);
    574 
    575 	return(addr);
    576 
    577 #else /* !PMAP_STEAL_MEMORY */
    578 
    579 	/*
    580 	 * allocate virtual memory for this request
    581 	 */
    582 	if (virtual_space_start == virtual_space_end ||
    583 	    (virtual_space_end - virtual_space_start) < size)
    584 		panic("uvm_pageboot_alloc: out of virtual space");
    585 
    586 	addr = virtual_space_start;
    587 
    588 #ifdef PMAP_GROWKERNEL
    589 	/*
    590 	 * If the kernel pmap can't map the requested space,
    591 	 * then allocate more resources for it.
    592 	 */
    593 	if (uvm_maxkaddr < (addr + size)) {
    594 		uvm_maxkaddr = pmap_growkernel(addr + size);
    595 		if (uvm_maxkaddr < (addr + size))
    596 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    597 	}
    598 #endif
    599 
    600 	virtual_space_start += size;
    601 
    602 	/*
    603 	 * allocate and mapin physical pages to back new virtual pages
    604 	 */
    605 
    606 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    607 	    vaddr += PAGE_SIZE) {
    608 
    609 		if (!uvm_page_physget(&paddr))
    610 			panic("uvm_pageboot_alloc: out of memory");
    611 
    612 		/*
    613 		 * Note this memory is no longer managed, so using
    614 		 * pmap_kenter is safe.
    615 		 */
    616 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    617 	}
    618 	pmap_update(pmap_kernel());
    619 	return(addr);
    620 #endif	/* PMAP_STEAL_MEMORY */
    621 }
    622 
    623 #if !defined(PMAP_STEAL_MEMORY)
    624 /*
    625  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    626  *
    627  * => attempt to allocate it off the end of a segment in which the "avail"
    628  *    values match the start/end values.   if we can't do that, then we
    629  *    will advance both values (making them equal, and removing some
    630  *    vm_page structures from the non-avail area).
    631  * => return false if out of memory.
    632  */
    633 
    634 /* subroutine: try to allocate from memory chunks on the specified freelist */
    635 static bool uvm_page_physget_freelist(paddr_t *, int);
    636 
    637 static bool
    638 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    639 {
    640 	uvm_physseg_t lcv;
    641 
    642 	/* pass 1: try allocating from a matching end */
    643 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    644 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    645 #else
    646 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    647 #endif
    648 	{
    649 		if (uvm.page_init_done == true)
    650 			panic("uvm_page_physget: called _after_ bootstrap");
    651 
    652 		/* Try to match at front or back on unused segment */
    653 		if (uvm_page_physunload(lcv, freelist, paddrp))
    654 			return true;
    655 	}
    656 
    657 	/* pass2: forget about matching ends, just allocate something */
    658 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    659 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    660 #else
    661 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    662 #endif
    663 	{
    664 		/* Try the front regardless. */
    665 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    666 			return true;
    667 	}
    668 	return false;
    669 }
    670 
    671 bool
    672 uvm_page_physget(paddr_t *paddrp)
    673 {
    674 	int i;
    675 
    676 	/* try in the order of freelist preference */
    677 	for (i = 0; i < VM_NFREELIST; i++)
    678 		if (uvm_page_physget_freelist(paddrp, i) == true)
    679 			return (true);
    680 	return (false);
    681 }
    682 #endif /* PMAP_STEAL_MEMORY */
    683 
    684 /*
    685  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    686  * back from an I/O mapping (ugh!).   used in some MD code as well.
    687  */
    688 struct vm_page *
    689 uvm_phys_to_vm_page(paddr_t pa)
    690 {
    691 	paddr_t pf = atop(pa);
    692 	paddr_t	off;
    693 	uvm_physseg_t	upm;
    694 
    695 	upm = uvm_physseg_find(pf, &off);
    696 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    697 		return uvm_physseg_get_pg(upm, off);
    698 	return(NULL);
    699 }
    700 
    701 paddr_t
    702 uvm_vm_page_to_phys(const struct vm_page *pg)
    703 {
    704 
    705 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    706 }
    707 
    708 /*
    709  * uvm_page_numa_load: load NUMA range description.
    710  */
    711 void
    712 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
    713 {
    714 	struct uvm_page_numa_region *d;
    715 
    716 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
    717 
    718 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
    719 	d->start = start;
    720 	d->size = size;
    721 	d->numa_id = numa_id;
    722 	d->next = uvm_page_numa_region;
    723 	uvm_page_numa_region = d;
    724 }
    725 
    726 /*
    727  * uvm_page_numa_lookup: lookup NUMA node for the given page.
    728  */
    729 static u_int
    730 uvm_page_numa_lookup(struct vm_page *pg)
    731 {
    732 	struct uvm_page_numa_region *d;
    733 	static bool warned;
    734 	paddr_t pa;
    735 
    736 	KASSERT(uvm_page_numa_region != NULL);
    737 
    738 	pa = VM_PAGE_TO_PHYS(pg);
    739 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
    740 		if (pa >= d->start && pa < d->start + d->size) {
    741 			return d->numa_id;
    742 		}
    743 	}
    744 
    745 	if (!warned) {
    746 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
    747 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
    748 		warned = true;
    749 	}
    750 
    751 	return 0;
    752 }
    753 
    754 /*
    755  * uvm_page_redim: adjust freelist dimensions if they have changed.
    756  */
    757 
    758 static void
    759 uvm_page_redim(int newncolors, int newnbuckets)
    760 {
    761 	struct pgfreelist npgfl;
    762 	struct pgflbucket *opgb, *npgb;
    763 	struct pgflist *ohead, *nhead;
    764 	struct vm_page *pg;
    765 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
    766 	int fl, ob, oc, nb, nc, obuckets, ocolors;
    767 	char *bucketarray, *oldbucketmem, *bucketmem;
    768 
    769 	KASSERT(((newncolors - 1) & newncolors) == 0);
    770 
    771 	/* Anything to do? */
    772 	if (newncolors <= uvmexp.ncolors &&
    773 	    newnbuckets == uvm.bucketcount) {
    774 		return;
    775 	}
    776 	if (uvm.page_init_done == false) {
    777 		uvmexp.ncolors = newncolors;
    778 		return;
    779 	}
    780 
    781 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
    782 	bucketsize = roundup2(bucketsize, coherency_unit);
    783 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
    784 	    coherency_unit - 1;
    785 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
    786 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
    787 
    788 	ocolors = uvmexp.ncolors;
    789 	obuckets = uvm.bucketcount;
    790 
    791 	/* Freelist cache musn't be enabled. */
    792 	uvm_pgflcache_pause();
    793 
    794 	/* Make sure we should still do this. */
    795 	uvm_pgfl_lock();
    796 	if (newncolors <= uvmexp.ncolors &&
    797 	    newnbuckets == uvm.bucketcount) {
    798 		uvm_pgfl_unlock();
    799 		uvm_pgflcache_resume();
    800 		kmem_free(bucketmem, bucketmemsize);
    801 		return;
    802 	}
    803 
    804 	uvmexp.ncolors = newncolors;
    805 	uvmexp.colormask = uvmexp.ncolors - 1;
    806 	uvm.bucketcount = newnbuckets;
    807 
    808 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    809 		/* Init new buckets in new freelist. */
    810 		memset(&npgfl, 0, sizeof(npgfl));
    811 		for (nb = 0; nb < newnbuckets; nb++) {
    812 			npgb = (struct pgflbucket *)bucketarray;
    813 			uvm_page_init_bucket(&npgfl, npgb, nb);
    814 			bucketarray += bucketsize;
    815 		}
    816 		/* Now transfer pages from the old freelist. */
    817 		for (nb = ob = 0; ob < obuckets; ob++) {
    818 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
    819 			for (oc = 0; oc < ocolors; oc++) {
    820 				ohead = &opgb->pgb_colors[oc];
    821 				while ((pg = LIST_FIRST(ohead)) != NULL) {
    822 					LIST_REMOVE(pg, pageq.list);
    823 					/*
    824 					 * Here we decide on the NEW color &
    825 					 * bucket for the page.  For NUMA
    826 					 * we'll use the info that the
    827 					 * hardware gave us.  For non-NUMA
    828 					 * assign take physical page frame
    829 					 * number and cache color into
    830 					 * account.  We do this to try and
    831 					 * avoid defeating any memory
    832 					 * interleaving in the hardware.
    833 					 */
    834 					KASSERT(
    835 					    uvm_page_get_bucket(pg) == ob);
    836 					KASSERT(fl ==
    837 					    uvm_page_get_freelist(pg));
    838 					if (uvm_page_numa_region != NULL) {
    839 						nb = uvm_page_numa_lookup(pg);
    840 					} else {
    841 						nb = atop(VM_PAGE_TO_PHYS(pg))
    842 						    / uvmexp.ncolors / 8
    843 						    % newnbuckets;
    844 					}
    845 					uvm_page_set_bucket(pg, nb);
    846 					npgb = npgfl.pgfl_buckets[nb];
    847 					npgb->pgb_nfree++;
    848 					nc = VM_PGCOLOR(pg);
    849 					nhead = &npgb->pgb_colors[nc];
    850 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
    851 				}
    852 			}
    853 		}
    854 		/* Install the new freelist. */
    855 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
    856 	}
    857 
    858 	/* Unlock and free the old memory. */
    859 	oldbucketmemsize = recolored_pages_memsize;
    860 	oldbucketmem = recolored_pages_mem;
    861 	recolored_pages_memsize = bucketmemsize;
    862 	recolored_pages_mem = bucketmem;
    863 
    864 	uvm_pgfl_unlock();
    865 	uvm_pgflcache_resume();
    866 
    867 	if (oldbucketmemsize) {
    868 		kmem_free(oldbucketmem, oldbucketmemsize);
    869 	}
    870 
    871 	/*
    872 	 * this calls uvm_km_alloc() which may want to hold
    873 	 * uvm_freelist_lock.
    874 	 */
    875 	uvm_pager_realloc_emerg();
    876 }
    877 
    878 /*
    879  * uvm_page_recolor: Recolor the pages if the new color count is
    880  * larger than the old one.
    881  */
    882 
    883 void
    884 uvm_page_recolor(int newncolors)
    885 {
    886 
    887 	uvm_page_redim(newncolors, uvm.bucketcount);
    888 }
    889 
    890 /*
    891  * uvm_page_rebucket: Determine a bucket structure and redim the free
    892  * lists to match.
    893  */
    894 
    895 void
    896 uvm_page_rebucket(void)
    897 {
    898 	u_int min_numa, max_numa, npackage, shift;
    899 	struct cpu_info *ci, *ci2, *ci3;
    900 	CPU_INFO_ITERATOR cii;
    901 
    902 	/*
    903 	 * If we have more than one NUMA node, and the maximum NUMA node ID
    904 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
    905 	 * for free pages.
    906 	 */
    907 	min_numa = (u_int)-1;
    908 	max_numa = 0;
    909 	for (CPU_INFO_FOREACH(cii, ci)) {
    910 		if (ci->ci_numa_id < min_numa) {
    911 			min_numa = ci->ci_numa_id;
    912 		}
    913 		if (ci->ci_numa_id > max_numa) {
    914 			max_numa = ci->ci_numa_id;
    915 		}
    916 	}
    917 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
    918 		aprint_debug("UVM: using NUMA allocation scheme\n");
    919 		for (CPU_INFO_FOREACH(cii, ci)) {
    920 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
    921 		}
    922 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
    923 	 	return;
    924 	}
    925 
    926 	/*
    927 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
    928 	 * and minimise lock contention.  Count the total number of CPU
    929 	 * packages, and then try to distribute the buckets among CPU
    930 	 * packages evenly.
    931 	 */
    932 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
    933 
    934 	/*
    935 	 * Figure out how to arrange the packages & buckets, and the total
    936 	 * number of buckets we need.  XXX 2 may not be the best factor.
    937 	 */
    938 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
    939 		npackage >>= 1;
    940 	}
    941  	uvm_page_redim(uvmexp.ncolors, npackage);
    942 
    943  	/*
    944  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
    945  	 * through all CPU packages.
    946  	 */
    947  	npackage = 0;
    948 	ci = curcpu();
    949 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
    950 	do {
    951 		/*
    952 		 * In the inner loop, scroll through all CPUs in the package
    953 		 * and assign the same bucket ID.
    954 		 */
    955 		ci3 = ci2;
    956 		do {
    957 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
    958 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
    959 		} while (ci3 != ci2);
    960 		npackage++;
    961 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
    962 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
    963 
    964 	aprint_debug("UVM: using package allocation scheme, "
    965 	    "%d package(s) per bucket\n", 1 << shift);
    966 }
    967 
    968 /*
    969  * uvm_cpu_attach: initialize per-CPU data structures.
    970  */
    971 
    972 void
    973 uvm_cpu_attach(struct cpu_info *ci)
    974 {
    975 	struct uvm_cpu *ucpu;
    976 
    977 	/* Already done in uvm_page_init(). */
    978 	if (!CPU_IS_PRIMARY(ci)) {
    979 		/* Add more reserve pages for this CPU. */
    980 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
    981 
    982 		/* Allocate per-CPU data structures. */
    983 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
    984 		    KM_SLEEP);
    985 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
    986 		    coherency_unit);
    987 		ci->ci_data.cpu_uvm = ucpu;
    988 	} else {
    989 		ucpu = ci->ci_data.cpu_uvm;
    990 	}
    991 
    992 	uvmpdpol_init_cpu(ucpu);
    993 
    994 	/*
    995 	 * Attach RNG source for this CPU's VM events
    996 	 */
    997         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
    998 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    999 	    RND_FLAG_ESTIMATE_VALUE);
   1000 }
   1001 
   1002 /*
   1003  * uvm_availmem: fetch the total amount of free memory in pages.  this can
   1004  * have a detrimental effect on performance due to false sharing; don't call
   1005  * unless needed.
   1006  *
   1007  * some users can request the amount of free memory so often that it begins
   1008  * to impact upon performance.  if calling frequently and an inexact value
   1009  * is okay, call with cached = true.
   1010  */
   1011 
   1012 int
   1013 uvm_availmem(bool cached)
   1014 {
   1015 	int64_t fp;
   1016 
   1017 	cpu_count_sync(cached);
   1018 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
   1019 		/*
   1020 		 * XXXAD could briefly go negative because it's impossible
   1021 		 * to get a clean snapshot.  address this for other counters
   1022 		 * used as running totals before NetBSD 10 although less
   1023 		 * important for those.
   1024 		 */
   1025 		fp = 0;
   1026 	}
   1027 	return (int)fp;
   1028 }
   1029 
   1030 /*
   1031  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
   1032  * specific freelist and specific bucket only.
   1033  *
   1034  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1035  */
   1036 
   1037 static struct vm_page *
   1038 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
   1039 {
   1040 	int c, trycolor, colormask;
   1041 	struct pgflbucket *pgb;
   1042 	struct vm_page *pg;
   1043 	kmutex_t *lock;
   1044 	bool fill;
   1045 
   1046 	/*
   1047 	 * Skip the bucket if empty, no lock needed.  There could be many
   1048 	 * empty freelists/buckets.
   1049 	 */
   1050 	pgb = uvm.page_free[f].pgfl_buckets[b];
   1051 	if (pgb->pgb_nfree == 0) {
   1052 		return NULL;
   1053 	}
   1054 
   1055 	/* Skip bucket if low on memory. */
   1056 	lock = &uvm_freelist_locks[b].lock;
   1057 	mutex_spin_enter(lock);
   1058 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
   1059 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
   1060 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
   1061 		     curlwp != uvm.pagedaemon_lwp)) {
   1062 			mutex_spin_exit(lock);
   1063 		     	return NULL;
   1064 		}
   1065 		fill = false;
   1066 	} else {
   1067 		fill = true;
   1068 	}
   1069 
   1070 	/* Try all page colors as needed. */
   1071 	c = trycolor = *trycolorp;
   1072 	colormask = uvmexp.colormask;
   1073 	do {
   1074 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
   1075 		if (__predict_true(pg != NULL)) {
   1076 			/*
   1077 			 * Got a free page!  PG_FREE must be cleared under
   1078 			 * lock because of uvm_pglistalloc().
   1079 			 */
   1080 			LIST_REMOVE(pg, pageq.list);
   1081 			KASSERT(pg->flags & PG_FREE);
   1082 			pg->flags &= PG_ZERO;
   1083 			pgb->pgb_nfree--;
   1084 
   1085 			/*
   1086 			 * While we have the bucket locked and our data
   1087 			 * structures fresh in L1 cache, we have an ideal
   1088 			 * opportunity to grab some pages for the freelist
   1089 			 * cache without causing extra contention.  Only do
   1090 			 * so if we found pages in this CPU's preferred
   1091 			 * bucket.
   1092 			 */
   1093 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
   1094 				uvm_pgflcache_fill(ucpu, f, b, c);
   1095 			}
   1096 			mutex_spin_exit(lock);
   1097 			KASSERT(uvm_page_get_bucket(pg) == b);
   1098 			CPU_COUNT(c == trycolor ?
   1099 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
   1100 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
   1101 			*trycolorp = c;
   1102 			return pg;
   1103 		}
   1104 		c = (c + 1) & colormask;
   1105 	} while (c != trycolor);
   1106 	mutex_spin_exit(lock);
   1107 
   1108 	return NULL;
   1109 }
   1110 
   1111 /*
   1112  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
   1113  * any color from any bucket, in a specific freelist.
   1114  *
   1115  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1116  */
   1117 
   1118 static struct vm_page *
   1119 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
   1120 {
   1121 	int b, trybucket, bucketcount;
   1122 	struct vm_page *pg;
   1123 
   1124 	/* Try for the exact thing in the per-CPU cache. */
   1125 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
   1126 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1127 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1128 		return pg;
   1129 	}
   1130 
   1131 	/* Walk through all buckets, trying our preferred bucket first. */
   1132 	trybucket = ucpu->pgflbucket;
   1133 	b = trybucket;
   1134 	bucketcount = uvm.bucketcount;
   1135 	do {
   1136 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
   1137 		if (pg != NULL) {
   1138 			return pg;
   1139 		}
   1140 		b = (b + 1 == bucketcount ? 0 : b + 1);
   1141 	} while (b != trybucket);
   1142 
   1143 	return NULL;
   1144 }
   1145 
   1146 /*
   1147  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1148  *
   1149  * => return null if no pages free
   1150  * => wake up pagedaemon if number of free pages drops below low water mark
   1151  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1152  * => if anon != NULL, anon must be locked (to put in anon)
   1153  * => only one of obj or anon can be non-null
   1154  * => caller must activate/deactivate page if it is not wired.
   1155  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1156  * => policy decision: it is more important to pull a page off of the
   1157  *	appropriate priority free list than it is to get a zero'd or
   1158  *	unknown contents page.  This is because we live with the
   1159  *	consequences of a bad free list decision for the entire
   1160  *	lifetime of the page, e.g. if the page comes from memory that
   1161  *	is slower to access.
   1162  */
   1163 
   1164 struct vm_page *
   1165 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1166     int flags, int strat, int free_list)
   1167 {
   1168 	int zeroit = 0, color;
   1169 	int lcv, error, s;
   1170 	struct uvm_cpu *ucpu;
   1171 	struct vm_page *pg;
   1172 	lwp_t *l;
   1173 
   1174 	KASSERT(obj == NULL || anon == NULL);
   1175 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1176 	KASSERT(off == trunc_page(off));
   1177 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
   1178 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1179 	    rw_write_held(anon->an_lock));
   1180 
   1181 	/*
   1182 	 * This implements a global round-robin page coloring
   1183 	 * algorithm.
   1184 	 */
   1185 
   1186 	s = splvm();
   1187 	ucpu = curcpu()->ci_data.cpu_uvm;
   1188 	if (flags & UVM_FLAG_COLORMATCH) {
   1189 		color = atop(off) & uvmexp.colormask;
   1190 	} else {
   1191 		color = ucpu->pgflcolor;
   1192 	}
   1193 
   1194 	/*
   1195 	 * fail if any of these conditions is true:
   1196 	 * [1]  there really are no free pages, or
   1197 	 * [2]  only kernel "reserved" pages remain and
   1198 	 *        reserved pages have not been requested.
   1199 	 * [3]  only pagedaemon "reserved" pages remain and
   1200 	 *        the requestor isn't the pagedaemon.
   1201 	 * we make kernel reserve pages available if called by a
   1202 	 * kernel thread.
   1203 	 */
   1204 	l = curlwp;
   1205 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
   1206 		flags |= UVM_PGA_USERESERVE;
   1207 	}
   1208 
   1209  again:
   1210 	switch (strat) {
   1211 	case UVM_PGA_STRAT_NORMAL:
   1212 		/* Check freelists: descending priority (ascending id) order. */
   1213 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1214 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
   1215 			if (pg != NULL) {
   1216 				goto gotit;
   1217 			}
   1218 		}
   1219 
   1220 		/* No pages free!  Have pagedaemon free some memory. */
   1221 		splx(s);
   1222 		uvm_kick_pdaemon();
   1223 		return NULL;
   1224 
   1225 	case UVM_PGA_STRAT_ONLY:
   1226 	case UVM_PGA_STRAT_FALLBACK:
   1227 		/* Attempt to allocate from the specified free list. */
   1228 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1229 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
   1230 		if (pg != NULL) {
   1231 			goto gotit;
   1232 		}
   1233 
   1234 		/* Fall back, if possible. */
   1235 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1236 			strat = UVM_PGA_STRAT_NORMAL;
   1237 			goto again;
   1238 		}
   1239 
   1240 		/* No pages free!  Have pagedaemon free some memory. */
   1241 		splx(s);
   1242 		uvm_kick_pdaemon();
   1243 		return NULL;
   1244 
   1245 	case UVM_PGA_STRAT_NUMA:
   1246 		/*
   1247 		 * NUMA strategy (experimental): allocating from the correct
   1248 		 * bucket is more important than observing freelist
   1249 		 * priority.  Look only to the current NUMA node; if that
   1250 		 * fails, we need to look to other NUMA nodes, so retry with
   1251 		 * the normal strategy.
   1252 		 */
   1253 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1254 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
   1255 			if (pg != NULL) {
   1256 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1257 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1258 				goto gotit;
   1259 			}
   1260 			pg = uvm_pagealloc_pgb(ucpu, lcv,
   1261 			    ucpu->pgflbucket, &color, flags);
   1262 			if (pg != NULL) {
   1263 				goto gotit;
   1264 			}
   1265 		}
   1266 		strat = UVM_PGA_STRAT_NORMAL;
   1267 		goto again;
   1268 
   1269 	default:
   1270 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1271 		/* NOTREACHED */
   1272 	}
   1273 
   1274  gotit:
   1275 	/*
   1276 	 * We now know which color we actually allocated from; set
   1277 	 * the next color accordingly.
   1278 	 */
   1279 
   1280 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
   1281 
   1282 	/*
   1283 	 * while still at IPL_VM, update allocation statistics and remember
   1284 	 * if we have to zero the page
   1285 	 */
   1286 
   1287     	CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
   1288 	if (flags & UVM_PGA_ZERO) {
   1289 		if (pg->flags & PG_ZERO) {
   1290 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROHIT, 1);
   1291 			zeroit = 0;
   1292 		} else {
   1293 		    	CPU_COUNT(CPU_COUNT_PGA_ZEROMISS, 1);
   1294 			zeroit = 1;
   1295 		}
   1296 	}
   1297 	if (pg->flags & PG_ZERO) {
   1298 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, -1);
   1299 	}
   1300 	if (anon) {
   1301 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
   1302 	}
   1303 	splx(s);
   1304 	KASSERT((pg->flags & ~(PG_ZERO|PG_FREE)) == 0);
   1305 
   1306 	/*
   1307 	 * assign the page to the object.  as the page was free, we know
   1308 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
   1309 	 * the page's interlock if we are changing the values.
   1310 	 */
   1311 	if (anon != NULL || obj != NULL) {
   1312 		mutex_enter(&pg->interlock);
   1313 	}
   1314 	pg->offset = off;
   1315 	pg->uobject = obj;
   1316 	pg->uanon = anon;
   1317 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1318 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1319 	if (anon) {
   1320 		anon->an_page = pg;
   1321 		pg->flags |= PG_ANON;
   1322 		mutex_exit(&pg->interlock);
   1323 	} else if (obj) {
   1324 		/*
   1325 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
   1326 		 */
   1327 		if (UVM_OBJ_IS_VNODE(obj)) {
   1328 			pg->flags |= PG_FILE;
   1329 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
   1330 			pg->flags |= PG_AOBJ;
   1331 		}
   1332 		uvm_pageinsert_object(obj, pg);
   1333 		mutex_exit(&pg->interlock);
   1334 		error = uvm_pageinsert_tree(obj, pg);
   1335 		if (error != 0) {
   1336 			mutex_enter(&pg->interlock);
   1337 			uvm_pageremove_object(obj, pg);
   1338 			mutex_exit(&pg->interlock);
   1339 			uvm_pagefree(pg);
   1340 			return NULL;
   1341 		}
   1342 	}
   1343 
   1344 #if defined(UVM_PAGE_TRKOWN)
   1345 	pg->owner_tag = NULL;
   1346 #endif
   1347 	UVM_PAGE_OWN(pg, "new alloc");
   1348 
   1349 	if (flags & UVM_PGA_ZERO) {
   1350 		/*
   1351 		 * A zero'd page is not clean.  If we got a page not already
   1352 		 * zero'd, then we have to zero it ourselves.
   1353 		 */
   1354 		if (obj != NULL || anon != NULL) {
   1355 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1356 		}
   1357 		if (zeroit) {
   1358 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1359 		}
   1360 	}
   1361 
   1362 	return(pg);
   1363 }
   1364 
   1365 /*
   1366  * uvm_pagereplace: replace a page with another
   1367  *
   1368  * => object must be locked
   1369  * => page interlocks must be held
   1370  */
   1371 
   1372 void
   1373 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1374 {
   1375 	struct uvm_object *uobj = oldpg->uobject;
   1376 	struct vm_page *pg __diagused;
   1377 	uint64_t idx;
   1378 
   1379 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1380 	KASSERT(uobj != NULL);
   1381 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1382 	KASSERT(newpg->uobject == NULL);
   1383 	KASSERT(rw_write_held(uobj->vmobjlock));
   1384 	KASSERT(mutex_owned(&oldpg->interlock));
   1385 	KASSERT(mutex_owned(&newpg->interlock));
   1386 
   1387 	newpg->uobject = uobj;
   1388 	newpg->offset = oldpg->offset;
   1389 	idx = newpg->offset >> PAGE_SHIFT;
   1390 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
   1391 	KASSERT(pg == oldpg);
   1392 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
   1393 		if ((newpg->flags & PG_CLEAN) != 0) {
   1394 			radix_tree_clear_tag(&uobj->uo_pages, idx,
   1395 			    UVM_PAGE_DIRTY_TAG);
   1396 		} else {
   1397 			radix_tree_set_tag(&uobj->uo_pages, idx,
   1398 			    UVM_PAGE_DIRTY_TAG);
   1399 		}
   1400 	}
   1401 	/*
   1402 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
   1403 	 */
   1404 	newpg->flags |=
   1405 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
   1406 	uvm_pageinsert_object(uobj, newpg);
   1407 	uvm_pageremove_object(uobj, oldpg);
   1408 }
   1409 
   1410 /*
   1411  * uvm_pagerealloc: reallocate a page from one object to another
   1412  *
   1413  * => both objects must be locked
   1414  */
   1415 
   1416 int
   1417 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1418 {
   1419 	int error = 0;
   1420 
   1421 	/*
   1422 	 * remove it from the old object
   1423 	 */
   1424 
   1425 	if (pg->uobject) {
   1426 		uvm_pageremove_tree(pg->uobject, pg);
   1427 		uvm_pageremove_object(pg->uobject, pg);
   1428 	}
   1429 
   1430 	/*
   1431 	 * put it in the new object
   1432 	 */
   1433 
   1434 	if (newobj) {
   1435 		mutex_enter(&pg->interlock);
   1436 		pg->uobject = newobj;
   1437 		pg->offset = newoff;
   1438 		if (UVM_OBJ_IS_VNODE(newobj)) {
   1439 			pg->flags |= PG_FILE;
   1440 		} else if (UVM_OBJ_IS_AOBJ(newobj)) {
   1441 			pg->flags |= PG_AOBJ;
   1442 		}
   1443 		uvm_pageinsert_object(newobj, pg);
   1444 		mutex_exit(&pg->interlock);
   1445 		error = uvm_pageinsert_tree(newobj, pg);
   1446 		if (error != 0) {
   1447 			mutex_enter(&pg->interlock);
   1448 			uvm_pageremove_object(newobj, pg);
   1449 			mutex_exit(&pg->interlock);
   1450 		}
   1451 	}
   1452 
   1453 	return error;
   1454 }
   1455 
   1456 #ifdef DEBUG
   1457 /*
   1458  * check if page is zero-filled
   1459  */
   1460 void
   1461 uvm_pagezerocheck(struct vm_page *pg)
   1462 {
   1463 	int *p, *ep;
   1464 
   1465 	KASSERT(uvm_zerocheckkva != 0);
   1466 
   1467 	/*
   1468 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1469 	 * uvm page allocator.
   1470 	 *
   1471 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1472 	 */
   1473 	mutex_spin_enter(&uvm_zerochecklock);
   1474 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1475 	p = (int *)uvm_zerocheckkva;
   1476 	ep = (int *)((char *)p + PAGE_SIZE);
   1477 	pmap_update(pmap_kernel());
   1478 	while (p < ep) {
   1479 		if (*p != 0)
   1480 			panic("PG_ZERO page isn't zero-filled");
   1481 		p++;
   1482 	}
   1483 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1484 	mutex_spin_exit(&uvm_zerochecklock);
   1485 	/*
   1486 	 * pmap_update() is not necessary here because no one except us
   1487 	 * uses this VA.
   1488 	 */
   1489 }
   1490 #endif /* DEBUG */
   1491 
   1492 /*
   1493  * uvm_pagefree: free page
   1494  *
   1495  * => erase page's identity (i.e. remove from object)
   1496  * => put page on free list
   1497  * => caller must lock owning object (either anon or uvm_object)
   1498  * => assumes all valid mappings of pg are gone
   1499  */
   1500 
   1501 void
   1502 uvm_pagefree(struct vm_page *pg)
   1503 {
   1504 	struct pgfreelist *pgfl;
   1505 	struct pgflbucket *pgb;
   1506 	struct uvm_cpu *ucpu;
   1507 	kmutex_t *lock;
   1508 	int bucket, s;
   1509 	bool locked;
   1510 
   1511 #ifdef DEBUG
   1512 	if (pg->uobject == (void *)0xdeadbeef &&
   1513 	    pg->uanon == (void *)0xdeadbeef) {
   1514 		panic("uvm_pagefree: freeing free page %p", pg);
   1515 	}
   1516 #endif /* DEBUG */
   1517 
   1518 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1519 	KASSERT(!(pg->flags & PG_FREE));
   1520 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
   1521 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1522 		rw_write_held(pg->uanon->an_lock));
   1523 
   1524 	/*
   1525 	 * remove the page from the object's tree before acquiring any page
   1526 	 * interlocks: this can acquire locks to free radixtree nodes.
   1527 	 */
   1528 	if (pg->uobject != NULL) {
   1529 		uvm_pageremove_tree(pg->uobject, pg);
   1530 	}
   1531 
   1532 	/*
   1533 	 * if the page is loaned, resolve the loan instead of freeing.
   1534 	 */
   1535 
   1536 	if (pg->loan_count) {
   1537 		KASSERT(pg->wire_count == 0);
   1538 
   1539 		/*
   1540 		 * if the page is owned by an anon then we just want to
   1541 		 * drop anon ownership.  the kernel will free the page when
   1542 		 * it is done with it.  if the page is owned by an object,
   1543 		 * remove it from the object and mark it dirty for the benefit
   1544 		 * of possible anon owners.
   1545 		 *
   1546 		 * regardless of previous ownership, wakeup any waiters,
   1547 		 * unbusy the page, and we're done.
   1548 		 */
   1549 
   1550 		uvm_pagelock(pg);
   1551 		locked = true;
   1552 		if (pg->uobject != NULL) {
   1553 			uvm_pageremove_object(pg->uobject, pg);
   1554 			pg->flags &= ~(PG_FILE|PG_AOBJ);
   1555 		} else if (pg->uanon != NULL) {
   1556 			if ((pg->flags & PG_ANON) == 0) {
   1557 				pg->loan_count--;
   1558 			} else {
   1559 				const unsigned status = uvm_pagegetdirty(pg);
   1560 				pg->flags &= ~PG_ANON;
   1561 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1562 			}
   1563 			pg->uanon->an_page = NULL;
   1564 			pg->uanon = NULL;
   1565 		}
   1566 		if (pg->pqflags & PQ_WANTED) {
   1567 			wakeup(pg);
   1568 		}
   1569 		pg->pqflags &= ~PQ_WANTED;
   1570 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
   1571 #ifdef UVM_PAGE_TRKOWN
   1572 		pg->owner_tag = NULL;
   1573 #endif
   1574 		KASSERT((pg->flags & PG_STAT) == 0);
   1575 		if (pg->loan_count) {
   1576 			KASSERT(pg->uobject == NULL);
   1577 			if (pg->uanon == NULL) {
   1578 				uvm_pagedequeue(pg);
   1579 			}
   1580 			uvm_pageunlock(pg);
   1581 			return;
   1582 		}
   1583 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1584 	           pg->wire_count != 0) {
   1585 		uvm_pagelock(pg);
   1586 		locked = true;
   1587 	} else {
   1588 		locked = false;
   1589 	}
   1590 
   1591 	/*
   1592 	 * remove page from its object or anon.
   1593 	 */
   1594 	if (pg->uobject != NULL) {
   1595 		uvm_pageremove_object(pg->uobject, pg);
   1596 	} else if (pg->uanon != NULL) {
   1597 		const unsigned int status = uvm_pagegetdirty(pg);
   1598 		pg->uanon->an_page = NULL;
   1599 		pg->uanon = NULL;
   1600 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1601 	}
   1602 
   1603 	/*
   1604 	 * if the page was wired, unwire it now.
   1605 	 */
   1606 
   1607 	if (pg->wire_count) {
   1608 		pg->wire_count = 0;
   1609 		atomic_dec_uint(&uvmexp.wired);
   1610 	}
   1611 	if (locked) {
   1612 		/*
   1613 		 * wake anyone waiting on the page.
   1614 		 */
   1615 		if ((pg->pqflags & PQ_WANTED) != 0) {
   1616 			pg->pqflags &= ~PQ_WANTED;
   1617 			wakeup(pg);
   1618 		}
   1619 
   1620 		/*
   1621 		 * now remove the page from the queues.
   1622 		 */
   1623 		uvm_pagedequeue(pg);
   1624 		uvm_pageunlock(pg);
   1625 	} else {
   1626 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1627 	}
   1628 
   1629 	/*
   1630 	 * and put on free queue
   1631 	 */
   1632 
   1633 #ifdef DEBUG
   1634 	pg->uobject = (void *)0xdeadbeef;
   1635 	pg->uanon = (void *)0xdeadbeef;
   1636 	if (pg->flags & PG_ZERO)
   1637 		uvm_pagezerocheck(pg);
   1638 #endif /* DEBUG */
   1639 
   1640 	/* Try to send the page to the per-CPU cache. */
   1641 	s = splvm();
   1642     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
   1643 	if (pg->flags & PG_ZERO) {
   1644 	    	CPU_COUNT(CPU_COUNT_ZEROPAGES, 1);
   1645 	}
   1646 	ucpu = curcpu()->ci_data.cpu_uvm;
   1647 	bucket = uvm_page_get_bucket(pg);
   1648 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
   1649 		splx(s);
   1650 		return;
   1651 	}
   1652 
   1653 	/* Didn't work.  Never mind, send it to a global bucket. */
   1654 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
   1655 	pgb = pgfl->pgfl_buckets[bucket];
   1656 	lock = &uvm_freelist_locks[bucket].lock;
   1657 
   1658 	mutex_spin_enter(lock);
   1659 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
   1660 	pg->flags = (pg->flags & PG_ZERO) | PG_FREE;
   1661 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
   1662 	pgb->pgb_nfree++;
   1663 	mutex_spin_exit(lock);
   1664 	splx(s);
   1665 }
   1666 
   1667 /*
   1668  * uvm_page_unbusy: unbusy an array of pages.
   1669  *
   1670  * => pages must either all belong to the same object, or all belong to anons.
   1671  * => if pages are object-owned, object must be locked.
   1672  * => if pages are anon-owned, anons must be locked.
   1673  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1674  */
   1675 
   1676 void
   1677 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1678 {
   1679 	struct vm_page *pg;
   1680 	int i;
   1681 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1682 
   1683 	for (i = 0; i < npgs; i++) {
   1684 		pg = pgs[i];
   1685 		if (pg == NULL || pg == PGO_DONTCARE) {
   1686 			continue;
   1687 		}
   1688 
   1689 		KASSERT(uvm_page_owner_locked_p(pg, true));
   1690 		KASSERT(pg->flags & PG_BUSY);
   1691 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1692 		if (pg->flags & PG_RELEASED) {
   1693 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1694 			    (uintptr_t)pg, 0, 0, 0);
   1695 			KASSERT(pg->uobject != NULL ||
   1696 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1697 			pg->flags &= ~PG_RELEASED;
   1698 			uvm_pagefree(pg);
   1699 		} else {
   1700 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1701 			    (uintptr_t)pg, 0, 0, 0);
   1702 			KASSERT((pg->flags & PG_FAKE) == 0);
   1703 			pg->flags &= ~PG_BUSY;
   1704 			uvm_pagelock(pg);
   1705 			uvm_pagewakeup(pg);
   1706 			uvm_pageunlock(pg);
   1707 			UVM_PAGE_OWN(pg, NULL);
   1708 		}
   1709 	}
   1710 }
   1711 
   1712 /*
   1713  * uvm_pagewait: wait for a busy page
   1714  *
   1715  * => page must be known PG_BUSY
   1716  * => object must be read or write locked
   1717  * => object will be unlocked on return
   1718  */
   1719 
   1720 void
   1721 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
   1722 {
   1723 
   1724 	KASSERT(rw_lock_held(lock));
   1725 	KASSERT((pg->flags & PG_BUSY) != 0);
   1726 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1727 
   1728 	mutex_enter(&pg->interlock);
   1729 	pg->pqflags |= PQ_WANTED;
   1730 	rw_exit(lock);
   1731 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
   1732 }
   1733 
   1734 /*
   1735  * uvm_pagewakeup: wake anyone waiting on a page
   1736  *
   1737  * => page interlock must be held
   1738  */
   1739 
   1740 void
   1741 uvm_pagewakeup(struct vm_page *pg)
   1742 {
   1743 	UVMHIST_FUNC("uvm_pagewakeup"); UVMHIST_CALLED(ubchist);
   1744 
   1745 	KASSERT(mutex_owned(&pg->interlock));
   1746 
   1747 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
   1748 
   1749 	if ((pg->pqflags & PQ_WANTED) != 0) {
   1750 		wakeup(pg);
   1751 		pg->pqflags &= ~PQ_WANTED;
   1752 	}
   1753 }
   1754 
   1755 /*
   1756  * uvm_pagewanted_p: return true if someone is waiting on the page
   1757  *
   1758  * => object must be write locked (lock out all concurrent access)
   1759  */
   1760 
   1761 bool
   1762 uvm_pagewanted_p(struct vm_page *pg)
   1763 {
   1764 
   1765 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1766 
   1767 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
   1768 }
   1769 
   1770 #if defined(UVM_PAGE_TRKOWN)
   1771 /*
   1772  * uvm_page_own: set or release page ownership
   1773  *
   1774  * => this is a debugging function that keeps track of who sets PG_BUSY
   1775  *	and where they do it.   it can be used to track down problems
   1776  *	such a process setting "PG_BUSY" and never releasing it.
   1777  * => page's object [if any] must be locked
   1778  * => if "tag" is NULL then we are releasing page ownership
   1779  */
   1780 void
   1781 uvm_page_own(struct vm_page *pg, const char *tag)
   1782 {
   1783 
   1784 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1785 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1786 
   1787 	/* gain ownership? */
   1788 	if (tag) {
   1789 		KASSERT((pg->flags & PG_BUSY) != 0);
   1790 		if (pg->owner_tag) {
   1791 			printf("uvm_page_own: page %p already owned "
   1792 			    "by proc %d.%d [%s]\n", pg,
   1793 			    pg->owner, pg->lowner, pg->owner_tag);
   1794 			panic("uvm_page_own");
   1795 		}
   1796 		pg->owner = curproc->p_pid;
   1797 		pg->lowner = curlwp->l_lid;
   1798 		pg->owner_tag = tag;
   1799 		return;
   1800 	}
   1801 
   1802 	/* drop ownership */
   1803 	KASSERT((pg->flags & PG_BUSY) == 0);
   1804 	if (pg->owner_tag == NULL) {
   1805 		printf("uvm_page_own: dropping ownership of an non-owned "
   1806 		    "page (%p)\n", pg);
   1807 		panic("uvm_page_own");
   1808 	}
   1809 	pg->owner_tag = NULL;
   1810 }
   1811 #endif
   1812 
   1813 /*
   1814  * uvm_pageidlezero: zero free pages while the system is idle.
   1815  */
   1816 void
   1817 uvm_pageidlezero(void)
   1818 {
   1819 
   1820 	/*
   1821 	 * Disabled for the moment.  Previous strategy too cache heavy.  In
   1822 	 * the future we may experiment with zeroing the pages held in the
   1823 	 * per-CPU cache (uvm_pgflcache).
   1824 	 */
   1825 }
   1826 
   1827 /*
   1828  * uvm_pagelookup: look up a page
   1829  *
   1830  * => caller should lock object to keep someone from pulling the page
   1831  *	out from under it
   1832  */
   1833 
   1834 struct vm_page *
   1835 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1836 {
   1837 	struct vm_page *pg;
   1838 
   1839 	/* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
   1840 
   1841 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1842 
   1843 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1844 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1845 		(pg->flags & PG_BUSY) != 0);
   1846 	return pg;
   1847 }
   1848 
   1849 /*
   1850  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1851  *
   1852  * => caller must lock objects
   1853  * => caller must hold pg->interlock
   1854  */
   1855 
   1856 void
   1857 uvm_pagewire(struct vm_page *pg)
   1858 {
   1859 
   1860 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1861 	KASSERT(mutex_owned(&pg->interlock));
   1862 #if defined(READAHEAD_STATS)
   1863 	if ((pg->flags & PG_READAHEAD) != 0) {
   1864 		uvm_ra_hit.ev_count++;
   1865 		pg->flags &= ~PG_READAHEAD;
   1866 	}
   1867 #endif /* defined(READAHEAD_STATS) */
   1868 	if (pg->wire_count == 0) {
   1869 		uvm_pagedequeue(pg);
   1870 		atomic_inc_uint(&uvmexp.wired);
   1871 	}
   1872 	pg->wire_count++;
   1873 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1874 }
   1875 
   1876 /*
   1877  * uvm_pageunwire: unwire the page.
   1878  *
   1879  * => activate if wire count goes to zero.
   1880  * => caller must lock objects
   1881  * => caller must hold pg->interlock
   1882  */
   1883 
   1884 void
   1885 uvm_pageunwire(struct vm_page *pg)
   1886 {
   1887 
   1888 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1889 	KASSERT(pg->wire_count != 0);
   1890 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1891 	KASSERT(mutex_owned(&pg->interlock));
   1892 	pg->wire_count--;
   1893 	if (pg->wire_count == 0) {
   1894 		uvm_pageactivate(pg);
   1895 		KASSERT(uvmexp.wired != 0);
   1896 		atomic_dec_uint(&uvmexp.wired);
   1897 	}
   1898 }
   1899 
   1900 /*
   1901  * uvm_pagedeactivate: deactivate page
   1902  *
   1903  * => caller must lock objects
   1904  * => caller must check to make sure page is not wired
   1905  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1906  * => caller must clear the reference on the page before calling
   1907  * => caller must hold pg->interlock
   1908  */
   1909 
   1910 void
   1911 uvm_pagedeactivate(struct vm_page *pg)
   1912 {
   1913 
   1914 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1915 	KASSERT(mutex_owned(&pg->interlock));
   1916 	if (pg->wire_count == 0) {
   1917 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1918 		uvmpdpol_pagedeactivate(pg);
   1919 	}
   1920 }
   1921 
   1922 /*
   1923  * uvm_pageactivate: activate page
   1924  *
   1925  * => caller must lock objects
   1926  * => caller must hold pg->interlock
   1927  */
   1928 
   1929 void
   1930 uvm_pageactivate(struct vm_page *pg)
   1931 {
   1932 
   1933 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1934 	KASSERT(mutex_owned(&pg->interlock));
   1935 #if defined(READAHEAD_STATS)
   1936 	if ((pg->flags & PG_READAHEAD) != 0) {
   1937 		uvm_ra_hit.ev_count++;
   1938 		pg->flags &= ~PG_READAHEAD;
   1939 	}
   1940 #endif /* defined(READAHEAD_STATS) */
   1941 	if (pg->wire_count == 0) {
   1942 		uvmpdpol_pageactivate(pg);
   1943 	}
   1944 }
   1945 
   1946 /*
   1947  * uvm_pagedequeue: remove a page from any paging queue
   1948  *
   1949  * => caller must lock objects
   1950  * => caller must hold pg->interlock
   1951  */
   1952 void
   1953 uvm_pagedequeue(struct vm_page *pg)
   1954 {
   1955 
   1956 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1957 	KASSERT(mutex_owned(&pg->interlock));
   1958 	if (uvmpdpol_pageisqueued_p(pg)) {
   1959 		uvmpdpol_pagedequeue(pg);
   1960 	}
   1961 }
   1962 
   1963 /*
   1964  * uvm_pageenqueue: add a page to a paging queue without activating.
   1965  * used where a page is not really demanded (yet).  eg. read-ahead
   1966  *
   1967  * => caller must lock objects
   1968  * => caller must hold pg->interlock
   1969  */
   1970 void
   1971 uvm_pageenqueue(struct vm_page *pg)
   1972 {
   1973 
   1974 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1975 	KASSERT(mutex_owned(&pg->interlock));
   1976 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1977 		uvmpdpol_pageenqueue(pg);
   1978 	}
   1979 }
   1980 
   1981 /*
   1982  * uvm_pagelock: acquire page interlock
   1983  */
   1984 void
   1985 uvm_pagelock(struct vm_page *pg)
   1986 {
   1987 
   1988 	mutex_enter(&pg->interlock);
   1989 }
   1990 
   1991 /*
   1992  * uvm_pagelock2: acquire two page interlocks
   1993  */
   1994 void
   1995 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
   1996 {
   1997 
   1998 	if (pg1 < pg2) {
   1999 		mutex_enter(&pg1->interlock);
   2000 		mutex_enter(&pg2->interlock);
   2001 	} else {
   2002 		mutex_enter(&pg2->interlock);
   2003 		mutex_enter(&pg1->interlock);
   2004 	}
   2005 }
   2006 
   2007 /*
   2008  * uvm_pageunlock: release page interlock, and if a page replacement intent
   2009  * is set on the page, pass it to uvmpdpol to make real.
   2010  *
   2011  * => caller must hold pg->interlock
   2012  */
   2013 void
   2014 uvm_pageunlock(struct vm_page *pg)
   2015 {
   2016 
   2017 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
   2018 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
   2019 	    	mutex_exit(&pg->interlock);
   2020 	    	return;
   2021 	}
   2022 	pg->pqflags |= PQ_INTENT_QUEUED;
   2023 	mutex_exit(&pg->interlock);
   2024 	uvmpdpol_pagerealize(pg);
   2025 }
   2026 
   2027 /*
   2028  * uvm_pageunlock2: release two page interlocks, and for both pages if a
   2029  * page replacement intent is set on the page, pass it to uvmpdpol to make
   2030  * real.
   2031  *
   2032  * => caller must hold pg->interlock
   2033  */
   2034 void
   2035 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
   2036 {
   2037 
   2038 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
   2039 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
   2040 	    	mutex_exit(&pg1->interlock);
   2041 	    	pg1 = NULL;
   2042 	} else {
   2043 		pg1->pqflags |= PQ_INTENT_QUEUED;
   2044 		mutex_exit(&pg1->interlock);
   2045 	}
   2046 
   2047 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
   2048 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
   2049 	    	mutex_exit(&pg2->interlock);
   2050 	    	pg2 = NULL;
   2051 	} else {
   2052 		pg2->pqflags |= PQ_INTENT_QUEUED;
   2053 		mutex_exit(&pg2->interlock);
   2054 	}
   2055 
   2056 	if (pg1 != NULL) {
   2057 		uvmpdpol_pagerealize(pg1);
   2058 	}
   2059 	if (pg2 != NULL) {
   2060 		uvmpdpol_pagerealize(pg2);
   2061 	}
   2062 }
   2063 
   2064 /*
   2065  * uvm_pagezero: zero fill a page
   2066  *
   2067  * => if page is part of an object then the object should be locked
   2068  *	to protect pg->flags.
   2069  */
   2070 
   2071 void
   2072 uvm_pagezero(struct vm_page *pg)
   2073 {
   2074 
   2075 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2076 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   2077 }
   2078 
   2079 /*
   2080  * uvm_pagecopy: copy a page
   2081  *
   2082  * => if page is part of an object then the object should be locked
   2083  *	to protect pg->flags.
   2084  */
   2085 
   2086 void
   2087 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   2088 {
   2089 
   2090 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
   2091 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   2092 }
   2093 
   2094 /*
   2095  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   2096  */
   2097 
   2098 bool
   2099 uvm_pageismanaged(paddr_t pa)
   2100 {
   2101 
   2102 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   2103 }
   2104 
   2105 /*
   2106  * uvm_page_lookup_freelist: look up the free list for the specified page
   2107  */
   2108 
   2109 int
   2110 uvm_page_lookup_freelist(struct vm_page *pg)
   2111 {
   2112 	uvm_physseg_t upm;
   2113 
   2114 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2115 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   2116 	return uvm_physseg_get_free_list(upm);
   2117 }
   2118 
   2119 /*
   2120  * uvm_page_owner_locked_p: return true if object associated with page is
   2121  * locked.  this is a weak check for runtime assertions only.
   2122  */
   2123 
   2124 bool
   2125 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
   2126 {
   2127 
   2128 	if (pg->uobject != NULL) {
   2129 		return exclusive
   2130 		    ? rw_write_held(pg->uobject->vmobjlock)
   2131 		    : rw_lock_held(pg->uobject->vmobjlock);
   2132 	}
   2133 	if (pg->uanon != NULL) {
   2134 		return exclusive
   2135 		    ? rw_write_held(pg->uanon->an_lock)
   2136 		    : rw_lock_held(pg->uanon->an_lock);
   2137 	}
   2138 	return true;
   2139 }
   2140 
   2141 /*
   2142  * uvm_pagereadonly_p: return if the page should be mapped read-only
   2143  */
   2144 
   2145 bool
   2146 uvm_pagereadonly_p(struct vm_page *pg)
   2147 {
   2148 	struct uvm_object * const uobj = pg->uobject;
   2149 
   2150 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
   2151 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
   2152 	if ((pg->flags & PG_RDONLY) != 0) {
   2153 		return true;
   2154 	}
   2155 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
   2156 		return true;
   2157 	}
   2158 	if (uobj == NULL) {
   2159 		return false;
   2160 	}
   2161 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
   2162 }
   2163 
   2164 #ifdef PMAP_DIRECT
   2165 /*
   2166  * Call pmap to translate physical address into a virtual and to run a callback
   2167  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   2168  * or equivalent.
   2169  */
   2170 int
   2171 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   2172             int (*process)(void *, size_t, void *), void *arg)
   2173 {
   2174 	int error = 0;
   2175 	paddr_t pa;
   2176 	size_t todo;
   2177 	voff_t pgoff = (off & PAGE_MASK);
   2178 	struct vm_page *pg;
   2179 
   2180 	KASSERT(npages > 0 && len > 0);
   2181 
   2182 	for (int i = 0; i < npages; i++) {
   2183 		pg = pgs[i];
   2184 
   2185 		KASSERT(len > 0);
   2186 
   2187 		/*
   2188 		 * Caller is responsible for ensuring all the pages are
   2189 		 * available.
   2190 		 */
   2191 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   2192 
   2193 		pa = VM_PAGE_TO_PHYS(pg);
   2194 		todo = MIN(len, PAGE_SIZE - pgoff);
   2195 
   2196 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   2197 		if (error)
   2198 			break;
   2199 
   2200 		pgoff = 0;
   2201 		len -= todo;
   2202 	}
   2203 
   2204 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   2205 	return error;
   2206 }
   2207 #endif /* PMAP_DIRECT */
   2208 
   2209 #if defined(DDB) || defined(DEBUGPRINT)
   2210 
   2211 /*
   2212  * uvm_page_printit: actually print the page
   2213  */
   2214 
   2215 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2216 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2217 
   2218 void
   2219 uvm_page_printit(struct vm_page *pg, bool full,
   2220     void (*pr)(const char *, ...))
   2221 {
   2222 	struct vm_page *tpg;
   2223 	struct uvm_object *uobj;
   2224 	struct pgflbucket *pgb;
   2225 	struct pgflist *pgl;
   2226 	char pgbuf[128];
   2227 
   2228 	(*pr)("PAGE %p:\n", pg);
   2229 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2230 	(*pr)("  flags=%s\n", pgbuf);
   2231 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
   2232 	(*pr)("  pqflags=%s\n", pgbuf);
   2233 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
   2234 	    pg->uobject, pg->uanon, (long long)pg->offset);
   2235 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
   2236 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
   2237 	    uvm_page_get_freelist(pg));
   2238 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
   2239 #if defined(UVM_PAGE_TRKOWN)
   2240 	if (pg->flags & PG_BUSY)
   2241 		(*pr)("  owning process = %d.%d, tag=%s\n",
   2242 		    pg->owner, pg->lowner, pg->owner_tag);
   2243 	else
   2244 		(*pr)("  page not busy, no owner\n");
   2245 #else
   2246 	(*pr)("  [page ownership tracking disabled]\n");
   2247 #endif
   2248 
   2249 	if (!full)
   2250 		return;
   2251 
   2252 	/* cross-verify object/anon */
   2253 	if ((pg->flags & PG_FREE) == 0) {
   2254 		if (pg->flags & PG_ANON) {
   2255 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2256 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2257 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2258 			else
   2259 				(*pr)("  anon backpointer is OK\n");
   2260 		} else {
   2261 			uobj = pg->uobject;
   2262 			if (uobj) {
   2263 				(*pr)("  checking object list\n");
   2264 				tpg = uvm_pagelookup(uobj, pg->offset);
   2265 				if (tpg)
   2266 					(*pr)("  page found on object list\n");
   2267 				else
   2268 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2269 			}
   2270 		}
   2271 	}
   2272 
   2273 	/* cross-verify page queue */
   2274 	if (pg->flags & PG_FREE) {
   2275 		int fl = uvm_page_get_freelist(pg);
   2276 		int b = uvm_page_get_bucket(pg);
   2277 		pgb = uvm.page_free[fl].pgfl_buckets[b];
   2278 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
   2279 		(*pr)("  checking pageq list\n");
   2280 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2281 			if (tpg == pg) {
   2282 				break;
   2283 			}
   2284 		}
   2285 		if (tpg)
   2286 			(*pr)("  page found on pageq list\n");
   2287 		else
   2288 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2289 	}
   2290 }
   2291 
   2292 /*
   2293  * uvm_page_printall - print a summary of all managed pages
   2294  */
   2295 
   2296 void
   2297 uvm_page_printall(void (*pr)(const char *, ...))
   2298 {
   2299 	uvm_physseg_t i;
   2300 	paddr_t pfn;
   2301 	struct vm_page *pg;
   2302 
   2303 	(*pr)("%18s %4s %4s %18s %18s"
   2304 #ifdef UVM_PAGE_TRKOWN
   2305 	    " OWNER"
   2306 #endif
   2307 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2308 	for (i = uvm_physseg_get_first();
   2309 	     uvm_physseg_valid_p(i);
   2310 	     i = uvm_physseg_get_next(i)) {
   2311 		for (pfn = uvm_physseg_get_start(i);
   2312 		     pfn < uvm_physseg_get_end(i);
   2313 		     pfn++) {
   2314 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   2315 
   2316 			(*pr)("%18p %04x %08x %18p %18p",
   2317 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2318 			    pg->uanon);
   2319 #ifdef UVM_PAGE_TRKOWN
   2320 			if (pg->flags & PG_BUSY)
   2321 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2322 #endif
   2323 			(*pr)("\n");
   2324 		}
   2325 	}
   2326 }
   2327 
   2328 /*
   2329  * uvm_page_print_freelists - print a summary freelists
   2330  */
   2331 
   2332 void
   2333 uvm_page_print_freelists(void (*pr)(const char *, ...))
   2334 {
   2335 	struct pgfreelist *pgfl;
   2336 	struct pgflbucket *pgb;
   2337 	int fl, b, c;
   2338 
   2339 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
   2340 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
   2341 
   2342 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   2343 		pgfl = &uvm.page_free[fl];
   2344 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
   2345 		for (b = 0; b < uvm.bucketcount; b++) {
   2346 			pgb = uvm.page_free[fl].pgfl_buckets[b];
   2347 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
   2348 			    b, pgb, pgb->pgb_nfree,
   2349 			    &uvm_freelist_locks[b].lock);
   2350 			for (c = 0; c < uvmexp.ncolors; c++) {
   2351 				(*pr)("        color(%d) @ %p, ", c,
   2352 				    &pgb->pgb_colors[c]);
   2353 				(*pr)("first page = %p\n",
   2354 				    LIST_FIRST(&pgb->pgb_colors[c]));
   2355 			}
   2356 		}
   2357 	}
   2358 }
   2359 
   2360 #endif /* DDB || DEBUGPRINT */
   2361