Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.244
      1 /*	$NetBSD: uvm_page.c,v 1.244 2020/07/09 05:57:15 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     34  * Copyright (c) 1991, 1993, The Regents of the University of California.
     35  *
     36  * All rights reserved.
     37  *
     38  * This code is derived from software contributed to Berkeley by
     39  * The Mach Operating System project at Carnegie-Mellon University.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     67  *
     68  *
     69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     70  * All rights reserved.
     71  *
     72  * Permission to use, copy, modify and distribute this software and
     73  * its documentation is hereby granted, provided that both the copyright
     74  * notice and this permission notice appear in all copies of the
     75  * software, derivative works or modified versions, and any portions
     76  * thereof, and that both notices appear in supporting documentation.
     77  *
     78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     81  *
     82  * Carnegie Mellon requests users of this software to return to
     83  *
     84  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     85  *  School of Computer Science
     86  *  Carnegie Mellon University
     87  *  Pittsburgh PA 15213-3890
     88  *
     89  * any improvements or extensions that they make and grant Carnegie the
     90  * rights to redistribute these changes.
     91  */
     92 
     93 /*
     94  * uvm_page.c: page ops.
     95  */
     96 
     97 #include <sys/cdefs.h>
     98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.244 2020/07/09 05:57:15 skrll Exp $");
     99 
    100 #include "opt_ddb.h"
    101 #include "opt_uvm.h"
    102 #include "opt_uvmhist.h"
    103 #include "opt_readahead.h"
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/sched.h>
    108 #include <sys/kernel.h>
    109 #include <sys/vnode.h>
    110 #include <sys/proc.h>
    111 #include <sys/radixtree.h>
    112 #include <sys/atomic.h>
    113 #include <sys/cpu.h>
    114 
    115 #include <uvm/uvm.h>
    116 #include <uvm/uvm_ddb.h>
    117 #include <uvm/uvm_pdpolicy.h>
    118 #include <uvm/uvm_pgflcache.h>
    119 
    120 /*
    121  * number of pages per-CPU to reserve for the kernel.
    122  */
    123 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    124 #define	UVM_RESERVED_PAGES_PER_CPU	5
    125 #endif
    126 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    127 
    128 /*
    129  * physical memory size;
    130  */
    131 psize_t physmem;
    132 
    133 /*
    134  * local variables
    135  */
    136 
    137 /*
    138  * these variables record the values returned by vm_page_bootstrap,
    139  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    140  * and pmap_startup here also uses them internally.
    141  */
    142 
    143 static vaddr_t      virtual_space_start;
    144 static vaddr_t      virtual_space_end;
    145 
    146 /*
    147  * we allocate an initial number of page colors in uvm_page_init(),
    148  * and remember them.  We may re-color pages as cache sizes are
    149  * discovered during the autoconfiguration phase.  But we can never
    150  * free the initial set of buckets, since they are allocated using
    151  * uvm_pageboot_alloc().
    152  */
    153 
    154 static size_t recolored_pages_memsize /* = 0 */;
    155 static char *recolored_pages_mem;
    156 
    157 /*
    158  * freelist locks - one per bucket.
    159  */
    160 
    161 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
    162     __cacheline_aligned;
    163 
    164 /*
    165  * basic NUMA information.
    166  */
    167 
    168 static struct uvm_page_numa_region {
    169 	struct uvm_page_numa_region	*next;
    170 	paddr_t				start;
    171 	paddr_t				size;
    172 	u_int				numa_id;
    173 } *uvm_page_numa_region;
    174 
    175 #ifdef DEBUG
    176 kmutex_t uvm_zerochecklock __cacheline_aligned;
    177 vaddr_t uvm_zerocheckkva;
    178 #endif /* DEBUG */
    179 
    180 /*
    181  * These functions are reserved for uvm(9) internal use and are not
    182  * exported in the header file uvm_physseg.h
    183  *
    184  * Thus they are redefined here.
    185  */
    186 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    187 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    188 
    189 /* returns a pgs array */
    190 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    191 
    192 /*
    193  * inline functions
    194  */
    195 
    196 /*
    197  * uvm_pageinsert: insert a page in the object.
    198  *
    199  * => caller must lock object
    200  * => call should have already set pg's object and offset pointers
    201  *    and bumped the version counter
    202  */
    203 
    204 static inline void
    205 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    206 {
    207 
    208 	KASSERT(uobj == pg->uobject);
    209 	KASSERT(rw_write_held(uobj->vmobjlock));
    210 	KASSERT((pg->flags & PG_TABLED) == 0);
    211 
    212 	if ((pg->flags & PG_STAT) != 0) {
    213 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
    214 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    215 
    216 		if ((pg->flags & PG_FILE) != 0) {
    217 			if (uobj->uo_npages == 0) {
    218 				struct vnode *vp = (struct vnode *)uobj;
    219 				mutex_enter(vp->v_interlock);
    220 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
    221 				vp->v_iflag |= VI_PAGES;
    222 				vholdl(vp);
    223 				mutex_exit(vp->v_interlock);
    224 			}
    225 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    226 				cpu_count(CPU_COUNT_EXECPAGES, 1);
    227 			}
    228 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
    229 		} else {
    230 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
    231 		}
    232 	}
    233 	pg->flags |= PG_TABLED;
    234 	uobj->uo_npages++;
    235 }
    236 
    237 static inline int
    238 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    239 {
    240 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    241 	int error;
    242 
    243 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    244 	if (error != 0) {
    245 		return error;
    246 	}
    247 	if ((pg->flags & PG_CLEAN) == 0) {
    248 		radix_tree_set_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG);
    249 	}
    250 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
    251 	    radix_tree_get_tag(&uobj->uo_pages, idx, UVM_PAGE_DIRTY_TAG));
    252 	return 0;
    253 }
    254 
    255 /*
    256  * uvm_page_remove: remove page from object.
    257  *
    258  * => caller must lock object
    259  */
    260 
    261 static inline void
    262 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    263 {
    264 
    265 	KASSERT(uobj == pg->uobject);
    266 	KASSERT(rw_write_held(uobj->vmobjlock));
    267 	KASSERT(pg->flags & PG_TABLED);
    268 
    269 	if ((pg->flags & PG_STAT) != 0) {
    270 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
    271 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    272 
    273 		if ((pg->flags & PG_FILE) != 0) {
    274 			if (uobj->uo_npages == 1) {
    275 				struct vnode *vp = (struct vnode *)uobj;
    276 				mutex_enter(vp->v_interlock);
    277 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
    278 				vp->v_iflag &= ~VI_PAGES;
    279 				holdrelel(vp);
    280 				mutex_exit(vp->v_interlock);
    281 			}
    282 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    283 				cpu_count(CPU_COUNT_EXECPAGES, -1);
    284 			}
    285 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
    286 		} else {
    287 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
    288 		}
    289 	}
    290 	uobj->uo_npages--;
    291 	pg->flags &= ~PG_TABLED;
    292 	pg->uobject = NULL;
    293 }
    294 
    295 static inline void
    296 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    297 {
    298 	struct vm_page *opg __unused;
    299 
    300 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    301 	KASSERT(pg == opg);
    302 }
    303 
    304 static void
    305 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
    306 {
    307 	int i;
    308 
    309 	pgb->pgb_nfree = 0;
    310 	for (i = 0; i < uvmexp.ncolors; i++) {
    311 		LIST_INIT(&pgb->pgb_colors[i]);
    312 	}
    313 	pgfl->pgfl_buckets[num] = pgb;
    314 }
    315 
    316 /*
    317  * uvm_page_init: init the page system.   called from uvm_init().
    318  *
    319  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    320  */
    321 
    322 void
    323 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    324 {
    325 	static struct uvm_cpu boot_cpu __cacheline_aligned;
    326 	psize_t freepages, pagecount, bucketsize, n;
    327 	struct pgflbucket *pgb;
    328 	struct vm_page *pagearray;
    329 	char *bucketarray;
    330 	uvm_physseg_t bank;
    331 	int fl, b;
    332 
    333 	KASSERT(ncpu <= 1);
    334 
    335 	/*
    336 	 * init the page queues and free page queue locks, except the
    337 	 * free list; we allocate that later (with the initial vm_page
    338 	 * structures).
    339 	 */
    340 
    341 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    342 	uvmpdpol_init();
    343 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
    344 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
    345 	}
    346 
    347 	/*
    348 	 * allocate vm_page structures.
    349 	 */
    350 
    351 	/*
    352 	 * sanity check:
    353 	 * before calling this function the MD code is expected to register
    354 	 * some free RAM with the uvm_page_physload() function.   our job
    355 	 * now is to allocate vm_page structures for this memory.
    356 	 */
    357 
    358 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    359 		panic("uvm_page_bootstrap: no memory pre-allocated");
    360 
    361 	/*
    362 	 * first calculate the number of free pages...
    363 	 *
    364 	 * note that we use start/end rather than avail_start/avail_end.
    365 	 * this allows us to allocate extra vm_page structures in case we
    366 	 * want to return some memory to the pool after booting.
    367 	 */
    368 
    369 	freepages = 0;
    370 
    371 	for (bank = uvm_physseg_get_first();
    372 	     uvm_physseg_valid_p(bank) ;
    373 	     bank = uvm_physseg_get_next(bank)) {
    374 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    375 	}
    376 
    377 	/*
    378 	 * Let MD code initialize the number of colors, or default
    379 	 * to 1 color if MD code doesn't care.
    380 	 */
    381 	if (uvmexp.ncolors == 0)
    382 		uvmexp.ncolors = 1;
    383 	uvmexp.colormask = uvmexp.ncolors - 1;
    384 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    385 
    386 	/* We always start with only 1 bucket. */
    387 	uvm.bucketcount = 1;
    388 
    389 	/*
    390 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    391 	 * use.   for each page of memory we use we need a vm_page structure.
    392 	 * thus, the total number of pages we can use is the total size of
    393 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    394 	 * structure.   we add one to freepages as a fudge factor to avoid
    395 	 * truncation errors (since we can only allocate in terms of whole
    396 	 * pages).
    397 	 */
    398 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    399 	    (PAGE_SIZE + sizeof(struct vm_page));
    400 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
    401 	bucketsize = roundup2(bucketsize, coherency_unit);
    402 	bucketarray = (void *)uvm_pageboot_alloc(
    403 	    bucketsize * VM_NFREELIST +
    404 	    pagecount * sizeof(struct vm_page));
    405 	pagearray = (struct vm_page *)
    406 	    (bucketarray + bucketsize * VM_NFREELIST);
    407 
    408 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    409 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
    410 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
    411 	}
    412 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    413 
    414 	/*
    415 	 * init the freelist cache in the disabled state.
    416 	 */
    417 	uvm_pgflcache_init();
    418 
    419 	/*
    420 	 * init the vm_page structures and put them in the correct place.
    421 	 */
    422 	/* First init the extent */
    423 
    424 	for (bank = uvm_physseg_get_first(),
    425 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    426 	     uvm_physseg_valid_p(bank);
    427 	     bank = uvm_physseg_get_next(bank)) {
    428 
    429 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    430 		uvm_physseg_seg_alloc_from_slab(bank, n);
    431 		uvm_physseg_init_seg(bank, pagearray);
    432 
    433 		/* set up page array pointers */
    434 		pagearray += n;
    435 		pagecount -= n;
    436 	}
    437 
    438 	/*
    439 	 * pass up the values of virtual_space_start and
    440 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    441 	 * layers of the VM.
    442 	 */
    443 
    444 	*kvm_startp = round_page(virtual_space_start);
    445 	*kvm_endp = trunc_page(virtual_space_end);
    446 #ifdef DEBUG
    447 	/*
    448 	 * steal kva for uvm_pagezerocheck().
    449 	 */
    450 	uvm_zerocheckkva = *kvm_startp;
    451 	*kvm_startp += PAGE_SIZE;
    452 	mutex_init(&uvm_zerochecklock, MUTEX_DEFAULT, IPL_VM);
    453 #endif /* DEBUG */
    454 
    455 	/*
    456 	 * init various thresholds.
    457 	 */
    458 
    459 	uvmexp.reserve_pagedaemon = 1;
    460 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    461 
    462 	/*
    463 	 * done!
    464 	 */
    465 
    466 	uvm.page_init_done = true;
    467 }
    468 
    469 /*
    470  * uvm_pgfl_lock: lock all freelist buckets
    471  */
    472 
    473 void
    474 uvm_pgfl_lock(void)
    475 {
    476 	int i;
    477 
    478 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    479 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
    480 	}
    481 }
    482 
    483 /*
    484  * uvm_pgfl_unlock: unlock all freelist buckets
    485  */
    486 
    487 void
    488 uvm_pgfl_unlock(void)
    489 {
    490 	int i;
    491 
    492 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    493 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
    494 	}
    495 }
    496 
    497 /*
    498  * uvm_setpagesize: set the page size
    499  *
    500  * => sets page_shift and page_mask from uvmexp.pagesize.
    501  */
    502 
    503 void
    504 uvm_setpagesize(void)
    505 {
    506 
    507 	/*
    508 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    509 	 * to be a constant (indicated by being a non-zero value).
    510 	 */
    511 	if (uvmexp.pagesize == 0) {
    512 		if (PAGE_SIZE == 0)
    513 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    514 		uvmexp.pagesize = PAGE_SIZE;
    515 	}
    516 	uvmexp.pagemask = uvmexp.pagesize - 1;
    517 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    518 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    519 		    uvmexp.pagesize, uvmexp.pagesize);
    520 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    521 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    522 			break;
    523 }
    524 
    525 /*
    526  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    527  */
    528 
    529 vaddr_t
    530 uvm_pageboot_alloc(vsize_t size)
    531 {
    532 	static bool initialized = false;
    533 	vaddr_t addr;
    534 #if !defined(PMAP_STEAL_MEMORY)
    535 	vaddr_t vaddr;
    536 	paddr_t paddr;
    537 #endif
    538 
    539 	/*
    540 	 * on first call to this function, initialize ourselves.
    541 	 */
    542 	if (initialized == false) {
    543 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    544 
    545 		/* round it the way we like it */
    546 		virtual_space_start = round_page(virtual_space_start);
    547 		virtual_space_end = trunc_page(virtual_space_end);
    548 
    549 		initialized = true;
    550 	}
    551 
    552 	/* round to page size */
    553 	size = round_page(size);
    554 	uvmexp.bootpages += atop(size);
    555 
    556 #if defined(PMAP_STEAL_MEMORY)
    557 
    558 	/*
    559 	 * defer bootstrap allocation to MD code (it may want to allocate
    560 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    561 	 * virtual_space_start/virtual_space_end if necessary.
    562 	 */
    563 
    564 	addr = pmap_steal_memory(size, &virtual_space_start,
    565 	    &virtual_space_end);
    566 
    567 	return(addr);
    568 
    569 #else /* !PMAP_STEAL_MEMORY */
    570 
    571 	/*
    572 	 * allocate virtual memory for this request
    573 	 */
    574 	if (virtual_space_start == virtual_space_end ||
    575 	    (virtual_space_end - virtual_space_start) < size)
    576 		panic("uvm_pageboot_alloc: out of virtual space");
    577 
    578 	addr = virtual_space_start;
    579 
    580 #ifdef PMAP_GROWKERNEL
    581 	/*
    582 	 * If the kernel pmap can't map the requested space,
    583 	 * then allocate more resources for it.
    584 	 */
    585 	if (uvm_maxkaddr < (addr + size)) {
    586 		uvm_maxkaddr = pmap_growkernel(addr + size);
    587 		if (uvm_maxkaddr < (addr + size))
    588 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    589 	}
    590 #endif
    591 
    592 	virtual_space_start += size;
    593 
    594 	/*
    595 	 * allocate and mapin physical pages to back new virtual pages
    596 	 */
    597 
    598 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    599 	    vaddr += PAGE_SIZE) {
    600 
    601 		if (!uvm_page_physget(&paddr))
    602 			panic("uvm_pageboot_alloc: out of memory");
    603 
    604 		/*
    605 		 * Note this memory is no longer managed, so using
    606 		 * pmap_kenter is safe.
    607 		 */
    608 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    609 	}
    610 	pmap_update(pmap_kernel());
    611 	return(addr);
    612 #endif	/* PMAP_STEAL_MEMORY */
    613 }
    614 
    615 #if !defined(PMAP_STEAL_MEMORY)
    616 /*
    617  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    618  *
    619  * => attempt to allocate it off the end of a segment in which the "avail"
    620  *    values match the start/end values.   if we can't do that, then we
    621  *    will advance both values (making them equal, and removing some
    622  *    vm_page structures from the non-avail area).
    623  * => return false if out of memory.
    624  */
    625 
    626 /* subroutine: try to allocate from memory chunks on the specified freelist */
    627 static bool uvm_page_physget_freelist(paddr_t *, int);
    628 
    629 static bool
    630 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    631 {
    632 	uvm_physseg_t lcv;
    633 
    634 	/* pass 1: try allocating from a matching end */
    635 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    636 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    637 #else
    638 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    639 #endif
    640 	{
    641 		if (uvm.page_init_done == true)
    642 			panic("uvm_page_physget: called _after_ bootstrap");
    643 
    644 		/* Try to match at front or back on unused segment */
    645 		if (uvm_page_physunload(lcv, freelist, paddrp))
    646 			return true;
    647 	}
    648 
    649 	/* pass2: forget about matching ends, just allocate something */
    650 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    651 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    652 #else
    653 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    654 #endif
    655 	{
    656 		/* Try the front regardless. */
    657 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    658 			return true;
    659 	}
    660 	return false;
    661 }
    662 
    663 bool
    664 uvm_page_physget(paddr_t *paddrp)
    665 {
    666 	int i;
    667 
    668 	/* try in the order of freelist preference */
    669 	for (i = 0; i < VM_NFREELIST; i++)
    670 		if (uvm_page_physget_freelist(paddrp, i) == true)
    671 			return (true);
    672 	return (false);
    673 }
    674 #endif /* PMAP_STEAL_MEMORY */
    675 
    676 /*
    677  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    678  * back from an I/O mapping (ugh!).   used in some MD code as well.
    679  */
    680 struct vm_page *
    681 uvm_phys_to_vm_page(paddr_t pa)
    682 {
    683 	paddr_t pf = atop(pa);
    684 	paddr_t	off;
    685 	uvm_physseg_t	upm;
    686 
    687 	upm = uvm_physseg_find(pf, &off);
    688 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    689 		return uvm_physseg_get_pg(upm, off);
    690 	return(NULL);
    691 }
    692 
    693 paddr_t
    694 uvm_vm_page_to_phys(const struct vm_page *pg)
    695 {
    696 
    697 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    698 }
    699 
    700 /*
    701  * uvm_page_numa_load: load NUMA range description.
    702  */
    703 void
    704 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
    705 {
    706 	struct uvm_page_numa_region *d;
    707 
    708 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
    709 
    710 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
    711 	d->start = start;
    712 	d->size = size;
    713 	d->numa_id = numa_id;
    714 	d->next = uvm_page_numa_region;
    715 	uvm_page_numa_region = d;
    716 }
    717 
    718 /*
    719  * uvm_page_numa_lookup: lookup NUMA node for the given page.
    720  */
    721 static u_int
    722 uvm_page_numa_lookup(struct vm_page *pg)
    723 {
    724 	struct uvm_page_numa_region *d;
    725 	static bool warned;
    726 	paddr_t pa;
    727 
    728 	KASSERT(uvm_page_numa_region != NULL);
    729 
    730 	pa = VM_PAGE_TO_PHYS(pg);
    731 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
    732 		if (pa >= d->start && pa < d->start + d->size) {
    733 			return d->numa_id;
    734 		}
    735 	}
    736 
    737 	if (!warned) {
    738 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
    739 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
    740 		warned = true;
    741 	}
    742 
    743 	return 0;
    744 }
    745 
    746 /*
    747  * uvm_page_redim: adjust freelist dimensions if they have changed.
    748  */
    749 
    750 static void
    751 uvm_page_redim(int newncolors, int newnbuckets)
    752 {
    753 	struct pgfreelist npgfl;
    754 	struct pgflbucket *opgb, *npgb;
    755 	struct pgflist *ohead, *nhead;
    756 	struct vm_page *pg;
    757 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
    758 	int fl, ob, oc, nb, nc, obuckets, ocolors;
    759 	char *bucketarray, *oldbucketmem, *bucketmem;
    760 
    761 	KASSERT(((newncolors - 1) & newncolors) == 0);
    762 
    763 	/* Anything to do? */
    764 	if (newncolors <= uvmexp.ncolors &&
    765 	    newnbuckets == uvm.bucketcount) {
    766 		return;
    767 	}
    768 	if (uvm.page_init_done == false) {
    769 		uvmexp.ncolors = newncolors;
    770 		return;
    771 	}
    772 
    773 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
    774 	bucketsize = roundup2(bucketsize, coherency_unit);
    775 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
    776 	    coherency_unit - 1;
    777 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
    778 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
    779 
    780 	ocolors = uvmexp.ncolors;
    781 	obuckets = uvm.bucketcount;
    782 
    783 	/* Freelist cache musn't be enabled. */
    784 	uvm_pgflcache_pause();
    785 
    786 	/* Make sure we should still do this. */
    787 	uvm_pgfl_lock();
    788 	if (newncolors <= uvmexp.ncolors &&
    789 	    newnbuckets == uvm.bucketcount) {
    790 		uvm_pgfl_unlock();
    791 		uvm_pgflcache_resume();
    792 		kmem_free(bucketmem, bucketmemsize);
    793 		return;
    794 	}
    795 
    796 	uvmexp.ncolors = newncolors;
    797 	uvmexp.colormask = uvmexp.ncolors - 1;
    798 	uvm.bucketcount = newnbuckets;
    799 
    800 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    801 		/* Init new buckets in new freelist. */
    802 		memset(&npgfl, 0, sizeof(npgfl));
    803 		for (nb = 0; nb < newnbuckets; nb++) {
    804 			npgb = (struct pgflbucket *)bucketarray;
    805 			uvm_page_init_bucket(&npgfl, npgb, nb);
    806 			bucketarray += bucketsize;
    807 		}
    808 		/* Now transfer pages from the old freelist. */
    809 		for (nb = ob = 0; ob < obuckets; ob++) {
    810 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
    811 			for (oc = 0; oc < ocolors; oc++) {
    812 				ohead = &opgb->pgb_colors[oc];
    813 				while ((pg = LIST_FIRST(ohead)) != NULL) {
    814 					LIST_REMOVE(pg, pageq.list);
    815 					/*
    816 					 * Here we decide on the NEW color &
    817 					 * bucket for the page.  For NUMA
    818 					 * we'll use the info that the
    819 					 * hardware gave us.  For non-NUMA
    820 					 * assign take physical page frame
    821 					 * number and cache color into
    822 					 * account.  We do this to try and
    823 					 * avoid defeating any memory
    824 					 * interleaving in the hardware.
    825 					 */
    826 					KASSERT(
    827 					    uvm_page_get_bucket(pg) == ob);
    828 					KASSERT(fl ==
    829 					    uvm_page_get_freelist(pg));
    830 					if (uvm_page_numa_region != NULL) {
    831 						nb = uvm_page_numa_lookup(pg);
    832 					} else {
    833 						nb = atop(VM_PAGE_TO_PHYS(pg))
    834 						    / uvmexp.ncolors / 8
    835 						    % newnbuckets;
    836 					}
    837 					uvm_page_set_bucket(pg, nb);
    838 					npgb = npgfl.pgfl_buckets[nb];
    839 					npgb->pgb_nfree++;
    840 					nc = VM_PGCOLOR(pg);
    841 					nhead = &npgb->pgb_colors[nc];
    842 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
    843 				}
    844 			}
    845 		}
    846 		/* Install the new freelist. */
    847 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
    848 	}
    849 
    850 	/* Unlock and free the old memory. */
    851 	oldbucketmemsize = recolored_pages_memsize;
    852 	oldbucketmem = recolored_pages_mem;
    853 	recolored_pages_memsize = bucketmemsize;
    854 	recolored_pages_mem = bucketmem;
    855 
    856 	uvm_pgfl_unlock();
    857 	uvm_pgflcache_resume();
    858 
    859 	if (oldbucketmemsize) {
    860 		kmem_free(oldbucketmem, oldbucketmemsize);
    861 	}
    862 
    863 	/*
    864 	 * this calls uvm_km_alloc() which may want to hold
    865 	 * uvm_freelist_lock.
    866 	 */
    867 	uvm_pager_realloc_emerg();
    868 }
    869 
    870 /*
    871  * uvm_page_recolor: Recolor the pages if the new color count is
    872  * larger than the old one.
    873  */
    874 
    875 void
    876 uvm_page_recolor(int newncolors)
    877 {
    878 
    879 	uvm_page_redim(newncolors, uvm.bucketcount);
    880 }
    881 
    882 /*
    883  * uvm_page_rebucket: Determine a bucket structure and redim the free
    884  * lists to match.
    885  */
    886 
    887 void
    888 uvm_page_rebucket(void)
    889 {
    890 	u_int min_numa, max_numa, npackage, shift;
    891 	struct cpu_info *ci, *ci2, *ci3;
    892 	CPU_INFO_ITERATOR cii;
    893 
    894 	/*
    895 	 * If we have more than one NUMA node, and the maximum NUMA node ID
    896 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
    897 	 * for free pages.
    898 	 */
    899 	min_numa = (u_int)-1;
    900 	max_numa = 0;
    901 	for (CPU_INFO_FOREACH(cii, ci)) {
    902 		if (ci->ci_numa_id < min_numa) {
    903 			min_numa = ci->ci_numa_id;
    904 		}
    905 		if (ci->ci_numa_id > max_numa) {
    906 			max_numa = ci->ci_numa_id;
    907 		}
    908 	}
    909 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
    910 		aprint_debug("UVM: using NUMA allocation scheme\n");
    911 		for (CPU_INFO_FOREACH(cii, ci)) {
    912 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
    913 		}
    914 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
    915 	 	return;
    916 	}
    917 
    918 	/*
    919 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
    920 	 * and minimise lock contention.  Count the total number of CPU
    921 	 * packages, and then try to distribute the buckets among CPU
    922 	 * packages evenly.
    923 	 */
    924 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
    925 
    926 	/*
    927 	 * Figure out how to arrange the packages & buckets, and the total
    928 	 * number of buckets we need.  XXX 2 may not be the best factor.
    929 	 */
    930 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
    931 		npackage >>= 1;
    932 	}
    933  	uvm_page_redim(uvmexp.ncolors, npackage);
    934 
    935  	/*
    936  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
    937  	 * through all CPU packages.
    938  	 */
    939  	npackage = 0;
    940 	ci = curcpu();
    941 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
    942 	do {
    943 		/*
    944 		 * In the inner loop, scroll through all CPUs in the package
    945 		 * and assign the same bucket ID.
    946 		 */
    947 		ci3 = ci2;
    948 		do {
    949 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
    950 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
    951 		} while (ci3 != ci2);
    952 		npackage++;
    953 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
    954 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
    955 
    956 	aprint_debug("UVM: using package allocation scheme, "
    957 	    "%d package(s) per bucket\n", 1 << shift);
    958 }
    959 
    960 /*
    961  * uvm_cpu_attach: initialize per-CPU data structures.
    962  */
    963 
    964 void
    965 uvm_cpu_attach(struct cpu_info *ci)
    966 {
    967 	struct uvm_cpu *ucpu;
    968 
    969 	/* Already done in uvm_page_init(). */
    970 	if (!CPU_IS_PRIMARY(ci)) {
    971 		/* Add more reserve pages for this CPU. */
    972 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
    973 
    974 		/* Allocate per-CPU data structures. */
    975 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
    976 		    KM_SLEEP);
    977 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
    978 		    coherency_unit);
    979 		ci->ci_data.cpu_uvm = ucpu;
    980 	} else {
    981 		ucpu = ci->ci_data.cpu_uvm;
    982 	}
    983 
    984 	uvmpdpol_init_cpu(ucpu);
    985 
    986 	/*
    987 	 * Attach RNG source for this CPU's VM events
    988 	 */
    989         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
    990 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    991 	    RND_FLAG_ESTIMATE_VALUE);
    992 }
    993 
    994 /*
    995  * uvm_availmem: fetch the total amount of free memory in pages.  this can
    996  * have a detrimental effect on performance due to false sharing; don't call
    997  * unless needed.
    998  *
    999  * some users can request the amount of free memory so often that it begins
   1000  * to impact upon performance.  if calling frequently and an inexact value
   1001  * is okay, call with cached = true.
   1002  */
   1003 
   1004 int
   1005 uvm_availmem(bool cached)
   1006 {
   1007 	int64_t fp;
   1008 
   1009 	cpu_count_sync(cached);
   1010 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
   1011 		/*
   1012 		 * XXXAD could briefly go negative because it's impossible
   1013 		 * to get a clean snapshot.  address this for other counters
   1014 		 * used as running totals before NetBSD 10 although less
   1015 		 * important for those.
   1016 		 */
   1017 		fp = 0;
   1018 	}
   1019 	return (int)fp;
   1020 }
   1021 
   1022 /*
   1023  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
   1024  * specific freelist and specific bucket only.
   1025  *
   1026  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1027  */
   1028 
   1029 static struct vm_page *
   1030 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
   1031 {
   1032 	int c, trycolor, colormask;
   1033 	struct pgflbucket *pgb;
   1034 	struct vm_page *pg;
   1035 	kmutex_t *lock;
   1036 	bool fill;
   1037 
   1038 	/*
   1039 	 * Skip the bucket if empty, no lock needed.  There could be many
   1040 	 * empty freelists/buckets.
   1041 	 */
   1042 	pgb = uvm.page_free[f].pgfl_buckets[b];
   1043 	if (pgb->pgb_nfree == 0) {
   1044 		return NULL;
   1045 	}
   1046 
   1047 	/* Skip bucket if low on memory. */
   1048 	lock = &uvm_freelist_locks[b].lock;
   1049 	mutex_spin_enter(lock);
   1050 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
   1051 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
   1052 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
   1053 		     curlwp != uvm.pagedaemon_lwp)) {
   1054 			mutex_spin_exit(lock);
   1055 		     	return NULL;
   1056 		}
   1057 		fill = false;
   1058 	} else {
   1059 		fill = true;
   1060 	}
   1061 
   1062 	/* Try all page colors as needed. */
   1063 	c = trycolor = *trycolorp;
   1064 	colormask = uvmexp.colormask;
   1065 	do {
   1066 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
   1067 		if (__predict_true(pg != NULL)) {
   1068 			/*
   1069 			 * Got a free page!  PG_FREE must be cleared under
   1070 			 * lock because of uvm_pglistalloc().
   1071 			 */
   1072 			LIST_REMOVE(pg, pageq.list);
   1073 			KASSERT(pg->flags == PG_FREE);
   1074 			pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
   1075 			pgb->pgb_nfree--;
   1076 
   1077 			/*
   1078 			 * While we have the bucket locked and our data
   1079 			 * structures fresh in L1 cache, we have an ideal
   1080 			 * opportunity to grab some pages for the freelist
   1081 			 * cache without causing extra contention.  Only do
   1082 			 * so if we found pages in this CPU's preferred
   1083 			 * bucket.
   1084 			 */
   1085 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
   1086 				uvm_pgflcache_fill(ucpu, f, b, c);
   1087 			}
   1088 			mutex_spin_exit(lock);
   1089 			KASSERT(uvm_page_get_bucket(pg) == b);
   1090 			CPU_COUNT(c == trycolor ?
   1091 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
   1092 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
   1093 			*trycolorp = c;
   1094 			return pg;
   1095 		}
   1096 		c = (c + 1) & colormask;
   1097 	} while (c != trycolor);
   1098 	mutex_spin_exit(lock);
   1099 
   1100 	return NULL;
   1101 }
   1102 
   1103 /*
   1104  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
   1105  * any color from any bucket, in a specific freelist.
   1106  *
   1107  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1108  */
   1109 
   1110 static struct vm_page *
   1111 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
   1112 {
   1113 	int b, trybucket, bucketcount;
   1114 	struct vm_page *pg;
   1115 
   1116 	/* Try for the exact thing in the per-CPU cache. */
   1117 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
   1118 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1119 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1120 		return pg;
   1121 	}
   1122 
   1123 	/* Walk through all buckets, trying our preferred bucket first. */
   1124 	trybucket = ucpu->pgflbucket;
   1125 	b = trybucket;
   1126 	bucketcount = uvm.bucketcount;
   1127 	do {
   1128 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
   1129 		if (pg != NULL) {
   1130 			return pg;
   1131 		}
   1132 		b = (b + 1 == bucketcount ? 0 : b + 1);
   1133 	} while (b != trybucket);
   1134 
   1135 	return NULL;
   1136 }
   1137 
   1138 /*
   1139  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1140  *
   1141  * => return null if no pages free
   1142  * => wake up pagedaemon if number of free pages drops below low water mark
   1143  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1144  * => if anon != NULL, anon must be locked (to put in anon)
   1145  * => only one of obj or anon can be non-null
   1146  * => caller must activate/deactivate page if it is not wired.
   1147  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1148  * => policy decision: it is more important to pull a page off of the
   1149  *	appropriate priority free list than it is to get a page from the
   1150  *	correct bucket or color bin.  This is because we live with the
   1151  *	consequences of a bad free list decision for the entire
   1152  *	lifetime of the page, e.g. if the page comes from memory that
   1153  *	is slower to access.
   1154  */
   1155 
   1156 struct vm_page *
   1157 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1158     int flags, int strat, int free_list)
   1159 {
   1160 	int color, lcv, error, s;
   1161 	struct uvm_cpu *ucpu;
   1162 	struct vm_page *pg;
   1163 	lwp_t *l;
   1164 
   1165 	KASSERT(obj == NULL || anon == NULL);
   1166 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1167 	KASSERT(off == trunc_page(off));
   1168 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
   1169 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1170 	    rw_write_held(anon->an_lock));
   1171 
   1172 	/*
   1173 	 * This implements a global round-robin page coloring
   1174 	 * algorithm.
   1175 	 */
   1176 
   1177 	s = splvm();
   1178 	ucpu = curcpu()->ci_data.cpu_uvm;
   1179 	if (flags & UVM_FLAG_COLORMATCH) {
   1180 		color = atop(off) & uvmexp.colormask;
   1181 	} else {
   1182 		color = ucpu->pgflcolor;
   1183 	}
   1184 
   1185 	/*
   1186 	 * fail if any of these conditions is true:
   1187 	 * [1]  there really are no free pages, or
   1188 	 * [2]  only kernel "reserved" pages remain and
   1189 	 *        reserved pages have not been requested.
   1190 	 * [3]  only pagedaemon "reserved" pages remain and
   1191 	 *        the requestor isn't the pagedaemon.
   1192 	 * we make kernel reserve pages available if called by a
   1193 	 * kernel thread.
   1194 	 */
   1195 	l = curlwp;
   1196 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
   1197 		flags |= UVM_PGA_USERESERVE;
   1198 	}
   1199 
   1200  again:
   1201 	switch (strat) {
   1202 	case UVM_PGA_STRAT_NORMAL:
   1203 		/* Check freelists: descending priority (ascending id) order. */
   1204 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1205 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
   1206 			if (pg != NULL) {
   1207 				goto gotit;
   1208 			}
   1209 		}
   1210 
   1211 		/* No pages free!  Have pagedaemon free some memory. */
   1212 		splx(s);
   1213 		uvm_kick_pdaemon();
   1214 		return NULL;
   1215 
   1216 	case UVM_PGA_STRAT_ONLY:
   1217 	case UVM_PGA_STRAT_FALLBACK:
   1218 		/* Attempt to allocate from the specified free list. */
   1219 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1220 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
   1221 		if (pg != NULL) {
   1222 			goto gotit;
   1223 		}
   1224 
   1225 		/* Fall back, if possible. */
   1226 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1227 			strat = UVM_PGA_STRAT_NORMAL;
   1228 			goto again;
   1229 		}
   1230 
   1231 		/* No pages free!  Have pagedaemon free some memory. */
   1232 		splx(s);
   1233 		uvm_kick_pdaemon();
   1234 		return NULL;
   1235 
   1236 	case UVM_PGA_STRAT_NUMA:
   1237 		/*
   1238 		 * NUMA strategy (experimental): allocating from the correct
   1239 		 * bucket is more important than observing freelist
   1240 		 * priority.  Look only to the current NUMA node; if that
   1241 		 * fails, we need to look to other NUMA nodes, so retry with
   1242 		 * the normal strategy.
   1243 		 */
   1244 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1245 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
   1246 			if (pg != NULL) {
   1247 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1248 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1249 				goto gotit;
   1250 			}
   1251 			pg = uvm_pagealloc_pgb(ucpu, lcv,
   1252 			    ucpu->pgflbucket, &color, flags);
   1253 			if (pg != NULL) {
   1254 				goto gotit;
   1255 			}
   1256 		}
   1257 		strat = UVM_PGA_STRAT_NORMAL;
   1258 		goto again;
   1259 
   1260 	default:
   1261 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1262 		/* NOTREACHED */
   1263 	}
   1264 
   1265  gotit:
   1266 	/*
   1267 	 * We now know which color we actually allocated from; set
   1268 	 * the next color accordingly.
   1269 	 */
   1270 
   1271 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
   1272 
   1273 	/*
   1274 	 * while still at IPL_VM, update allocation statistics.
   1275 	 */
   1276 
   1277     	CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
   1278 	if (anon) {
   1279 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
   1280 	}
   1281 	splx(s);
   1282 	KASSERT(pg->flags == (PG_BUSY|PG_CLEAN|PG_FAKE));
   1283 
   1284 	/*
   1285 	 * assign the page to the object.  as the page was free, we know
   1286 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
   1287 	 * the page's interlock if we are changing the values.
   1288 	 */
   1289 	if (anon != NULL || obj != NULL) {
   1290 		mutex_enter(&pg->interlock);
   1291 	}
   1292 	pg->offset = off;
   1293 	pg->uobject = obj;
   1294 	pg->uanon = anon;
   1295 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1296 	if (anon) {
   1297 		anon->an_page = pg;
   1298 		pg->flags |= PG_ANON;
   1299 		mutex_exit(&pg->interlock);
   1300 	} else if (obj) {
   1301 		/*
   1302 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
   1303 		 */
   1304 		if (UVM_OBJ_IS_VNODE(obj)) {
   1305 			pg->flags |= PG_FILE;
   1306 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
   1307 			pg->flags |= PG_AOBJ;
   1308 		}
   1309 		uvm_pageinsert_object(obj, pg);
   1310 		mutex_exit(&pg->interlock);
   1311 		error = uvm_pageinsert_tree(obj, pg);
   1312 		if (error != 0) {
   1313 			mutex_enter(&pg->interlock);
   1314 			uvm_pageremove_object(obj, pg);
   1315 			mutex_exit(&pg->interlock);
   1316 			uvm_pagefree(pg);
   1317 			return NULL;
   1318 		}
   1319 	}
   1320 
   1321 #if defined(UVM_PAGE_TRKOWN)
   1322 	pg->owner_tag = NULL;
   1323 #endif
   1324 	UVM_PAGE_OWN(pg, "new alloc");
   1325 
   1326 	if (flags & UVM_PGA_ZERO) {
   1327 		/* A zero'd page is not clean. */
   1328 		if (obj != NULL || anon != NULL) {
   1329 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1330 		}
   1331 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1332 	}
   1333 
   1334 	return(pg);
   1335 }
   1336 
   1337 /*
   1338  * uvm_pagereplace: replace a page with another
   1339  *
   1340  * => object must be locked
   1341  * => page interlocks must be held
   1342  */
   1343 
   1344 void
   1345 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1346 {
   1347 	struct uvm_object *uobj = oldpg->uobject;
   1348 	struct vm_page *pg __diagused;
   1349 	uint64_t idx;
   1350 
   1351 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1352 	KASSERT(uobj != NULL);
   1353 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1354 	KASSERT(newpg->uobject == NULL);
   1355 	KASSERT(rw_write_held(uobj->vmobjlock));
   1356 	KASSERT(mutex_owned(&oldpg->interlock));
   1357 	KASSERT(mutex_owned(&newpg->interlock));
   1358 
   1359 	newpg->uobject = uobj;
   1360 	newpg->offset = oldpg->offset;
   1361 	idx = newpg->offset >> PAGE_SHIFT;
   1362 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
   1363 	KASSERT(pg == oldpg);
   1364 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
   1365 		if ((newpg->flags & PG_CLEAN) != 0) {
   1366 			radix_tree_clear_tag(&uobj->uo_pages, idx,
   1367 			    UVM_PAGE_DIRTY_TAG);
   1368 		} else {
   1369 			radix_tree_set_tag(&uobj->uo_pages, idx,
   1370 			    UVM_PAGE_DIRTY_TAG);
   1371 		}
   1372 	}
   1373 	/*
   1374 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
   1375 	 */
   1376 	newpg->flags |=
   1377 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
   1378 	uvm_pageinsert_object(uobj, newpg);
   1379 	uvm_pageremove_object(uobj, oldpg);
   1380 }
   1381 
   1382 /*
   1383  * uvm_pagerealloc: reallocate a page from one object to another
   1384  *
   1385  * => both objects must be locked
   1386  */
   1387 
   1388 int
   1389 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1390 {
   1391 	int error = 0;
   1392 
   1393 	/*
   1394 	 * remove it from the old object
   1395 	 */
   1396 
   1397 	if (pg->uobject) {
   1398 		uvm_pageremove_tree(pg->uobject, pg);
   1399 		uvm_pageremove_object(pg->uobject, pg);
   1400 	}
   1401 
   1402 	/*
   1403 	 * put it in the new object
   1404 	 */
   1405 
   1406 	if (newobj) {
   1407 		mutex_enter(&pg->interlock);
   1408 		pg->uobject = newobj;
   1409 		pg->offset = newoff;
   1410 		if (UVM_OBJ_IS_VNODE(newobj)) {
   1411 			pg->flags |= PG_FILE;
   1412 		} else if (UVM_OBJ_IS_AOBJ(newobj)) {
   1413 			pg->flags |= PG_AOBJ;
   1414 		}
   1415 		uvm_pageinsert_object(newobj, pg);
   1416 		mutex_exit(&pg->interlock);
   1417 		error = uvm_pageinsert_tree(newobj, pg);
   1418 		if (error != 0) {
   1419 			mutex_enter(&pg->interlock);
   1420 			uvm_pageremove_object(newobj, pg);
   1421 			mutex_exit(&pg->interlock);
   1422 		}
   1423 	}
   1424 
   1425 	return error;
   1426 }
   1427 
   1428 #ifdef DEBUG
   1429 /*
   1430  * check if page is zero-filled
   1431  */
   1432 void
   1433 uvm_pagezerocheck(struct vm_page *pg)
   1434 {
   1435 	int *p, *ep;
   1436 
   1437 	KASSERT(uvm_zerocheckkva != 0);
   1438 
   1439 	/*
   1440 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1441 	 * uvm page allocator.
   1442 	 *
   1443 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1444 	 */
   1445 	mutex_spin_enter(&uvm_zerochecklock);
   1446 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
   1447 	p = (int *)uvm_zerocheckkva;
   1448 	ep = (int *)((char *)p + PAGE_SIZE);
   1449 	pmap_update(pmap_kernel());
   1450 	while (p < ep) {
   1451 		if (*p != 0)
   1452 			panic("zero page isn't zero-filled");
   1453 		p++;
   1454 	}
   1455 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1456 	mutex_spin_exit(&uvm_zerochecklock);
   1457 	/*
   1458 	 * pmap_update() is not necessary here because no one except us
   1459 	 * uses this VA.
   1460 	 */
   1461 }
   1462 #endif /* DEBUG */
   1463 
   1464 /*
   1465  * uvm_pagefree: free page
   1466  *
   1467  * => erase page's identity (i.e. remove from object)
   1468  * => put page on free list
   1469  * => caller must lock owning object (either anon or uvm_object)
   1470  * => assumes all valid mappings of pg are gone
   1471  */
   1472 
   1473 void
   1474 uvm_pagefree(struct vm_page *pg)
   1475 {
   1476 	struct pgfreelist *pgfl;
   1477 	struct pgflbucket *pgb;
   1478 	struct uvm_cpu *ucpu;
   1479 	kmutex_t *lock;
   1480 	int bucket, s;
   1481 	bool locked;
   1482 
   1483 #ifdef DEBUG
   1484 	if (pg->uobject == (void *)0xdeadbeef &&
   1485 	    pg->uanon == (void *)0xdeadbeef) {
   1486 		panic("uvm_pagefree: freeing free page %p", pg);
   1487 	}
   1488 #endif /* DEBUG */
   1489 
   1490 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1491 	KASSERT(!(pg->flags & PG_FREE));
   1492 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
   1493 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1494 		rw_write_held(pg->uanon->an_lock));
   1495 
   1496 	/*
   1497 	 * remove the page from the object's tree before acquiring any page
   1498 	 * interlocks: this can acquire locks to free radixtree nodes.
   1499 	 */
   1500 	if (pg->uobject != NULL) {
   1501 		uvm_pageremove_tree(pg->uobject, pg);
   1502 	}
   1503 
   1504 	/*
   1505 	 * if the page is loaned, resolve the loan instead of freeing.
   1506 	 */
   1507 
   1508 	if (pg->loan_count) {
   1509 		KASSERT(pg->wire_count == 0);
   1510 
   1511 		/*
   1512 		 * if the page is owned by an anon then we just want to
   1513 		 * drop anon ownership.  the kernel will free the page when
   1514 		 * it is done with it.  if the page is owned by an object,
   1515 		 * remove it from the object and mark it dirty for the benefit
   1516 		 * of possible anon owners.
   1517 		 *
   1518 		 * regardless of previous ownership, wakeup any waiters,
   1519 		 * unbusy the page, and we're done.
   1520 		 */
   1521 
   1522 		uvm_pagelock(pg);
   1523 		locked = true;
   1524 		if (pg->uobject != NULL) {
   1525 			uvm_pageremove_object(pg->uobject, pg);
   1526 			pg->flags &= ~(PG_FILE|PG_AOBJ);
   1527 		} else if (pg->uanon != NULL) {
   1528 			if ((pg->flags & PG_ANON) == 0) {
   1529 				pg->loan_count--;
   1530 			} else {
   1531 				const unsigned status = uvm_pagegetdirty(pg);
   1532 				pg->flags &= ~PG_ANON;
   1533 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1534 			}
   1535 			pg->uanon->an_page = NULL;
   1536 			pg->uanon = NULL;
   1537 		}
   1538 		if (pg->pqflags & PQ_WANTED) {
   1539 			wakeup(pg);
   1540 		}
   1541 		pg->pqflags &= ~PQ_WANTED;
   1542 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
   1543 #ifdef UVM_PAGE_TRKOWN
   1544 		pg->owner_tag = NULL;
   1545 #endif
   1546 		KASSERT((pg->flags & PG_STAT) == 0);
   1547 		if (pg->loan_count) {
   1548 			KASSERT(pg->uobject == NULL);
   1549 			if (pg->uanon == NULL) {
   1550 				uvm_pagedequeue(pg);
   1551 			}
   1552 			uvm_pageunlock(pg);
   1553 			return;
   1554 		}
   1555 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1556 	           pg->wire_count != 0) {
   1557 		uvm_pagelock(pg);
   1558 		locked = true;
   1559 	} else {
   1560 		locked = false;
   1561 	}
   1562 
   1563 	/*
   1564 	 * remove page from its object or anon.
   1565 	 */
   1566 	if (pg->uobject != NULL) {
   1567 		uvm_pageremove_object(pg->uobject, pg);
   1568 	} else if (pg->uanon != NULL) {
   1569 		const unsigned int status = uvm_pagegetdirty(pg);
   1570 		pg->uanon->an_page = NULL;
   1571 		pg->uanon = NULL;
   1572 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1573 	}
   1574 
   1575 	/*
   1576 	 * if the page was wired, unwire it now.
   1577 	 */
   1578 
   1579 	if (pg->wire_count) {
   1580 		pg->wire_count = 0;
   1581 		atomic_dec_uint(&uvmexp.wired);
   1582 	}
   1583 	if (locked) {
   1584 		/*
   1585 		 * wake anyone waiting on the page.
   1586 		 */
   1587 		if ((pg->pqflags & PQ_WANTED) != 0) {
   1588 			pg->pqflags &= ~PQ_WANTED;
   1589 			wakeup(pg);
   1590 		}
   1591 
   1592 		/*
   1593 		 * now remove the page from the queues.
   1594 		 */
   1595 		uvm_pagedequeue(pg);
   1596 		uvm_pageunlock(pg);
   1597 	} else {
   1598 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1599 	}
   1600 
   1601 	/*
   1602 	 * and put on free queue
   1603 	 */
   1604 
   1605 #ifdef DEBUG
   1606 	pg->uobject = (void *)0xdeadbeef;
   1607 	pg->uanon = (void *)0xdeadbeef;
   1608 #endif /* DEBUG */
   1609 
   1610 	/* Try to send the page to the per-CPU cache. */
   1611 	s = splvm();
   1612     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
   1613 	ucpu = curcpu()->ci_data.cpu_uvm;
   1614 	bucket = uvm_page_get_bucket(pg);
   1615 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
   1616 		splx(s);
   1617 		return;
   1618 	}
   1619 
   1620 	/* Didn't work.  Never mind, send it to a global bucket. */
   1621 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
   1622 	pgb = pgfl->pgfl_buckets[bucket];
   1623 	lock = &uvm_freelist_locks[bucket].lock;
   1624 
   1625 	mutex_spin_enter(lock);
   1626 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
   1627 	pg->flags = PG_FREE;
   1628 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
   1629 	pgb->pgb_nfree++;
   1630 	mutex_spin_exit(lock);
   1631 	splx(s);
   1632 }
   1633 
   1634 /*
   1635  * uvm_page_unbusy: unbusy an array of pages.
   1636  *
   1637  * => pages must either all belong to the same object, or all belong to anons.
   1638  * => if pages are object-owned, object must be locked.
   1639  * => if pages are anon-owned, anons must be locked.
   1640  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1641  */
   1642 
   1643 void
   1644 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1645 {
   1646 	struct vm_page *pg;
   1647 	int i;
   1648 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1649 
   1650 	for (i = 0; i < npgs; i++) {
   1651 		pg = pgs[i];
   1652 		if (pg == NULL || pg == PGO_DONTCARE) {
   1653 			continue;
   1654 		}
   1655 
   1656 		KASSERT(uvm_page_owner_locked_p(pg, true));
   1657 		KASSERT(pg->flags & PG_BUSY);
   1658 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1659 		if (pg->flags & PG_RELEASED) {
   1660 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1661 			    (uintptr_t)pg, 0, 0, 0);
   1662 			KASSERT(pg->uobject != NULL ||
   1663 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1664 			pg->flags &= ~PG_RELEASED;
   1665 			uvm_pagefree(pg);
   1666 		} else {
   1667 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1668 			    (uintptr_t)pg, 0, 0, 0);
   1669 			KASSERT((pg->flags & PG_FAKE) == 0);
   1670 			pg->flags &= ~PG_BUSY;
   1671 			uvm_pagelock(pg);
   1672 			uvm_pagewakeup(pg);
   1673 			uvm_pageunlock(pg);
   1674 			UVM_PAGE_OWN(pg, NULL);
   1675 		}
   1676 	}
   1677 }
   1678 
   1679 /*
   1680  * uvm_pagewait: wait for a busy page
   1681  *
   1682  * => page must be known PG_BUSY
   1683  * => object must be read or write locked
   1684  * => object will be unlocked on return
   1685  */
   1686 
   1687 void
   1688 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
   1689 {
   1690 
   1691 	KASSERT(rw_lock_held(lock));
   1692 	KASSERT((pg->flags & PG_BUSY) != 0);
   1693 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1694 
   1695 	mutex_enter(&pg->interlock);
   1696 	pg->pqflags |= PQ_WANTED;
   1697 	rw_exit(lock);
   1698 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
   1699 }
   1700 
   1701 /*
   1702  * uvm_pagewakeup: wake anyone waiting on a page
   1703  *
   1704  * => page interlock must be held
   1705  */
   1706 
   1707 void
   1708 uvm_pagewakeup(struct vm_page *pg)
   1709 {
   1710 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1711 
   1712 	KASSERT(mutex_owned(&pg->interlock));
   1713 
   1714 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
   1715 
   1716 	if ((pg->pqflags & PQ_WANTED) != 0) {
   1717 		wakeup(pg);
   1718 		pg->pqflags &= ~PQ_WANTED;
   1719 	}
   1720 }
   1721 
   1722 /*
   1723  * uvm_pagewanted_p: return true if someone is waiting on the page
   1724  *
   1725  * => object must be write locked (lock out all concurrent access)
   1726  */
   1727 
   1728 bool
   1729 uvm_pagewanted_p(struct vm_page *pg)
   1730 {
   1731 
   1732 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1733 
   1734 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
   1735 }
   1736 
   1737 #if defined(UVM_PAGE_TRKOWN)
   1738 /*
   1739  * uvm_page_own: set or release page ownership
   1740  *
   1741  * => this is a debugging function that keeps track of who sets PG_BUSY
   1742  *	and where they do it.   it can be used to track down problems
   1743  *	such a process setting "PG_BUSY" and never releasing it.
   1744  * => page's object [if any] must be locked
   1745  * => if "tag" is NULL then we are releasing page ownership
   1746  */
   1747 void
   1748 uvm_page_own(struct vm_page *pg, const char *tag)
   1749 {
   1750 
   1751 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1752 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1753 
   1754 	/* gain ownership? */
   1755 	if (tag) {
   1756 		KASSERT((pg->flags & PG_BUSY) != 0);
   1757 		if (pg->owner_tag) {
   1758 			printf("uvm_page_own: page %p already owned "
   1759 			    "by proc %d.%d [%s]\n", pg,
   1760 			    pg->owner, pg->lowner, pg->owner_tag);
   1761 			panic("uvm_page_own");
   1762 		}
   1763 		pg->owner = curproc->p_pid;
   1764 		pg->lowner = curlwp->l_lid;
   1765 		pg->owner_tag = tag;
   1766 		return;
   1767 	}
   1768 
   1769 	/* drop ownership */
   1770 	KASSERT((pg->flags & PG_BUSY) == 0);
   1771 	if (pg->owner_tag == NULL) {
   1772 		printf("uvm_page_own: dropping ownership of an non-owned "
   1773 		    "page (%p)\n", pg);
   1774 		panic("uvm_page_own");
   1775 	}
   1776 	pg->owner_tag = NULL;
   1777 }
   1778 #endif
   1779 
   1780 /*
   1781  * uvm_pagelookup: look up a page
   1782  *
   1783  * => caller should lock object to keep someone from pulling the page
   1784  *	out from under it
   1785  */
   1786 
   1787 struct vm_page *
   1788 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1789 {
   1790 	struct vm_page *pg;
   1791 
   1792 	/* No - used from DDB. KASSERT(rw_lock_held(obj->vmobjlock)); */
   1793 
   1794 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1795 
   1796 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1797 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1798 		(pg->flags & PG_BUSY) != 0);
   1799 	return pg;
   1800 }
   1801 
   1802 /*
   1803  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1804  *
   1805  * => caller must lock objects
   1806  * => caller must hold pg->interlock
   1807  */
   1808 
   1809 void
   1810 uvm_pagewire(struct vm_page *pg)
   1811 {
   1812 
   1813 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1814 	KASSERT(mutex_owned(&pg->interlock));
   1815 #if defined(READAHEAD_STATS)
   1816 	if ((pg->flags & PG_READAHEAD) != 0) {
   1817 		uvm_ra_hit.ev_count++;
   1818 		pg->flags &= ~PG_READAHEAD;
   1819 	}
   1820 #endif /* defined(READAHEAD_STATS) */
   1821 	if (pg->wire_count == 0) {
   1822 		uvm_pagedequeue(pg);
   1823 		atomic_inc_uint(&uvmexp.wired);
   1824 	}
   1825 	pg->wire_count++;
   1826 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1827 }
   1828 
   1829 /*
   1830  * uvm_pageunwire: unwire the page.
   1831  *
   1832  * => activate if wire count goes to zero.
   1833  * => caller must lock objects
   1834  * => caller must hold pg->interlock
   1835  */
   1836 
   1837 void
   1838 uvm_pageunwire(struct vm_page *pg)
   1839 {
   1840 
   1841 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1842 	KASSERT(pg->wire_count != 0);
   1843 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1844 	KASSERT(mutex_owned(&pg->interlock));
   1845 	pg->wire_count--;
   1846 	if (pg->wire_count == 0) {
   1847 		uvm_pageactivate(pg);
   1848 		KASSERT(uvmexp.wired != 0);
   1849 		atomic_dec_uint(&uvmexp.wired);
   1850 	}
   1851 }
   1852 
   1853 /*
   1854  * uvm_pagedeactivate: deactivate page
   1855  *
   1856  * => caller must lock objects
   1857  * => caller must check to make sure page is not wired
   1858  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1859  * => caller must clear the reference on the page before calling
   1860  * => caller must hold pg->interlock
   1861  */
   1862 
   1863 void
   1864 uvm_pagedeactivate(struct vm_page *pg)
   1865 {
   1866 
   1867 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1868 	KASSERT(mutex_owned(&pg->interlock));
   1869 	if (pg->wire_count == 0) {
   1870 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1871 		uvmpdpol_pagedeactivate(pg);
   1872 	}
   1873 }
   1874 
   1875 /*
   1876  * uvm_pageactivate: activate page
   1877  *
   1878  * => caller must lock objects
   1879  * => caller must hold pg->interlock
   1880  */
   1881 
   1882 void
   1883 uvm_pageactivate(struct vm_page *pg)
   1884 {
   1885 
   1886 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1887 	KASSERT(mutex_owned(&pg->interlock));
   1888 #if defined(READAHEAD_STATS)
   1889 	if ((pg->flags & PG_READAHEAD) != 0) {
   1890 		uvm_ra_hit.ev_count++;
   1891 		pg->flags &= ~PG_READAHEAD;
   1892 	}
   1893 #endif /* defined(READAHEAD_STATS) */
   1894 	if (pg->wire_count == 0) {
   1895 		uvmpdpol_pageactivate(pg);
   1896 	}
   1897 }
   1898 
   1899 /*
   1900  * uvm_pagedequeue: remove a page from any paging queue
   1901  *
   1902  * => caller must lock objects
   1903  * => caller must hold pg->interlock
   1904  */
   1905 void
   1906 uvm_pagedequeue(struct vm_page *pg)
   1907 {
   1908 
   1909 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1910 	KASSERT(mutex_owned(&pg->interlock));
   1911 	if (uvmpdpol_pageisqueued_p(pg)) {
   1912 		uvmpdpol_pagedequeue(pg);
   1913 	}
   1914 }
   1915 
   1916 /*
   1917  * uvm_pageenqueue: add a page to a paging queue without activating.
   1918  * used where a page is not really demanded (yet).  eg. read-ahead
   1919  *
   1920  * => caller must lock objects
   1921  * => caller must hold pg->interlock
   1922  */
   1923 void
   1924 uvm_pageenqueue(struct vm_page *pg)
   1925 {
   1926 
   1927 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1928 	KASSERT(mutex_owned(&pg->interlock));
   1929 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1930 		uvmpdpol_pageenqueue(pg);
   1931 	}
   1932 }
   1933 
   1934 /*
   1935  * uvm_pagelock: acquire page interlock
   1936  */
   1937 void
   1938 uvm_pagelock(struct vm_page *pg)
   1939 {
   1940 
   1941 	mutex_enter(&pg->interlock);
   1942 }
   1943 
   1944 /*
   1945  * uvm_pagelock2: acquire two page interlocks
   1946  */
   1947 void
   1948 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
   1949 {
   1950 
   1951 	if (pg1 < pg2) {
   1952 		mutex_enter(&pg1->interlock);
   1953 		mutex_enter(&pg2->interlock);
   1954 	} else {
   1955 		mutex_enter(&pg2->interlock);
   1956 		mutex_enter(&pg1->interlock);
   1957 	}
   1958 }
   1959 
   1960 /*
   1961  * uvm_pageunlock: release page interlock, and if a page replacement intent
   1962  * is set on the page, pass it to uvmpdpol to make real.
   1963  *
   1964  * => caller must hold pg->interlock
   1965  */
   1966 void
   1967 uvm_pageunlock(struct vm_page *pg)
   1968 {
   1969 
   1970 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
   1971 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
   1972 	    	mutex_exit(&pg->interlock);
   1973 	    	return;
   1974 	}
   1975 	pg->pqflags |= PQ_INTENT_QUEUED;
   1976 	mutex_exit(&pg->interlock);
   1977 	uvmpdpol_pagerealize(pg);
   1978 }
   1979 
   1980 /*
   1981  * uvm_pageunlock2: release two page interlocks, and for both pages if a
   1982  * page replacement intent is set on the page, pass it to uvmpdpol to make
   1983  * real.
   1984  *
   1985  * => caller must hold pg->interlock
   1986  */
   1987 void
   1988 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
   1989 {
   1990 
   1991 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
   1992 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
   1993 	    	mutex_exit(&pg1->interlock);
   1994 	    	pg1 = NULL;
   1995 	} else {
   1996 		pg1->pqflags |= PQ_INTENT_QUEUED;
   1997 		mutex_exit(&pg1->interlock);
   1998 	}
   1999 
   2000 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
   2001 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
   2002 	    	mutex_exit(&pg2->interlock);
   2003 	    	pg2 = NULL;
   2004 	} else {
   2005 		pg2->pqflags |= PQ_INTENT_QUEUED;
   2006 		mutex_exit(&pg2->interlock);
   2007 	}
   2008 
   2009 	if (pg1 != NULL) {
   2010 		uvmpdpol_pagerealize(pg1);
   2011 	}
   2012 	if (pg2 != NULL) {
   2013 		uvmpdpol_pagerealize(pg2);
   2014 	}
   2015 }
   2016 
   2017 /*
   2018  * uvm_pagezero: zero fill a page
   2019  *
   2020  * => if page is part of an object then the object should be locked
   2021  *	to protect pg->flags.
   2022  */
   2023 
   2024 void
   2025 uvm_pagezero(struct vm_page *pg)
   2026 {
   2027 
   2028 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2029 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   2030 }
   2031 
   2032 /*
   2033  * uvm_pagecopy: copy a page
   2034  *
   2035  * => if page is part of an object then the object should be locked
   2036  *	to protect pg->flags.
   2037  */
   2038 
   2039 void
   2040 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   2041 {
   2042 
   2043 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
   2044 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   2045 }
   2046 
   2047 /*
   2048  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   2049  */
   2050 
   2051 bool
   2052 uvm_pageismanaged(paddr_t pa)
   2053 {
   2054 
   2055 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   2056 }
   2057 
   2058 /*
   2059  * uvm_page_lookup_freelist: look up the free list for the specified page
   2060  */
   2061 
   2062 int
   2063 uvm_page_lookup_freelist(struct vm_page *pg)
   2064 {
   2065 	uvm_physseg_t upm;
   2066 
   2067 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2068 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   2069 	return uvm_physseg_get_free_list(upm);
   2070 }
   2071 
   2072 /*
   2073  * uvm_page_owner_locked_p: return true if object associated with page is
   2074  * locked.  this is a weak check for runtime assertions only.
   2075  */
   2076 
   2077 bool
   2078 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
   2079 {
   2080 
   2081 	if (pg->uobject != NULL) {
   2082 		return exclusive
   2083 		    ? rw_write_held(pg->uobject->vmobjlock)
   2084 		    : rw_lock_held(pg->uobject->vmobjlock);
   2085 	}
   2086 	if (pg->uanon != NULL) {
   2087 		return exclusive
   2088 		    ? rw_write_held(pg->uanon->an_lock)
   2089 		    : rw_lock_held(pg->uanon->an_lock);
   2090 	}
   2091 	return true;
   2092 }
   2093 
   2094 /*
   2095  * uvm_pagereadonly_p: return if the page should be mapped read-only
   2096  */
   2097 
   2098 bool
   2099 uvm_pagereadonly_p(struct vm_page *pg)
   2100 {
   2101 	struct uvm_object * const uobj = pg->uobject;
   2102 
   2103 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
   2104 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
   2105 	if ((pg->flags & PG_RDONLY) != 0) {
   2106 		return true;
   2107 	}
   2108 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
   2109 		return true;
   2110 	}
   2111 	if (uobj == NULL) {
   2112 		return false;
   2113 	}
   2114 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
   2115 }
   2116 
   2117 #ifdef PMAP_DIRECT
   2118 /*
   2119  * Call pmap to translate physical address into a virtual and to run a callback
   2120  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   2121  * or equivalent.
   2122  */
   2123 int
   2124 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   2125             int (*process)(void *, size_t, void *), void *arg)
   2126 {
   2127 	int error = 0;
   2128 	paddr_t pa;
   2129 	size_t todo;
   2130 	voff_t pgoff = (off & PAGE_MASK);
   2131 	struct vm_page *pg;
   2132 
   2133 	KASSERT(npages > 0 && len > 0);
   2134 
   2135 	for (int i = 0; i < npages; i++) {
   2136 		pg = pgs[i];
   2137 
   2138 		KASSERT(len > 0);
   2139 
   2140 		/*
   2141 		 * Caller is responsible for ensuring all the pages are
   2142 		 * available.
   2143 		 */
   2144 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   2145 
   2146 		pa = VM_PAGE_TO_PHYS(pg);
   2147 		todo = MIN(len, PAGE_SIZE - pgoff);
   2148 
   2149 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   2150 		if (error)
   2151 			break;
   2152 
   2153 		pgoff = 0;
   2154 		len -= todo;
   2155 	}
   2156 
   2157 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   2158 	return error;
   2159 }
   2160 #endif /* PMAP_DIRECT */
   2161 
   2162 #if defined(DDB) || defined(DEBUGPRINT)
   2163 
   2164 /*
   2165  * uvm_page_printit: actually print the page
   2166  */
   2167 
   2168 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2169 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2170 
   2171 void
   2172 uvm_page_printit(struct vm_page *pg, bool full,
   2173     void (*pr)(const char *, ...))
   2174 {
   2175 	struct vm_page *tpg;
   2176 	struct uvm_object *uobj;
   2177 	struct pgflbucket *pgb;
   2178 	struct pgflist *pgl;
   2179 	char pgbuf[128];
   2180 
   2181 	(*pr)("PAGE %p:\n", pg);
   2182 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2183 	(*pr)("  flags=%s\n", pgbuf);
   2184 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
   2185 	(*pr)("  pqflags=%s\n", pgbuf);
   2186 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
   2187 	    pg->uobject, pg->uanon, (long long)pg->offset);
   2188 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
   2189 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
   2190 	    uvm_page_get_freelist(pg));
   2191 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
   2192 #if defined(UVM_PAGE_TRKOWN)
   2193 	if (pg->flags & PG_BUSY)
   2194 		(*pr)("  owning process = %d.%d, tag=%s\n",
   2195 		    pg->owner, pg->lowner, pg->owner_tag);
   2196 	else
   2197 		(*pr)("  page not busy, no owner\n");
   2198 #else
   2199 	(*pr)("  [page ownership tracking disabled]\n");
   2200 #endif
   2201 
   2202 	if (!full)
   2203 		return;
   2204 
   2205 	/* cross-verify object/anon */
   2206 	if ((pg->flags & PG_FREE) == 0) {
   2207 		if (pg->flags & PG_ANON) {
   2208 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2209 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2210 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2211 			else
   2212 				(*pr)("  anon backpointer is OK\n");
   2213 		} else {
   2214 			uobj = pg->uobject;
   2215 			if (uobj) {
   2216 				(*pr)("  checking object list\n");
   2217 				tpg = uvm_pagelookup(uobj, pg->offset);
   2218 				if (tpg)
   2219 					(*pr)("  page found on object list\n");
   2220 				else
   2221 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2222 			}
   2223 		}
   2224 	}
   2225 
   2226 	/* cross-verify page queue */
   2227 	if (pg->flags & PG_FREE) {
   2228 		int fl = uvm_page_get_freelist(pg);
   2229 		int b = uvm_page_get_bucket(pg);
   2230 		pgb = uvm.page_free[fl].pgfl_buckets[b];
   2231 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
   2232 		(*pr)("  checking pageq list\n");
   2233 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2234 			if (tpg == pg) {
   2235 				break;
   2236 			}
   2237 		}
   2238 		if (tpg)
   2239 			(*pr)("  page found on pageq list\n");
   2240 		else
   2241 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2242 	}
   2243 }
   2244 
   2245 /*
   2246  * uvm_page_printall - print a summary of all managed pages
   2247  */
   2248 
   2249 void
   2250 uvm_page_printall(void (*pr)(const char *, ...))
   2251 {
   2252 	uvm_physseg_t i;
   2253 	paddr_t pfn;
   2254 	struct vm_page *pg;
   2255 
   2256 	(*pr)("%18s %4s %4s %18s %18s"
   2257 #ifdef UVM_PAGE_TRKOWN
   2258 	    " OWNER"
   2259 #endif
   2260 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2261 	for (i = uvm_physseg_get_first();
   2262 	     uvm_physseg_valid_p(i);
   2263 	     i = uvm_physseg_get_next(i)) {
   2264 		for (pfn = uvm_physseg_get_start(i);
   2265 		     pfn < uvm_physseg_get_end(i);
   2266 		     pfn++) {
   2267 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   2268 
   2269 			(*pr)("%18p %04x %08x %18p %18p",
   2270 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2271 			    pg->uanon);
   2272 #ifdef UVM_PAGE_TRKOWN
   2273 			if (pg->flags & PG_BUSY)
   2274 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2275 #endif
   2276 			(*pr)("\n");
   2277 		}
   2278 	}
   2279 }
   2280 
   2281 /*
   2282  * uvm_page_print_freelists - print a summary freelists
   2283  */
   2284 
   2285 void
   2286 uvm_page_print_freelists(void (*pr)(const char *, ...))
   2287 {
   2288 	struct pgfreelist *pgfl;
   2289 	struct pgflbucket *pgb;
   2290 	int fl, b, c;
   2291 
   2292 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
   2293 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
   2294 
   2295 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   2296 		pgfl = &uvm.page_free[fl];
   2297 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
   2298 		for (b = 0; b < uvm.bucketcount; b++) {
   2299 			pgb = uvm.page_free[fl].pgfl_buckets[b];
   2300 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
   2301 			    b, pgb, pgb->pgb_nfree,
   2302 			    &uvm_freelist_locks[b].lock);
   2303 			for (c = 0; c < uvmexp.ncolors; c++) {
   2304 				(*pr)("        color(%d) @ %p, ", c,
   2305 				    &pgb->pgb_colors[c]);
   2306 				(*pr)("first page = %p\n",
   2307 				    LIST_FIRST(&pgb->pgb_colors[c]));
   2308 			}
   2309 		}
   2310 	}
   2311 }
   2312 
   2313 #endif /* DDB || DEBUGPRINT */
   2314