Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.249
      1 /*	$NetBSD: uvm_page.c,v 1.249 2020/10/18 18:31:31 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
     34  * Copyright (c) 1991, 1993, The Regents of the University of California.
     35  *
     36  * All rights reserved.
     37  *
     38  * This code is derived from software contributed to Berkeley by
     39  * The Mach Operating System project at Carnegie-Mellon University.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     67  *
     68  *
     69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     70  * All rights reserved.
     71  *
     72  * Permission to use, copy, modify and distribute this software and
     73  * its documentation is hereby granted, provided that both the copyright
     74  * notice and this permission notice appear in all copies of the
     75  * software, derivative works or modified versions, and any portions
     76  * thereof, and that both notices appear in supporting documentation.
     77  *
     78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     81  *
     82  * Carnegie Mellon requests users of this software to return to
     83  *
     84  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     85  *  School of Computer Science
     86  *  Carnegie Mellon University
     87  *  Pittsburgh PA 15213-3890
     88  *
     89  * any improvements or extensions that they make and grant Carnegie the
     90  * rights to redistribute these changes.
     91  */
     92 
     93 /*
     94  * uvm_page.c: page ops.
     95  */
     96 
     97 #include <sys/cdefs.h>
     98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.249 2020/10/18 18:31:31 chs Exp $");
     99 
    100 #include "opt_ddb.h"
    101 #include "opt_uvm.h"
    102 #include "opt_uvmhist.h"
    103 #include "opt_readahead.h"
    104 
    105 #include <sys/param.h>
    106 #include <sys/systm.h>
    107 #include <sys/sched.h>
    108 #include <sys/kernel.h>
    109 #include <sys/vnode.h>
    110 #include <sys/proc.h>
    111 #include <sys/radixtree.h>
    112 #include <sys/atomic.h>
    113 #include <sys/cpu.h>
    114 
    115 #include <uvm/uvm.h>
    116 #include <uvm/uvm_ddb.h>
    117 #include <uvm/uvm_pdpolicy.h>
    118 #include <uvm/uvm_pgflcache.h>
    119 
    120 /*
    121  * number of pages per-CPU to reserve for the kernel.
    122  */
    123 #ifndef	UVM_RESERVED_PAGES_PER_CPU
    124 #define	UVM_RESERVED_PAGES_PER_CPU	5
    125 #endif
    126 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
    127 
    128 /*
    129  * physical memory size;
    130  */
    131 psize_t physmem;
    132 
    133 /*
    134  * local variables
    135  */
    136 
    137 /*
    138  * these variables record the values returned by vm_page_bootstrap,
    139  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    140  * and pmap_startup here also uses them internally.
    141  */
    142 
    143 static vaddr_t      virtual_space_start;
    144 static vaddr_t      virtual_space_end;
    145 
    146 /*
    147  * we allocate an initial number of page colors in uvm_page_init(),
    148  * and remember them.  We may re-color pages as cache sizes are
    149  * discovered during the autoconfiguration phase.  But we can never
    150  * free the initial set of buckets, since they are allocated using
    151  * uvm_pageboot_alloc().
    152  */
    153 
    154 static size_t recolored_pages_memsize /* = 0 */;
    155 static char *recolored_pages_mem;
    156 
    157 /*
    158  * freelist locks - one per bucket.
    159  */
    160 
    161 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
    162     __cacheline_aligned;
    163 
    164 /*
    165  * basic NUMA information.
    166  */
    167 
    168 static struct uvm_page_numa_region {
    169 	struct uvm_page_numa_region	*next;
    170 	paddr_t				start;
    171 	paddr_t				size;
    172 	u_int				numa_id;
    173 } *uvm_page_numa_region;
    174 
    175 #ifdef DEBUG
    176 kmutex_t uvm_zerochecklock __cacheline_aligned;
    177 vaddr_t uvm_zerocheckkva;
    178 #endif /* DEBUG */
    179 
    180 /*
    181  * These functions are reserved for uvm(9) internal use and are not
    182  * exported in the header file uvm_physseg.h
    183  *
    184  * Thus they are redefined here.
    185  */
    186 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
    187 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
    188 
    189 /* returns a pgs array */
    190 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
    191 
    192 /*
    193  * inline functions
    194  */
    195 
    196 /*
    197  * uvm_pageinsert: insert a page in the object.
    198  *
    199  * => caller must lock object
    200  * => call should have already set pg's object and offset pointers
    201  *    and bumped the version counter
    202  */
    203 
    204 static inline void
    205 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
    206 {
    207 
    208 	KASSERT(uobj == pg->uobject);
    209 	KASSERT(rw_write_held(uobj->vmobjlock));
    210 	KASSERT((pg->flags & PG_TABLED) == 0);
    211 
    212 	if ((pg->flags & PG_STAT) != 0) {
    213 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
    214 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    215 
    216 		if ((pg->flags & PG_FILE) != 0) {
    217 			if (uobj->uo_npages == 0) {
    218 				struct vnode *vp = (struct vnode *)uobj;
    219 				mutex_enter(vp->v_interlock);
    220 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
    221 				vp->v_iflag |= VI_PAGES;
    222 				vholdl(vp);
    223 				mutex_exit(vp->v_interlock);
    224 			}
    225 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    226 				cpu_count(CPU_COUNT_EXECPAGES, 1);
    227 			}
    228 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
    229 		} else {
    230 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
    231 		}
    232 	}
    233 	pg->flags |= PG_TABLED;
    234 	uobj->uo_npages++;
    235 }
    236 
    237 static inline int
    238 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
    239 {
    240 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
    241 	int error;
    242 
    243 	KASSERT(rw_write_held(uobj->vmobjlock));
    244 
    245 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
    246 	if (error != 0) {
    247 		return error;
    248 	}
    249 	if ((pg->flags & PG_CLEAN) == 0) {
    250 		uvm_obj_page_set_dirty(pg);
    251 	}
    252 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
    253 		uvm_obj_page_dirty_p(pg));
    254 	return 0;
    255 }
    256 
    257 /*
    258  * uvm_page_remove: remove page from object.
    259  *
    260  * => caller must lock object
    261  */
    262 
    263 static inline void
    264 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
    265 {
    266 
    267 	KASSERT(uobj == pg->uobject);
    268 	KASSERT(rw_write_held(uobj->vmobjlock));
    269 	KASSERT(pg->flags & PG_TABLED);
    270 
    271 	if ((pg->flags & PG_STAT) != 0) {
    272 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
    273 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
    274 
    275 		if ((pg->flags & PG_FILE) != 0) {
    276 			if (uobj->uo_npages == 1) {
    277 				struct vnode *vp = (struct vnode *)uobj;
    278 				mutex_enter(vp->v_interlock);
    279 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
    280 				vp->v_iflag &= ~VI_PAGES;
    281 				holdrelel(vp);
    282 				mutex_exit(vp->v_interlock);
    283 			}
    284 			if (UVM_OBJ_IS_VTEXT(uobj)) {
    285 				cpu_count(CPU_COUNT_EXECPAGES, -1);
    286 			}
    287 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
    288 		} else {
    289 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
    290 		}
    291 	}
    292 	uobj->uo_npages--;
    293 	pg->flags &= ~PG_TABLED;
    294 	pg->uobject = NULL;
    295 }
    296 
    297 static inline void
    298 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
    299 {
    300 	struct vm_page *opg __unused;
    301 
    302 	KASSERT(rw_write_held(uobj->vmobjlock));
    303 
    304 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
    305 	KASSERT(pg == opg);
    306 }
    307 
    308 static void
    309 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
    310 {
    311 	int i;
    312 
    313 	pgb->pgb_nfree = 0;
    314 	for (i = 0; i < uvmexp.ncolors; i++) {
    315 		LIST_INIT(&pgb->pgb_colors[i]);
    316 	}
    317 	pgfl->pgfl_buckets[num] = pgb;
    318 }
    319 
    320 /*
    321  * uvm_page_init: init the page system.   called from uvm_init().
    322  *
    323  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    324  */
    325 
    326 void
    327 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
    328 {
    329 	static struct uvm_cpu boot_cpu __cacheline_aligned;
    330 	psize_t freepages, pagecount, bucketsize, n;
    331 	struct pgflbucket *pgb;
    332 	struct vm_page *pagearray;
    333 	char *bucketarray;
    334 	uvm_physseg_t bank;
    335 	int fl, b;
    336 
    337 	KASSERT(ncpu <= 1);
    338 
    339 	/*
    340 	 * init the page queues and free page queue locks, except the
    341 	 * free list; we allocate that later (with the initial vm_page
    342 	 * structures).
    343 	 */
    344 
    345 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
    346 	uvmpdpol_init();
    347 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
    348 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
    349 	}
    350 
    351 	/*
    352 	 * allocate vm_page structures.
    353 	 */
    354 
    355 	/*
    356 	 * sanity check:
    357 	 * before calling this function the MD code is expected to register
    358 	 * some free RAM with the uvm_page_physload() function.   our job
    359 	 * now is to allocate vm_page structures for this memory.
    360 	 */
    361 
    362 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
    363 		panic("uvm_page_bootstrap: no memory pre-allocated");
    364 
    365 	/*
    366 	 * first calculate the number of free pages...
    367 	 *
    368 	 * note that we use start/end rather than avail_start/avail_end.
    369 	 * this allows us to allocate extra vm_page structures in case we
    370 	 * want to return some memory to the pool after booting.
    371 	 */
    372 
    373 	freepages = 0;
    374 
    375 	for (bank = uvm_physseg_get_first();
    376 	     uvm_physseg_valid_p(bank) ;
    377 	     bank = uvm_physseg_get_next(bank)) {
    378 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
    379 	}
    380 
    381 	/*
    382 	 * Let MD code initialize the number of colors, or default
    383 	 * to 1 color if MD code doesn't care.
    384 	 */
    385 	if (uvmexp.ncolors == 0)
    386 		uvmexp.ncolors = 1;
    387 	uvmexp.colormask = uvmexp.ncolors - 1;
    388 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
    389 
    390 	/* We always start with only 1 bucket. */
    391 	uvm.bucketcount = 1;
    392 
    393 	/*
    394 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    395 	 * use.   for each page of memory we use we need a vm_page structure.
    396 	 * thus, the total number of pages we can use is the total size of
    397 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    398 	 * structure.   we add one to freepages as a fudge factor to avoid
    399 	 * truncation errors (since we can only allocate in terms of whole
    400 	 * pages).
    401 	 */
    402 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    403 	    (PAGE_SIZE + sizeof(struct vm_page));
    404 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
    405 	bucketsize = roundup2(bucketsize, coherency_unit);
    406 	bucketarray = (void *)uvm_pageboot_alloc(
    407 	    bucketsize * VM_NFREELIST +
    408 	    pagecount * sizeof(struct vm_page));
    409 	pagearray = (struct vm_page *)
    410 	    (bucketarray + bucketsize * VM_NFREELIST);
    411 
    412 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    413 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
    414 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
    415 	}
    416 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    417 
    418 	/*
    419 	 * init the freelist cache in the disabled state.
    420 	 */
    421 	uvm_pgflcache_init();
    422 
    423 	/*
    424 	 * init the vm_page structures and put them in the correct place.
    425 	 */
    426 	/* First init the extent */
    427 
    428 	for (bank = uvm_physseg_get_first(),
    429 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
    430 	     uvm_physseg_valid_p(bank);
    431 	     bank = uvm_physseg_get_next(bank)) {
    432 
    433 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
    434 		uvm_physseg_seg_alloc_from_slab(bank, n);
    435 		uvm_physseg_init_seg(bank, pagearray);
    436 
    437 		/* set up page array pointers */
    438 		pagearray += n;
    439 		pagecount -= n;
    440 	}
    441 
    442 	/*
    443 	 * pass up the values of virtual_space_start and
    444 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    445 	 * layers of the VM.
    446 	 */
    447 
    448 	*kvm_startp = round_page(virtual_space_start);
    449 	*kvm_endp = trunc_page(virtual_space_end);
    450 
    451 	/*
    452 	 * init various thresholds.
    453 	 */
    454 
    455 	uvmexp.reserve_pagedaemon = 1;
    456 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
    457 
    458 	/*
    459 	 * done!
    460 	 */
    461 
    462 	uvm.page_init_done = true;
    463 }
    464 
    465 /*
    466  * uvm_pgfl_lock: lock all freelist buckets
    467  */
    468 
    469 void
    470 uvm_pgfl_lock(void)
    471 {
    472 	int i;
    473 
    474 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    475 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
    476 	}
    477 }
    478 
    479 /*
    480  * uvm_pgfl_unlock: unlock all freelist buckets
    481  */
    482 
    483 void
    484 uvm_pgfl_unlock(void)
    485 {
    486 	int i;
    487 
    488 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
    489 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
    490 	}
    491 }
    492 
    493 /*
    494  * uvm_setpagesize: set the page size
    495  *
    496  * => sets page_shift and page_mask from uvmexp.pagesize.
    497  */
    498 
    499 void
    500 uvm_setpagesize(void)
    501 {
    502 
    503 	/*
    504 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    505 	 * to be a constant (indicated by being a non-zero value).
    506 	 */
    507 	if (uvmexp.pagesize == 0) {
    508 		if (PAGE_SIZE == 0)
    509 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    510 		uvmexp.pagesize = PAGE_SIZE;
    511 	}
    512 	uvmexp.pagemask = uvmexp.pagesize - 1;
    513 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    514 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
    515 		    uvmexp.pagesize, uvmexp.pagesize);
    516 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    517 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    518 			break;
    519 }
    520 
    521 /*
    522  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    523  */
    524 
    525 vaddr_t
    526 uvm_pageboot_alloc(vsize_t size)
    527 {
    528 	static bool initialized = false;
    529 	vaddr_t addr;
    530 #if !defined(PMAP_STEAL_MEMORY)
    531 	vaddr_t vaddr;
    532 	paddr_t paddr;
    533 #endif
    534 
    535 	/*
    536 	 * on first call to this function, initialize ourselves.
    537 	 */
    538 	if (initialized == false) {
    539 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    540 
    541 		/* round it the way we like it */
    542 		virtual_space_start = round_page(virtual_space_start);
    543 		virtual_space_end = trunc_page(virtual_space_end);
    544 
    545 		initialized = true;
    546 	}
    547 
    548 	/* round to page size */
    549 	size = round_page(size);
    550 	uvmexp.bootpages += atop(size);
    551 
    552 #if defined(PMAP_STEAL_MEMORY)
    553 
    554 	/*
    555 	 * defer bootstrap allocation to MD code (it may want to allocate
    556 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    557 	 * virtual_space_start/virtual_space_end if necessary.
    558 	 */
    559 
    560 	addr = pmap_steal_memory(size, &virtual_space_start,
    561 	    &virtual_space_end);
    562 
    563 	return(addr);
    564 
    565 #else /* !PMAP_STEAL_MEMORY */
    566 
    567 	/*
    568 	 * allocate virtual memory for this request
    569 	 */
    570 	if (virtual_space_start == virtual_space_end ||
    571 	    (virtual_space_end - virtual_space_start) < size)
    572 		panic("uvm_pageboot_alloc: out of virtual space");
    573 
    574 	addr = virtual_space_start;
    575 
    576 #ifdef PMAP_GROWKERNEL
    577 	/*
    578 	 * If the kernel pmap can't map the requested space,
    579 	 * then allocate more resources for it.
    580 	 */
    581 	if (uvm_maxkaddr < (addr + size)) {
    582 		uvm_maxkaddr = pmap_growkernel(addr + size);
    583 		if (uvm_maxkaddr < (addr + size))
    584 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    585 	}
    586 #endif
    587 
    588 	virtual_space_start += size;
    589 
    590 	/*
    591 	 * allocate and mapin physical pages to back new virtual pages
    592 	 */
    593 
    594 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    595 	    vaddr += PAGE_SIZE) {
    596 
    597 		if (!uvm_page_physget(&paddr))
    598 			panic("uvm_pageboot_alloc: out of memory");
    599 
    600 		/*
    601 		 * Note this memory is no longer managed, so using
    602 		 * pmap_kenter is safe.
    603 		 */
    604 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
    605 	}
    606 	pmap_update(pmap_kernel());
    607 	return(addr);
    608 #endif	/* PMAP_STEAL_MEMORY */
    609 }
    610 
    611 #if !defined(PMAP_STEAL_MEMORY)
    612 /*
    613  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    614  *
    615  * => attempt to allocate it off the end of a segment in which the "avail"
    616  *    values match the start/end values.   if we can't do that, then we
    617  *    will advance both values (making them equal, and removing some
    618  *    vm_page structures from the non-avail area).
    619  * => return false if out of memory.
    620  */
    621 
    622 /* subroutine: try to allocate from memory chunks on the specified freelist */
    623 static bool uvm_page_physget_freelist(paddr_t *, int);
    624 
    625 static bool
    626 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
    627 {
    628 	uvm_physseg_t lcv;
    629 
    630 	/* pass 1: try allocating from a matching end */
    631 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    632 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    633 #else
    634 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    635 #endif
    636 	{
    637 		if (uvm.page_init_done == true)
    638 			panic("uvm_page_physget: called _after_ bootstrap");
    639 
    640 		/* Try to match at front or back on unused segment */
    641 		if (uvm_page_physunload(lcv, freelist, paddrp))
    642 			return true;
    643 	}
    644 
    645 	/* pass2: forget about matching ends, just allocate something */
    646 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    647 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
    648 #else
    649 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
    650 #endif
    651 	{
    652 		/* Try the front regardless. */
    653 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
    654 			return true;
    655 	}
    656 	return false;
    657 }
    658 
    659 bool
    660 uvm_page_physget(paddr_t *paddrp)
    661 {
    662 	int i;
    663 
    664 	/* try in the order of freelist preference */
    665 	for (i = 0; i < VM_NFREELIST; i++)
    666 		if (uvm_page_physget_freelist(paddrp, i) == true)
    667 			return (true);
    668 	return (false);
    669 }
    670 #endif /* PMAP_STEAL_MEMORY */
    671 
    672 /*
    673  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    674  * back from an I/O mapping (ugh!).   used in some MD code as well.
    675  */
    676 struct vm_page *
    677 uvm_phys_to_vm_page(paddr_t pa)
    678 {
    679 	paddr_t pf = atop(pa);
    680 	paddr_t	off;
    681 	uvm_physseg_t	upm;
    682 
    683 	upm = uvm_physseg_find(pf, &off);
    684 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
    685 		return uvm_physseg_get_pg(upm, off);
    686 	return(NULL);
    687 }
    688 
    689 paddr_t
    690 uvm_vm_page_to_phys(const struct vm_page *pg)
    691 {
    692 
    693 	return pg->phys_addr & ~(PAGE_SIZE - 1);
    694 }
    695 
    696 /*
    697  * uvm_page_numa_load: load NUMA range description.
    698  */
    699 void
    700 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
    701 {
    702 	struct uvm_page_numa_region *d;
    703 
    704 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
    705 
    706 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
    707 	d->start = start;
    708 	d->size = size;
    709 	d->numa_id = numa_id;
    710 	d->next = uvm_page_numa_region;
    711 	uvm_page_numa_region = d;
    712 }
    713 
    714 /*
    715  * uvm_page_numa_lookup: lookup NUMA node for the given page.
    716  */
    717 static u_int
    718 uvm_page_numa_lookup(struct vm_page *pg)
    719 {
    720 	struct uvm_page_numa_region *d;
    721 	static bool warned;
    722 	paddr_t pa;
    723 
    724 	KASSERT(uvm_page_numa_region != NULL);
    725 
    726 	pa = VM_PAGE_TO_PHYS(pg);
    727 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
    728 		if (pa >= d->start && pa < d->start + d->size) {
    729 			return d->numa_id;
    730 		}
    731 	}
    732 
    733 	if (!warned) {
    734 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
    735 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
    736 		warned = true;
    737 	}
    738 
    739 	return 0;
    740 }
    741 
    742 /*
    743  * uvm_page_redim: adjust freelist dimensions if they have changed.
    744  */
    745 
    746 static void
    747 uvm_page_redim(int newncolors, int newnbuckets)
    748 {
    749 	struct pgfreelist npgfl;
    750 	struct pgflbucket *opgb, *npgb;
    751 	struct pgflist *ohead, *nhead;
    752 	struct vm_page *pg;
    753 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
    754 	int fl, ob, oc, nb, nc, obuckets, ocolors;
    755 	char *bucketarray, *oldbucketmem, *bucketmem;
    756 
    757 	KASSERT(((newncolors - 1) & newncolors) == 0);
    758 
    759 	/* Anything to do? */
    760 	if (newncolors <= uvmexp.ncolors &&
    761 	    newnbuckets == uvm.bucketcount) {
    762 		return;
    763 	}
    764 	if (uvm.page_init_done == false) {
    765 		uvmexp.ncolors = newncolors;
    766 		return;
    767 	}
    768 
    769 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
    770 	bucketsize = roundup2(bucketsize, coherency_unit);
    771 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
    772 	    coherency_unit - 1;
    773 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
    774 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
    775 
    776 	ocolors = uvmexp.ncolors;
    777 	obuckets = uvm.bucketcount;
    778 
    779 	/* Freelist cache musn't be enabled. */
    780 	uvm_pgflcache_pause();
    781 
    782 	/* Make sure we should still do this. */
    783 	uvm_pgfl_lock();
    784 	if (newncolors <= uvmexp.ncolors &&
    785 	    newnbuckets == uvm.bucketcount) {
    786 		uvm_pgfl_unlock();
    787 		uvm_pgflcache_resume();
    788 		kmem_free(bucketmem, bucketmemsize);
    789 		return;
    790 	}
    791 
    792 	uvmexp.ncolors = newncolors;
    793 	uvmexp.colormask = uvmexp.ncolors - 1;
    794 	uvm.bucketcount = newnbuckets;
    795 
    796 	for (fl = 0; fl < VM_NFREELIST; fl++) {
    797 		/* Init new buckets in new freelist. */
    798 		memset(&npgfl, 0, sizeof(npgfl));
    799 		for (nb = 0; nb < newnbuckets; nb++) {
    800 			npgb = (struct pgflbucket *)bucketarray;
    801 			uvm_page_init_bucket(&npgfl, npgb, nb);
    802 			bucketarray += bucketsize;
    803 		}
    804 		/* Now transfer pages from the old freelist. */
    805 		for (nb = ob = 0; ob < obuckets; ob++) {
    806 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
    807 			for (oc = 0; oc < ocolors; oc++) {
    808 				ohead = &opgb->pgb_colors[oc];
    809 				while ((pg = LIST_FIRST(ohead)) != NULL) {
    810 					LIST_REMOVE(pg, pageq.list);
    811 					/*
    812 					 * Here we decide on the NEW color &
    813 					 * bucket for the page.  For NUMA
    814 					 * we'll use the info that the
    815 					 * hardware gave us.  For non-NUMA
    816 					 * assign take physical page frame
    817 					 * number and cache color into
    818 					 * account.  We do this to try and
    819 					 * avoid defeating any memory
    820 					 * interleaving in the hardware.
    821 					 */
    822 					KASSERT(
    823 					    uvm_page_get_bucket(pg) == ob);
    824 					KASSERT(fl ==
    825 					    uvm_page_get_freelist(pg));
    826 					if (uvm_page_numa_region != NULL) {
    827 						nb = uvm_page_numa_lookup(pg);
    828 					} else {
    829 						nb = atop(VM_PAGE_TO_PHYS(pg))
    830 						    / uvmexp.ncolors / 8
    831 						    % newnbuckets;
    832 					}
    833 					uvm_page_set_bucket(pg, nb);
    834 					npgb = npgfl.pgfl_buckets[nb];
    835 					npgb->pgb_nfree++;
    836 					nc = VM_PGCOLOR(pg);
    837 					nhead = &npgb->pgb_colors[nc];
    838 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
    839 				}
    840 			}
    841 		}
    842 		/* Install the new freelist. */
    843 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
    844 	}
    845 
    846 	/* Unlock and free the old memory. */
    847 	oldbucketmemsize = recolored_pages_memsize;
    848 	oldbucketmem = recolored_pages_mem;
    849 	recolored_pages_memsize = bucketmemsize;
    850 	recolored_pages_mem = bucketmem;
    851 
    852 	uvm_pgfl_unlock();
    853 	uvm_pgflcache_resume();
    854 
    855 	if (oldbucketmemsize) {
    856 		kmem_free(oldbucketmem, oldbucketmemsize);
    857 	}
    858 
    859 	/*
    860 	 * this calls uvm_km_alloc() which may want to hold
    861 	 * uvm_freelist_lock.
    862 	 */
    863 	uvm_pager_realloc_emerg();
    864 }
    865 
    866 /*
    867  * uvm_page_recolor: Recolor the pages if the new color count is
    868  * larger than the old one.
    869  */
    870 
    871 void
    872 uvm_page_recolor(int newncolors)
    873 {
    874 
    875 	uvm_page_redim(newncolors, uvm.bucketcount);
    876 }
    877 
    878 /*
    879  * uvm_page_rebucket: Determine a bucket structure and redim the free
    880  * lists to match.
    881  */
    882 
    883 void
    884 uvm_page_rebucket(void)
    885 {
    886 	u_int min_numa, max_numa, npackage, shift;
    887 	struct cpu_info *ci, *ci2, *ci3;
    888 	CPU_INFO_ITERATOR cii;
    889 
    890 	/*
    891 	 * If we have more than one NUMA node, and the maximum NUMA node ID
    892 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
    893 	 * for free pages.
    894 	 */
    895 	min_numa = (u_int)-1;
    896 	max_numa = 0;
    897 	for (CPU_INFO_FOREACH(cii, ci)) {
    898 		if (ci->ci_numa_id < min_numa) {
    899 			min_numa = ci->ci_numa_id;
    900 		}
    901 		if (ci->ci_numa_id > max_numa) {
    902 			max_numa = ci->ci_numa_id;
    903 		}
    904 	}
    905 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
    906 		aprint_debug("UVM: using NUMA allocation scheme\n");
    907 		for (CPU_INFO_FOREACH(cii, ci)) {
    908 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
    909 		}
    910 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
    911 	 	return;
    912 	}
    913 
    914 	/*
    915 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
    916 	 * and minimise lock contention.  Count the total number of CPU
    917 	 * packages, and then try to distribute the buckets among CPU
    918 	 * packages evenly.
    919 	 */
    920 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
    921 
    922 	/*
    923 	 * Figure out how to arrange the packages & buckets, and the total
    924 	 * number of buckets we need.  XXX 2 may not be the best factor.
    925 	 */
    926 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
    927 		npackage >>= 1;
    928 	}
    929  	uvm_page_redim(uvmexp.ncolors, npackage);
    930 
    931  	/*
    932  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
    933  	 * through all CPU packages.
    934  	 */
    935  	npackage = 0;
    936 	ci = curcpu();
    937 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
    938 	do {
    939 		/*
    940 		 * In the inner loop, scroll through all CPUs in the package
    941 		 * and assign the same bucket ID.
    942 		 */
    943 		ci3 = ci2;
    944 		do {
    945 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
    946 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
    947 		} while (ci3 != ci2);
    948 		npackage++;
    949 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
    950 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
    951 
    952 	aprint_debug("UVM: using package allocation scheme, "
    953 	    "%d package(s) per bucket\n", 1 << shift);
    954 }
    955 
    956 /*
    957  * uvm_cpu_attach: initialize per-CPU data structures.
    958  */
    959 
    960 void
    961 uvm_cpu_attach(struct cpu_info *ci)
    962 {
    963 	struct uvm_cpu *ucpu;
    964 
    965 	/* Already done in uvm_page_init(). */
    966 	if (!CPU_IS_PRIMARY(ci)) {
    967 		/* Add more reserve pages for this CPU. */
    968 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
    969 
    970 		/* Allocate per-CPU data structures. */
    971 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
    972 		    KM_SLEEP);
    973 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
    974 		    coherency_unit);
    975 		ci->ci_data.cpu_uvm = ucpu;
    976 	} else {
    977 		ucpu = ci->ci_data.cpu_uvm;
    978 	}
    979 
    980 	uvmpdpol_init_cpu(ucpu);
    981 
    982 	/*
    983 	 * Attach RNG source for this CPU's VM events
    984 	 */
    985         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
    986 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
    987 	    RND_FLAG_ESTIMATE_VALUE);
    988 }
    989 
    990 /*
    991  * uvm_availmem: fetch the total amount of free memory in pages.  this can
    992  * have a detrimental effect on performance due to false sharing; don't call
    993  * unless needed.
    994  *
    995  * some users can request the amount of free memory so often that it begins
    996  * to impact upon performance.  if calling frequently and an inexact value
    997  * is okay, call with cached = true.
    998  */
    999 
   1000 int
   1001 uvm_availmem(bool cached)
   1002 {
   1003 	int64_t fp;
   1004 
   1005 	cpu_count_sync(cached);
   1006 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
   1007 		/*
   1008 		 * XXXAD could briefly go negative because it's impossible
   1009 		 * to get a clean snapshot.  address this for other counters
   1010 		 * used as running totals before NetBSD 10 although less
   1011 		 * important for those.
   1012 		 */
   1013 		fp = 0;
   1014 	}
   1015 	return (int)fp;
   1016 }
   1017 
   1018 /*
   1019  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
   1020  * specific freelist and specific bucket only.
   1021  *
   1022  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1023  */
   1024 
   1025 static struct vm_page *
   1026 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
   1027 {
   1028 	int c, trycolor, colormask;
   1029 	struct pgflbucket *pgb;
   1030 	struct vm_page *pg;
   1031 	kmutex_t *lock;
   1032 	bool fill;
   1033 
   1034 	/*
   1035 	 * Skip the bucket if empty, no lock needed.  There could be many
   1036 	 * empty freelists/buckets.
   1037 	 */
   1038 	pgb = uvm.page_free[f].pgfl_buckets[b];
   1039 	if (pgb->pgb_nfree == 0) {
   1040 		return NULL;
   1041 	}
   1042 
   1043 	/* Skip bucket if low on memory. */
   1044 	lock = &uvm_freelist_locks[b].lock;
   1045 	mutex_spin_enter(lock);
   1046 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
   1047 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
   1048 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
   1049 		     curlwp != uvm.pagedaemon_lwp)) {
   1050 			mutex_spin_exit(lock);
   1051 		     	return NULL;
   1052 		}
   1053 		fill = false;
   1054 	} else {
   1055 		fill = true;
   1056 	}
   1057 
   1058 	/* Try all page colors as needed. */
   1059 	c = trycolor = *trycolorp;
   1060 	colormask = uvmexp.colormask;
   1061 	do {
   1062 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
   1063 		if (__predict_true(pg != NULL)) {
   1064 			/*
   1065 			 * Got a free page!  PG_FREE must be cleared under
   1066 			 * lock because of uvm_pglistalloc().
   1067 			 */
   1068 			LIST_REMOVE(pg, pageq.list);
   1069 			KASSERT(pg->flags == PG_FREE);
   1070 			pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
   1071 			pgb->pgb_nfree--;
   1072 			CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
   1073 
   1074 			/*
   1075 			 * While we have the bucket locked and our data
   1076 			 * structures fresh in L1 cache, we have an ideal
   1077 			 * opportunity to grab some pages for the freelist
   1078 			 * cache without causing extra contention.  Only do
   1079 			 * so if we found pages in this CPU's preferred
   1080 			 * bucket.
   1081 			 */
   1082 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
   1083 				uvm_pgflcache_fill(ucpu, f, b, c);
   1084 			}
   1085 			mutex_spin_exit(lock);
   1086 			KASSERT(uvm_page_get_bucket(pg) == b);
   1087 			CPU_COUNT(c == trycolor ?
   1088 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
   1089 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
   1090 			*trycolorp = c;
   1091 			return pg;
   1092 		}
   1093 		c = (c + 1) & colormask;
   1094 	} while (c != trycolor);
   1095 	mutex_spin_exit(lock);
   1096 
   1097 	return NULL;
   1098 }
   1099 
   1100 /*
   1101  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
   1102  * any color from any bucket, in a specific freelist.
   1103  *
   1104  * => must be at IPL_VM or higher to protect per-CPU data structures.
   1105  */
   1106 
   1107 static struct vm_page *
   1108 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
   1109 {
   1110 	int b, trybucket, bucketcount;
   1111 	struct vm_page *pg;
   1112 
   1113 	/* Try for the exact thing in the per-CPU cache. */
   1114 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
   1115 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1116 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1117 		return pg;
   1118 	}
   1119 
   1120 	/* Walk through all buckets, trying our preferred bucket first. */
   1121 	trybucket = ucpu->pgflbucket;
   1122 	b = trybucket;
   1123 	bucketcount = uvm.bucketcount;
   1124 	do {
   1125 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
   1126 		if (pg != NULL) {
   1127 			return pg;
   1128 		}
   1129 		b = (b + 1 == bucketcount ? 0 : b + 1);
   1130 	} while (b != trybucket);
   1131 
   1132 	return NULL;
   1133 }
   1134 
   1135 /*
   1136  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1137  *
   1138  * => return null if no pages free
   1139  * => wake up pagedaemon if number of free pages drops below low water mark
   1140  * => if obj != NULL, obj must be locked (to put in obj's tree)
   1141  * => if anon != NULL, anon must be locked (to put in anon)
   1142  * => only one of obj or anon can be non-null
   1143  * => caller must activate/deactivate page if it is not wired.
   1144  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1145  * => policy decision: it is more important to pull a page off of the
   1146  *	appropriate priority free list than it is to get a page from the
   1147  *	correct bucket or color bin.  This is because we live with the
   1148  *	consequences of a bad free list decision for the entire
   1149  *	lifetime of the page, e.g. if the page comes from memory that
   1150  *	is slower to access.
   1151  */
   1152 
   1153 struct vm_page *
   1154 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
   1155     int flags, int strat, int free_list)
   1156 {
   1157 	int color, lcv, error, s;
   1158 	struct uvm_cpu *ucpu;
   1159 	struct vm_page *pg;
   1160 	lwp_t *l;
   1161 
   1162 	KASSERT(obj == NULL || anon == NULL);
   1163 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
   1164 	KASSERT(off == trunc_page(off));
   1165 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
   1166 	KASSERT(anon == NULL || anon->an_lock == NULL ||
   1167 	    rw_write_held(anon->an_lock));
   1168 
   1169 	/*
   1170 	 * This implements a global round-robin page coloring
   1171 	 * algorithm.
   1172 	 */
   1173 
   1174 	s = splvm();
   1175 	ucpu = curcpu()->ci_data.cpu_uvm;
   1176 	if (flags & UVM_FLAG_COLORMATCH) {
   1177 		color = atop(off) & uvmexp.colormask;
   1178 	} else {
   1179 		color = ucpu->pgflcolor;
   1180 	}
   1181 
   1182 	/*
   1183 	 * fail if any of these conditions is true:
   1184 	 * [1]  there really are no free pages, or
   1185 	 * [2]  only kernel "reserved" pages remain and
   1186 	 *        reserved pages have not been requested.
   1187 	 * [3]  only pagedaemon "reserved" pages remain and
   1188 	 *        the requestor isn't the pagedaemon.
   1189 	 * we make kernel reserve pages available if called by a
   1190 	 * kernel thread.
   1191 	 */
   1192 	l = curlwp;
   1193 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
   1194 		flags |= UVM_PGA_USERESERVE;
   1195 	}
   1196 
   1197  again:
   1198 	switch (strat) {
   1199 	case UVM_PGA_STRAT_NORMAL:
   1200 		/* Check freelists: descending priority (ascending id) order. */
   1201 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1202 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
   1203 			if (pg != NULL) {
   1204 				goto gotit;
   1205 			}
   1206 		}
   1207 
   1208 		/* No pages free!  Have pagedaemon free some memory. */
   1209 		splx(s);
   1210 		uvm_kick_pdaemon();
   1211 		return NULL;
   1212 
   1213 	case UVM_PGA_STRAT_ONLY:
   1214 	case UVM_PGA_STRAT_FALLBACK:
   1215 		/* Attempt to allocate from the specified free list. */
   1216 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1217 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
   1218 		if (pg != NULL) {
   1219 			goto gotit;
   1220 		}
   1221 
   1222 		/* Fall back, if possible. */
   1223 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1224 			strat = UVM_PGA_STRAT_NORMAL;
   1225 			goto again;
   1226 		}
   1227 
   1228 		/* No pages free!  Have pagedaemon free some memory. */
   1229 		splx(s);
   1230 		uvm_kick_pdaemon();
   1231 		return NULL;
   1232 
   1233 	case UVM_PGA_STRAT_NUMA:
   1234 		/*
   1235 		 * NUMA strategy (experimental): allocating from the correct
   1236 		 * bucket is more important than observing freelist
   1237 		 * priority.  Look only to the current NUMA node; if that
   1238 		 * fails, we need to look to other NUMA nodes, so retry with
   1239 		 * the normal strategy.
   1240 		 */
   1241 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1242 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
   1243 			if (pg != NULL) {
   1244 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
   1245 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
   1246 				goto gotit;
   1247 			}
   1248 			pg = uvm_pagealloc_pgb(ucpu, lcv,
   1249 			    ucpu->pgflbucket, &color, flags);
   1250 			if (pg != NULL) {
   1251 				goto gotit;
   1252 			}
   1253 		}
   1254 		strat = UVM_PGA_STRAT_NORMAL;
   1255 		goto again;
   1256 
   1257 	default:
   1258 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1259 		/* NOTREACHED */
   1260 	}
   1261 
   1262  gotit:
   1263 	/*
   1264 	 * We now know which color we actually allocated from; set
   1265 	 * the next color accordingly.
   1266 	 */
   1267 
   1268 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
   1269 
   1270 	/*
   1271 	 * while still at IPL_VM, update allocation statistics.
   1272 	 */
   1273 
   1274 	if (anon) {
   1275 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
   1276 	}
   1277 	splx(s);
   1278 	KASSERT(pg->flags == (PG_BUSY|PG_CLEAN|PG_FAKE));
   1279 
   1280 	/*
   1281 	 * assign the page to the object.  as the page was free, we know
   1282 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
   1283 	 * the page's interlock if we are changing the values.
   1284 	 */
   1285 	if (anon != NULL || obj != NULL) {
   1286 		mutex_enter(&pg->interlock);
   1287 	}
   1288 	pg->offset = off;
   1289 	pg->uobject = obj;
   1290 	pg->uanon = anon;
   1291 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1292 	if (anon) {
   1293 		anon->an_page = pg;
   1294 		pg->flags |= PG_ANON;
   1295 		mutex_exit(&pg->interlock);
   1296 	} else if (obj) {
   1297 		/*
   1298 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
   1299 		 */
   1300 		if (UVM_OBJ_IS_VNODE(obj)) {
   1301 			pg->flags |= PG_FILE;
   1302 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
   1303 			pg->flags |= PG_AOBJ;
   1304 		}
   1305 		uvm_pageinsert_object(obj, pg);
   1306 		mutex_exit(&pg->interlock);
   1307 		error = uvm_pageinsert_tree(obj, pg);
   1308 		if (error != 0) {
   1309 			mutex_enter(&pg->interlock);
   1310 			uvm_pageremove_object(obj, pg);
   1311 			mutex_exit(&pg->interlock);
   1312 			uvm_pagefree(pg);
   1313 			return NULL;
   1314 		}
   1315 	}
   1316 
   1317 #if defined(UVM_PAGE_TRKOWN)
   1318 	pg->owner_tag = NULL;
   1319 #endif
   1320 	UVM_PAGE_OWN(pg, "new alloc");
   1321 
   1322 	if (flags & UVM_PGA_ZERO) {
   1323 		/* A zero'd page is not clean. */
   1324 		if (obj != NULL || anon != NULL) {
   1325 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   1326 		}
   1327 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1328 	}
   1329 
   1330 	return(pg);
   1331 }
   1332 
   1333 /*
   1334  * uvm_pagereplace: replace a page with another
   1335  *
   1336  * => object must be locked
   1337  * => page interlocks must be held
   1338  */
   1339 
   1340 void
   1341 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
   1342 {
   1343 	struct uvm_object *uobj = oldpg->uobject;
   1344 	struct vm_page *pg __diagused;
   1345 	uint64_t idx;
   1346 
   1347 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1348 	KASSERT(uobj != NULL);
   1349 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1350 	KASSERT(newpg->uobject == NULL);
   1351 	KASSERT(rw_write_held(uobj->vmobjlock));
   1352 	KASSERT(mutex_owned(&oldpg->interlock));
   1353 	KASSERT(mutex_owned(&newpg->interlock));
   1354 
   1355 	newpg->uobject = uobj;
   1356 	newpg->offset = oldpg->offset;
   1357 	idx = newpg->offset >> PAGE_SHIFT;
   1358 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
   1359 	KASSERT(pg == oldpg);
   1360 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
   1361 		if ((newpg->flags & PG_CLEAN) != 0) {
   1362 			uvm_obj_page_clear_dirty(newpg);
   1363 		} else {
   1364 			uvm_obj_page_set_dirty(newpg);
   1365 		}
   1366 	}
   1367 	/*
   1368 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
   1369 	 */
   1370 	newpg->flags |=
   1371 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
   1372 	uvm_pageinsert_object(uobj, newpg);
   1373 	uvm_pageremove_object(uobj, oldpg);
   1374 }
   1375 
   1376 /*
   1377  * uvm_pagerealloc: reallocate a page from one object to another
   1378  *
   1379  * => both objects must be locked
   1380  */
   1381 
   1382 int
   1383 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
   1384 {
   1385 	int error = 0;
   1386 
   1387 	/*
   1388 	 * remove it from the old object
   1389 	 */
   1390 
   1391 	if (pg->uobject) {
   1392 		uvm_pageremove_tree(pg->uobject, pg);
   1393 		uvm_pageremove_object(pg->uobject, pg);
   1394 	}
   1395 
   1396 	/*
   1397 	 * put it in the new object
   1398 	 */
   1399 
   1400 	if (newobj) {
   1401 		mutex_enter(&pg->interlock);
   1402 		pg->uobject = newobj;
   1403 		pg->offset = newoff;
   1404 		if (UVM_OBJ_IS_VNODE(newobj)) {
   1405 			pg->flags |= PG_FILE;
   1406 		} else if (UVM_OBJ_IS_AOBJ(newobj)) {
   1407 			pg->flags |= PG_AOBJ;
   1408 		}
   1409 		uvm_pageinsert_object(newobj, pg);
   1410 		mutex_exit(&pg->interlock);
   1411 		error = uvm_pageinsert_tree(newobj, pg);
   1412 		if (error != 0) {
   1413 			mutex_enter(&pg->interlock);
   1414 			uvm_pageremove_object(newobj, pg);
   1415 			mutex_exit(&pg->interlock);
   1416 		}
   1417 	}
   1418 
   1419 	return error;
   1420 }
   1421 
   1422 /*
   1423  * uvm_pagefree: free page
   1424  *
   1425  * => erase page's identity (i.e. remove from object)
   1426  * => put page on free list
   1427  * => caller must lock owning object (either anon or uvm_object)
   1428  * => assumes all valid mappings of pg are gone
   1429  */
   1430 
   1431 void
   1432 uvm_pagefree(struct vm_page *pg)
   1433 {
   1434 	struct pgfreelist *pgfl;
   1435 	struct pgflbucket *pgb;
   1436 	struct uvm_cpu *ucpu;
   1437 	kmutex_t *lock;
   1438 	int bucket, s;
   1439 	bool locked;
   1440 
   1441 #ifdef DEBUG
   1442 	if (pg->uobject == (void *)0xdeadbeef &&
   1443 	    pg->uanon == (void *)0xdeadbeef) {
   1444 		panic("uvm_pagefree: freeing free page %p", pg);
   1445 	}
   1446 #endif /* DEBUG */
   1447 
   1448 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1449 	KASSERT(!(pg->flags & PG_FREE));
   1450 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
   1451 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1452 		rw_write_held(pg->uanon->an_lock));
   1453 
   1454 	/*
   1455 	 * remove the page from the object's tree before acquiring any page
   1456 	 * interlocks: this can acquire locks to free radixtree nodes.
   1457 	 */
   1458 	if (pg->uobject != NULL) {
   1459 		uvm_pageremove_tree(pg->uobject, pg);
   1460 	}
   1461 
   1462 	/*
   1463 	 * if the page is loaned, resolve the loan instead of freeing.
   1464 	 */
   1465 
   1466 	if (pg->loan_count) {
   1467 		KASSERT(pg->wire_count == 0);
   1468 
   1469 		/*
   1470 		 * if the page is owned by an anon then we just want to
   1471 		 * drop anon ownership.  the kernel will free the page when
   1472 		 * it is done with it.  if the page is owned by an object,
   1473 		 * remove it from the object and mark it dirty for the benefit
   1474 		 * of possible anon owners.
   1475 		 *
   1476 		 * regardless of previous ownership, wakeup any waiters,
   1477 		 * unbusy the page, and we're done.
   1478 		 */
   1479 
   1480 		uvm_pagelock(pg);
   1481 		locked = true;
   1482 		if (pg->uobject != NULL) {
   1483 			uvm_pageremove_object(pg->uobject, pg);
   1484 			pg->flags &= ~(PG_FILE|PG_AOBJ);
   1485 		} else if (pg->uanon != NULL) {
   1486 			if ((pg->flags & PG_ANON) == 0) {
   1487 				pg->loan_count--;
   1488 			} else {
   1489 				const unsigned status = uvm_pagegetdirty(pg);
   1490 				pg->flags &= ~PG_ANON;
   1491 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1492 			}
   1493 			pg->uanon->an_page = NULL;
   1494 			pg->uanon = NULL;
   1495 		}
   1496 		if (pg->pqflags & PQ_WANTED) {
   1497 			wakeup(pg);
   1498 		}
   1499 		pg->pqflags &= ~PQ_WANTED;
   1500 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
   1501 #ifdef UVM_PAGE_TRKOWN
   1502 		pg->owner_tag = NULL;
   1503 #endif
   1504 		KASSERT((pg->flags & PG_STAT) == 0);
   1505 		if (pg->loan_count) {
   1506 			KASSERT(pg->uobject == NULL);
   1507 			if (pg->uanon == NULL) {
   1508 				uvm_pagedequeue(pg);
   1509 			}
   1510 			uvm_pageunlock(pg);
   1511 			return;
   1512 		}
   1513 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
   1514 	           pg->wire_count != 0) {
   1515 		uvm_pagelock(pg);
   1516 		locked = true;
   1517 	} else {
   1518 		locked = false;
   1519 	}
   1520 
   1521 	/*
   1522 	 * remove page from its object or anon.
   1523 	 */
   1524 	if (pg->uobject != NULL) {
   1525 		uvm_pageremove_object(pg->uobject, pg);
   1526 	} else if (pg->uanon != NULL) {
   1527 		const unsigned int status = uvm_pagegetdirty(pg);
   1528 		pg->uanon->an_page = NULL;
   1529 		pg->uanon = NULL;
   1530 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
   1531 	}
   1532 
   1533 	/*
   1534 	 * if the page was wired, unwire it now.
   1535 	 */
   1536 
   1537 	if (pg->wire_count) {
   1538 		pg->wire_count = 0;
   1539 		atomic_dec_uint(&uvmexp.wired);
   1540 	}
   1541 	if (locked) {
   1542 		/*
   1543 		 * wake anyone waiting on the page.
   1544 		 */
   1545 		if ((pg->pqflags & PQ_WANTED) != 0) {
   1546 			pg->pqflags &= ~PQ_WANTED;
   1547 			wakeup(pg);
   1548 		}
   1549 
   1550 		/*
   1551 		 * now remove the page from the queues.
   1552 		 */
   1553 		uvm_pagedequeue(pg);
   1554 		uvm_pageunlock(pg);
   1555 	} else {
   1556 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1557 	}
   1558 
   1559 	/*
   1560 	 * and put on free queue
   1561 	 */
   1562 
   1563 #ifdef DEBUG
   1564 	pg->uobject = (void *)0xdeadbeef;
   1565 	pg->uanon = (void *)0xdeadbeef;
   1566 #endif /* DEBUG */
   1567 
   1568 	/* Try to send the page to the per-CPU cache. */
   1569 	s = splvm();
   1570 	ucpu = curcpu()->ci_data.cpu_uvm;
   1571 	bucket = uvm_page_get_bucket(pg);
   1572 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
   1573 		splx(s);
   1574 		return;
   1575 	}
   1576 
   1577 	/* Didn't work.  Never mind, send it to a global bucket. */
   1578 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
   1579 	pgb = pgfl->pgfl_buckets[bucket];
   1580 	lock = &uvm_freelist_locks[bucket].lock;
   1581 
   1582 	mutex_spin_enter(lock);
   1583 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
   1584 	pg->flags = PG_FREE;
   1585 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
   1586 	pgb->pgb_nfree++;
   1587     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
   1588 	mutex_spin_exit(lock);
   1589 	splx(s);
   1590 }
   1591 
   1592 /*
   1593  * uvm_page_unbusy: unbusy an array of pages.
   1594  *
   1595  * => pages must either all belong to the same object, or all belong to anons.
   1596  * => if pages are object-owned, object must be locked.
   1597  * => if pages are anon-owned, anons must be locked.
   1598  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1599  */
   1600 
   1601 void
   1602 uvm_page_unbusy(struct vm_page **pgs, int npgs)
   1603 {
   1604 	struct vm_page *pg;
   1605 	int i, pageout_done;
   1606 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1607 
   1608 	pageout_done = 0;
   1609 	for (i = 0; i < npgs; i++) {
   1610 		pg = pgs[i];
   1611 		if (pg == NULL || pg == PGO_DONTCARE) {
   1612 			continue;
   1613 		}
   1614 
   1615 		KASSERT(uvm_page_owner_locked_p(pg, true));
   1616 		KASSERT(pg->flags & PG_BUSY);
   1617 
   1618 		if (pg->flags & PG_PAGEOUT) {
   1619 			pg->flags &= ~PG_PAGEOUT;
   1620 			pg->flags |= PG_RELEASED;
   1621 			pageout_done++;
   1622 			atomic_inc_uint(&uvmexp.pdfreed);
   1623 		}
   1624 		if (pg->flags & PG_RELEASED) {
   1625 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
   1626 			    (uintptr_t)pg, 0, 0, 0);
   1627 			KASSERT(pg->uobject != NULL ||
   1628 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1629 			pg->flags &= ~PG_RELEASED;
   1630 			uvm_pagefree(pg);
   1631 		} else {
   1632 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
   1633 			    (uintptr_t)pg, 0, 0, 0);
   1634 			KASSERT((pg->flags & PG_FAKE) == 0);
   1635 			pg->flags &= ~PG_BUSY;
   1636 			uvm_pagelock(pg);
   1637 			uvm_pagewakeup(pg);
   1638 			uvm_pageunlock(pg);
   1639 			UVM_PAGE_OWN(pg, NULL);
   1640 		}
   1641 	}
   1642 	if (pageout_done != 0) {
   1643 		uvm_pageout_done(pageout_done);
   1644 	}
   1645 }
   1646 
   1647 /*
   1648  * uvm_pagewait: wait for a busy page
   1649  *
   1650  * => page must be known PG_BUSY
   1651  * => object must be read or write locked
   1652  * => object will be unlocked on return
   1653  */
   1654 
   1655 void
   1656 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
   1657 {
   1658 
   1659 	KASSERT(rw_lock_held(lock));
   1660 	KASSERT((pg->flags & PG_BUSY) != 0);
   1661 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1662 
   1663 	mutex_enter(&pg->interlock);
   1664 	pg->pqflags |= PQ_WANTED;
   1665 	rw_exit(lock);
   1666 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
   1667 }
   1668 
   1669 /*
   1670  * uvm_pagewakeup: wake anyone waiting on a page
   1671  *
   1672  * => page interlock must be held
   1673  */
   1674 
   1675 void
   1676 uvm_pagewakeup(struct vm_page *pg)
   1677 {
   1678 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1679 
   1680 	KASSERT(mutex_owned(&pg->interlock));
   1681 
   1682 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
   1683 
   1684 	if ((pg->pqflags & PQ_WANTED) != 0) {
   1685 		wakeup(pg);
   1686 		pg->pqflags &= ~PQ_WANTED;
   1687 	}
   1688 }
   1689 
   1690 /*
   1691  * uvm_pagewanted_p: return true if someone is waiting on the page
   1692  *
   1693  * => object must be write locked (lock out all concurrent access)
   1694  */
   1695 
   1696 bool
   1697 uvm_pagewanted_p(struct vm_page *pg)
   1698 {
   1699 
   1700 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1701 
   1702 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
   1703 }
   1704 
   1705 #if defined(UVM_PAGE_TRKOWN)
   1706 /*
   1707  * uvm_page_own: set or release page ownership
   1708  *
   1709  * => this is a debugging function that keeps track of who sets PG_BUSY
   1710  *	and where they do it.   it can be used to track down problems
   1711  *	such a process setting "PG_BUSY" and never releasing it.
   1712  * => page's object [if any] must be locked
   1713  * => if "tag" is NULL then we are releasing page ownership
   1714  */
   1715 void
   1716 uvm_page_own(struct vm_page *pg, const char *tag)
   1717 {
   1718 
   1719 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1720 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1721 
   1722 	/* gain ownership? */
   1723 	if (tag) {
   1724 		KASSERT((pg->flags & PG_BUSY) != 0);
   1725 		if (pg->owner_tag) {
   1726 			printf("uvm_page_own: page %p already owned "
   1727 			    "by proc %d.%d [%s]\n", pg,
   1728 			    pg->owner, pg->lowner, pg->owner_tag);
   1729 			panic("uvm_page_own");
   1730 		}
   1731 		pg->owner = curproc->p_pid;
   1732 		pg->lowner = curlwp->l_lid;
   1733 		pg->owner_tag = tag;
   1734 		return;
   1735 	}
   1736 
   1737 	/* drop ownership */
   1738 	KASSERT((pg->flags & PG_BUSY) == 0);
   1739 	if (pg->owner_tag == NULL) {
   1740 		printf("uvm_page_own: dropping ownership of an non-owned "
   1741 		    "page (%p)\n", pg);
   1742 		panic("uvm_page_own");
   1743 	}
   1744 	pg->owner_tag = NULL;
   1745 }
   1746 #endif
   1747 
   1748 /*
   1749  * uvm_pagelookup: look up a page
   1750  *
   1751  * => caller should lock object to keep someone from pulling the page
   1752  *	out from under it
   1753  */
   1754 
   1755 struct vm_page *
   1756 uvm_pagelookup(struct uvm_object *obj, voff_t off)
   1757 {
   1758 	struct vm_page *pg;
   1759 	bool ddb __diagused = false;
   1760 #ifdef DDB
   1761 	extern int db_active;
   1762 	ddb = db_active != 0;
   1763 #endif
   1764 
   1765 	KASSERT(ddb || rw_lock_held(obj->vmobjlock));
   1766 
   1767 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
   1768 
   1769 	KASSERT(pg == NULL || obj->uo_npages != 0);
   1770 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1771 		(pg->flags & PG_BUSY) != 0);
   1772 	return pg;
   1773 }
   1774 
   1775 /*
   1776  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
   1777  *
   1778  * => caller must lock objects
   1779  * => caller must hold pg->interlock
   1780  */
   1781 
   1782 void
   1783 uvm_pagewire(struct vm_page *pg)
   1784 {
   1785 
   1786 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1787 	KASSERT(mutex_owned(&pg->interlock));
   1788 #if defined(READAHEAD_STATS)
   1789 	if ((pg->flags & PG_READAHEAD) != 0) {
   1790 		uvm_ra_hit.ev_count++;
   1791 		pg->flags &= ~PG_READAHEAD;
   1792 	}
   1793 #endif /* defined(READAHEAD_STATS) */
   1794 	if (pg->wire_count == 0) {
   1795 		uvm_pagedequeue(pg);
   1796 		atomic_inc_uint(&uvmexp.wired);
   1797 	}
   1798 	pg->wire_count++;
   1799 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
   1800 }
   1801 
   1802 /*
   1803  * uvm_pageunwire: unwire the page.
   1804  *
   1805  * => activate if wire count goes to zero.
   1806  * => caller must lock objects
   1807  * => caller must hold pg->interlock
   1808  */
   1809 
   1810 void
   1811 uvm_pageunwire(struct vm_page *pg)
   1812 {
   1813 
   1814 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1815 	KASSERT(pg->wire_count != 0);
   1816 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
   1817 	KASSERT(mutex_owned(&pg->interlock));
   1818 	pg->wire_count--;
   1819 	if (pg->wire_count == 0) {
   1820 		uvm_pageactivate(pg);
   1821 		KASSERT(uvmexp.wired != 0);
   1822 		atomic_dec_uint(&uvmexp.wired);
   1823 	}
   1824 }
   1825 
   1826 /*
   1827  * uvm_pagedeactivate: deactivate page
   1828  *
   1829  * => caller must lock objects
   1830  * => caller must check to make sure page is not wired
   1831  * => object that page belongs to must be locked (so we can adjust pg->flags)
   1832  * => caller must clear the reference on the page before calling
   1833  * => caller must hold pg->interlock
   1834  */
   1835 
   1836 void
   1837 uvm_pagedeactivate(struct vm_page *pg)
   1838 {
   1839 
   1840 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1841 	KASSERT(mutex_owned(&pg->interlock));
   1842 	if (pg->wire_count == 0) {
   1843 		KASSERT(uvmpdpol_pageisqueued_p(pg));
   1844 		uvmpdpol_pagedeactivate(pg);
   1845 	}
   1846 }
   1847 
   1848 /*
   1849  * uvm_pageactivate: activate page
   1850  *
   1851  * => caller must lock objects
   1852  * => caller must hold pg->interlock
   1853  */
   1854 
   1855 void
   1856 uvm_pageactivate(struct vm_page *pg)
   1857 {
   1858 
   1859 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1860 	KASSERT(mutex_owned(&pg->interlock));
   1861 #if defined(READAHEAD_STATS)
   1862 	if ((pg->flags & PG_READAHEAD) != 0) {
   1863 		uvm_ra_hit.ev_count++;
   1864 		pg->flags &= ~PG_READAHEAD;
   1865 	}
   1866 #endif /* defined(READAHEAD_STATS) */
   1867 	if (pg->wire_count == 0) {
   1868 		uvmpdpol_pageactivate(pg);
   1869 	}
   1870 }
   1871 
   1872 /*
   1873  * uvm_pagedequeue: remove a page from any paging queue
   1874  *
   1875  * => caller must lock objects
   1876  * => caller must hold pg->interlock
   1877  */
   1878 void
   1879 uvm_pagedequeue(struct vm_page *pg)
   1880 {
   1881 
   1882 	KASSERT(uvm_page_owner_locked_p(pg, true));
   1883 	KASSERT(mutex_owned(&pg->interlock));
   1884 	if (uvmpdpol_pageisqueued_p(pg)) {
   1885 		uvmpdpol_pagedequeue(pg);
   1886 	}
   1887 }
   1888 
   1889 /*
   1890  * uvm_pageenqueue: add a page to a paging queue without activating.
   1891  * used where a page is not really demanded (yet).  eg. read-ahead
   1892  *
   1893  * => caller must lock objects
   1894  * => caller must hold pg->interlock
   1895  */
   1896 void
   1897 uvm_pageenqueue(struct vm_page *pg)
   1898 {
   1899 
   1900 	KASSERT(uvm_page_owner_locked_p(pg, false));
   1901 	KASSERT(mutex_owned(&pg->interlock));
   1902 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
   1903 		uvmpdpol_pageenqueue(pg);
   1904 	}
   1905 }
   1906 
   1907 /*
   1908  * uvm_pagelock: acquire page interlock
   1909  */
   1910 void
   1911 uvm_pagelock(struct vm_page *pg)
   1912 {
   1913 
   1914 	mutex_enter(&pg->interlock);
   1915 }
   1916 
   1917 /*
   1918  * uvm_pagelock2: acquire two page interlocks
   1919  */
   1920 void
   1921 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
   1922 {
   1923 
   1924 	if (pg1 < pg2) {
   1925 		mutex_enter(&pg1->interlock);
   1926 		mutex_enter(&pg2->interlock);
   1927 	} else {
   1928 		mutex_enter(&pg2->interlock);
   1929 		mutex_enter(&pg1->interlock);
   1930 	}
   1931 }
   1932 
   1933 /*
   1934  * uvm_pageunlock: release page interlock, and if a page replacement intent
   1935  * is set on the page, pass it to uvmpdpol to make real.
   1936  *
   1937  * => caller must hold pg->interlock
   1938  */
   1939 void
   1940 uvm_pageunlock(struct vm_page *pg)
   1941 {
   1942 
   1943 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
   1944 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
   1945 	    	mutex_exit(&pg->interlock);
   1946 	    	return;
   1947 	}
   1948 	pg->pqflags |= PQ_INTENT_QUEUED;
   1949 	mutex_exit(&pg->interlock);
   1950 	uvmpdpol_pagerealize(pg);
   1951 }
   1952 
   1953 /*
   1954  * uvm_pageunlock2: release two page interlocks, and for both pages if a
   1955  * page replacement intent is set on the page, pass it to uvmpdpol to make
   1956  * real.
   1957  *
   1958  * => caller must hold pg->interlock
   1959  */
   1960 void
   1961 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
   1962 {
   1963 
   1964 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
   1965 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
   1966 	    	mutex_exit(&pg1->interlock);
   1967 	    	pg1 = NULL;
   1968 	} else {
   1969 		pg1->pqflags |= PQ_INTENT_QUEUED;
   1970 		mutex_exit(&pg1->interlock);
   1971 	}
   1972 
   1973 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
   1974 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
   1975 	    	mutex_exit(&pg2->interlock);
   1976 	    	pg2 = NULL;
   1977 	} else {
   1978 		pg2->pqflags |= PQ_INTENT_QUEUED;
   1979 		mutex_exit(&pg2->interlock);
   1980 	}
   1981 
   1982 	if (pg1 != NULL) {
   1983 		uvmpdpol_pagerealize(pg1);
   1984 	}
   1985 	if (pg2 != NULL) {
   1986 		uvmpdpol_pagerealize(pg2);
   1987 	}
   1988 }
   1989 
   1990 /*
   1991  * uvm_pagezero: zero fill a page
   1992  *
   1993  * => if page is part of an object then the object should be locked
   1994  *	to protect pg->flags.
   1995  */
   1996 
   1997 void
   1998 uvm_pagezero(struct vm_page *pg)
   1999 {
   2000 
   2001 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
   2002 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   2003 }
   2004 
   2005 /*
   2006  * uvm_pagecopy: copy a page
   2007  *
   2008  * => if page is part of an object then the object should be locked
   2009  *	to protect pg->flags.
   2010  */
   2011 
   2012 void
   2013 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
   2014 {
   2015 
   2016 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
   2017 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
   2018 }
   2019 
   2020 /*
   2021  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
   2022  */
   2023 
   2024 bool
   2025 uvm_pageismanaged(paddr_t pa)
   2026 {
   2027 
   2028 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
   2029 }
   2030 
   2031 /*
   2032  * uvm_page_lookup_freelist: look up the free list for the specified page
   2033  */
   2034 
   2035 int
   2036 uvm_page_lookup_freelist(struct vm_page *pg)
   2037 {
   2038 	uvm_physseg_t upm;
   2039 
   2040 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
   2041 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
   2042 	return uvm_physseg_get_free_list(upm);
   2043 }
   2044 
   2045 /*
   2046  * uvm_page_owner_locked_p: return true if object associated with page is
   2047  * locked.  this is a weak check for runtime assertions only.
   2048  */
   2049 
   2050 bool
   2051 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
   2052 {
   2053 
   2054 	if (pg->uobject != NULL) {
   2055 		return exclusive
   2056 		    ? rw_write_held(pg->uobject->vmobjlock)
   2057 		    : rw_lock_held(pg->uobject->vmobjlock);
   2058 	}
   2059 	if (pg->uanon != NULL) {
   2060 		return exclusive
   2061 		    ? rw_write_held(pg->uanon->an_lock)
   2062 		    : rw_lock_held(pg->uanon->an_lock);
   2063 	}
   2064 	return true;
   2065 }
   2066 
   2067 /*
   2068  * uvm_pagereadonly_p: return if the page should be mapped read-only
   2069  */
   2070 
   2071 bool
   2072 uvm_pagereadonly_p(struct vm_page *pg)
   2073 {
   2074 	struct uvm_object * const uobj = pg->uobject;
   2075 
   2076 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
   2077 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
   2078 	if ((pg->flags & PG_RDONLY) != 0) {
   2079 		return true;
   2080 	}
   2081 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
   2082 		return true;
   2083 	}
   2084 	if (uobj == NULL) {
   2085 		return false;
   2086 	}
   2087 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
   2088 }
   2089 
   2090 #ifdef PMAP_DIRECT
   2091 /*
   2092  * Call pmap to translate physical address into a virtual and to run a callback
   2093  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
   2094  * or equivalent.
   2095  */
   2096 int
   2097 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
   2098             int (*process)(void *, size_t, void *), void *arg)
   2099 {
   2100 	int error = 0;
   2101 	paddr_t pa;
   2102 	size_t todo;
   2103 	voff_t pgoff = (off & PAGE_MASK);
   2104 	struct vm_page *pg;
   2105 
   2106 	KASSERT(npages > 0 && len > 0);
   2107 
   2108 	for (int i = 0; i < npages; i++) {
   2109 		pg = pgs[i];
   2110 
   2111 		KASSERT(len > 0);
   2112 
   2113 		/*
   2114 		 * Caller is responsible for ensuring all the pages are
   2115 		 * available.
   2116 		 */
   2117 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
   2118 
   2119 		pa = VM_PAGE_TO_PHYS(pg);
   2120 		todo = MIN(len, PAGE_SIZE - pgoff);
   2121 
   2122 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
   2123 		if (error)
   2124 			break;
   2125 
   2126 		pgoff = 0;
   2127 		len -= todo;
   2128 	}
   2129 
   2130 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
   2131 	return error;
   2132 }
   2133 #endif /* PMAP_DIRECT */
   2134 
   2135 #if defined(DDB) || defined(DEBUGPRINT)
   2136 
   2137 /*
   2138  * uvm_page_printit: actually print the page
   2139  */
   2140 
   2141 static const char page_flagbits[] = UVM_PGFLAGBITS;
   2142 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
   2143 
   2144 void
   2145 uvm_page_printit(struct vm_page *pg, bool full,
   2146     void (*pr)(const char *, ...))
   2147 {
   2148 	struct vm_page *tpg;
   2149 	struct uvm_object *uobj;
   2150 	struct pgflbucket *pgb;
   2151 	struct pgflist *pgl;
   2152 	char pgbuf[128];
   2153 
   2154 	(*pr)("PAGE %p:\n", pg);
   2155 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
   2156 	(*pr)("  flags=%s\n", pgbuf);
   2157 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
   2158 	(*pr)("  pqflags=%s\n", pgbuf);
   2159 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
   2160 	    pg->uobject, pg->uanon, (long long)pg->offset);
   2161 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
   2162 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
   2163 	    uvm_page_get_freelist(pg));
   2164 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
   2165 #if defined(UVM_PAGE_TRKOWN)
   2166 	if (pg->flags & PG_BUSY)
   2167 		(*pr)("  owning process = %d.%d, tag=%s\n",
   2168 		    pg->owner, pg->lowner, pg->owner_tag);
   2169 	else
   2170 		(*pr)("  page not busy, no owner\n");
   2171 #else
   2172 	(*pr)("  [page ownership tracking disabled]\n");
   2173 #endif
   2174 
   2175 	if (!full)
   2176 		return;
   2177 
   2178 	/* cross-verify object/anon */
   2179 	if ((pg->flags & PG_FREE) == 0) {
   2180 		if (pg->flags & PG_ANON) {
   2181 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
   2182 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
   2183 				(pg->uanon) ? pg->uanon->an_page : NULL);
   2184 			else
   2185 				(*pr)("  anon backpointer is OK\n");
   2186 		} else {
   2187 			uobj = pg->uobject;
   2188 			if (uobj) {
   2189 				(*pr)("  checking object list\n");
   2190 				tpg = uvm_pagelookup(uobj, pg->offset);
   2191 				if (tpg)
   2192 					(*pr)("  page found on object list\n");
   2193 				else
   2194 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
   2195 			}
   2196 		}
   2197 	}
   2198 
   2199 	/* cross-verify page queue */
   2200 	if (pg->flags & PG_FREE) {
   2201 		int fl = uvm_page_get_freelist(pg);
   2202 		int b = uvm_page_get_bucket(pg);
   2203 		pgb = uvm.page_free[fl].pgfl_buckets[b];
   2204 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
   2205 		(*pr)("  checking pageq list\n");
   2206 		LIST_FOREACH(tpg, pgl, pageq.list) {
   2207 			if (tpg == pg) {
   2208 				break;
   2209 			}
   2210 		}
   2211 		if (tpg)
   2212 			(*pr)("  page found on pageq list\n");
   2213 		else
   2214 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
   2215 	}
   2216 }
   2217 
   2218 /*
   2219  * uvm_page_printall - print a summary of all managed pages
   2220  */
   2221 
   2222 void
   2223 uvm_page_printall(void (*pr)(const char *, ...))
   2224 {
   2225 	uvm_physseg_t i;
   2226 	paddr_t pfn;
   2227 	struct vm_page *pg;
   2228 
   2229 	(*pr)("%18s %4s %4s %18s %18s"
   2230 #ifdef UVM_PAGE_TRKOWN
   2231 	    " OWNER"
   2232 #endif
   2233 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
   2234 	for (i = uvm_physseg_get_first();
   2235 	     uvm_physseg_valid_p(i);
   2236 	     i = uvm_physseg_get_next(i)) {
   2237 		for (pfn = uvm_physseg_get_start(i);
   2238 		     pfn < uvm_physseg_get_end(i);
   2239 		     pfn++) {
   2240 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
   2241 
   2242 			(*pr)("%18p %04x %08x %18p %18p",
   2243 			    pg, pg->flags, pg->pqflags, pg->uobject,
   2244 			    pg->uanon);
   2245 #ifdef UVM_PAGE_TRKOWN
   2246 			if (pg->flags & PG_BUSY)
   2247 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
   2248 #endif
   2249 			(*pr)("\n");
   2250 		}
   2251 	}
   2252 }
   2253 
   2254 /*
   2255  * uvm_page_print_freelists - print a summary freelists
   2256  */
   2257 
   2258 void
   2259 uvm_page_print_freelists(void (*pr)(const char *, ...))
   2260 {
   2261 	struct pgfreelist *pgfl;
   2262 	struct pgflbucket *pgb;
   2263 	int fl, b, c;
   2264 
   2265 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
   2266 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
   2267 
   2268 	for (fl = 0; fl < VM_NFREELIST; fl++) {
   2269 		pgfl = &uvm.page_free[fl];
   2270 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
   2271 		for (b = 0; b < uvm.bucketcount; b++) {
   2272 			pgb = uvm.page_free[fl].pgfl_buckets[b];
   2273 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
   2274 			    b, pgb, pgb->pgb_nfree,
   2275 			    &uvm_freelist_locks[b].lock);
   2276 			for (c = 0; c < uvmexp.ncolors; c++) {
   2277 				(*pr)("        color(%d) @ %p, ", c,
   2278 				    &pgb->pgb_colors[c]);
   2279 				(*pr)("first page = %p\n",
   2280 				    LIST_FIRST(&pgb->pgb_colors[c]));
   2281 			}
   2282 		}
   2283 	}
   2284 }
   2285 
   2286 #endif /* DDB || DEBUGPRINT */
   2287