uvm_page.c revision 1.252 1 /* $NetBSD: uvm_page.c,v 1.252 2023/04/09 09:00:56 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1997 Charles D. Cranor and Washington University.
34 * Copyright (c) 1991, 1993, The Regents of the University of California.
35 *
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * The Mach Operating System project at Carnegie-Mellon University.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
66 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67 *
68 *
69 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70 * All rights reserved.
71 *
72 * Permission to use, copy, modify and distribute this software and
73 * its documentation is hereby granted, provided that both the copyright
74 * notice and this permission notice appear in all copies of the
75 * software, derivative works or modified versions, and any portions
76 * thereof, and that both notices appear in supporting documentation.
77 *
78 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81 *
82 * Carnegie Mellon requests users of this software to return to
83 *
84 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
85 * School of Computer Science
86 * Carnegie Mellon University
87 * Pittsburgh PA 15213-3890
88 *
89 * any improvements or extensions that they make and grant Carnegie the
90 * rights to redistribute these changes.
91 */
92
93 /*
94 * uvm_page.c: page ops.
95 */
96
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.252 2023/04/09 09:00:56 riastradh Exp $");
99
100 #include "opt_ddb.h"
101 #include "opt_uvm.h"
102 #include "opt_uvmhist.h"
103 #include "opt_readahead.h"
104
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sched.h>
108 #include <sys/kernel.h>
109 #include <sys/vnode.h>
110 #include <sys/proc.h>
111 #include <sys/radixtree.h>
112 #include <sys/atomic.h>
113 #include <sys/cpu.h>
114
115 #include <ddb/db_active.h>
116
117 #include <uvm/uvm.h>
118 #include <uvm/uvm_ddb.h>
119 #include <uvm/uvm_pdpolicy.h>
120 #include <uvm/uvm_pgflcache.h>
121
122 /*
123 * number of pages per-CPU to reserve for the kernel.
124 */
125 #ifndef UVM_RESERVED_PAGES_PER_CPU
126 #define UVM_RESERVED_PAGES_PER_CPU 5
127 #endif
128 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
129
130 /*
131 * physical memory size;
132 */
133 psize_t physmem;
134
135 /*
136 * local variables
137 */
138
139 /*
140 * these variables record the values returned by vm_page_bootstrap,
141 * for debugging purposes. The implementation of uvm_pageboot_alloc
142 * and pmap_startup here also uses them internally.
143 */
144
145 static vaddr_t virtual_space_start;
146 static vaddr_t virtual_space_end;
147
148 /*
149 * we allocate an initial number of page colors in uvm_page_init(),
150 * and remember them. We may re-color pages as cache sizes are
151 * discovered during the autoconfiguration phase. But we can never
152 * free the initial set of buckets, since they are allocated using
153 * uvm_pageboot_alloc().
154 */
155
156 static size_t recolored_pages_memsize /* = 0 */;
157 static char *recolored_pages_mem;
158
159 /*
160 * freelist locks - one per bucket.
161 */
162
163 union uvm_freelist_lock uvm_freelist_locks[PGFL_MAX_BUCKETS]
164 __cacheline_aligned;
165
166 /*
167 * basic NUMA information.
168 */
169
170 static struct uvm_page_numa_region {
171 struct uvm_page_numa_region *next;
172 paddr_t start;
173 paddr_t size;
174 u_int numa_id;
175 } *uvm_page_numa_region;
176
177 #ifdef DEBUG
178 kmutex_t uvm_zerochecklock __cacheline_aligned;
179 vaddr_t uvm_zerocheckkva;
180 #endif /* DEBUG */
181
182 /*
183 * These functions are reserved for uvm(9) internal use and are not
184 * exported in the header file uvm_physseg.h
185 *
186 * Thus they are redefined here.
187 */
188 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
189 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
190
191 /* returns a pgs array */
192 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
193
194 /*
195 * inline functions
196 */
197
198 /*
199 * uvm_pageinsert: insert a page in the object.
200 *
201 * => caller must lock object
202 * => call should have already set pg's object and offset pointers
203 * and bumped the version counter
204 */
205
206 static inline void
207 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
208 {
209
210 KASSERT(uobj == pg->uobject);
211 KASSERT(rw_write_held(uobj->vmobjlock));
212 KASSERT((pg->flags & PG_TABLED) == 0);
213
214 if ((pg->flags & PG_STAT) != 0) {
215 /* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
216 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
217
218 if ((pg->flags & PG_FILE) != 0) {
219 if (uobj->uo_npages == 0) {
220 struct vnode *vp = (struct vnode *)uobj;
221 mutex_enter(vp->v_interlock);
222 KASSERT((vp->v_iflag & VI_PAGES) == 0);
223 vp->v_iflag |= VI_PAGES;
224 vholdl(vp);
225 mutex_exit(vp->v_interlock);
226 }
227 if (UVM_OBJ_IS_VTEXT(uobj)) {
228 cpu_count(CPU_COUNT_EXECPAGES, 1);
229 }
230 cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
231 } else {
232 cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
233 }
234 }
235 pg->flags |= PG_TABLED;
236 uobj->uo_npages++;
237 }
238
239 static inline int
240 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
241 {
242 const uint64_t idx = pg->offset >> PAGE_SHIFT;
243 int error;
244
245 KASSERT(rw_write_held(uobj->vmobjlock));
246
247 error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
248 if (error != 0) {
249 return error;
250 }
251 if ((pg->flags & PG_CLEAN) == 0) {
252 uvm_obj_page_set_dirty(pg);
253 }
254 KASSERT(((pg->flags & PG_CLEAN) == 0) ==
255 uvm_obj_page_dirty_p(pg));
256 return 0;
257 }
258
259 /*
260 * uvm_page_remove: remove page from object.
261 *
262 * => caller must lock object
263 */
264
265 static inline void
266 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
267 {
268
269 KASSERT(uobj == pg->uobject);
270 KASSERT(rw_write_held(uobj->vmobjlock));
271 KASSERT(pg->flags & PG_TABLED);
272
273 if ((pg->flags & PG_STAT) != 0) {
274 /* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
275 const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
276
277 if ((pg->flags & PG_FILE) != 0) {
278 if (uobj->uo_npages == 1) {
279 struct vnode *vp = (struct vnode *)uobj;
280 mutex_enter(vp->v_interlock);
281 KASSERT((vp->v_iflag & VI_PAGES) != 0);
282 vp->v_iflag &= ~VI_PAGES;
283 holdrelel(vp);
284 mutex_exit(vp->v_interlock);
285 }
286 if (UVM_OBJ_IS_VTEXT(uobj)) {
287 cpu_count(CPU_COUNT_EXECPAGES, -1);
288 }
289 cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
290 } else {
291 cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
292 }
293 }
294 uobj->uo_npages--;
295 pg->flags &= ~PG_TABLED;
296 pg->uobject = NULL;
297 }
298
299 static inline void
300 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
301 {
302 struct vm_page *opg __unused;
303
304 KASSERT(rw_write_held(uobj->vmobjlock));
305
306 opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
307 KASSERT(pg == opg);
308 }
309
310 static void
311 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
312 {
313 int i;
314
315 pgb->pgb_nfree = 0;
316 for (i = 0; i < uvmexp.ncolors; i++) {
317 LIST_INIT(&pgb->pgb_colors[i]);
318 }
319 pgfl->pgfl_buckets[num] = pgb;
320 }
321
322 /*
323 * uvm_page_init: init the page system. called from uvm_init().
324 *
325 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
326 */
327
328 void
329 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
330 {
331 static struct uvm_cpu boot_cpu __cacheline_aligned;
332 psize_t freepages, pagecount, bucketsize, n;
333 struct pgflbucket *pgb;
334 struct vm_page *pagearray;
335 char *bucketarray;
336 uvm_physseg_t bank;
337 int fl, b;
338
339 KASSERT(ncpu <= 1);
340
341 /*
342 * init the page queues and free page queue locks, except the
343 * free list; we allocate that later (with the initial vm_page
344 * structures).
345 */
346
347 curcpu()->ci_data.cpu_uvm = &boot_cpu;
348 uvmpdpol_init();
349 for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
350 mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
351 }
352
353 /*
354 * allocate vm_page structures.
355 */
356
357 /*
358 * sanity check:
359 * before calling this function the MD code is expected to register
360 * some free RAM with the uvm_page_physload() function. our job
361 * now is to allocate vm_page structures for this memory.
362 */
363
364 if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
365 panic("uvm_page_bootstrap: no memory pre-allocated");
366
367 /*
368 * first calculate the number of free pages...
369 *
370 * note that we use start/end rather than avail_start/avail_end.
371 * this allows us to allocate extra vm_page structures in case we
372 * want to return some memory to the pool after booting.
373 */
374
375 freepages = 0;
376
377 for (bank = uvm_physseg_get_first();
378 uvm_physseg_valid_p(bank) ;
379 bank = uvm_physseg_get_next(bank)) {
380 freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
381 }
382
383 /*
384 * Let MD code initialize the number of colors, or default
385 * to 1 color if MD code doesn't care.
386 */
387 if (uvmexp.ncolors == 0)
388 uvmexp.ncolors = 1;
389 uvmexp.colormask = uvmexp.ncolors - 1;
390 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
391
392 /* We always start with only 1 bucket. */
393 uvm.bucketcount = 1;
394
395 /*
396 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
397 * use. for each page of memory we use we need a vm_page structure.
398 * thus, the total number of pages we can use is the total size of
399 * the memory divided by the PAGE_SIZE plus the size of the vm_page
400 * structure. we add one to freepages as a fudge factor to avoid
401 * truncation errors (since we can only allocate in terms of whole
402 * pages).
403 */
404 pagecount = ((freepages + 1) << PAGE_SHIFT) /
405 (PAGE_SIZE + sizeof(struct vm_page));
406 bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
407 bucketsize = roundup2(bucketsize, coherency_unit);
408 bucketarray = (void *)uvm_pageboot_alloc(
409 bucketsize * VM_NFREELIST +
410 pagecount * sizeof(struct vm_page));
411 pagearray = (struct vm_page *)
412 (bucketarray + bucketsize * VM_NFREELIST);
413
414 for (fl = 0; fl < VM_NFREELIST; fl++) {
415 pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
416 uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
417 }
418 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
419
420 /*
421 * init the freelist cache in the disabled state.
422 */
423 uvm_pgflcache_init();
424
425 /*
426 * init the vm_page structures and put them in the correct place.
427 */
428 /* First init the extent */
429
430 for (bank = uvm_physseg_get_first(),
431 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
432 uvm_physseg_valid_p(bank);
433 bank = uvm_physseg_get_next(bank)) {
434
435 n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
436 uvm_physseg_seg_alloc_from_slab(bank, n);
437 uvm_physseg_init_seg(bank, pagearray);
438
439 /* set up page array pointers */
440 pagearray += n;
441 pagecount -= n;
442 }
443
444 /*
445 * pass up the values of virtual_space_start and
446 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
447 * layers of the VM.
448 */
449
450 *kvm_startp = round_page(virtual_space_start);
451 *kvm_endp = trunc_page(virtual_space_end);
452
453 /*
454 * init various thresholds.
455 */
456
457 uvmexp.reserve_pagedaemon = 1;
458 uvmexp.reserve_kernel = vm_page_reserve_kernel;
459
460 /*
461 * done!
462 */
463
464 uvm.page_init_done = true;
465 }
466
467 /*
468 * uvm_pgfl_lock: lock all freelist buckets
469 */
470
471 void
472 uvm_pgfl_lock(void)
473 {
474 int i;
475
476 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
477 mutex_spin_enter(&uvm_freelist_locks[i].lock);
478 }
479 }
480
481 /*
482 * uvm_pgfl_unlock: unlock all freelist buckets
483 */
484
485 void
486 uvm_pgfl_unlock(void)
487 {
488 int i;
489
490 for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
491 mutex_spin_exit(&uvm_freelist_locks[i].lock);
492 }
493 }
494
495 /*
496 * uvm_setpagesize: set the page size
497 *
498 * => sets page_shift and page_mask from uvmexp.pagesize.
499 */
500
501 void
502 uvm_setpagesize(void)
503 {
504
505 /*
506 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
507 * to be a constant (indicated by being a non-zero value).
508 */
509 if (uvmexp.pagesize == 0) {
510 if (PAGE_SIZE == 0)
511 panic("uvm_setpagesize: uvmexp.pagesize not set");
512 uvmexp.pagesize = PAGE_SIZE;
513 }
514 uvmexp.pagemask = uvmexp.pagesize - 1;
515 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
516 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
517 uvmexp.pagesize, uvmexp.pagesize);
518 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
519 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
520 break;
521 }
522
523 /*
524 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
525 */
526
527 vaddr_t
528 uvm_pageboot_alloc(vsize_t size)
529 {
530 static bool initialized = false;
531 vaddr_t addr;
532 #if !defined(PMAP_STEAL_MEMORY)
533 vaddr_t vaddr;
534 paddr_t paddr;
535 #endif
536
537 /*
538 * on first call to this function, initialize ourselves.
539 */
540 if (initialized == false) {
541 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
542
543 /* round it the way we like it */
544 virtual_space_start = round_page(virtual_space_start);
545 virtual_space_end = trunc_page(virtual_space_end);
546
547 initialized = true;
548 }
549
550 /* round to page size */
551 size = round_page(size);
552 uvmexp.bootpages += atop(size);
553
554 #if defined(PMAP_STEAL_MEMORY)
555
556 /*
557 * defer bootstrap allocation to MD code (it may want to allocate
558 * from a direct-mapped segment). pmap_steal_memory should adjust
559 * virtual_space_start/virtual_space_end if necessary.
560 */
561
562 addr = pmap_steal_memory(size, &virtual_space_start,
563 &virtual_space_end);
564
565 return addr;
566
567 #else /* !PMAP_STEAL_MEMORY */
568
569 /*
570 * allocate virtual memory for this request
571 */
572 if (virtual_space_start == virtual_space_end ||
573 (virtual_space_end - virtual_space_start) < size)
574 panic("uvm_pageboot_alloc: out of virtual space");
575
576 addr = virtual_space_start;
577
578 #ifdef PMAP_GROWKERNEL
579 /*
580 * If the kernel pmap can't map the requested space,
581 * then allocate more resources for it.
582 */
583 if (uvm_maxkaddr < (addr + size)) {
584 uvm_maxkaddr = pmap_growkernel(addr + size);
585 if (uvm_maxkaddr < (addr + size))
586 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
587 }
588 #endif
589
590 virtual_space_start += size;
591
592 /*
593 * allocate and mapin physical pages to back new virtual pages
594 */
595
596 for (vaddr = round_page(addr) ; vaddr < addr + size ;
597 vaddr += PAGE_SIZE) {
598
599 if (!uvm_page_physget(&paddr))
600 panic("uvm_pageboot_alloc: out of memory");
601
602 /*
603 * Note this memory is no longer managed, so using
604 * pmap_kenter is safe.
605 */
606 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
607 }
608 pmap_update(pmap_kernel());
609 return addr;
610 #endif /* PMAP_STEAL_MEMORY */
611 }
612
613 #if !defined(PMAP_STEAL_MEMORY)
614 /*
615 * uvm_page_physget: "steal" one page from the vm_physmem structure.
616 *
617 * => attempt to allocate it off the end of a segment in which the "avail"
618 * values match the start/end values. if we can't do that, then we
619 * will advance both values (making them equal, and removing some
620 * vm_page structures from the non-avail area).
621 * => return false if out of memory.
622 */
623
624 /* subroutine: try to allocate from memory chunks on the specified freelist */
625 static bool uvm_page_physget_freelist(paddr_t *, int);
626
627 static bool
628 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
629 {
630 uvm_physseg_t lcv;
631
632 /* pass 1: try allocating from a matching end */
633 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
634 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
635 #else
636 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
637 #endif
638 {
639 if (uvm.page_init_done == true)
640 panic("uvm_page_physget: called _after_ bootstrap");
641
642 /* Try to match at front or back on unused segment */
643 if (uvm_page_physunload(lcv, freelist, paddrp))
644 return true;
645 }
646
647 /* pass2: forget about matching ends, just allocate something */
648 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
649 for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
650 #else
651 for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
652 #endif
653 {
654 /* Try the front regardless. */
655 if (uvm_page_physunload_force(lcv, freelist, paddrp))
656 return true;
657 }
658 return false;
659 }
660
661 bool
662 uvm_page_physget(paddr_t *paddrp)
663 {
664 int i;
665
666 /* try in the order of freelist preference */
667 for (i = 0; i < VM_NFREELIST; i++)
668 if (uvm_page_physget_freelist(paddrp, i) == true)
669 return (true);
670 return (false);
671 }
672 #endif /* PMAP_STEAL_MEMORY */
673
674 /*
675 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
676 * back from an I/O mapping (ugh!). used in some MD code as well.
677 */
678 struct vm_page *
679 uvm_phys_to_vm_page(paddr_t pa)
680 {
681 paddr_t pf = atop(pa);
682 paddr_t off;
683 uvm_physseg_t upm;
684
685 upm = uvm_physseg_find(pf, &off);
686 if (upm != UVM_PHYSSEG_TYPE_INVALID)
687 return uvm_physseg_get_pg(upm, off);
688 return(NULL);
689 }
690
691 paddr_t
692 uvm_vm_page_to_phys(const struct vm_page *pg)
693 {
694
695 return pg->phys_addr & ~(PAGE_SIZE - 1);
696 }
697
698 /*
699 * uvm_page_numa_load: load NUMA range description.
700 */
701 void
702 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
703 {
704 struct uvm_page_numa_region *d;
705
706 KASSERT(numa_id < PGFL_MAX_BUCKETS);
707
708 d = kmem_alloc(sizeof(*d), KM_SLEEP);
709 d->start = start;
710 d->size = size;
711 d->numa_id = numa_id;
712 d->next = uvm_page_numa_region;
713 uvm_page_numa_region = d;
714 }
715
716 /*
717 * uvm_page_numa_lookup: lookup NUMA node for the given page.
718 */
719 static u_int
720 uvm_page_numa_lookup(struct vm_page *pg)
721 {
722 struct uvm_page_numa_region *d;
723 static bool warned;
724 paddr_t pa;
725
726 KASSERT(uvm_page_numa_region != NULL);
727
728 pa = VM_PAGE_TO_PHYS(pg);
729 for (d = uvm_page_numa_region; d != NULL; d = d->next) {
730 if (pa >= d->start && pa < d->start + d->size) {
731 return d->numa_id;
732 }
733 }
734
735 if (!warned) {
736 printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
737 PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
738 warned = true;
739 }
740
741 return 0;
742 }
743
744 /*
745 * uvm_page_redim: adjust freelist dimensions if they have changed.
746 */
747
748 static void
749 uvm_page_redim(int newncolors, int newnbuckets)
750 {
751 struct pgfreelist npgfl;
752 struct pgflbucket *opgb, *npgb;
753 struct pgflist *ohead, *nhead;
754 struct vm_page *pg;
755 size_t bucketsize, bucketmemsize, oldbucketmemsize;
756 int fl, ob, oc, nb, nc, obuckets, ocolors;
757 char *bucketarray, *oldbucketmem, *bucketmem;
758
759 KASSERT(((newncolors - 1) & newncolors) == 0);
760
761 /* Anything to do? */
762 if (newncolors <= uvmexp.ncolors &&
763 newnbuckets == uvm.bucketcount) {
764 return;
765 }
766 if (uvm.page_init_done == false) {
767 uvmexp.ncolors = newncolors;
768 return;
769 }
770
771 bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
772 bucketsize = roundup2(bucketsize, coherency_unit);
773 bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
774 coherency_unit - 1;
775 bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
776 bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
777
778 ocolors = uvmexp.ncolors;
779 obuckets = uvm.bucketcount;
780
781 /* Freelist cache musn't be enabled. */
782 uvm_pgflcache_pause();
783
784 /* Make sure we should still do this. */
785 uvm_pgfl_lock();
786 if (newncolors <= uvmexp.ncolors &&
787 newnbuckets == uvm.bucketcount) {
788 uvm_pgfl_unlock();
789 uvm_pgflcache_resume();
790 kmem_free(bucketmem, bucketmemsize);
791 return;
792 }
793
794 uvmexp.ncolors = newncolors;
795 uvmexp.colormask = uvmexp.ncolors - 1;
796 uvm.bucketcount = newnbuckets;
797
798 for (fl = 0; fl < VM_NFREELIST; fl++) {
799 /* Init new buckets in new freelist. */
800 memset(&npgfl, 0, sizeof(npgfl));
801 for (nb = 0; nb < newnbuckets; nb++) {
802 npgb = (struct pgflbucket *)bucketarray;
803 uvm_page_init_bucket(&npgfl, npgb, nb);
804 bucketarray += bucketsize;
805 }
806 /* Now transfer pages from the old freelist. */
807 for (nb = ob = 0; ob < obuckets; ob++) {
808 opgb = uvm.page_free[fl].pgfl_buckets[ob];
809 for (oc = 0; oc < ocolors; oc++) {
810 ohead = &opgb->pgb_colors[oc];
811 while ((pg = LIST_FIRST(ohead)) != NULL) {
812 LIST_REMOVE(pg, pageq.list);
813 /*
814 * Here we decide on the NEW color &
815 * bucket for the page. For NUMA
816 * we'll use the info that the
817 * hardware gave us. For non-NUMA
818 * assign take physical page frame
819 * number and cache color into
820 * account. We do this to try and
821 * avoid defeating any memory
822 * interleaving in the hardware.
823 */
824 KASSERT(
825 uvm_page_get_bucket(pg) == ob);
826 KASSERT(fl ==
827 uvm_page_get_freelist(pg));
828 if (uvm_page_numa_region != NULL) {
829 nb = uvm_page_numa_lookup(pg);
830 } else {
831 nb = atop(VM_PAGE_TO_PHYS(pg))
832 / uvmexp.ncolors / 8
833 % newnbuckets;
834 }
835 uvm_page_set_bucket(pg, nb);
836 npgb = npgfl.pgfl_buckets[nb];
837 npgb->pgb_nfree++;
838 nc = VM_PGCOLOR(pg);
839 nhead = &npgb->pgb_colors[nc];
840 LIST_INSERT_HEAD(nhead, pg, pageq.list);
841 }
842 }
843 }
844 /* Install the new freelist. */
845 memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
846 }
847
848 /* Unlock and free the old memory. */
849 oldbucketmemsize = recolored_pages_memsize;
850 oldbucketmem = recolored_pages_mem;
851 recolored_pages_memsize = bucketmemsize;
852 recolored_pages_mem = bucketmem;
853
854 uvm_pgfl_unlock();
855 uvm_pgflcache_resume();
856
857 if (oldbucketmemsize) {
858 kmem_free(oldbucketmem, oldbucketmemsize);
859 }
860
861 /*
862 * this calls uvm_km_alloc() which may want to hold
863 * uvm_freelist_lock.
864 */
865 uvm_pager_realloc_emerg();
866 }
867
868 /*
869 * uvm_page_recolor: Recolor the pages if the new color count is
870 * larger than the old one.
871 */
872
873 void
874 uvm_page_recolor(int newncolors)
875 {
876
877 uvm_page_redim(newncolors, uvm.bucketcount);
878 }
879
880 /*
881 * uvm_page_rebucket: Determine a bucket structure and redim the free
882 * lists to match.
883 */
884
885 void
886 uvm_page_rebucket(void)
887 {
888 u_int min_numa, max_numa, npackage, shift;
889 struct cpu_info *ci, *ci2, *ci3;
890 CPU_INFO_ITERATOR cii;
891
892 /*
893 * If we have more than one NUMA node, and the maximum NUMA node ID
894 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
895 * for free pages.
896 */
897 min_numa = (u_int)-1;
898 max_numa = 0;
899 for (CPU_INFO_FOREACH(cii, ci)) {
900 if (ci->ci_numa_id < min_numa) {
901 min_numa = ci->ci_numa_id;
902 }
903 if (ci->ci_numa_id > max_numa) {
904 max_numa = ci->ci_numa_id;
905 }
906 }
907 if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
908 aprint_debug("UVM: using NUMA allocation scheme\n");
909 for (CPU_INFO_FOREACH(cii, ci)) {
910 ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
911 }
912 uvm_page_redim(uvmexp.ncolors, max_numa + 1);
913 return;
914 }
915
916 /*
917 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
918 * and minimise lock contention. Count the total number of CPU
919 * packages, and then try to distribute the buckets among CPU
920 * packages evenly.
921 */
922 npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
923
924 /*
925 * Figure out how to arrange the packages & buckets, and the total
926 * number of buckets we need. XXX 2 may not be the best factor.
927 */
928 for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
929 npackage >>= 1;
930 }
931 uvm_page_redim(uvmexp.ncolors, npackage);
932
933 /*
934 * Now tell each CPU which bucket to use. In the outer loop, scroll
935 * through all CPU packages.
936 */
937 npackage = 0;
938 ci = curcpu();
939 ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
940 do {
941 /*
942 * In the inner loop, scroll through all CPUs in the package
943 * and assign the same bucket ID.
944 */
945 ci3 = ci2;
946 do {
947 ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
948 ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
949 } while (ci3 != ci2);
950 npackage++;
951 ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
952 } while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
953
954 aprint_debug("UVM: using package allocation scheme, "
955 "%d package(s) per bucket\n", 1 << shift);
956 }
957
958 /*
959 * uvm_cpu_attach: initialize per-CPU data structures.
960 */
961
962 void
963 uvm_cpu_attach(struct cpu_info *ci)
964 {
965 struct uvm_cpu *ucpu;
966
967 /* Already done in uvm_page_init(). */
968 if (!CPU_IS_PRIMARY(ci)) {
969 /* Add more reserve pages for this CPU. */
970 uvmexp.reserve_kernel += vm_page_reserve_kernel;
971
972 /* Allocate per-CPU data structures. */
973 ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
974 KM_SLEEP);
975 ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
976 coherency_unit);
977 ci->ci_data.cpu_uvm = ucpu;
978 } else {
979 ucpu = ci->ci_data.cpu_uvm;
980 }
981
982 uvmpdpol_init_cpu(ucpu);
983
984 /*
985 * Attach RNG source for this CPU's VM events
986 */
987 rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
988 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
989 RND_FLAG_ESTIMATE_VALUE);
990 }
991
992 /*
993 * uvm_availmem: fetch the total amount of free memory in pages. this can
994 * have a detrimental effect on performance due to false sharing; don't call
995 * unless needed.
996 *
997 * some users can request the amount of free memory so often that it begins
998 * to impact upon performance. if calling frequently and an inexact value
999 * is okay, call with cached = true.
1000 */
1001
1002 int
1003 uvm_availmem(bool cached)
1004 {
1005 int64_t fp;
1006
1007 cpu_count_sync(cached);
1008 if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
1009 /*
1010 * XXXAD could briefly go negative because it's impossible
1011 * to get a clean snapshot. address this for other counters
1012 * used as running totals before NetBSD 10 although less
1013 * important for those.
1014 */
1015 fp = 0;
1016 }
1017 return (int)fp;
1018 }
1019
1020 /*
1021 * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
1022 * specific freelist and specific bucket only.
1023 *
1024 * => must be at IPL_VM or higher to protect per-CPU data structures.
1025 */
1026
1027 static struct vm_page *
1028 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1029 {
1030 int c, trycolor, colormask;
1031 struct pgflbucket *pgb;
1032 struct vm_page *pg;
1033 kmutex_t *lock;
1034 bool fill;
1035
1036 /*
1037 * Skip the bucket if empty, no lock needed. There could be many
1038 * empty freelists/buckets.
1039 */
1040 pgb = uvm.page_free[f].pgfl_buckets[b];
1041 if (pgb->pgb_nfree == 0) {
1042 return NULL;
1043 }
1044
1045 /* Skip bucket if low on memory. */
1046 lock = &uvm_freelist_locks[b].lock;
1047 mutex_spin_enter(lock);
1048 if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1049 if ((flags & UVM_PGA_USERESERVE) == 0 ||
1050 (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1051 curlwp != uvm.pagedaemon_lwp)) {
1052 mutex_spin_exit(lock);
1053 return NULL;
1054 }
1055 fill = false;
1056 } else {
1057 fill = true;
1058 }
1059
1060 /* Try all page colors as needed. */
1061 c = trycolor = *trycolorp;
1062 colormask = uvmexp.colormask;
1063 do {
1064 pg = LIST_FIRST(&pgb->pgb_colors[c]);
1065 if (__predict_true(pg != NULL)) {
1066 /*
1067 * Got a free page! PG_FREE must be cleared under
1068 * lock because of uvm_pglistalloc().
1069 */
1070 LIST_REMOVE(pg, pageq.list);
1071 KASSERT(pg->flags == PG_FREE);
1072 pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
1073 pgb->pgb_nfree--;
1074 CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
1075
1076 /*
1077 * While we have the bucket locked and our data
1078 * structures fresh in L1 cache, we have an ideal
1079 * opportunity to grab some pages for the freelist
1080 * cache without causing extra contention. Only do
1081 * so if we found pages in this CPU's preferred
1082 * bucket.
1083 */
1084 if (__predict_true(b == ucpu->pgflbucket && fill)) {
1085 uvm_pgflcache_fill(ucpu, f, b, c);
1086 }
1087 mutex_spin_exit(lock);
1088 KASSERT(uvm_page_get_bucket(pg) == b);
1089 CPU_COUNT(c == trycolor ?
1090 CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1091 CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1092 *trycolorp = c;
1093 return pg;
1094 }
1095 c = (c + 1) & colormask;
1096 } while (c != trycolor);
1097 mutex_spin_exit(lock);
1098
1099 return NULL;
1100 }
1101
1102 /*
1103 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1104 * any color from any bucket, in a specific freelist.
1105 *
1106 * => must be at IPL_VM or higher to protect per-CPU data structures.
1107 */
1108
1109 static struct vm_page *
1110 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1111 {
1112 int b, trybucket, bucketcount;
1113 struct vm_page *pg;
1114
1115 /* Try for the exact thing in the per-CPU cache. */
1116 if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1117 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1118 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1119 return pg;
1120 }
1121
1122 /* Walk through all buckets, trying our preferred bucket first. */
1123 trybucket = ucpu->pgflbucket;
1124 b = trybucket;
1125 bucketcount = uvm.bucketcount;
1126 do {
1127 pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1128 if (pg != NULL) {
1129 return pg;
1130 }
1131 b = (b + 1 == bucketcount ? 0 : b + 1);
1132 } while (b != trybucket);
1133
1134 return NULL;
1135 }
1136
1137 /*
1138 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1139 *
1140 * => return null if no pages free
1141 * => wake up pagedaemon if number of free pages drops below low water mark
1142 * => if obj != NULL, obj must be locked (to put in obj's tree)
1143 * => if anon != NULL, anon must be locked (to put in anon)
1144 * => only one of obj or anon can be non-null
1145 * => caller must activate/deactivate page if it is not wired.
1146 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1147 * => policy decision: it is more important to pull a page off of the
1148 * appropriate priority free list than it is to get a page from the
1149 * correct bucket or color bin. This is because we live with the
1150 * consequences of a bad free list decision for the entire
1151 * lifetime of the page, e.g. if the page comes from memory that
1152 * is slower to access.
1153 */
1154
1155 struct vm_page *
1156 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1157 int flags, int strat, int free_list)
1158 {
1159 int color, lcv, error, s;
1160 struct uvm_cpu *ucpu;
1161 struct vm_page *pg;
1162 lwp_t *l;
1163
1164 KASSERT(obj == NULL || anon == NULL);
1165 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1166 KASSERT(off == trunc_page(off));
1167 KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1168 KASSERT(anon == NULL || anon->an_lock == NULL ||
1169 rw_write_held(anon->an_lock));
1170
1171 /*
1172 * This implements a global round-robin page coloring
1173 * algorithm.
1174 */
1175
1176 s = splvm();
1177 ucpu = curcpu()->ci_data.cpu_uvm;
1178 if (flags & UVM_FLAG_COLORMATCH) {
1179 color = atop(off) & uvmexp.colormask;
1180 } else {
1181 color = ucpu->pgflcolor;
1182 }
1183
1184 /*
1185 * fail if any of these conditions is true:
1186 * [1] there really are no free pages, or
1187 * [2] only kernel "reserved" pages remain and
1188 * reserved pages have not been requested.
1189 * [3] only pagedaemon "reserved" pages remain and
1190 * the requestor isn't the pagedaemon.
1191 * we make kernel reserve pages available if called by a
1192 * kernel thread.
1193 */
1194 l = curlwp;
1195 if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
1196 flags |= UVM_PGA_USERESERVE;
1197 }
1198
1199 again:
1200 switch (strat) {
1201 case UVM_PGA_STRAT_NORMAL:
1202 /* Check freelists: descending priority (ascending id) order. */
1203 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1204 pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1205 if (pg != NULL) {
1206 goto gotit;
1207 }
1208 }
1209
1210 /* No pages free! Have pagedaemon free some memory. */
1211 splx(s);
1212 uvm_kick_pdaemon();
1213 return NULL;
1214
1215 case UVM_PGA_STRAT_ONLY:
1216 case UVM_PGA_STRAT_FALLBACK:
1217 /* Attempt to allocate from the specified free list. */
1218 KASSERT(free_list >= 0);
1219 KASSERT(free_list < VM_NFREELIST);
1220 pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1221 if (pg != NULL) {
1222 goto gotit;
1223 }
1224
1225 /* Fall back, if possible. */
1226 if (strat == UVM_PGA_STRAT_FALLBACK) {
1227 strat = UVM_PGA_STRAT_NORMAL;
1228 goto again;
1229 }
1230
1231 /* No pages free! Have pagedaemon free some memory. */
1232 splx(s);
1233 uvm_kick_pdaemon();
1234 return NULL;
1235
1236 case UVM_PGA_STRAT_NUMA:
1237 /*
1238 * NUMA strategy (experimental): allocating from the correct
1239 * bucket is more important than observing freelist
1240 * priority. Look only to the current NUMA node; if that
1241 * fails, we need to look to other NUMA nodes, so retry with
1242 * the normal strategy.
1243 */
1244 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1245 pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1246 if (pg != NULL) {
1247 CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1248 CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1249 goto gotit;
1250 }
1251 pg = uvm_pagealloc_pgb(ucpu, lcv,
1252 ucpu->pgflbucket, &color, flags);
1253 if (pg != NULL) {
1254 goto gotit;
1255 }
1256 }
1257 strat = UVM_PGA_STRAT_NORMAL;
1258 goto again;
1259
1260 default:
1261 panic("uvm_pagealloc_strat: bad strat %d", strat);
1262 /* NOTREACHED */
1263 }
1264
1265 gotit:
1266 /*
1267 * We now know which color we actually allocated from; set
1268 * the next color accordingly.
1269 */
1270
1271 ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1272
1273 /*
1274 * while still at IPL_VM, update allocation statistics.
1275 */
1276
1277 if (anon) {
1278 CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1279 }
1280 splx(s);
1281 KASSERT(pg->flags == (PG_BUSY|PG_CLEAN|PG_FAKE));
1282
1283 /*
1284 * assign the page to the object. as the page was free, we know
1285 * that pg->uobject and pg->uanon are NULL. we only need to take
1286 * the page's interlock if we are changing the values.
1287 */
1288 if (anon != NULL || obj != NULL) {
1289 mutex_enter(&pg->interlock);
1290 }
1291 pg->offset = off;
1292 pg->uobject = obj;
1293 pg->uanon = anon;
1294 KASSERT(uvm_page_owner_locked_p(pg, true));
1295 if (anon) {
1296 anon->an_page = pg;
1297 pg->flags |= PG_ANON;
1298 mutex_exit(&pg->interlock);
1299 } else if (obj) {
1300 /*
1301 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1302 */
1303 if (UVM_OBJ_IS_VNODE(obj)) {
1304 pg->flags |= PG_FILE;
1305 } else if (UVM_OBJ_IS_AOBJ(obj)) {
1306 pg->flags |= PG_AOBJ;
1307 }
1308 uvm_pageinsert_object(obj, pg);
1309 mutex_exit(&pg->interlock);
1310 error = uvm_pageinsert_tree(obj, pg);
1311 if (error != 0) {
1312 mutex_enter(&pg->interlock);
1313 uvm_pageremove_object(obj, pg);
1314 mutex_exit(&pg->interlock);
1315 uvm_pagefree(pg);
1316 return NULL;
1317 }
1318 }
1319
1320 #if defined(UVM_PAGE_TRKOWN)
1321 pg->owner_tag = NULL;
1322 #endif
1323 UVM_PAGE_OWN(pg, "new alloc");
1324
1325 if (flags & UVM_PGA_ZERO) {
1326 /* A zero'd page is not clean. */
1327 if (obj != NULL || anon != NULL) {
1328 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1329 }
1330 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1331 }
1332
1333 return(pg);
1334 }
1335
1336 /*
1337 * uvm_pagereplace: replace a page with another
1338 *
1339 * => object must be locked
1340 * => page interlocks must be held
1341 */
1342
1343 void
1344 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1345 {
1346 struct uvm_object *uobj = oldpg->uobject;
1347 struct vm_page *pg __diagused;
1348 uint64_t idx;
1349
1350 KASSERT((oldpg->flags & PG_TABLED) != 0);
1351 KASSERT(uobj != NULL);
1352 KASSERT((newpg->flags & PG_TABLED) == 0);
1353 KASSERT(newpg->uobject == NULL);
1354 KASSERT(rw_write_held(uobj->vmobjlock));
1355 KASSERT(mutex_owned(&oldpg->interlock));
1356 KASSERT(mutex_owned(&newpg->interlock));
1357
1358 newpg->uobject = uobj;
1359 newpg->offset = oldpg->offset;
1360 idx = newpg->offset >> PAGE_SHIFT;
1361 pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1362 KASSERT(pg == oldpg);
1363 if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1364 if ((newpg->flags & PG_CLEAN) != 0) {
1365 uvm_obj_page_clear_dirty(newpg);
1366 } else {
1367 uvm_obj_page_set_dirty(newpg);
1368 }
1369 }
1370 /*
1371 * oldpg's PG_STAT is stable. newpg is not reachable by others yet.
1372 */
1373 newpg->flags |=
1374 (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1375 uvm_pageinsert_object(uobj, newpg);
1376 uvm_pageremove_object(uobj, oldpg);
1377 }
1378
1379 /*
1380 * uvm_pagerealloc: reallocate a page from one object to another
1381 *
1382 * => both objects must be locked
1383 */
1384
1385 int
1386 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1387 {
1388 int error = 0;
1389
1390 /*
1391 * remove it from the old object
1392 */
1393
1394 if (pg->uobject) {
1395 uvm_pageremove_tree(pg->uobject, pg);
1396 uvm_pageremove_object(pg->uobject, pg);
1397 }
1398
1399 /*
1400 * put it in the new object
1401 */
1402
1403 if (newobj) {
1404 mutex_enter(&pg->interlock);
1405 pg->uobject = newobj;
1406 pg->offset = newoff;
1407 if (UVM_OBJ_IS_VNODE(newobj)) {
1408 pg->flags |= PG_FILE;
1409 } else if (UVM_OBJ_IS_AOBJ(newobj)) {
1410 pg->flags |= PG_AOBJ;
1411 }
1412 uvm_pageinsert_object(newobj, pg);
1413 mutex_exit(&pg->interlock);
1414 error = uvm_pageinsert_tree(newobj, pg);
1415 if (error != 0) {
1416 mutex_enter(&pg->interlock);
1417 uvm_pageremove_object(newobj, pg);
1418 mutex_exit(&pg->interlock);
1419 }
1420 }
1421
1422 return error;
1423 }
1424
1425 /*
1426 * uvm_pagefree: free page
1427 *
1428 * => erase page's identity (i.e. remove from object)
1429 * => put page on free list
1430 * => caller must lock owning object (either anon or uvm_object)
1431 * => assumes all valid mappings of pg are gone
1432 */
1433
1434 void
1435 uvm_pagefree(struct vm_page *pg)
1436 {
1437 struct pgfreelist *pgfl;
1438 struct pgflbucket *pgb;
1439 struct uvm_cpu *ucpu;
1440 kmutex_t *lock;
1441 int bucket, s;
1442 bool locked;
1443
1444 #ifdef DEBUG
1445 if (pg->uobject == (void *)0xdeadbeef &&
1446 pg->uanon == (void *)0xdeadbeef) {
1447 panic("uvm_pagefree: freeing free page %p", pg);
1448 }
1449 #endif /* DEBUG */
1450
1451 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1452 KASSERT(!(pg->flags & PG_FREE));
1453 KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1454 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1455 rw_write_held(pg->uanon->an_lock));
1456
1457 /*
1458 * remove the page from the object's tree before acquiring any page
1459 * interlocks: this can acquire locks to free radixtree nodes.
1460 */
1461 if (pg->uobject != NULL) {
1462 uvm_pageremove_tree(pg->uobject, pg);
1463 }
1464
1465 /*
1466 * if the page is loaned, resolve the loan instead of freeing.
1467 */
1468
1469 if (pg->loan_count) {
1470 KASSERT(pg->wire_count == 0);
1471
1472 /*
1473 * if the page is owned by an anon then we just want to
1474 * drop anon ownership. the kernel will free the page when
1475 * it is done with it. if the page is owned by an object,
1476 * remove it from the object and mark it dirty for the benefit
1477 * of possible anon owners.
1478 *
1479 * regardless of previous ownership, wakeup any waiters,
1480 * unbusy the page, and we're done.
1481 */
1482
1483 uvm_pagelock(pg);
1484 locked = true;
1485 if (pg->uobject != NULL) {
1486 uvm_pageremove_object(pg->uobject, pg);
1487 pg->flags &= ~(PG_FILE|PG_AOBJ);
1488 } else if (pg->uanon != NULL) {
1489 if ((pg->flags & PG_ANON) == 0) {
1490 pg->loan_count--;
1491 } else {
1492 const unsigned status = uvm_pagegetdirty(pg);
1493 pg->flags &= ~PG_ANON;
1494 cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1495 }
1496 pg->uanon->an_page = NULL;
1497 pg->uanon = NULL;
1498 }
1499 if (pg->pqflags & PQ_WANTED) {
1500 wakeup(pg);
1501 }
1502 pg->pqflags &= ~PQ_WANTED;
1503 pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1504 #ifdef UVM_PAGE_TRKOWN
1505 pg->owner_tag = NULL;
1506 #endif
1507 KASSERT((pg->flags & PG_STAT) == 0);
1508 if (pg->loan_count) {
1509 KASSERT(pg->uobject == NULL);
1510 if (pg->uanon == NULL) {
1511 uvm_pagedequeue(pg);
1512 }
1513 uvm_pageunlock(pg);
1514 return;
1515 }
1516 } else if (pg->uobject != NULL || pg->uanon != NULL ||
1517 pg->wire_count != 0) {
1518 uvm_pagelock(pg);
1519 locked = true;
1520 } else {
1521 locked = false;
1522 }
1523
1524 /*
1525 * remove page from its object or anon.
1526 */
1527 if (pg->uobject != NULL) {
1528 uvm_pageremove_object(pg->uobject, pg);
1529 } else if (pg->uanon != NULL) {
1530 const unsigned int status = uvm_pagegetdirty(pg);
1531 pg->uanon->an_page = NULL;
1532 pg->uanon = NULL;
1533 cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1534 }
1535
1536 /*
1537 * if the page was wired, unwire it now.
1538 */
1539
1540 if (pg->wire_count) {
1541 pg->wire_count = 0;
1542 atomic_dec_uint(&uvmexp.wired);
1543 }
1544 if (locked) {
1545 /*
1546 * wake anyone waiting on the page.
1547 */
1548 if ((pg->pqflags & PQ_WANTED) != 0) {
1549 pg->pqflags &= ~PQ_WANTED;
1550 wakeup(pg);
1551 }
1552
1553 /*
1554 * now remove the page from the queues.
1555 */
1556 uvm_pagedequeue(pg);
1557 uvm_pageunlock(pg);
1558 } else {
1559 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1560 }
1561
1562 /*
1563 * and put on free queue
1564 */
1565
1566 #ifdef DEBUG
1567 pg->uobject = (void *)0xdeadbeef;
1568 pg->uanon = (void *)0xdeadbeef;
1569 #endif /* DEBUG */
1570
1571 /* Try to send the page to the per-CPU cache. */
1572 s = splvm();
1573 ucpu = curcpu()->ci_data.cpu_uvm;
1574 bucket = uvm_page_get_bucket(pg);
1575 if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1576 splx(s);
1577 return;
1578 }
1579
1580 /* Didn't work. Never mind, send it to a global bucket. */
1581 pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1582 pgb = pgfl->pgfl_buckets[bucket];
1583 lock = &uvm_freelist_locks[bucket].lock;
1584
1585 mutex_spin_enter(lock);
1586 /* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1587 pg->flags = PG_FREE;
1588 LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1589 pgb->pgb_nfree++;
1590 CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
1591 mutex_spin_exit(lock);
1592 splx(s);
1593 }
1594
1595 /*
1596 * uvm_page_unbusy: unbusy an array of pages.
1597 *
1598 * => pages must either all belong to the same object, or all belong to anons.
1599 * => if pages are object-owned, object must be locked.
1600 * => if pages are anon-owned, anons must be locked.
1601 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1602 */
1603
1604 void
1605 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1606 {
1607 struct vm_page *pg;
1608 int i, pageout_done;
1609 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1610
1611 pageout_done = 0;
1612 for (i = 0; i < npgs; i++) {
1613 pg = pgs[i];
1614 if (pg == NULL || pg == PGO_DONTCARE) {
1615 continue;
1616 }
1617
1618 KASSERT(uvm_page_owner_locked_p(pg, true));
1619 KASSERT(pg->flags & PG_BUSY);
1620
1621 if (pg->flags & PG_PAGEOUT) {
1622 pg->flags &= ~PG_PAGEOUT;
1623 pg->flags |= PG_RELEASED;
1624 pageout_done++;
1625 atomic_inc_uint(&uvmexp.pdfreed);
1626 }
1627 if (pg->flags & PG_RELEASED) {
1628 UVMHIST_LOG(ubchist, "releasing pg %#jx",
1629 (uintptr_t)pg, 0, 0, 0);
1630 KASSERT(pg->uobject != NULL ||
1631 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1632 pg->flags &= ~PG_RELEASED;
1633 uvm_pagefree(pg);
1634 } else {
1635 UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1636 (uintptr_t)pg, 0, 0, 0);
1637 KASSERT((pg->flags & PG_FAKE) == 0);
1638 pg->flags &= ~PG_BUSY;
1639 uvm_pagelock(pg);
1640 uvm_pagewakeup(pg);
1641 uvm_pageunlock(pg);
1642 UVM_PAGE_OWN(pg, NULL);
1643 }
1644 }
1645 if (pageout_done != 0) {
1646 uvm_pageout_done(pageout_done);
1647 }
1648 }
1649
1650 /*
1651 * uvm_pagewait: wait for a busy page
1652 *
1653 * => page must be known PG_BUSY
1654 * => object must be read or write locked
1655 * => object will be unlocked on return
1656 */
1657
1658 void
1659 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1660 {
1661
1662 KASSERT(rw_lock_held(lock));
1663 KASSERT((pg->flags & PG_BUSY) != 0);
1664 KASSERT(uvm_page_owner_locked_p(pg, false));
1665
1666 mutex_enter(&pg->interlock);
1667 pg->pqflags |= PQ_WANTED;
1668 rw_exit(lock);
1669 UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1670 }
1671
1672 /*
1673 * uvm_pagewakeup: wake anyone waiting on a page
1674 *
1675 * => page interlock must be held
1676 */
1677
1678 void
1679 uvm_pagewakeup(struct vm_page *pg)
1680 {
1681 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1682
1683 KASSERT(mutex_owned(&pg->interlock));
1684
1685 UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1686
1687 if ((pg->pqflags & PQ_WANTED) != 0) {
1688 wakeup(pg);
1689 pg->pqflags &= ~PQ_WANTED;
1690 }
1691 }
1692
1693 /*
1694 * uvm_pagewanted_p: return true if someone is waiting on the page
1695 *
1696 * => object must be write locked (lock out all concurrent access)
1697 */
1698
1699 bool
1700 uvm_pagewanted_p(struct vm_page *pg)
1701 {
1702
1703 KASSERT(uvm_page_owner_locked_p(pg, true));
1704
1705 return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
1706 }
1707
1708 #if defined(UVM_PAGE_TRKOWN)
1709 /*
1710 * uvm_page_own: set or release page ownership
1711 *
1712 * => this is a debugging function that keeps track of who sets PG_BUSY
1713 * and where they do it. it can be used to track down problems
1714 * such a process setting "PG_BUSY" and never releasing it.
1715 * => page's object [if any] must be locked
1716 * => if "tag" is NULL then we are releasing page ownership
1717 */
1718 void
1719 uvm_page_own(struct vm_page *pg, const char *tag)
1720 {
1721
1722 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1723 KASSERT(uvm_page_owner_locked_p(pg, true));
1724
1725 /* gain ownership? */
1726 if (tag) {
1727 KASSERT((pg->flags & PG_BUSY) != 0);
1728 if (pg->owner_tag) {
1729 printf("uvm_page_own: page %p already owned "
1730 "by proc %d.%d [%s]\n", pg,
1731 pg->owner, pg->lowner, pg->owner_tag);
1732 panic("uvm_page_own");
1733 }
1734 pg->owner = curproc->p_pid;
1735 pg->lowner = curlwp->l_lid;
1736 pg->owner_tag = tag;
1737 return;
1738 }
1739
1740 /* drop ownership */
1741 KASSERT((pg->flags & PG_BUSY) == 0);
1742 if (pg->owner_tag == NULL) {
1743 printf("uvm_page_own: dropping ownership of an non-owned "
1744 "page (%p)\n", pg);
1745 panic("uvm_page_own");
1746 }
1747 pg->owner_tag = NULL;
1748 }
1749 #endif
1750
1751 /*
1752 * uvm_pagelookup: look up a page
1753 *
1754 * => caller should lock object to keep someone from pulling the page
1755 * out from under it
1756 */
1757
1758 struct vm_page *
1759 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1760 {
1761 struct vm_page *pg;
1762
1763 KASSERT(db_active || rw_lock_held(obj->vmobjlock));
1764
1765 pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1766
1767 KASSERT(pg == NULL || obj->uo_npages != 0);
1768 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1769 (pg->flags & PG_BUSY) != 0);
1770 return pg;
1771 }
1772
1773 /*
1774 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1775 *
1776 * => caller must lock objects
1777 * => caller must hold pg->interlock
1778 */
1779
1780 void
1781 uvm_pagewire(struct vm_page *pg)
1782 {
1783
1784 KASSERT(uvm_page_owner_locked_p(pg, true));
1785 KASSERT(mutex_owned(&pg->interlock));
1786 #if defined(READAHEAD_STATS)
1787 if ((pg->flags & PG_READAHEAD) != 0) {
1788 uvm_ra_hit.ev_count++;
1789 pg->flags &= ~PG_READAHEAD;
1790 }
1791 #endif /* defined(READAHEAD_STATS) */
1792 if (pg->wire_count == 0) {
1793 uvm_pagedequeue(pg);
1794 atomic_inc_uint(&uvmexp.wired);
1795 }
1796 pg->wire_count++;
1797 KASSERT(pg->wire_count > 0); /* detect wraparound */
1798 }
1799
1800 /*
1801 * uvm_pageunwire: unwire the page.
1802 *
1803 * => activate if wire count goes to zero.
1804 * => caller must lock objects
1805 * => caller must hold pg->interlock
1806 */
1807
1808 void
1809 uvm_pageunwire(struct vm_page *pg)
1810 {
1811
1812 KASSERT(uvm_page_owner_locked_p(pg, true));
1813 KASSERT(pg->wire_count != 0);
1814 KASSERT(!uvmpdpol_pageisqueued_p(pg));
1815 KASSERT(mutex_owned(&pg->interlock));
1816 pg->wire_count--;
1817 if (pg->wire_count == 0) {
1818 uvm_pageactivate(pg);
1819 KASSERT(uvmexp.wired != 0);
1820 atomic_dec_uint(&uvmexp.wired);
1821 }
1822 }
1823
1824 /*
1825 * uvm_pagedeactivate: deactivate page
1826 *
1827 * => caller must lock objects
1828 * => caller must check to make sure page is not wired
1829 * => object that page belongs to must be locked (so we can adjust pg->flags)
1830 * => caller must clear the reference on the page before calling
1831 * => caller must hold pg->interlock
1832 */
1833
1834 void
1835 uvm_pagedeactivate(struct vm_page *pg)
1836 {
1837
1838 KASSERT(uvm_page_owner_locked_p(pg, false));
1839 KASSERT(mutex_owned(&pg->interlock));
1840 if (pg->wire_count == 0) {
1841 KASSERT(uvmpdpol_pageisqueued_p(pg));
1842 uvmpdpol_pagedeactivate(pg);
1843 }
1844 }
1845
1846 /*
1847 * uvm_pageactivate: activate page
1848 *
1849 * => caller must lock objects
1850 * => caller must hold pg->interlock
1851 */
1852
1853 void
1854 uvm_pageactivate(struct vm_page *pg)
1855 {
1856
1857 KASSERT(uvm_page_owner_locked_p(pg, false));
1858 KASSERT(mutex_owned(&pg->interlock));
1859 #if defined(READAHEAD_STATS)
1860 if ((pg->flags & PG_READAHEAD) != 0) {
1861 uvm_ra_hit.ev_count++;
1862 pg->flags &= ~PG_READAHEAD;
1863 }
1864 #endif /* defined(READAHEAD_STATS) */
1865 if (pg->wire_count == 0) {
1866 uvmpdpol_pageactivate(pg);
1867 }
1868 }
1869
1870 /*
1871 * uvm_pagedequeue: remove a page from any paging queue
1872 *
1873 * => caller must lock objects
1874 * => caller must hold pg->interlock
1875 */
1876 void
1877 uvm_pagedequeue(struct vm_page *pg)
1878 {
1879
1880 KASSERT(uvm_page_owner_locked_p(pg, true));
1881 KASSERT(mutex_owned(&pg->interlock));
1882 if (uvmpdpol_pageisqueued_p(pg)) {
1883 uvmpdpol_pagedequeue(pg);
1884 }
1885 }
1886
1887 /*
1888 * uvm_pageenqueue: add a page to a paging queue without activating.
1889 * used where a page is not really demanded (yet). eg. read-ahead
1890 *
1891 * => caller must lock objects
1892 * => caller must hold pg->interlock
1893 */
1894 void
1895 uvm_pageenqueue(struct vm_page *pg)
1896 {
1897
1898 KASSERT(uvm_page_owner_locked_p(pg, false));
1899 KASSERT(mutex_owned(&pg->interlock));
1900 if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1901 uvmpdpol_pageenqueue(pg);
1902 }
1903 }
1904
1905 /*
1906 * uvm_pagelock: acquire page interlock
1907 */
1908 void
1909 uvm_pagelock(struct vm_page *pg)
1910 {
1911
1912 mutex_enter(&pg->interlock);
1913 }
1914
1915 /*
1916 * uvm_pagelock2: acquire two page interlocks
1917 */
1918 void
1919 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1920 {
1921
1922 if (pg1 < pg2) {
1923 mutex_enter(&pg1->interlock);
1924 mutex_enter(&pg2->interlock);
1925 } else {
1926 mutex_enter(&pg2->interlock);
1927 mutex_enter(&pg1->interlock);
1928 }
1929 }
1930
1931 /*
1932 * uvm_pageunlock: release page interlock, and if a page replacement intent
1933 * is set on the page, pass it to uvmpdpol to make real.
1934 *
1935 * => caller must hold pg->interlock
1936 */
1937 void
1938 uvm_pageunlock(struct vm_page *pg)
1939 {
1940
1941 if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
1942 (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
1943 mutex_exit(&pg->interlock);
1944 return;
1945 }
1946 pg->pqflags |= PQ_INTENT_QUEUED;
1947 mutex_exit(&pg->interlock);
1948 uvmpdpol_pagerealize(pg);
1949 }
1950
1951 /*
1952 * uvm_pageunlock2: release two page interlocks, and for both pages if a
1953 * page replacement intent is set on the page, pass it to uvmpdpol to make
1954 * real.
1955 *
1956 * => caller must hold pg->interlock
1957 */
1958 void
1959 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
1960 {
1961
1962 if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
1963 (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
1964 mutex_exit(&pg1->interlock);
1965 pg1 = NULL;
1966 } else {
1967 pg1->pqflags |= PQ_INTENT_QUEUED;
1968 mutex_exit(&pg1->interlock);
1969 }
1970
1971 if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
1972 (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
1973 mutex_exit(&pg2->interlock);
1974 pg2 = NULL;
1975 } else {
1976 pg2->pqflags |= PQ_INTENT_QUEUED;
1977 mutex_exit(&pg2->interlock);
1978 }
1979
1980 if (pg1 != NULL) {
1981 uvmpdpol_pagerealize(pg1);
1982 }
1983 if (pg2 != NULL) {
1984 uvmpdpol_pagerealize(pg2);
1985 }
1986 }
1987
1988 /*
1989 * uvm_pagezero: zero fill a page
1990 *
1991 * => if page is part of an object then the object should be locked
1992 * to protect pg->flags.
1993 */
1994
1995 void
1996 uvm_pagezero(struct vm_page *pg)
1997 {
1998
1999 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2000 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2001 }
2002
2003 /*
2004 * uvm_pagecopy: copy a page
2005 *
2006 * => if page is part of an object then the object should be locked
2007 * to protect pg->flags.
2008 */
2009
2010 void
2011 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2012 {
2013
2014 uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
2015 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2016 }
2017
2018 /*
2019 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2020 */
2021
2022 bool
2023 uvm_pageismanaged(paddr_t pa)
2024 {
2025
2026 return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2027 }
2028
2029 /*
2030 * uvm_page_lookup_freelist: look up the free list for the specified page
2031 */
2032
2033 int
2034 uvm_page_lookup_freelist(struct vm_page *pg)
2035 {
2036 uvm_physseg_t upm;
2037
2038 upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2039 KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2040 return uvm_physseg_get_free_list(upm);
2041 }
2042
2043 /*
2044 * uvm_page_owner_locked_p: return true if object associated with page is
2045 * locked. this is a weak check for runtime assertions only.
2046 */
2047
2048 bool
2049 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2050 {
2051
2052 if (pg->uobject != NULL) {
2053 return exclusive
2054 ? rw_write_held(pg->uobject->vmobjlock)
2055 : rw_lock_held(pg->uobject->vmobjlock);
2056 }
2057 if (pg->uanon != NULL) {
2058 return exclusive
2059 ? rw_write_held(pg->uanon->an_lock)
2060 : rw_lock_held(pg->uanon->an_lock);
2061 }
2062 return true;
2063 }
2064
2065 /*
2066 * uvm_pagereadonly_p: return if the page should be mapped read-only
2067 */
2068
2069 bool
2070 uvm_pagereadonly_p(struct vm_page *pg)
2071 {
2072 struct uvm_object * const uobj = pg->uobject;
2073
2074 KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2075 KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2076 if ((pg->flags & PG_RDONLY) != 0) {
2077 return true;
2078 }
2079 if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2080 return true;
2081 }
2082 if (uobj == NULL) {
2083 return false;
2084 }
2085 return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2086 }
2087
2088 #ifdef PMAP_DIRECT
2089 /*
2090 * Call pmap to translate physical address into a virtual and to run a callback
2091 * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2092 * or equivalent.
2093 */
2094 int
2095 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2096 int (*process)(void *, size_t, void *), void *arg)
2097 {
2098 int error = 0;
2099 paddr_t pa;
2100 size_t todo;
2101 voff_t pgoff = (off & PAGE_MASK);
2102 struct vm_page *pg;
2103
2104 KASSERT(npages > 0);
2105 KASSERT(len > 0);
2106
2107 for (int i = 0; i < npages; i++) {
2108 pg = pgs[i];
2109
2110 KASSERT(len > 0);
2111
2112 /*
2113 * Caller is responsible for ensuring all the pages are
2114 * available.
2115 */
2116 KASSERT(pg != NULL);
2117 KASSERT(pg != PGO_DONTCARE);
2118
2119 pa = VM_PAGE_TO_PHYS(pg);
2120 todo = MIN(len, PAGE_SIZE - pgoff);
2121
2122 error = pmap_direct_process(pa, pgoff, todo, process, arg);
2123 if (error)
2124 break;
2125
2126 pgoff = 0;
2127 len -= todo;
2128 }
2129
2130 KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2131 return error;
2132 }
2133 #endif /* PMAP_DIRECT */
2134
2135 #if defined(DDB) || defined(DEBUGPRINT)
2136
2137 /*
2138 * uvm_page_printit: actually print the page
2139 */
2140
2141 static const char page_flagbits[] = UVM_PGFLAGBITS;
2142 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2143
2144 void
2145 uvm_page_printit(struct vm_page *pg, bool full,
2146 void (*pr)(const char *, ...))
2147 {
2148 struct vm_page *tpg;
2149 struct uvm_object *uobj;
2150 struct pgflbucket *pgb;
2151 struct pgflist *pgl;
2152 char pgbuf[128];
2153
2154 (*pr)("PAGE %p:\n", pg);
2155 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2156 (*pr)(" flags=%s\n", pgbuf);
2157 snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2158 (*pr)(" pqflags=%s\n", pgbuf);
2159 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx\n",
2160 pg->uobject, pg->uanon, (long long)pg->offset);
2161 (*pr)(" loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2162 pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2163 uvm_page_get_freelist(pg));
2164 (*pr)(" pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2165 #if defined(UVM_PAGE_TRKOWN)
2166 if (pg->flags & PG_BUSY)
2167 (*pr)(" owning process = %d.%d, tag=%s\n",
2168 pg->owner, pg->lowner, pg->owner_tag);
2169 else
2170 (*pr)(" page not busy, no owner\n");
2171 #else
2172 (*pr)(" [page ownership tracking disabled]\n");
2173 #endif
2174
2175 if (!full)
2176 return;
2177
2178 /* cross-verify object/anon */
2179 if ((pg->flags & PG_FREE) == 0) {
2180 if (pg->flags & PG_ANON) {
2181 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2182 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2183 (pg->uanon) ? pg->uanon->an_page : NULL);
2184 else
2185 (*pr)(" anon backpointer is OK\n");
2186 } else {
2187 uobj = pg->uobject;
2188 if (uobj) {
2189 (*pr)(" checking object list\n");
2190 tpg = uvm_pagelookup(uobj, pg->offset);
2191 if (tpg)
2192 (*pr)(" page found on object list\n");
2193 else
2194 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2195 }
2196 }
2197 }
2198
2199 /* cross-verify page queue */
2200 if (pg->flags & PG_FREE) {
2201 int fl = uvm_page_get_freelist(pg);
2202 int b = uvm_page_get_bucket(pg);
2203 pgb = uvm.page_free[fl].pgfl_buckets[b];
2204 pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2205 (*pr)(" checking pageq list\n");
2206 LIST_FOREACH(tpg, pgl, pageq.list) {
2207 if (tpg == pg) {
2208 break;
2209 }
2210 }
2211 if (tpg)
2212 (*pr)(" page found on pageq list\n");
2213 else
2214 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2215 }
2216 }
2217
2218 /*
2219 * uvm_page_printall - print a summary of all managed pages
2220 */
2221
2222 void
2223 uvm_page_printall(void (*pr)(const char *, ...))
2224 {
2225 uvm_physseg_t i;
2226 paddr_t pfn;
2227 struct vm_page *pg;
2228
2229 (*pr)("%18s %4s %4s %18s %18s"
2230 #ifdef UVM_PAGE_TRKOWN
2231 " OWNER"
2232 #endif
2233 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2234 for (i = uvm_physseg_get_first();
2235 uvm_physseg_valid_p(i);
2236 i = uvm_physseg_get_next(i)) {
2237 for (pfn = uvm_physseg_get_start(i);
2238 pfn < uvm_physseg_get_end(i);
2239 pfn++) {
2240 pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2241
2242 (*pr)("%18p %04x %08x %18p %18p",
2243 pg, pg->flags, pg->pqflags, pg->uobject,
2244 pg->uanon);
2245 #ifdef UVM_PAGE_TRKOWN
2246 if (pg->flags & PG_BUSY)
2247 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2248 #endif
2249 (*pr)("\n");
2250 }
2251 }
2252 }
2253
2254 /*
2255 * uvm_page_print_freelists - print a summary freelists
2256 */
2257
2258 void
2259 uvm_page_print_freelists(void (*pr)(const char *, ...))
2260 {
2261 struct pgfreelist *pgfl;
2262 struct pgflbucket *pgb;
2263 int fl, b, c;
2264
2265 (*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2266 VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2267
2268 for (fl = 0; fl < VM_NFREELIST; fl++) {
2269 pgfl = &uvm.page_free[fl];
2270 (*pr)("freelist(%d) @ %p\n", fl, pgfl);
2271 for (b = 0; b < uvm.bucketcount; b++) {
2272 pgb = uvm.page_free[fl].pgfl_buckets[b];
2273 (*pr)(" bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2274 b, pgb, pgb->pgb_nfree,
2275 &uvm_freelist_locks[b].lock);
2276 for (c = 0; c < uvmexp.ncolors; c++) {
2277 (*pr)(" color(%d) @ %p, ", c,
2278 &pgb->pgb_colors[c]);
2279 (*pr)("first page = %p\n",
2280 LIST_FIRST(&pgb->pgb_colors[c]));
2281 }
2282 }
2283 }
2284 }
2285
2286 #endif /* DDB || DEBUGPRINT */
2287