Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.26
      1 /*	$NetBSD: uvm_page.c,v 1.26 1999/11/24 18:28:49 drochner Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/malloc.h>
     76 #include <sys/proc.h>
     77 
     78 #include <vm/vm.h>
     79 #include <vm/vm_page.h>
     80 #include <vm/vm_kern.h>
     81 
     82 #define UVM_PAGE                /* pull in uvm_page.h functions */
     83 #include <uvm/uvm.h>
     84 
     85 /*
     86  * global vars... XXXCDC: move to uvm. structure.
     87  */
     88 
     89 /*
     90  * physical memory config is stored in vm_physmem.
     91  */
     92 
     93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     94 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     95 
     96 /*
     97  * local variables
     98  */
     99 
    100 /*
    101  * these variables record the values returned by vm_page_bootstrap,
    102  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    103  * and pmap_startup here also uses them internally.
    104  */
    105 
    106 static vaddr_t      virtual_space_start;
    107 static vaddr_t      virtual_space_end;
    108 
    109 /*
    110  * we use a hash table with only one bucket during bootup.  we will
    111  * later rehash (resize) the hash table once malloc() is ready.
    112  * we static allocate the bootstrap bucket below...
    113  */
    114 
    115 static struct pglist uvm_bootbucket;
    116 
    117 /*
    118  * local prototypes
    119  */
    120 
    121 static void uvm_pageinsert __P((struct vm_page *));
    122 
    123 
    124 /*
    125  * inline functions
    126  */
    127 
    128 /*
    129  * uvm_pageinsert: insert a page in the object and the hash table
    130  *
    131  * => caller must lock object
    132  * => caller must lock page queues
    133  * => call should have already set pg's object and offset pointers
    134  *    and bumped the version counter
    135  */
    136 
    137 __inline static void
    138 uvm_pageinsert(pg)
    139 	struct vm_page *pg;
    140 {
    141 	struct pglist *buck;
    142 	int s;
    143 
    144 #ifdef DIAGNOSTIC
    145 	if (pg->flags & PG_TABLED)
    146 		panic("uvm_pageinsert: already inserted");
    147 #endif
    148 
    149 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    150 	s = splimp();
    151 	simple_lock(&uvm.hashlock);
    152 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    153 	simple_unlock(&uvm.hashlock);
    154 	splx(s);
    155 
    156 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    157 	pg->flags |= PG_TABLED;
    158 	pg->uobject->uo_npages++;
    159 
    160 }
    161 
    162 /*
    163  * uvm_page_remove: remove page from object and hash
    164  *
    165  * => caller must lock object
    166  * => caller must lock page queues
    167  */
    168 
    169 void __inline
    170 uvm_pageremove(pg)
    171 	struct vm_page *pg;
    172 {
    173 	struct pglist *buck;
    174 	int s;
    175 
    176 #ifdef DIAGNOSTIC
    177 	if ((pg->flags & (PG_FAULTING)) != 0)
    178 		panic("uvm_pageremove: page is faulting");
    179 #endif
    180 
    181 	if ((pg->flags & PG_TABLED) == 0)
    182 		return;				/* XXX: log */
    183 
    184 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    185 	s = splimp();
    186 	simple_lock(&uvm.hashlock);
    187 	TAILQ_REMOVE(buck, pg, hashq);
    188 	simple_unlock(&uvm.hashlock);
    189 	splx(s);
    190 
    191 	/* object should be locked */
    192 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    193 
    194 	pg->flags &= ~PG_TABLED;
    195 	pg->uobject->uo_npages--;
    196 	pg->uobject = NULL;
    197 	pg->version++;
    198 
    199 }
    200 
    201 /*
    202  * uvm_page_init: init the page system.   called from uvm_init().
    203  *
    204  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    205  */
    206 
    207 void
    208 uvm_page_init(kvm_startp, kvm_endp)
    209 	vaddr_t *kvm_startp, *kvm_endp;
    210 {
    211 	int freepages, pagecount;
    212 	vm_page_t pagearray;
    213 	int lcv, n, i;
    214 	paddr_t paddr;
    215 
    216 
    217 	/*
    218 	 * step 1: init the page queues and page queue locks
    219 	 */
    220 	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
    221 	  TAILQ_INIT(&uvm.page_free[lcv]);
    222 	TAILQ_INIT(&uvm.page_active);
    223 	TAILQ_INIT(&uvm.page_inactive_swp);
    224 	TAILQ_INIT(&uvm.page_inactive_obj);
    225 	simple_lock_init(&uvm.pageqlock);
    226 	simple_lock_init(&uvm.fpageqlock);
    227 
    228 	/*
    229 	 * step 2: init the <obj,offset> => <page> hash table. for now
    230 	 * we just have one bucket (the bootstrap bucket).   later on we
    231 	 * will malloc() new buckets as we dynamically resize the hash table.
    232 	 */
    233 
    234 	uvm.page_nhash = 1;			/* 1 bucket */
    235 	uvm.page_hashmask = 0;		/* mask for hash function */
    236 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    237 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    238 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    239 
    240 	/*
    241 	 * step 3: allocate vm_page structures.
    242 	 */
    243 
    244 	/*
    245 	 * sanity check:
    246 	 * before calling this function the MD code is expected to register
    247 	 * some free RAM with the uvm_page_physload() function.   our job
    248 	 * now is to allocate vm_page structures for this memory.
    249 	 */
    250 
    251 	if (vm_nphysseg == 0)
    252 		panic("vm_page_bootstrap: no memory pre-allocated");
    253 
    254 	/*
    255 	 * first calculate the number of free pages...
    256 	 *
    257 	 * note that we use start/end rather than avail_start/avail_end.
    258 	 * this allows us to allocate extra vm_page structures in case we
    259 	 * want to return some memory to the pool after booting.
    260 	 */
    261 
    262 	freepages = 0;
    263 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    264 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    265 
    266 	/*
    267 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    268 	 * use.   for each page of memory we use we need a vm_page structure.
    269 	 * thus, the total number of pages we can use is the total size of
    270 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    271 	 * structure.   we add one to freepages as a fudge factor to avoid
    272 	 * truncation errors (since we can only allocate in terms of whole
    273 	 * pages).
    274 	 */
    275 
    276 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    277 	    (PAGE_SIZE + sizeof(struct vm_page));
    278 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    279 	    sizeof(struct vm_page));
    280 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    281 
    282 	/*
    283 	 * step 4: init the vm_page structures and put them in the correct
    284 	 * place...
    285 	 */
    286 
    287 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    288 
    289 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    290 		if (n > pagecount) {
    291 			printf("uvm_page_init: lost %d page(s) in init\n",
    292 			    n - pagecount);
    293 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    294 			/* n = pagecount; */
    295 		}
    296 		/* set up page array pointers */
    297 		vm_physmem[lcv].pgs = pagearray;
    298 		pagearray += n;
    299 		pagecount -= n;
    300 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    301 
    302 		/* init and free vm_pages (we've already zeroed them) */
    303 		paddr = ptoa(vm_physmem[lcv].start);
    304 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    305 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    306 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    307 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    308 				uvmexp.npages++;
    309 				/* add page to free pool */
    310 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    311 			}
    312 		}
    313 	}
    314 	/*
    315 	 * step 5: pass up the values of virtual_space_start and
    316 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    317 	 * layers of the VM.
    318 	 */
    319 
    320 	*kvm_startp = round_page(virtual_space_start);
    321 	*kvm_endp = trunc_page(virtual_space_end);
    322 
    323 	/*
    324 	 * step 6: init pagedaemon lock
    325 	 */
    326 
    327 	simple_lock_init(&uvm.pagedaemon_lock);
    328 
    329 	/*
    330 	 * step 7: init reserve thresholds
    331 	 * XXXCDC - values may need adjusting
    332 	 */
    333 	uvmexp.reserve_pagedaemon = 1;
    334 	uvmexp.reserve_kernel = 5;
    335 
    336 	/*
    337 	 * done!
    338 	 */
    339 
    340 }
    341 
    342 /*
    343  * uvm_setpagesize: set the page size
    344  *
    345  * => sets page_shift and page_mask from uvmexp.pagesize.
    346  * => XXXCDC: move global vars.
    347  */
    348 
    349 void
    350 uvm_setpagesize()
    351 {
    352 	if (uvmexp.pagesize == 0)
    353 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    354 	uvmexp.pagemask = uvmexp.pagesize - 1;
    355 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    356 		panic("uvm_setpagesize: page size not a power of two");
    357 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    358 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    359 			break;
    360 }
    361 
    362 /*
    363  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    364  */
    365 
    366 vaddr_t
    367 uvm_pageboot_alloc(size)
    368 	vsize_t size;
    369 {
    370 #if defined(PMAP_STEAL_MEMORY)
    371 	vaddr_t addr;
    372 
    373 	/*
    374 	 * defer bootstrap allocation to MD code (it may want to allocate
    375 	 * from a direct-mapped segment).  pmap_steal_memory should round
    376 	 * off virtual_space_start/virtual_space_end.
    377 	 */
    378 
    379 	addr = pmap_steal_memory(size, &virtual_space_start,
    380 	    &virtual_space_end);
    381 
    382 	return(addr);
    383 
    384 #else /* !PMAP_STEAL_MEMORY */
    385 
    386 	static boolean_t initialized = FALSE;
    387 	vaddr_t addr, vaddr;
    388 	paddr_t paddr;
    389 
    390 	/* round to page size */
    391 	size = round_page(size);
    392 
    393 	/*
    394 	 * on first call to this function, initialize ourselves.
    395 	 */
    396 	if (initialized == FALSE) {
    397 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    398 
    399 		/* round it the way we like it */
    400 		virtual_space_start = round_page(virtual_space_start);
    401 		virtual_space_end = trunc_page(virtual_space_end);
    402 
    403 		initialized = TRUE;
    404 	}
    405 
    406 	/*
    407 	 * allocate virtual memory for this request
    408 	 */
    409 	if (virtual_space_start == virtual_space_end ||
    410 	    (virtual_space_end - virtual_space_start) < size)
    411 		panic("uvm_pageboot_alloc: out of virtual space");
    412 
    413 	addr = virtual_space_start;
    414 
    415 #ifdef PMAP_GROWKERNEL
    416 	/*
    417 	 * If the kernel pmap can't map the requested space,
    418 	 * then allocate more resources for it.
    419 	 */
    420 	if (uvm_maxkaddr < (addr + size)) {
    421 		uvm_maxkaddr = pmap_growkernel(addr + size);
    422 		if (uvm_maxkaddr < (addr + size))
    423 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    424 	}
    425 #endif
    426 
    427 	virtual_space_start += size;
    428 
    429 	/*
    430 	 * allocate and mapin physical pages to back new virtual pages
    431 	 */
    432 
    433 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    434 	    vaddr += PAGE_SIZE) {
    435 
    436 		if (!uvm_page_physget(&paddr))
    437 			panic("uvm_pageboot_alloc: out of memory");
    438 
    439 		/*
    440 		 * Note this memory is no longer managed, so using
    441 		 * pmap_kenter is safe.
    442 		 */
    443 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    444 	}
    445 	return(addr);
    446 #endif	/* PMAP_STEAL_MEMORY */
    447 }
    448 
    449 #if !defined(PMAP_STEAL_MEMORY)
    450 /*
    451  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    452  *
    453  * => attempt to allocate it off the end of a segment in which the "avail"
    454  *    values match the start/end values.   if we can't do that, then we
    455  *    will advance both values (making them equal, and removing some
    456  *    vm_page structures from the non-avail area).
    457  * => return false if out of memory.
    458  */
    459 
    460 boolean_t
    461 uvm_page_physget(paddrp)
    462 	paddr_t *paddrp;
    463 {
    464 	int lcv, x;
    465 
    466 	/* pass 1: try allocating from a matching end */
    467 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    468 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    469 #else
    470 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    471 #endif
    472 	{
    473 
    474 		if (vm_physmem[lcv].pgs)
    475 			panic("vm_page_physget: called _after_ bootstrap");
    476 
    477 		/* try from front */
    478 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    479 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    480 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    481 			vm_physmem[lcv].avail_start++;
    482 			vm_physmem[lcv].start++;
    483 			/* nothing left?   nuke it */
    484 			if (vm_physmem[lcv].avail_start ==
    485 			    vm_physmem[lcv].end) {
    486 				if (vm_nphysseg == 1)
    487 				    panic("vm_page_physget: out of memory!");
    488 				vm_nphysseg--;
    489 				for (x = lcv ; x < vm_nphysseg ; x++)
    490 					/* structure copy */
    491 					vm_physmem[x] = vm_physmem[x+1];
    492 			}
    493 			return (TRUE);
    494 		}
    495 
    496 		/* try from rear */
    497 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    498 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    499 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    500 			vm_physmem[lcv].avail_end--;
    501 			vm_physmem[lcv].end--;
    502 			/* nothing left?   nuke it */
    503 			if (vm_physmem[lcv].avail_end ==
    504 			    vm_physmem[lcv].start) {
    505 				if (vm_nphysseg == 1)
    506 				    panic("vm_page_physget: out of memory!");
    507 				vm_nphysseg--;
    508 				for (x = lcv ; x < vm_nphysseg ; x++)
    509 					/* structure copy */
    510 					vm_physmem[x] = vm_physmem[x+1];
    511 			}
    512 			return (TRUE);
    513 		}
    514 	}
    515 
    516 	/* pass2: forget about matching ends, just allocate something */
    517 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    518 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    519 #else
    520 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    521 #endif
    522 	{
    523 
    524 		/* any room in this bank? */
    525 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    526 			continue;  /* nope */
    527 
    528 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    529 		vm_physmem[lcv].avail_start++;
    530 		/* truncate! */
    531 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    532 
    533 		/* nothing left?   nuke it */
    534 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    535 			if (vm_nphysseg == 1)
    536 				panic("vm_page_physget: out of memory!");
    537 			vm_nphysseg--;
    538 			for (x = lcv ; x < vm_nphysseg ; x++)
    539 				/* structure copy */
    540 				vm_physmem[x] = vm_physmem[x+1];
    541 		}
    542 		return (TRUE);
    543 	}
    544 
    545 	return (FALSE);        /* whoops! */
    546 }
    547 #endif /* PMAP_STEAL_MEMORY */
    548 
    549 /*
    550  * uvm_page_physload: load physical memory into VM system
    551  *
    552  * => all args are PFs
    553  * => all pages in start/end get vm_page structures
    554  * => areas marked by avail_start/avail_end get added to the free page pool
    555  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    556  */
    557 
    558 void
    559 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    560 	vaddr_t start, end, avail_start, avail_end;
    561 	int free_list;
    562 {
    563 	int preload, lcv;
    564 	psize_t npages;
    565 	struct vm_page *pgs;
    566 	struct vm_physseg *ps;
    567 
    568 	if (uvmexp.pagesize == 0)
    569 		panic("vm_page_physload: page size not set!");
    570 
    571 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    572 		panic("uvm_page_physload: bad free list %d\n", free_list);
    573 
    574 	if (start >= end)
    575 		panic("uvm_page_physload: start >= end");
    576 
    577 	/*
    578 	 * do we have room?
    579 	 */
    580 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    581 		printf("vm_page_physload: unable to load physical memory "
    582 		    "segment\n");
    583 		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
    584 		    VM_PHYSSEG_MAX, start, end);
    585 		return;
    586 	}
    587 
    588 	/*
    589 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    590 	 * called yet, so malloc is not available).
    591 	 */
    592 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    593 		if (vm_physmem[lcv].pgs)
    594 			break;
    595 	}
    596 	preload = (lcv == vm_nphysseg);
    597 
    598 	/*
    599 	 * if VM is already running, attempt to malloc() vm_page structures
    600 	 */
    601 	if (!preload) {
    602 #if defined(VM_PHYSSEG_NOADD)
    603 		panic("vm_page_physload: tried to add RAM after vm_mem_init");
    604 #else
    605 		/* XXXCDC: need some sort of lockout for this case */
    606 		paddr_t paddr;
    607 		npages = end - start;  /* # of pages */
    608 		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
    609 					 M_VMPAGE, M_NOWAIT);
    610 		if (pgs == NULL) {
    611 			printf("vm_page_physload: can not malloc vm_page "
    612 			    "structs for segment\n");
    613 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    614 			return;
    615 		}
    616 		/* zero data, init phys_addr and free_list, and free pages */
    617 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    618 		for (lcv = 0, paddr = ptoa(start) ;
    619 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    620 			pgs[lcv].phys_addr = paddr;
    621 			pgs[lcv].free_list = free_list;
    622 			if (atop(paddr) >= avail_start &&
    623 			    atop(paddr) <= avail_end)
    624 				uvm_pagefree(&pgs[lcv]);
    625 		}
    626 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    627 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    628 #endif
    629 	} else {
    630 
    631 		/* gcc complains if these don't get init'd */
    632 		pgs = NULL;
    633 		npages = 0;
    634 
    635 	}
    636 
    637 	/*
    638 	 * now insert us in the proper place in vm_physmem[]
    639 	 */
    640 
    641 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    642 
    643 	/* random: put it at the end (easy!) */
    644 	ps = &vm_physmem[vm_nphysseg];
    645 
    646 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    647 
    648 	{
    649 		int x;
    650 		/* sort by address for binary search */
    651 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    652 			if (start < vm_physmem[lcv].start)
    653 				break;
    654 		ps = &vm_physmem[lcv];
    655 		/* move back other entries, if necessary ... */
    656 		for (x = vm_nphysseg ; x > lcv ; x--)
    657 			/* structure copy */
    658 			vm_physmem[x] = vm_physmem[x - 1];
    659 	}
    660 
    661 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    662 
    663 	{
    664 		int x;
    665 		/* sort by largest segment first */
    666 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    667 			if ((end - start) >
    668 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    669 				break;
    670 		ps = &vm_physmem[lcv];
    671 		/* move back other entries, if necessary ... */
    672 		for (x = vm_nphysseg ; x > lcv ; x--)
    673 			/* structure copy */
    674 			vm_physmem[x] = vm_physmem[x - 1];
    675 	}
    676 
    677 #else
    678 
    679 	panic("vm_page_physload: unknown physseg strategy selected!");
    680 
    681 #endif
    682 
    683 	ps->start = start;
    684 	ps->end = end;
    685 	ps->avail_start = avail_start;
    686 	ps->avail_end = avail_end;
    687 	if (preload) {
    688 		ps->pgs = NULL;
    689 	} else {
    690 		ps->pgs = pgs;
    691 		ps->lastpg = pgs + npages - 1;
    692 	}
    693 	ps->free_list = free_list;
    694 	vm_nphysseg++;
    695 
    696 	/*
    697 	 * done!
    698 	 */
    699 
    700 	if (!preload)
    701 		uvm_page_rehash();
    702 
    703 	return;
    704 }
    705 
    706 /*
    707  * uvm_page_rehash: reallocate hash table based on number of free pages.
    708  */
    709 
    710 void
    711 uvm_page_rehash()
    712 {
    713 	int freepages, lcv, bucketcount, s, oldcount;
    714 	struct pglist *newbuckets, *oldbuckets;
    715 	struct vm_page *pg;
    716 
    717 	/*
    718 	 * compute number of pages that can go in the free pool
    719 	 */
    720 
    721 	freepages = 0;
    722 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    723 		freepages +=
    724 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    725 
    726 	/*
    727 	 * compute number of buckets needed for this number of pages
    728 	 */
    729 
    730 	bucketcount = 1;
    731 	while (bucketcount < freepages)
    732 		bucketcount = bucketcount * 2;
    733 
    734 	/*
    735 	 * malloc new buckets
    736 	 */
    737 
    738 	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
    739 					 M_VMPBUCKET, M_NOWAIT);
    740 	if (newbuckets == NULL) {
    741 		printf("vm_page_physrehash: WARNING: could not grow page "
    742 		    "hash table\n");
    743 		return;
    744 	}
    745 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    746 		TAILQ_INIT(&newbuckets[lcv]);
    747 
    748 	/*
    749 	 * now replace the old buckets with the new ones and rehash everything
    750 	 */
    751 
    752 	s = splimp();
    753 	simple_lock(&uvm.hashlock);
    754 	/* swap old for new ... */
    755 	oldbuckets = uvm.page_hash;
    756 	oldcount = uvm.page_nhash;
    757 	uvm.page_hash = newbuckets;
    758 	uvm.page_nhash = bucketcount;
    759 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    760 
    761 	/* ... and rehash */
    762 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    763 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    764 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    765 			TAILQ_INSERT_TAIL(
    766 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    767 			  pg, hashq);
    768 		}
    769 	}
    770 	simple_unlock(&uvm.hashlock);
    771 	splx(s);
    772 
    773 	/*
    774 	 * free old bucket array if we malloc'd it previously
    775 	 */
    776 
    777 	if (oldbuckets != &uvm_bootbucket)
    778 		FREE(oldbuckets, M_VMPBUCKET);
    779 
    780 	/*
    781 	 * done
    782 	 */
    783 	return;
    784 }
    785 
    786 
    787 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    788 
    789 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    790 
    791 /* call from DDB */
    792 void
    793 uvm_page_physdump()
    794 {
    795 	int lcv;
    796 
    797 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    798 				 vm_nphysseg, VM_PHYSSEG_MAX);
    799 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    800 		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
    801 		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
    802 		    vm_physmem[lcv].avail_end);
    803 	printf("STRATEGY = ");
    804 	switch (VM_PHYSSEG_STRAT) {
    805 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    806 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    807 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    808 	default: printf("<<UNKNOWN>>!!!!\n");
    809 	}
    810 	printf("number of buckets = %d\n", uvm.page_nhash);
    811 }
    812 #endif
    813 
    814 /*
    815  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    816  *
    817  * => return null if no pages free
    818  * => wake up pagedaemon if number of free pages drops below low water mark
    819  * => if obj != NULL, obj must be locked (to put in hash)
    820  * => if anon != NULL, anon must be locked (to put in anon)
    821  * => only one of obj or anon can be non-null
    822  * => caller must activate/deactivate page if it is not wired.
    823  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    824  */
    825 
    826 struct vm_page *
    827 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    828 	struct uvm_object *obj;
    829 	vaddr_t off;
    830 	int flags;
    831 	struct vm_anon *anon;
    832 	int strat, free_list;
    833 {
    834 	int lcv, s;
    835 	struct vm_page *pg;
    836 	struct pglist *freeq;
    837 	boolean_t use_reserve;
    838 
    839 #ifdef DIAGNOSTIC
    840 	/* sanity check */
    841 	if (obj && anon)
    842 		panic("uvm_pagealloc: obj and anon != NULL");
    843 #endif
    844 
    845 	s = uvm_lock_fpageq();		/* lock free page queue */
    846 
    847 	/*
    848 	 * check to see if we need to generate some free pages waking
    849 	 * the pagedaemon.
    850 	 */
    851 
    852 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
    853 	    uvmexp.inactive < uvmexp.inactarg))
    854 		wakeup(&uvm.pagedaemon);
    855 
    856 	/*
    857 	 * fail if any of these conditions is true:
    858 	 * [1]  there really are no free pages, or
    859 	 * [2]  only kernel "reserved" pages remain and
    860 	 *        the page isn't being allocated to a kernel object.
    861 	 * [3]  only pagedaemon "reserved" pages remain and
    862 	 *        the requestor isn't the pagedaemon.
    863 	 */
    864 
    865 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
    866 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
    867 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
    868 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    869 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
    870 		goto fail;
    871 
    872  again:
    873 	switch (strat) {
    874 	case UVM_PGA_STRAT_NORMAL:
    875 		/* Check all freelists in descending priority order. */
    876 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    877 			freeq = &uvm.page_free[lcv];
    878 			if ((pg = freeq->tqh_first) != NULL)
    879 				goto gotit;
    880 		}
    881 
    882 		/* No pages free! */
    883 		goto fail;
    884 
    885 	case UVM_PGA_STRAT_ONLY:
    886 	case UVM_PGA_STRAT_FALLBACK:
    887 		/* Attempt to allocate from the specified free list. */
    888 #ifdef DIAGNOSTIC
    889 		if (free_list >= VM_NFREELIST || free_list < 0)
    890 			panic("uvm_pagealloc_strat: bad free list %d",
    891 			    free_list);
    892 #endif
    893 		freeq = &uvm.page_free[free_list];
    894 		if ((pg = freeq->tqh_first) != NULL)
    895 			goto gotit;
    896 
    897 		/* Fall back, if possible. */
    898 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    899 			strat = UVM_PGA_STRAT_NORMAL;
    900 			goto again;
    901 		}
    902 
    903 		/* No pages free! */
    904 		goto fail;
    905 
    906 	default:
    907 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    908 		/* NOTREACHED */
    909 	}
    910 
    911  gotit:
    912 	TAILQ_REMOVE(freeq, pg, pageq);
    913 	uvmexp.free--;
    914 
    915 	uvm_unlock_fpageq(s);		/* unlock free page queue */
    916 
    917 	pg->offset = off;
    918 	pg->uobject = obj;
    919 	pg->uanon = anon;
    920 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
    921 	pg->version++;
    922 	pg->wire_count = 0;
    923 	pg->loan_count = 0;
    924 	if (anon) {
    925 		anon->u.an_page = pg;
    926 		pg->pqflags = PQ_ANON;
    927 	} else {
    928 		if (obj)
    929 			uvm_pageinsert(pg);
    930 		pg->pqflags = 0;
    931 	}
    932 #if defined(UVM_PAGE_TRKOWN)
    933 	pg->owner_tag = NULL;
    934 #endif
    935 	UVM_PAGE_OWN(pg, "new alloc");
    936 
    937 	return(pg);
    938 
    939  fail:
    940 	uvm_unlock_fpageq(s);
    941 	return (NULL);
    942 }
    943 
    944 /*
    945  * uvm_pagerealloc: reallocate a page from one object to another
    946  *
    947  * => both objects must be locked
    948  */
    949 
    950 void
    951 uvm_pagerealloc(pg, newobj, newoff)
    952 	struct vm_page *pg;
    953 	struct uvm_object *newobj;
    954 	vaddr_t newoff;
    955 {
    956 	/*
    957 	 * remove it from the old object
    958 	 */
    959 
    960 	if (pg->uobject) {
    961 		uvm_pageremove(pg);
    962 	}
    963 
    964 	/*
    965 	 * put it in the new object
    966 	 */
    967 
    968 	if (newobj) {
    969 		pg->uobject = newobj;
    970 		pg->offset = newoff;
    971 		pg->version++;
    972 		uvm_pageinsert(pg);
    973 	}
    974 
    975 	return;
    976 }
    977 
    978 
    979 /*
    980  * uvm_pagefree: free page
    981  *
    982  * => erase page's identity (i.e. remove from hash/object)
    983  * => put page on free list
    984  * => caller must lock owning object (either anon or uvm_object)
    985  * => caller must lock page queues
    986  * => assumes all valid mappings of pg are gone
    987  */
    988 
    989 void uvm_pagefree(pg)
    990 
    991 struct vm_page *pg;
    992 
    993 {
    994 	int s;
    995 	int saved_loan_count = pg->loan_count;
    996 
    997 	/*
    998 	 * if the page was an object page (and thus "TABLED"), remove it
    999 	 * from the object.
   1000 	 */
   1001 
   1002 	if (pg->flags & PG_TABLED) {
   1003 
   1004 		/*
   1005 		 * if the object page is on loan we are going to drop ownership.
   1006 		 * it is possible that an anon will take over as owner for this
   1007 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1008 		 * it knows it needs to allocate swap if it wants to page the
   1009 		 * page out.
   1010 		 */
   1011 
   1012 		if (saved_loan_count)
   1013 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1014 
   1015 		uvm_pageremove(pg);
   1016 
   1017 		/*
   1018 		 * if our page was on loan, then we just lost control over it
   1019 		 * (in fact, if it was loaned to an anon, the anon may have
   1020 		 * already taken over ownership of the page by now and thus
   1021 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1022 		 * return (when the last loan is dropped, then the page can be
   1023 		 * freed by whatever was holding the last loan).
   1024 		 */
   1025 		if (saved_loan_count)
   1026 			return;
   1027 
   1028 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1029 
   1030 		/*
   1031 		 * if our page is owned by an anon and is loaned out to the
   1032 		 * kernel then we just want to drop ownership and return.
   1033 		 * the kernel must free the page when all its loans clear ...
   1034 		 * note that the kernel can't change the loan status of our
   1035 		 * page as long as we are holding PQ lock.
   1036 		 */
   1037 		pg->pqflags &= ~PQ_ANON;
   1038 		pg->uanon = NULL;
   1039 		return;
   1040 	}
   1041 
   1042 #ifdef DIAGNOSTIC
   1043 	if (saved_loan_count) {
   1044 		printf("uvm_pagefree: warning: freeing page with a loan "
   1045 		    "count of %d\n", saved_loan_count);
   1046 		panic("uvm_pagefree: loan count");
   1047 	}
   1048 #endif
   1049 
   1050 
   1051 	/*
   1052 	 * now remove the page from the queues
   1053 	 */
   1054 
   1055 	if (pg->pqflags & PQ_ACTIVE) {
   1056 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1057 		pg->pqflags &= ~PQ_ACTIVE;
   1058 		uvmexp.active--;
   1059 	}
   1060 	if (pg->pqflags & PQ_INACTIVE) {
   1061 		if (pg->pqflags & PQ_SWAPBACKED)
   1062 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1063 		else
   1064 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1065 		pg->pqflags &= ~PQ_INACTIVE;
   1066 		uvmexp.inactive--;
   1067 	}
   1068 
   1069 	/*
   1070 	 * if the page was wired, unwire it now.
   1071 	 */
   1072 	if (pg->wire_count)
   1073 	{
   1074 		pg->wire_count = 0;
   1075 		uvmexp.wired--;
   1076 	}
   1077 
   1078 	/*
   1079 	 * and put on free queue
   1080 	 */
   1081 
   1082 	s = uvm_lock_fpageq();
   1083 	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
   1084 	    pg, pageq);
   1085 	pg->pqflags = PQ_FREE;
   1086 #ifdef DEBUG
   1087 	pg->uobject = (void *)0xdeadbeef;
   1088 	pg->offset = 0xdeadbeef;
   1089 	pg->uanon = (void *)0xdeadbeef;
   1090 #endif
   1091 	uvmexp.free++;
   1092 	uvm_unlock_fpageq(s);
   1093 }
   1094 
   1095 #if defined(UVM_PAGE_TRKOWN)
   1096 /*
   1097  * uvm_page_own: set or release page ownership
   1098  *
   1099  * => this is a debugging function that keeps track of who sets PG_BUSY
   1100  *	and where they do it.   it can be used to track down problems
   1101  *	such a process setting "PG_BUSY" and never releasing it.
   1102  * => page's object [if any] must be locked
   1103  * => if "tag" is NULL then we are releasing page ownership
   1104  */
   1105 void
   1106 uvm_page_own(pg, tag)
   1107 	struct vm_page *pg;
   1108 	char *tag;
   1109 {
   1110 	/* gain ownership? */
   1111 	if (tag) {
   1112 		if (pg->owner_tag) {
   1113 			printf("uvm_page_own: page %p already owned "
   1114 			    "by proc %d [%s]\n", pg,
   1115 			     pg->owner, pg->owner_tag);
   1116 			panic("uvm_page_own");
   1117 		}
   1118 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1119 		pg->owner_tag = tag;
   1120 		return;
   1121 	}
   1122 
   1123 	/* drop ownership */
   1124 	if (pg->owner_tag == NULL) {
   1125 		printf("uvm_page_own: dropping ownership of an non-owned "
   1126 		    "page (%p)\n", pg);
   1127 		panic("uvm_page_own");
   1128 	}
   1129 	pg->owner_tag = NULL;
   1130 	return;
   1131 }
   1132 #endif
   1133