uvm_page.c revision 1.3 1 /* $NetBSD: uvm_page.c,v 1.3 1998/02/07 02:34:08 chs Exp $ */
2
3 /*
4 * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 */
7 /*
8 * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 * Copyright (c) 1991, 1993, The Regents of the University of California.
10 *
11 * All rights reserved.
12 *
13 * This code is derived from software contributed to Berkeley by
14 * The Mach Operating System project at Carnegie-Mellon University.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by Charles D. Cranor,
27 * Washington University, the University of California, Berkeley and
28 * its contributors.
29 * 4. Neither the name of the University nor the names of its contributors
30 * may be used to endorse or promote products derived from this software
31 * without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
46 *
47 *
48 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
49 * All rights reserved.
50 *
51 * Permission to use, copy, modify and distribute this software and
52 * its documentation is hereby granted, provided that both the copyright
53 * notice and this permission notice appear in all copies of the
54 * software, derivative works or modified versions, and any portions
55 * thereof, and that both notices appear in supporting documentation.
56 *
57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 *
61 * Carnegie Mellon requests users of this software to return to
62 *
63 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
64 * School of Computer Science
65 * Carnegie Mellon University
66 * Pittsburgh PA 15213-3890
67 *
68 * any improvements or extensions that they make and grant Carnegie the
69 * rights to redistribute these changes.
70 */
71
72 /*
73 * uvm_page.c: page ops.
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
79 #include <sys/mount.h>
80 #include <sys/proc.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_kern.h>
85
86 #include <sys/syscallargs.h>
87
88 #define UVM_PAGE /* pull in uvm_page.h functions */
89 #include <uvm/uvm.h>
90
91 /*
92 * global vars... XXXCDC: move to uvm. structure.
93 */
94
95 /*
96 * physical memory config is stored in vm_physmem.
97 */
98
99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
100 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
101
102 /*
103 * local variables
104 */
105
106 /*
107 * these variables record the values returned by vm_page_bootstrap,
108 * for debugging purposes. The implementation of uvm_pageboot_alloc
109 * and pmap_startup here also uses them internally.
110 */
111
112 static vm_offset_t virtual_space_start;
113 static vm_offset_t virtual_space_end;
114
115 /*
116 * we use a hash table with only one bucket during bootup. we will
117 * later rehash (resize) the hash table once malloc() is ready.
118 * we static allocate the bootstrap bucket below...
119 */
120
121 static struct pglist uvm_bootbucket;
122
123 /*
124 * local prototypes
125 */
126
127 static void uvm_pageinsert __P((struct vm_page *));
128 #if !defined(PMAP_STEAL_MEMORY)
129 static boolean_t uvm_page_physget __P((vm_offset_t *));
130 #endif
131
132
133 /*
134 * inline functions
135 */
136
137 /*
138 * uvm_pageinsert: insert a page in the object and the hash table
139 *
140 * => caller must lock object
141 * => caller must lock page queues
142 * => call should have already set pg's object and offset pointers
143 * and bumped the version counter
144 */
145
146 __inline static void uvm_pageinsert(pg)
147
148 struct vm_page *pg;
149
150 {
151 struct pglist *buck;
152 int s;
153
154 #ifdef DIAGNOSTIC
155 if (pg->flags & PG_TABLED)
156 panic("uvm_pageinsert: already inserted");
157 #endif
158
159 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
160 s = splimp();
161 simple_lock(&uvm.hashlock);
162 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
163 simple_unlock(&uvm.hashlock);
164 splx(s);
165
166 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
167 pg->flags |= PG_TABLED;
168 pg->uobject->uo_npages++;
169
170 }
171
172 /*
173 * uvm_page_remove: remove page from object and hash
174 *
175 * => caller must lock object
176 * => caller must lock page queues
177 */
178
179 void __inline uvm_pageremove(pg)
180
181 struct vm_page *pg;
182
183 {
184 struct pglist *buck;
185 int s;
186
187 #ifdef DIAGNOSTIC
188 if ((pg->flags & (PG_FAULTING)) != 0)
189 panic("uvm_pageremove: page is faulting");
190 #endif
191
192 if ((pg->flags & PG_TABLED) == 0)
193 return; /* XXX: log */
194
195 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
196 s = splimp();
197 simple_lock(&uvm.hashlock);
198 TAILQ_REMOVE(buck, pg, hashq);
199 simple_unlock(&uvm.hashlock);
200 splx(s);
201
202 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);/* object should be locked */
203
204 pg->flags &= ~PG_TABLED;
205 pg->uobject->uo_npages--;
206 pg->uobject = NULL;
207 pg->version++;
208
209 }
210
211 /*
212 * uvm_page_init: init the page system. called from uvm_init().
213 *
214 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
215 */
216
217 void uvm_page_init(kvm_startp, kvm_endp)
218
219 vm_offset_t *kvm_startp, *kvm_endp;
220
221 {
222 int freepages, pagecount;
223 vm_page_t pagearray;
224 int lcv, n, i;
225 vm_offset_t paddr;
226
227
228 /*
229 * step 1: init the page queues and page queue locks
230 */
231
232 TAILQ_INIT(&uvm.page_free);
233 TAILQ_INIT(&uvm.page_active);
234 TAILQ_INIT(&uvm.page_inactive_swp);
235 TAILQ_INIT(&uvm.page_inactive_obj);
236 simple_lock_init(&uvm.pageqlock);
237 simple_lock_init(&uvm.fpageqlock);
238
239 /*
240 * step 2: init the <obj,offset> => <page> hash table. for now
241 * we just have one bucket (the bootstrap bucket). later on we
242 * will malloc() new buckets as we dynamically resize the hash table.
243 */
244
245 uvm.page_nhash = 1; /* 1 bucket */
246 uvm.page_hashmask = 0; /* mask for hash function */
247 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
248 TAILQ_INIT(uvm.page_hash); /* init hash table */
249 simple_lock_init(&uvm.hashlock); /* init hash table lock */
250
251 /*
252 * step 3: allocate vm_page structures.
253 */
254
255 /*
256 * sanity check:
257 * before calling this function the MD code is expected to register
258 * some free RAM with the uvm_page_physload() function. our job
259 * now is to allocate vm_page structures for this memory.
260 */
261
262 if (vm_nphysseg == 0)
263 panic("vm_page_bootstrap: no memory pre-allocated");
264
265 /*
266 * first calculate the number of free pages...
267 *
268 * note that we use start/end rather than avail_start/avail_end.
269 * this allows us to allocate extra vm_page structures in case we
270 * want to return some memory to the pool after booting.
271 */
272
273 freepages = 0;
274 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
275 freepages = freepages + (vm_physmem[lcv].end - vm_physmem[lcv].start);
276 }
277
278 /*
279 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
280 * use. for each page of memory we use we need a vm_page structure.
281 * thus, the total number of pages we can use is the total size of
282 * the memory divided by the PAGE_SIZE plus the size of the vm_page
283 * structure. we add one to freepages as a fudge factor to avoid
284 * truncation errors (since we can only allocate in terms of whole
285 * pages).
286 */
287
288 pagecount = (PAGE_SIZE * (freepages + 1)) /
289 (PAGE_SIZE + sizeof(struct vm_page));
290 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * sizeof(struct vm_page));
291 bzero(pagearray, pagecount * sizeof(struct vm_page));
292
293 /*
294 * step 4: init the vm_page structures and put them in the correct
295 * place...
296 */
297
298 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
299
300 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
301 if (n > pagecount) {
302 printf("uvm_page_init: lost %d page(s) in init\n", n - pagecount);
303 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
304 /* n = pagecount; */
305 }
306 /* set up page array pointers */
307 vm_physmem[lcv].pgs = pagearray;
308 pagearray += n;
309 pagecount -= n;
310 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
311
312 /* init and free vm_pages (we've already bzero'd them) */
313 paddr = ptoa(vm_physmem[lcv].start);
314 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
315 vm_physmem[lcv].pgs[i].phys_addr = paddr;
316 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
317 atop(paddr) <= vm_physmem[lcv].avail_end) {
318 uvmexp.npages++;
319 uvm_pagefree(&vm_physmem[lcv].pgs[i]); /* add page to free pool */
320 }
321 }
322 }
323 /*
324 * step 5: pass up the values of virtual_space_start and
325 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
326 * layers of the VM.
327 */
328
329 *kvm_startp = round_page(virtual_space_start);
330 *kvm_endp = trunc_page(virtual_space_end);
331
332 /*
333 * step 6: init pagedaemon lock
334 */
335
336 simple_lock_init(&uvm.pagedaemon_lock);
337
338 /*
339 * step 7: init reserve thresholds
340 * XXXCDC - values may need adjusting
341 */
342 uvmexp.reserve_pagedaemon = 1;
343 uvmexp.reserve_kernel = 5;
344
345 /*
346 * done!
347 */
348
349 }
350
351 /*
352 * uvm_setpagesize: set the page size
353 *
354 * => sets page_shift and page_mask from uvmexp.pagesize.
355 * => XXXCDC: move global vars.
356 */
357
358 void uvm_setpagesize()
359 {
360 if (uvmexp.pagesize == 0)
361 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
362 uvmexp.pagemask = uvmexp.pagesize - 1;
363 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
364 panic("uvm_setpagesize: page size not a power of two");
365 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
366 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
367 break;
368 }
369
370 /*
371 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
372 */
373
374 vm_offset_t uvm_pageboot_alloc(size)
375
376 vm_size_t size;
377
378 {
379 #if defined(PMAP_STEAL_MEMORY)
380 vm_offset_t addr;
381
382 /*
383 * defer bootstrap allocation to MD code (it may want to allocate
384 * from a direct-mapped segment). pmap_steal_memory should round
385 * off virtual_space_start/virtual_space_end.
386 */
387
388 addr = pmap_steal_memory(size, &virtual_space_start, &virtual_space_end);
389
390 return(addr);
391
392 #else /* !PMAP_STEAL_MEMORY */
393
394 vm_offset_t addr, vaddr, paddr;
395
396 /* round the size to an integer multiple */
397 size = (size + 3) &~ 3; /* XXX */
398
399 /*
400 * on first call to this function init ourselves. we detect this
401 * by checking virtual_space_start/end which are in the zero'd BSS area.
402 */
403
404 if (virtual_space_start == virtual_space_end) {
405 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
406
407 /* round it the way we like it */
408 virtual_space_start = round_page(virtual_space_start);
409 virtual_space_end = trunc_page(virtual_space_end);
410 }
411
412 /*
413 * allocate virtual memory for this request
414 */
415
416 addr = virtual_space_start;
417 virtual_space_start += size;
418
419 /*
420 * allocate and mapin physical pages to back new virtual pages
421 */
422
423 for (vaddr = round_page(addr) ; vaddr < addr + size ; vaddr += PAGE_SIZE) {
424
425 if (!uvm_page_physget(&paddr))
426 panic("uvm_pageboot_alloc: out of memory");
427
428 /* XXX: should be wired, but some pmaps don't like that ... */
429 #if defined(PMAP_NEW)
430 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
431 #else
432 pmap_enter(pmap_kernel(), vaddr, paddr,
433 VM_PROT_READ|VM_PROT_WRITE, FALSE);
434 #endif
435
436 }
437
438 return(addr);
439 #endif /* PMAP_STEAL_MEMORY */
440 }
441
442 #if !defined(PMAP_STEAL_MEMORY)
443 /*
444 * uvm_page_physget: "steal" one page from the vm_physmem structure.
445 *
446 * => attempt to allocate it off the end of a segment in which the "avail"
447 * values match the start/end values. if we can't do that, then we
448 * will advance both values (making them equal, and removing some
449 * vm_page structures from the non-avail area).
450 * => return false if out of memory.
451 */
452
453 static boolean_t uvm_page_physget(paddrp)
454
455 vm_offset_t *paddrp;
456
457 {
458 int lcv, x;
459
460 /* pass 1: try allocating from a matching end */
461 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
462 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
463 #else
464 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
465 #endif
466 {
467
468 if (vm_physmem[lcv].pgs)
469 panic("vm_page_physget: called _after_ bootstrap");
470
471 /* try from front */
472 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
473 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
474 *paddrp = ptoa(vm_physmem[lcv].avail_start);
475 vm_physmem[lcv].avail_start++;
476 vm_physmem[lcv].start++;
477 /* nothing left? nuke it */
478 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
479 if (vm_nphysseg == 1)
480 panic("vm_page_physget: out of memory!");
481 vm_nphysseg--;
482 for (x = lcv ; x < vm_nphysseg ; x++)
483 vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
484 }
485 return(TRUE);
486 }
487
488 /* try from rear */
489 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
490 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
491 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
492 vm_physmem[lcv].avail_end--;
493 vm_physmem[lcv].end--;
494 /* nothing left? nuke it */
495 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].start) {
496 if (vm_nphysseg == 1)
497 panic("vm_page_physget: out of memory!");
498 vm_nphysseg--;
499 for (x = lcv ; x < vm_nphysseg ; x++)
500 vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
501 }
502 return(TRUE);
503 }
504 }
505
506 /* pass2: forget about matching ends, just allocate something */
507 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
508 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
509 #else
510 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
511 #endif
512 {
513
514 /* any room in this bank? */
515 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
516 continue; /* nope */
517
518 *paddrp = ptoa(vm_physmem[lcv].avail_start);
519 vm_physmem[lcv].avail_start++;
520 vm_physmem[lcv].start = vm_physmem[lcv].avail_start; /* truncate! */
521 /* nothing left? nuke it */
522 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
523 if (vm_nphysseg == 1)
524 panic("vm_page_physget: out of memory!");
525 vm_nphysseg--;
526 for (x = lcv ; x < vm_nphysseg ; x++)
527 vm_physmem[x] = vm_physmem[x+1]; /* structure copy */
528 }
529 return(TRUE);
530 }
531
532 return(FALSE); /* whoops! */
533 }
534 #endif /* PMAP_STEAL_MEMORY */
535
536 /*
537 * uvm_page_physload: load physical memory into VM system
538 *
539 * => all args are PFs
540 * => all pages in start/end get vm_page structures
541 * => areas marked by avail_start/avail_end get added to the free page pool
542 * => we are limited to VM_PHYSSEG_MAX physical memory segments
543 */
544
545 void uvm_page_physload(start, end, avail_start, avail_end)
546
547 vm_offset_t start, end, avail_start, avail_end;
548
549 {
550 int preload, lcv, npages;
551 struct vm_page *pgs;
552 struct vm_physseg *ps;
553
554 if (uvmexp.pagesize == 0)
555 panic("vm_page_physload: page size not set!");
556
557 /*
558 * do we have room?
559 */
560 if (vm_nphysseg == VM_PHYSSEG_MAX) {
561 printf("vm_page_physload: unable to load physical memory segment\n");
562 printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
563 VM_PHYSSEG_MAX, start, end);
564 return;
565 }
566
567 /*
568 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
569 * called yet, so malloc is not available).
570 */
571 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
572 if (vm_physmem[lcv].pgs)
573 break;
574 }
575 preload = (lcv == vm_nphysseg);
576
577 /*
578 * if VM is already running, attempt to malloc() vm_page structures
579 */
580 if (!preload) {
581 #if defined(VM_PHYSSEG_NOADD)
582 panic("vm_page_physload: tried to add RAM after vm_mem_init");
583 #else
584 /* XXXCDC: need some sort of lockout for this case */
585 vm_offset_t paddr;
586 npages = end - start; /* # of pages */
587 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
588 M_VMPAGE, M_NOWAIT);
589 if (pgs == NULL) {
590 printf("vm_page_physload: can not malloc vm_page structs for segment\n");
591 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
592 return;
593 }
594 /* zero data, init phys_addr, and free pages */
595 bzero(pgs, sizeof(struct vm_page) * npages);
596 for (lcv = 0, paddr = ptoa(start) ;
597 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
598 pgs[lcv].phys_addr = paddr;
599 if (atop(paddr) >= avail_start && atop(paddr) <= avail_end)
600 vm_page_free(&pgs[i]);
601 }
602 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
603 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
604 #endif
605 } else {
606
607 /* gcc complains if these don't get init'd */
608 pgs = NULL;
609 npages = 0;
610
611 }
612
613 /*
614 * now insert us in the proper place in vm_physmem[]
615 */
616
617 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
618
619 /* random: put it at the end (easy!) */
620 ps = &vm_physmem[vm_nphysseg];
621
622 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
623
624 {
625 int x;
626 /* sort by address for binary search */
627 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
628 if (start < vm_physmem[lcv].start)
629 break;
630 ps = &vm_physmem[lcv];
631 /* move back other entries, if necessary ... */
632 for (x = vm_nphysseg ; x > lcv ; x--)
633 vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
634 }
635
636 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
637
638 {
639 int x;
640 /* sort by largest segment first */
641 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
642 if ((end - start) > (vm_physmem[lcv].end - vm_physmem[lcv].start))
643 break;
644 ps = &vm_physmem[lcv];
645 /* move back other entries, if necessary ... */
646 for (x = vm_nphysseg ; x > lcv ; x--)
647 vm_physmem[x] = vm_physmem[x - 1]; /* structure copy */
648 }
649
650 #else
651
652 panic("vm_page_physload: unknown physseg strategy selected!");
653
654 #endif
655
656 ps->start = start;
657 ps->end = end;
658 ps->avail_start = avail_start;
659 ps->avail_end = avail_end;
660 if (preload) {
661 ps->pgs = NULL;
662 } else {
663 ps->pgs = pgs;
664 ps->lastpg = pgs + npages - 1;
665 }
666 vm_nphysseg++;
667
668 /*
669 * done!
670 */
671
672 if (!preload)
673 uvm_page_rehash();
674
675 return;
676 }
677
678 /*
679 * uvm_page_rehash: reallocate hash table based on number of free pages.
680 */
681
682 void uvm_page_rehash()
683
684 {
685 int freepages, lcv, bucketcount, s, oldcount;
686 struct pglist *newbuckets, *oldbuckets;
687 struct vm_page *pg;
688
689 /*
690 * compute number of pages that can go in the free pool
691 */
692
693 freepages = 0;
694 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
695 freepages = freepages +
696 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
697
698 /*
699 * compute number of buckets needed for this number of pages
700 */
701
702 bucketcount = 1;
703 while (bucketcount < freepages)
704 bucketcount = bucketcount * 2;
705
706 /*
707 * malloc new buckets
708 */
709
710 MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
711 M_VMPBUCKET, M_NOWAIT);
712 if (newbuckets == NULL) {
713 printf("vm_page_physrehash: WARNING: could not grow page hash table\n");
714 return;
715 }
716 for (lcv = 0 ; lcv < bucketcount ; lcv++)
717 TAILQ_INIT(&newbuckets[lcv]);
718
719 /*
720 * now replace the old buckets with the new ones and rehash everything
721 */
722
723 s = splimp();
724 simple_lock(&uvm.hashlock);
725 /* swap old for new ... */
726 oldbuckets = uvm.page_hash;
727 oldcount = uvm.page_nhash;
728 uvm.page_hash = newbuckets;
729 uvm.page_nhash = bucketcount;
730 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
731
732 /* ... and rehash */
733 for (lcv = 0 ; lcv < oldcount ; lcv++) {
734 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
735 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
736 TAILQ_INSERT_TAIL(
737 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], pg, hashq);
738 }
739 }
740 simple_unlock(&uvm.hashlock);
741 splx(s);
742
743 /*
744 * free old bucket array if we malloc'd it previously
745 */
746
747 if (oldbuckets != &uvm_bootbucket)
748 FREE(oldbuckets, M_VMPBUCKET);
749
750 /*
751 * done
752 */
753 return;
754 }
755
756
757 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
758
759 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
760
761 /* call from DDB */
762 void uvm_page_physdump() {
763 int lcv;
764 printf("rehash: physical memory config [segs=%d of %d]:\n",
765 vm_nphysseg, VM_PHYSSEG_MAX);
766 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
767 printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
768 vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
769 vm_physmem[lcv].avail_end);
770 printf("STRATEGY = ");
771 switch (VM_PHYSSEG_STRAT) {
772 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
773 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
774 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
775 default: printf("<<UNKNOWN>>!!!!\n");
776 }
777 printf("number of buckets = %d\n", uvm.page_nhash);
778 }
779 #endif
780
781 /*
782 * uvm_pagealloc: allocate vm_page.
783 *
784 * => return null if no pages free
785 * => wake up pagedaemon if number of free pages drops below low water mark
786 * => if obj != NULL, obj must be locked (to put in hash)
787 * => if anon != NULL, anon must be locked (to put in anon)
788 * => only one of obj or anon can be non-null
789 * => caller must activate/deactivate page if it is not wired.
790 */
791
792 struct vm_page *uvm_pagealloc(obj, off, anon)
793
794 struct uvm_object *obj;
795 vm_offset_t off;
796 struct vm_anon *anon;
797
798 {
799 int s;
800 struct vm_page *pg;
801
802 #ifdef DIAGNOSTIC
803 /* sanity check */
804 if (obj && anon)
805 panic("uvm_pagealloc: obj and anon != NULL");
806 #endif
807
808 s = splimp();
809
810 uvm_lock_fpageq(); /* lock free page queue */
811
812 /*
813 * check to see if we need to generate some free pages waking
814 * the pagedaemon.
815 */
816
817 if (uvmexp.free < uvmexp.freemin ||
818 (uvmexp.free < uvmexp.freetarg && uvmexp.inactive < uvmexp.inactarg)) {
819
820 thread_wakeup(&uvm.pagedaemon);
821 }
822
823 /*
824 * fail if any of these conditions is true:
825 * [1] there really are no free pages, or
826 * [2] only kernel "reserved" pages remain and
827 * the page isn't being allocated to a kernel object.
828 * [3] only pagedaemon "reserved" pages remain and
829 * the requestor isn't the pagedaemon.
830 */
831
832 pg = uvm.page_free.tqh_first;
833 if (pg == NULL ||
834 (uvmexp.free <= uvmexp.reserve_kernel &&
835 !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
836 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
837 !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc))) {
838 uvm_unlock_fpageq();
839 splx(s);
840 return(NULL);
841 }
842
843 TAILQ_REMOVE(&uvm.page_free, pg, pageq);
844 uvmexp.free--;
845
846 uvm_unlock_fpageq(); /* unlock free page queue */
847 splx(s);
848
849 pg->offset = off;
850 pg->uobject = obj;
851 pg->uanon = anon;
852 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
853 pg->version++;
854 pg->wire_count = 0;
855 pg->loan_count = 0;
856 if (anon) {
857 anon->u.an_page = pg;
858 pg->pqflags = PQ_ANON;
859 } else {
860 if (obj)
861 uvm_pageinsert(pg);
862 pg->pqflags = 0;
863 }
864 #if defined(UVM_PAGE_TRKOWN)
865 pg->owner_tag = NULL;
866 #endif
867 UVM_PAGE_OWN(pg, "new alloc");
868
869 return(pg);
870 }
871
872 /*
873 * uvm_pagerealloc: reallocate a page from one object to another
874 *
875 * => both objects must be locked
876 */
877
878 void uvm_pagerealloc(pg, newobj, newoff)
879
880 struct vm_page *pg;
881 struct uvm_object *newobj;
882 vm_offset_t newoff;
883
884 {
885 /*
886 * remove it from the old object
887 */
888
889 if (pg->uobject) {
890 uvm_pageremove(pg);
891 }
892
893 /*
894 * put it in the new object
895 */
896
897 if (newobj) {
898 pg->uobject = newobj;
899 pg->offset = newoff;
900 pg->version++;
901 uvm_pageinsert(pg);
902 }
903
904 return;
905 }
906
907
908 /*
909 * uvm_pagefree: free page
910 *
911 * => erase page's identity (i.e. remove from hash/object)
912 * => put page on free list
913 * => caller must lock owning object (either anon or uvm_object)
914 * => caller must lock page queues
915 * => assumes all valid mappings of pg are gone
916 */
917
918 void uvm_pagefree(pg)
919
920 struct vm_page *pg;
921
922 {
923 int s;
924 int saved_loan_count = pg->loan_count;
925
926 /*
927 * if the page was an object page (and thus "TABLED"), remove it
928 * from the object.
929 */
930
931 if (pg->flags & PG_TABLED) {
932
933 /*
934 * if the object page is on loan we are going to drop ownership.
935 * it is possible that an anon will take over as owner for this
936 * page later on. the anon will want a !PG_CLEAN page so that
937 * it knows it needs to allocate swap if it wants to page the
938 * page out.
939 */
940
941 if (saved_loan_count)
942 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
943
944 uvm_pageremove(pg);
945
946 /*
947 * if our page was on loan, then we just lost control over it
948 * (in fact, if it was loaned to an anon, the anon may have
949 * already taken over ownership of the page by now and thus
950 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
951 * return (when the last loan is dropped, then the page can be
952 * freed by whatever was holding the last loan).
953 */
954 if (saved_loan_count)
955 return;
956
957 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
958
959 /*
960 * if our page is owned by an anon and is loaned out to the kernel
961 * then we just want to drop ownership and return. the kernel
962 * must free the page when all its loans clear ... note that the
963 * kernel can't change the loan status of our page as long as we
964 * are holding PQ lock.
965 */
966 pg->pqflags &= ~PQ_ANON;
967 pg->uanon = NULL;
968 return;
969
970 }
971
972 #ifdef DIAGNOSTIC
973 if (saved_loan_count) {
974 printf("uvm_pagefree: warning: freeing page with a loan count of %d\n",
975 saved_loan_count);
976 panic("uvm_pagefree: loan count");
977 }
978 #endif
979
980
981 /*
982 * now remove the page from the queues
983 */
984
985 if (pg->pqflags & PQ_ACTIVE) {
986 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
987 pg->pqflags &= ~PQ_ACTIVE;
988 uvmexp.active--;
989 }
990 if (pg->pqflags & PQ_INACTIVE) {
991 if (pg->pqflags & PQ_SWAPBACKED)
992 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
993 else
994 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
995 pg->pqflags &= ~PQ_INACTIVE;
996 uvmexp.inactive--;
997 }
998
999 /*
1000 * if the page was wired, unwire it now.
1001 */
1002 if (pg->wire_count)
1003 {
1004 pg->wire_count = 0;
1005 uvmexp.wired--;
1006 }
1007
1008 /*
1009 * and put on free queue
1010 */
1011
1012 s = splimp();
1013 uvm_lock_fpageq();
1014 TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
1015 pg->pqflags = PQ_FREE;
1016 #ifdef DEBUG
1017 pg->uobject = (void *)0xdeadbeef;
1018 pg->offset = 0xdeadbeef;
1019 pg->uanon = (void *)0xdeadbeef;
1020 #endif
1021 uvmexp.free++;
1022 uvm_unlock_fpageq();
1023 splx(s);
1024 }
1025
1026 #if defined(UVM_PAGE_TRKOWN)
1027 /*
1028 * uvm_page_own: set or release page ownership
1029 *
1030 * => this is a debugging function that keeps track of who sets PG_BUSY
1031 * and where they do it. it can be used to track down problems
1032 * such a process setting "PG_BUSY" and never releasing it.
1033 * => page's object [if any] must be locked
1034 * => if "tag" is NULL then we are releasing page ownership
1035 */
1036 void uvm_page_own(pg, tag)
1037
1038 struct vm_page *pg;
1039 char *tag;
1040
1041 {
1042 /* gain ownership? */
1043 if (tag) {
1044 if (pg->owner_tag) {
1045 printf("uvm_page_own: page %p already owned by proc %d [%s]\n", pg,
1046 pg->owner, pg->owner_tag);
1047 panic("uvm_page_own");
1048 }
1049 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1050 pg->owner_tag = tag;
1051 return;
1052 }
1053
1054 /* drop ownership */
1055 if (pg->owner_tag == NULL) {
1056 printf("uvm_page_own: dropping ownership of an non-owned page (%p)\n", pg);
1057 panic("uvm_page_own");
1058 }
1059 pg->owner_tag = NULL;
1060 return;
1061 }
1062 #endif
1063