uvm_page.c revision 1.31 1 /* $NetBSD: uvm_page.c,v 1.31 2000/03/26 20:54:47 kleink Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/proc.h>
77
78 #include <vm/vm.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_kern.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * local variables
98 */
99
100 /*
101 * these variables record the values returned by vm_page_bootstrap,
102 * for debugging purposes. The implementation of uvm_pageboot_alloc
103 * and pmap_startup here also uses them internally.
104 */
105
106 static vaddr_t virtual_space_start;
107 static vaddr_t virtual_space_end;
108
109 /*
110 * we use a hash table with only one bucket during bootup. we will
111 * later rehash (resize) the hash table once the allocator is ready.
112 * we static allocate the one bootstrap bucket below...
113 */
114
115 static struct pglist uvm_bootbucket;
116
117 /*
118 * local prototypes
119 */
120
121 static void uvm_pageinsert __P((struct vm_page *));
122
123
124 /*
125 * inline functions
126 */
127
128 /*
129 * uvm_pageinsert: insert a page in the object and the hash table
130 *
131 * => caller must lock object
132 * => caller must lock page queues
133 * => call should have already set pg's object and offset pointers
134 * and bumped the version counter
135 */
136
137 __inline static void
138 uvm_pageinsert(pg)
139 struct vm_page *pg;
140 {
141 struct pglist *buck;
142 int s;
143
144 #ifdef DIAGNOSTIC
145 if (pg->flags & PG_TABLED)
146 panic("uvm_pageinsert: already inserted");
147 #endif
148
149 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150 s = splimp();
151 simple_lock(&uvm.hashlock);
152 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
153 simple_unlock(&uvm.hashlock);
154 splx(s);
155
156 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157 pg->flags |= PG_TABLED;
158 pg->uobject->uo_npages++;
159
160 }
161
162 /*
163 * uvm_page_remove: remove page from object and hash
164 *
165 * => caller must lock object
166 * => caller must lock page queues
167 */
168
169 void __inline
170 uvm_pageremove(pg)
171 struct vm_page *pg;
172 {
173 struct pglist *buck;
174 int s;
175
176 #ifdef DIAGNOSTIC
177 if ((pg->flags & (PG_FAULTING)) != 0)
178 panic("uvm_pageremove: page is faulting");
179 #endif
180
181 if ((pg->flags & PG_TABLED) == 0)
182 return; /* XXX: log */
183
184 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185 s = splimp();
186 simple_lock(&uvm.hashlock);
187 TAILQ_REMOVE(buck, pg, hashq);
188 simple_unlock(&uvm.hashlock);
189 splx(s);
190
191 /* object should be locked */
192 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193
194 pg->flags &= ~PG_TABLED;
195 pg->uobject->uo_npages--;
196 pg->uobject = NULL;
197 pg->version++;
198
199 }
200
201 /*
202 * uvm_page_init: init the page system. called from uvm_init().
203 *
204 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205 */
206
207 void
208 uvm_page_init(kvm_startp, kvm_endp)
209 vaddr_t *kvm_startp, *kvm_endp;
210 {
211 vsize_t freepages, pagecount, n;
212 vm_page_t pagearray;
213 int lcv, i;
214 paddr_t paddr;
215
216
217 /*
218 * step 1: init the page queues and page queue locks
219 */
220 for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221 TAILQ_INIT(&uvm.page_free[lcv]);
222 TAILQ_INIT(&uvm.page_active);
223 TAILQ_INIT(&uvm.page_inactive_swp);
224 TAILQ_INIT(&uvm.page_inactive_obj);
225 simple_lock_init(&uvm.pageqlock);
226 simple_lock_init(&uvm.fpageqlock);
227
228 /*
229 * step 2: init the <obj,offset> => <page> hash table. for now
230 * we just have one bucket (the bootstrap bucket). later on we
231 * will allocate new buckets as we dynamically resize the hash table.
232 */
233
234 uvm.page_nhash = 1; /* 1 bucket */
235 uvm.page_hashmask = 0; /* mask for hash function */
236 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
237 TAILQ_INIT(uvm.page_hash); /* init hash table */
238 simple_lock_init(&uvm.hashlock); /* init hash table lock */
239
240 /*
241 * step 3: allocate vm_page structures.
242 */
243
244 /*
245 * sanity check:
246 * before calling this function the MD code is expected to register
247 * some free RAM with the uvm_page_physload() function. our job
248 * now is to allocate vm_page structures for this memory.
249 */
250
251 if (vm_nphysseg == 0)
252 panic("vm_page_bootstrap: no memory pre-allocated");
253
254 /*
255 * first calculate the number of free pages...
256 *
257 * note that we use start/end rather than avail_start/avail_end.
258 * this allows us to allocate extra vm_page structures in case we
259 * want to return some memory to the pool after booting.
260 */
261
262 freepages = 0;
263 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265
266 /*
267 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268 * use. for each page of memory we use we need a vm_page structure.
269 * thus, the total number of pages we can use is the total size of
270 * the memory divided by the PAGE_SIZE plus the size of the vm_page
271 * structure. we add one to freepages as a fudge factor to avoid
272 * truncation errors (since we can only allocate in terms of whole
273 * pages).
274 */
275
276 pagecount = ((freepages + 1) << PAGE_SHIFT) /
277 (PAGE_SIZE + sizeof(struct vm_page));
278 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279 sizeof(struct vm_page));
280 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
281
282 /*
283 * step 4: init the vm_page structures and put them in the correct
284 * place...
285 */
286
287 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288
289 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290 if (n > pagecount) {
291 printf("uvm_page_init: lost %ld page(s) in init\n",
292 (long)(n - pagecount));
293 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
294 /* n = pagecount; */
295 }
296 /* set up page array pointers */
297 vm_physmem[lcv].pgs = pagearray;
298 pagearray += n;
299 pagecount -= n;
300 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301
302 /* init and free vm_pages (we've already zeroed them) */
303 paddr = ptoa(vm_physmem[lcv].start);
304 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305 vm_physmem[lcv].pgs[i].phys_addr = paddr;
306 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307 atop(paddr) <= vm_physmem[lcv].avail_end) {
308 uvmexp.npages++;
309 /* add page to free pool */
310 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311 }
312 }
313 }
314 /*
315 * step 5: pass up the values of virtual_space_start and
316 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317 * layers of the VM.
318 */
319
320 *kvm_startp = round_page(virtual_space_start);
321 *kvm_endp = trunc_page(virtual_space_end);
322
323 /*
324 * step 6: init pagedaemon lock
325 */
326
327 simple_lock_init(&uvm.pagedaemon_lock);
328
329 /*
330 * step 7: init reserve thresholds
331 * XXXCDC - values may need adjusting
332 */
333 uvmexp.reserve_pagedaemon = 1;
334 uvmexp.reserve_kernel = 5;
335
336 /*
337 * done!
338 */
339
340 }
341
342 /*
343 * uvm_setpagesize: set the page size
344 *
345 * => sets page_shift and page_mask from uvmexp.pagesize.
346 * => XXXCDC: move global vars.
347 */
348
349 void
350 uvm_setpagesize()
351 {
352 if (uvmexp.pagesize == 0)
353 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
354 uvmexp.pagemask = uvmexp.pagesize - 1;
355 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
356 panic("uvm_setpagesize: page size not a power of two");
357 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
358 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
359 break;
360 }
361
362 /*
363 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
364 */
365
366 vaddr_t
367 uvm_pageboot_alloc(size)
368 vsize_t size;
369 {
370 #if defined(PMAP_STEAL_MEMORY)
371 vaddr_t addr;
372
373 /*
374 * defer bootstrap allocation to MD code (it may want to allocate
375 * from a direct-mapped segment). pmap_steal_memory should round
376 * off virtual_space_start/virtual_space_end.
377 */
378
379 addr = pmap_steal_memory(size, &virtual_space_start,
380 &virtual_space_end);
381
382 return(addr);
383
384 #else /* !PMAP_STEAL_MEMORY */
385
386 static boolean_t initialized = FALSE;
387 vaddr_t addr, vaddr;
388 paddr_t paddr;
389
390 /* round to page size */
391 size = round_page(size);
392
393 /*
394 * on first call to this function, initialize ourselves.
395 */
396 if (initialized == FALSE) {
397 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
398
399 /* round it the way we like it */
400 virtual_space_start = round_page(virtual_space_start);
401 virtual_space_end = trunc_page(virtual_space_end);
402
403 initialized = TRUE;
404 }
405
406 /*
407 * allocate virtual memory for this request
408 */
409 if (virtual_space_start == virtual_space_end ||
410 (virtual_space_end - virtual_space_start) < size)
411 panic("uvm_pageboot_alloc: out of virtual space");
412
413 addr = virtual_space_start;
414
415 #ifdef PMAP_GROWKERNEL
416 /*
417 * If the kernel pmap can't map the requested space,
418 * then allocate more resources for it.
419 */
420 if (uvm_maxkaddr < (addr + size)) {
421 uvm_maxkaddr = pmap_growkernel(addr + size);
422 if (uvm_maxkaddr < (addr + size))
423 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
424 }
425 #endif
426
427 virtual_space_start += size;
428
429 /*
430 * allocate and mapin physical pages to back new virtual pages
431 */
432
433 for (vaddr = round_page(addr) ; vaddr < addr + size ;
434 vaddr += PAGE_SIZE) {
435
436 if (!uvm_page_physget(&paddr))
437 panic("uvm_pageboot_alloc: out of memory");
438
439 /*
440 * Note this memory is no longer managed, so using
441 * pmap_kenter is safe.
442 */
443 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
444 }
445 return(addr);
446 #endif /* PMAP_STEAL_MEMORY */
447 }
448
449 #if !defined(PMAP_STEAL_MEMORY)
450 /*
451 * uvm_page_physget: "steal" one page from the vm_physmem structure.
452 *
453 * => attempt to allocate it off the end of a segment in which the "avail"
454 * values match the start/end values. if we can't do that, then we
455 * will advance both values (making them equal, and removing some
456 * vm_page structures from the non-avail area).
457 * => return false if out of memory.
458 */
459
460 /* subroutine: try to allocate from memory chunks on the specified freelist */
461 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
462
463 static boolean_t
464 uvm_page_physget_freelist(paddrp, freelist)
465 paddr_t *paddrp;
466 int freelist;
467 {
468 int lcv, x;
469
470 /* pass 1: try allocating from a matching end */
471 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
472 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
473 #else
474 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
475 #endif
476 {
477
478 if (vm_physmem[lcv].pgs)
479 panic("vm_page_physget: called _after_ bootstrap");
480
481 if (vm_physmem[lcv].free_list != freelist)
482 continue;
483
484 /* try from front */
485 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
486 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
487 *paddrp = ptoa(vm_physmem[lcv].avail_start);
488 vm_physmem[lcv].avail_start++;
489 vm_physmem[lcv].start++;
490 /* nothing left? nuke it */
491 if (vm_physmem[lcv].avail_start ==
492 vm_physmem[lcv].end) {
493 if (vm_nphysseg == 1)
494 panic("vm_page_physget: out of memory!");
495 vm_nphysseg--;
496 for (x = lcv ; x < vm_nphysseg ; x++)
497 /* structure copy */
498 vm_physmem[x] = vm_physmem[x+1];
499 }
500 return (TRUE);
501 }
502
503 /* try from rear */
504 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
505 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
506 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
507 vm_physmem[lcv].avail_end--;
508 vm_physmem[lcv].end--;
509 /* nothing left? nuke it */
510 if (vm_physmem[lcv].avail_end ==
511 vm_physmem[lcv].start) {
512 if (vm_nphysseg == 1)
513 panic("vm_page_physget: out of memory!");
514 vm_nphysseg--;
515 for (x = lcv ; x < vm_nphysseg ; x++)
516 /* structure copy */
517 vm_physmem[x] = vm_physmem[x+1];
518 }
519 return (TRUE);
520 }
521 }
522
523 /* pass2: forget about matching ends, just allocate something */
524 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
525 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
526 #else
527 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
528 #endif
529 {
530
531 /* any room in this bank? */
532 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
533 continue; /* nope */
534
535 *paddrp = ptoa(vm_physmem[lcv].avail_start);
536 vm_physmem[lcv].avail_start++;
537 /* truncate! */
538 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
539
540 /* nothing left? nuke it */
541 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
542 if (vm_nphysseg == 1)
543 panic("vm_page_physget: out of memory!");
544 vm_nphysseg--;
545 for (x = lcv ; x < vm_nphysseg ; x++)
546 /* structure copy */
547 vm_physmem[x] = vm_physmem[x+1];
548 }
549 return (TRUE);
550 }
551
552 return (FALSE); /* whoops! */
553 }
554
555 boolean_t
556 uvm_page_physget(paddrp)
557 paddr_t *paddrp;
558 {
559 int i;
560
561 /* try in the order of freelist preference */
562 for (i = 0; i < VM_NFREELIST; i++)
563 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
564 return (TRUE);
565 return (FALSE);
566 }
567 #endif /* PMAP_STEAL_MEMORY */
568
569 /*
570 * uvm_page_physload: load physical memory into VM system
571 *
572 * => all args are PFs
573 * => all pages in start/end get vm_page structures
574 * => areas marked by avail_start/avail_end get added to the free page pool
575 * => we are limited to VM_PHYSSEG_MAX physical memory segments
576 */
577
578 void
579 uvm_page_physload(start, end, avail_start, avail_end, free_list)
580 paddr_t start, end, avail_start, avail_end;
581 int free_list;
582 {
583 int preload, lcv;
584 psize_t npages;
585 struct vm_page *pgs;
586 struct vm_physseg *ps;
587
588 if (uvmexp.pagesize == 0)
589 panic("vm_page_physload: page size not set!");
590
591 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
592 panic("uvm_page_physload: bad free list %d\n", free_list);
593
594 if (start >= end)
595 panic("uvm_page_physload: start >= end");
596
597 /*
598 * do we have room?
599 */
600 if (vm_nphysseg == VM_PHYSSEG_MAX) {
601 printf("vm_page_physload: unable to load physical memory "
602 "segment\n");
603 printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
604 VM_PHYSSEG_MAX, start, end);
605 return;
606 }
607
608 /*
609 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
610 * called yet, so malloc is not available).
611 */
612 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
613 if (vm_physmem[lcv].pgs)
614 break;
615 }
616 preload = (lcv == vm_nphysseg);
617
618 /*
619 * if VM is already running, attempt to malloc() vm_page structures
620 */
621 if (!preload) {
622 #if defined(VM_PHYSSEG_NOADD)
623 panic("vm_page_physload: tried to add RAM after vm_mem_init");
624 #else
625 /* XXXCDC: need some sort of lockout for this case */
626 paddr_t paddr;
627 npages = end - start; /* # of pages */
628 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
629 M_VMPAGE, M_NOWAIT);
630 if (pgs == NULL) {
631 printf("vm_page_physload: can not malloc vm_page "
632 "structs for segment\n");
633 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
634 return;
635 }
636 /* zero data, init phys_addr and free_list, and free pages */
637 memset(pgs, 0, sizeof(struct vm_page) * npages);
638 for (lcv = 0, paddr = ptoa(start) ;
639 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
640 pgs[lcv].phys_addr = paddr;
641 pgs[lcv].free_list = free_list;
642 if (atop(paddr) >= avail_start &&
643 atop(paddr) <= avail_end)
644 uvm_pagefree(&pgs[lcv]);
645 }
646 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
647 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
648 #endif
649 } else {
650
651 /* gcc complains if these don't get init'd */
652 pgs = NULL;
653 npages = 0;
654
655 }
656
657 /*
658 * now insert us in the proper place in vm_physmem[]
659 */
660
661 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
662
663 /* random: put it at the end (easy!) */
664 ps = &vm_physmem[vm_nphysseg];
665
666 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
667
668 {
669 int x;
670 /* sort by address for binary search */
671 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
672 if (start < vm_physmem[lcv].start)
673 break;
674 ps = &vm_physmem[lcv];
675 /* move back other entries, if necessary ... */
676 for (x = vm_nphysseg ; x > lcv ; x--)
677 /* structure copy */
678 vm_physmem[x] = vm_physmem[x - 1];
679 }
680
681 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
682
683 {
684 int x;
685 /* sort by largest segment first */
686 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
687 if ((end - start) >
688 (vm_physmem[lcv].end - vm_physmem[lcv].start))
689 break;
690 ps = &vm_physmem[lcv];
691 /* move back other entries, if necessary ... */
692 for (x = vm_nphysseg ; x > lcv ; x--)
693 /* structure copy */
694 vm_physmem[x] = vm_physmem[x - 1];
695 }
696
697 #else
698
699 panic("vm_page_physload: unknown physseg strategy selected!");
700
701 #endif
702
703 ps->start = start;
704 ps->end = end;
705 ps->avail_start = avail_start;
706 ps->avail_end = avail_end;
707 if (preload) {
708 ps->pgs = NULL;
709 } else {
710 ps->pgs = pgs;
711 ps->lastpg = pgs + npages - 1;
712 }
713 ps->free_list = free_list;
714 vm_nphysseg++;
715
716 /*
717 * done!
718 */
719
720 if (!preload)
721 uvm_page_rehash();
722
723 return;
724 }
725
726 /*
727 * uvm_page_rehash: reallocate hash table based on number of free pages.
728 */
729
730 void
731 uvm_page_rehash()
732 {
733 int freepages, lcv, bucketcount, s, oldcount;
734 struct pglist *newbuckets, *oldbuckets;
735 struct vm_page *pg;
736 size_t newsize, oldsize;
737
738 /*
739 * compute number of pages that can go in the free pool
740 */
741
742 freepages = 0;
743 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
744 freepages +=
745 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
746
747 /*
748 * compute number of buckets needed for this number of pages
749 */
750
751 bucketcount = 1;
752 while (bucketcount < freepages)
753 bucketcount = bucketcount * 2;
754
755 /*
756 * compute the size of the current table and new table.
757 */
758
759 oldbuckets = uvm.page_hash;
760 oldcount = uvm.page_nhash;
761 oldsize = round_page(sizeof(struct pglist) * oldcount);
762 newsize = round_page(sizeof(struct pglist) * bucketcount);
763
764 /*
765 * allocate the new buckets
766 */
767
768 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
769 if (newbuckets == NULL) {
770 printf("uvm_page_physrehash: WARNING: could not grow page "
771 "hash table\n");
772 return;
773 }
774 for (lcv = 0 ; lcv < bucketcount ; lcv++)
775 TAILQ_INIT(&newbuckets[lcv]);
776
777 /*
778 * now replace the old buckets with the new ones and rehash everything
779 */
780
781 s = splimp();
782 simple_lock(&uvm.hashlock);
783 uvm.page_hash = newbuckets;
784 uvm.page_nhash = bucketcount;
785 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
786
787 /* ... and rehash */
788 for (lcv = 0 ; lcv < oldcount ; lcv++) {
789 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
790 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
791 TAILQ_INSERT_TAIL(
792 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
793 pg, hashq);
794 }
795 }
796 simple_unlock(&uvm.hashlock);
797 splx(s);
798
799 /*
800 * free old bucket array if is not the boot-time table
801 */
802
803 if (oldbuckets != &uvm_bootbucket)
804 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
805
806 /*
807 * done
808 */
809 return;
810 }
811
812
813 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
814
815 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
816
817 /* call from DDB */
818 void
819 uvm_page_physdump()
820 {
821 int lcv;
822
823 printf("rehash: physical memory config [segs=%d of %d]:\n",
824 vm_nphysseg, VM_PHYSSEG_MAX);
825 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
826 printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
827 vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
828 vm_physmem[lcv].avail_end);
829 printf("STRATEGY = ");
830 switch (VM_PHYSSEG_STRAT) {
831 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
832 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
833 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
834 default: printf("<<UNKNOWN>>!!!!\n");
835 }
836 printf("number of buckets = %d\n", uvm.page_nhash);
837 }
838 #endif
839
840 /*
841 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
842 *
843 * => return null if no pages free
844 * => wake up pagedaemon if number of free pages drops below low water mark
845 * => if obj != NULL, obj must be locked (to put in hash)
846 * => if anon != NULL, anon must be locked (to put in anon)
847 * => only one of obj or anon can be non-null
848 * => caller must activate/deactivate page if it is not wired.
849 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
850 */
851
852 struct vm_page *
853 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
854 struct uvm_object *obj;
855 voff_t off;
856 int flags;
857 struct vm_anon *anon;
858 int strat, free_list;
859 {
860 int lcv, s;
861 struct vm_page *pg;
862 struct pglist *freeq;
863 boolean_t use_reserve;
864
865 #ifdef DIAGNOSTIC
866 /* sanity check */
867 if (obj && anon)
868 panic("uvm_pagealloc: obj and anon != NULL");
869 #endif
870
871 s = uvm_lock_fpageq(); /* lock free page queue */
872
873 /*
874 * check to see if we need to generate some free pages waking
875 * the pagedaemon.
876 */
877
878 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
879 uvmexp.inactive < uvmexp.inactarg))
880 wakeup(&uvm.pagedaemon);
881
882 /*
883 * fail if any of these conditions is true:
884 * [1] there really are no free pages, or
885 * [2] only kernel "reserved" pages remain and
886 * the page isn't being allocated to a kernel object.
887 * [3] only pagedaemon "reserved" pages remain and
888 * the requestor isn't the pagedaemon.
889 */
890
891 use_reserve = (flags & UVM_PGA_USERESERVE) ||
892 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
893 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
894 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
895 !(use_reserve && curproc == uvm.pagedaemon_proc)))
896 goto fail;
897
898 again:
899 switch (strat) {
900 case UVM_PGA_STRAT_NORMAL:
901 /* Check all freelists in descending priority order. */
902 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
903 freeq = &uvm.page_free[lcv];
904 if ((pg = freeq->tqh_first) != NULL)
905 goto gotit;
906 }
907
908 /* No pages free! */
909 goto fail;
910
911 case UVM_PGA_STRAT_ONLY:
912 case UVM_PGA_STRAT_FALLBACK:
913 /* Attempt to allocate from the specified free list. */
914 #ifdef DIAGNOSTIC
915 if (free_list >= VM_NFREELIST || free_list < 0)
916 panic("uvm_pagealloc_strat: bad free list %d",
917 free_list);
918 #endif
919 freeq = &uvm.page_free[free_list];
920 if ((pg = freeq->tqh_first) != NULL)
921 goto gotit;
922
923 /* Fall back, if possible. */
924 if (strat == UVM_PGA_STRAT_FALLBACK) {
925 strat = UVM_PGA_STRAT_NORMAL;
926 goto again;
927 }
928
929 /* No pages free! */
930 goto fail;
931
932 default:
933 panic("uvm_pagealloc_strat: bad strat %d", strat);
934 /* NOTREACHED */
935 }
936
937 gotit:
938 TAILQ_REMOVE(freeq, pg, pageq);
939 uvmexp.free--;
940
941 uvm_unlock_fpageq(s); /* unlock free page queue */
942
943 pg->offset = off;
944 pg->uobject = obj;
945 pg->uanon = anon;
946 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
947 pg->version++;
948 pg->wire_count = 0;
949 pg->loan_count = 0;
950 if (anon) {
951 anon->u.an_page = pg;
952 pg->pqflags = PQ_ANON;
953 } else {
954 if (obj)
955 uvm_pageinsert(pg);
956 pg->pqflags = 0;
957 }
958 #if defined(UVM_PAGE_TRKOWN)
959 pg->owner_tag = NULL;
960 #endif
961 UVM_PAGE_OWN(pg, "new alloc");
962
963 return(pg);
964
965 fail:
966 uvm_unlock_fpageq(s);
967 return (NULL);
968 }
969
970 /*
971 * uvm_pagerealloc: reallocate a page from one object to another
972 *
973 * => both objects must be locked
974 */
975
976 void
977 uvm_pagerealloc(pg, newobj, newoff)
978 struct vm_page *pg;
979 struct uvm_object *newobj;
980 voff_t newoff;
981 {
982 /*
983 * remove it from the old object
984 */
985
986 if (pg->uobject) {
987 uvm_pageremove(pg);
988 }
989
990 /*
991 * put it in the new object
992 */
993
994 if (newobj) {
995 pg->uobject = newobj;
996 pg->offset = newoff;
997 pg->version++;
998 uvm_pageinsert(pg);
999 }
1000
1001 return;
1002 }
1003
1004
1005 /*
1006 * uvm_pagefree: free page
1007 *
1008 * => erase page's identity (i.e. remove from hash/object)
1009 * => put page on free list
1010 * => caller must lock owning object (either anon or uvm_object)
1011 * => caller must lock page queues
1012 * => assumes all valid mappings of pg are gone
1013 */
1014
1015 void uvm_pagefree(pg)
1016
1017 struct vm_page *pg;
1018
1019 {
1020 int s;
1021 int saved_loan_count = pg->loan_count;
1022
1023 /*
1024 * if the page was an object page (and thus "TABLED"), remove it
1025 * from the object.
1026 */
1027
1028 if (pg->flags & PG_TABLED) {
1029
1030 /*
1031 * if the object page is on loan we are going to drop ownership.
1032 * it is possible that an anon will take over as owner for this
1033 * page later on. the anon will want a !PG_CLEAN page so that
1034 * it knows it needs to allocate swap if it wants to page the
1035 * page out.
1036 */
1037
1038 if (saved_loan_count)
1039 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1040
1041 uvm_pageremove(pg);
1042
1043 /*
1044 * if our page was on loan, then we just lost control over it
1045 * (in fact, if it was loaned to an anon, the anon may have
1046 * already taken over ownership of the page by now and thus
1047 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1048 * return (when the last loan is dropped, then the page can be
1049 * freed by whatever was holding the last loan).
1050 */
1051 if (saved_loan_count)
1052 return;
1053
1054 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1055
1056 /*
1057 * if our page is owned by an anon and is loaned out to the
1058 * kernel then we just want to drop ownership and return.
1059 * the kernel must free the page when all its loans clear ...
1060 * note that the kernel can't change the loan status of our
1061 * page as long as we are holding PQ lock.
1062 */
1063 pg->pqflags &= ~PQ_ANON;
1064 pg->uanon = NULL;
1065 return;
1066 }
1067
1068 #ifdef DIAGNOSTIC
1069 if (saved_loan_count) {
1070 printf("uvm_pagefree: warning: freeing page with a loan "
1071 "count of %d\n", saved_loan_count);
1072 panic("uvm_pagefree: loan count");
1073 }
1074 #endif
1075
1076
1077 /*
1078 * now remove the page from the queues
1079 */
1080
1081 if (pg->pqflags & PQ_ACTIVE) {
1082 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1083 pg->pqflags &= ~PQ_ACTIVE;
1084 uvmexp.active--;
1085 }
1086 if (pg->pqflags & PQ_INACTIVE) {
1087 if (pg->pqflags & PQ_SWAPBACKED)
1088 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1089 else
1090 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1091 pg->pqflags &= ~PQ_INACTIVE;
1092 uvmexp.inactive--;
1093 }
1094
1095 /*
1096 * if the page was wired, unwire it now.
1097 */
1098 if (pg->wire_count)
1099 {
1100 pg->wire_count = 0;
1101 uvmexp.wired--;
1102 }
1103
1104 /*
1105 * and put on free queue
1106 */
1107
1108 s = uvm_lock_fpageq();
1109 TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1110 pg, pageq);
1111 pg->pqflags = PQ_FREE;
1112 #ifdef DEBUG
1113 pg->uobject = (void *)0xdeadbeef;
1114 pg->offset = 0xdeadbeef;
1115 pg->uanon = (void *)0xdeadbeef;
1116 #endif
1117 uvmexp.free++;
1118 uvm_unlock_fpageq(s);
1119 }
1120
1121 #if defined(UVM_PAGE_TRKOWN)
1122 /*
1123 * uvm_page_own: set or release page ownership
1124 *
1125 * => this is a debugging function that keeps track of who sets PG_BUSY
1126 * and where they do it. it can be used to track down problems
1127 * such a process setting "PG_BUSY" and never releasing it.
1128 * => page's object [if any] must be locked
1129 * => if "tag" is NULL then we are releasing page ownership
1130 */
1131 void
1132 uvm_page_own(pg, tag)
1133 struct vm_page *pg;
1134 char *tag;
1135 {
1136 /* gain ownership? */
1137 if (tag) {
1138 if (pg->owner_tag) {
1139 printf("uvm_page_own: page %p already owned "
1140 "by proc %d [%s]\n", pg,
1141 pg->owner, pg->owner_tag);
1142 panic("uvm_page_own");
1143 }
1144 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1145 pg->owner_tag = tag;
1146 return;
1147 }
1148
1149 /* drop ownership */
1150 if (pg->owner_tag == NULL) {
1151 printf("uvm_page_own: dropping ownership of an non-owned "
1152 "page (%p)\n", pg);
1153 panic("uvm_page_own");
1154 }
1155 pg->owner_tag = NULL;
1156 return;
1157 }
1158 #endif
1159