uvm_page.c revision 1.35 1 /* $NetBSD: uvm_page.c,v 1.35 2000/05/26 21:20:34 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/sched.h>
77
78 #include <vm/vm.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_kern.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * for testing the idle page zero loop.
98 */
99
100 boolean_t vm_page_zero_enable = TRUE;
101
102 /*
103 * local variables
104 */
105
106 /*
107 * these variables record the values returned by vm_page_bootstrap,
108 * for debugging purposes. The implementation of uvm_pageboot_alloc
109 * and pmap_startup here also uses them internally.
110 */
111
112 static vaddr_t virtual_space_start;
113 static vaddr_t virtual_space_end;
114
115 /*
116 * we use a hash table with only one bucket during bootup. we will
117 * later rehash (resize) the hash table once the allocator is ready.
118 * we static allocate the one bootstrap bucket below...
119 */
120
121 static struct pglist uvm_bootbucket;
122
123 /*
124 * local prototypes
125 */
126
127 static void uvm_pageinsert __P((struct vm_page *));
128
129
130 /*
131 * inline functions
132 */
133
134 /*
135 * uvm_pageinsert: insert a page in the object and the hash table
136 *
137 * => caller must lock object
138 * => caller must lock page queues
139 * => call should have already set pg's object and offset pointers
140 * and bumped the version counter
141 */
142
143 __inline static void
144 uvm_pageinsert(pg)
145 struct vm_page *pg;
146 {
147 struct pglist *buck;
148 int s;
149
150 #ifdef DIAGNOSTIC
151 if (pg->flags & PG_TABLED)
152 panic("uvm_pageinsert: already inserted");
153 #endif
154
155 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
156 s = splimp();
157 simple_lock(&uvm.hashlock);
158 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
159 simple_unlock(&uvm.hashlock);
160 splx(s);
161
162 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
163 pg->flags |= PG_TABLED;
164 pg->uobject->uo_npages++;
165
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 void __inline
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 #ifdef DIAGNOSTIC
183 if ((pg->flags & (PG_FAULTING)) != 0)
184 panic("uvm_pageremove: page is faulting");
185 #endif
186
187 if ((pg->flags & PG_TABLED) == 0)
188 return; /* XXX: log */
189
190 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
191 s = splimp();
192 simple_lock(&uvm.hashlock);
193 TAILQ_REMOVE(buck, pg, hashq);
194 simple_unlock(&uvm.hashlock);
195 splx(s);
196
197 /* object should be locked */
198 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
199
200 pg->flags &= ~PG_TABLED;
201 pg->uobject->uo_npages--;
202 pg->uobject = NULL;
203 pg->version++;
204
205 }
206
207 /*
208 * uvm_page_init: init the page system. called from uvm_init().
209 *
210 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
211 */
212
213 void
214 uvm_page_init(kvm_startp, kvm_endp)
215 vaddr_t *kvm_startp, *kvm_endp;
216 {
217 vsize_t freepages, pagecount, n;
218 vm_page_t pagearray;
219 int lcv, i;
220 paddr_t paddr;
221
222
223 /*
224 * step 1: init the page queues and page queue locks
225 */
226 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
227 for (i = 0; i < PGFL_NQUEUES; i++)
228 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
229 }
230 TAILQ_INIT(&uvm.page_active);
231 TAILQ_INIT(&uvm.page_inactive_swp);
232 TAILQ_INIT(&uvm.page_inactive_obj);
233 simple_lock_init(&uvm.pageqlock);
234 simple_lock_init(&uvm.fpageqlock);
235
236 /*
237 * step 2: init the <obj,offset> => <page> hash table. for now
238 * we just have one bucket (the bootstrap bucket). later on we
239 * will allocate new buckets as we dynamically resize the hash table.
240 */
241
242 uvm.page_nhash = 1; /* 1 bucket */
243 uvm.page_hashmask = 0; /* mask for hash function */
244 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
245 TAILQ_INIT(uvm.page_hash); /* init hash table */
246 simple_lock_init(&uvm.hashlock); /* init hash table lock */
247
248 /*
249 * step 3: allocate vm_page structures.
250 */
251
252 /*
253 * sanity check:
254 * before calling this function the MD code is expected to register
255 * some free RAM with the uvm_page_physload() function. our job
256 * now is to allocate vm_page structures for this memory.
257 */
258
259 if (vm_nphysseg == 0)
260 panic("vm_page_bootstrap: no memory pre-allocated");
261
262 /*
263 * first calculate the number of free pages...
264 *
265 * note that we use start/end rather than avail_start/avail_end.
266 * this allows us to allocate extra vm_page structures in case we
267 * want to return some memory to the pool after booting.
268 */
269
270 freepages = 0;
271 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
272 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
273
274 /*
275 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
276 * use. for each page of memory we use we need a vm_page structure.
277 * thus, the total number of pages we can use is the total size of
278 * the memory divided by the PAGE_SIZE plus the size of the vm_page
279 * structure. we add one to freepages as a fudge factor to avoid
280 * truncation errors (since we can only allocate in terms of whole
281 * pages).
282 */
283
284 pagecount = ((freepages + 1) << PAGE_SHIFT) /
285 (PAGE_SIZE + sizeof(struct vm_page));
286 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
287 sizeof(struct vm_page));
288 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
289
290 /*
291 * step 4: init the vm_page structures and put them in the correct
292 * place...
293 */
294
295 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
296
297 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
298 if (n > pagecount) {
299 printf("uvm_page_init: lost %ld page(s) in init\n",
300 (long)(n - pagecount));
301 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
302 /* n = pagecount; */
303 }
304 /* set up page array pointers */
305 vm_physmem[lcv].pgs = pagearray;
306 pagearray += n;
307 pagecount -= n;
308 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
309
310 /* init and free vm_pages (we've already zeroed them) */
311 paddr = ptoa(vm_physmem[lcv].start);
312 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
313 vm_physmem[lcv].pgs[i].phys_addr = paddr;
314 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
315 atop(paddr) <= vm_physmem[lcv].avail_end) {
316 uvmexp.npages++;
317 /* add page to free pool */
318 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
319 }
320 }
321 }
322 /*
323 * step 5: pass up the values of virtual_space_start and
324 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
325 * layers of the VM.
326 */
327
328 *kvm_startp = round_page(virtual_space_start);
329 *kvm_endp = trunc_page(virtual_space_end);
330
331 /*
332 * step 6: init pagedaemon lock
333 */
334
335 simple_lock_init(&uvm.pagedaemon_lock);
336
337 /*
338 * step 7: init reserve thresholds
339 * XXXCDC - values may need adjusting
340 */
341 uvmexp.reserve_pagedaemon = 1;
342 uvmexp.reserve_kernel = 5;
343
344 /*
345 * step 8: determine if we should zero pages in the idle
346 * loop.
347 *
348 * XXXJRT - might consider zero'ing up to the target *now*,
349 * but that could take an awfully long time if you
350 * have a lot of memory.
351 */
352 uvm.page_idle_zero = vm_page_zero_enable;
353
354 /*
355 * done!
356 */
357
358 uvm.page_init_done = TRUE;
359 }
360
361 /*
362 * uvm_setpagesize: set the page size
363 *
364 * => sets page_shift and page_mask from uvmexp.pagesize.
365 * => XXXCDC: move global vars.
366 */
367
368 void
369 uvm_setpagesize()
370 {
371 if (uvmexp.pagesize == 0)
372 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
373 uvmexp.pagemask = uvmexp.pagesize - 1;
374 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
375 panic("uvm_setpagesize: page size not a power of two");
376 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
377 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
378 break;
379 }
380
381 /*
382 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
383 */
384
385 vaddr_t
386 uvm_pageboot_alloc(size)
387 vsize_t size;
388 {
389 #if defined(PMAP_STEAL_MEMORY)
390 vaddr_t addr;
391
392 /*
393 * defer bootstrap allocation to MD code (it may want to allocate
394 * from a direct-mapped segment). pmap_steal_memory should round
395 * off virtual_space_start/virtual_space_end.
396 */
397
398 addr = pmap_steal_memory(size, &virtual_space_start,
399 &virtual_space_end);
400
401 return(addr);
402
403 #else /* !PMAP_STEAL_MEMORY */
404
405 static boolean_t initialized = FALSE;
406 vaddr_t addr, vaddr;
407 paddr_t paddr;
408
409 /* round to page size */
410 size = round_page(size);
411
412 /*
413 * on first call to this function, initialize ourselves.
414 */
415 if (initialized == FALSE) {
416 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
417
418 /* round it the way we like it */
419 virtual_space_start = round_page(virtual_space_start);
420 virtual_space_end = trunc_page(virtual_space_end);
421
422 initialized = TRUE;
423 }
424
425 /*
426 * allocate virtual memory for this request
427 */
428 if (virtual_space_start == virtual_space_end ||
429 (virtual_space_end - virtual_space_start) < size)
430 panic("uvm_pageboot_alloc: out of virtual space");
431
432 addr = virtual_space_start;
433
434 #ifdef PMAP_GROWKERNEL
435 /*
436 * If the kernel pmap can't map the requested space,
437 * then allocate more resources for it.
438 */
439 if (uvm_maxkaddr < (addr + size)) {
440 uvm_maxkaddr = pmap_growkernel(addr + size);
441 if (uvm_maxkaddr < (addr + size))
442 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
443 }
444 #endif
445
446 virtual_space_start += size;
447
448 /*
449 * allocate and mapin physical pages to back new virtual pages
450 */
451
452 for (vaddr = round_page(addr) ; vaddr < addr + size ;
453 vaddr += PAGE_SIZE) {
454
455 if (!uvm_page_physget(&paddr))
456 panic("uvm_pageboot_alloc: out of memory");
457
458 /*
459 * Note this memory is no longer managed, so using
460 * pmap_kenter is safe.
461 */
462 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
463 }
464 return(addr);
465 #endif /* PMAP_STEAL_MEMORY */
466 }
467
468 #if !defined(PMAP_STEAL_MEMORY)
469 /*
470 * uvm_page_physget: "steal" one page from the vm_physmem structure.
471 *
472 * => attempt to allocate it off the end of a segment in which the "avail"
473 * values match the start/end values. if we can't do that, then we
474 * will advance both values (making them equal, and removing some
475 * vm_page structures from the non-avail area).
476 * => return false if out of memory.
477 */
478
479 /* subroutine: try to allocate from memory chunks on the specified freelist */
480 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
481
482 static boolean_t
483 uvm_page_physget_freelist(paddrp, freelist)
484 paddr_t *paddrp;
485 int freelist;
486 {
487 int lcv, x;
488
489 /* pass 1: try allocating from a matching end */
490 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
491 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
492 #else
493 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
494 #endif
495 {
496
497 if (uvm.page_init_done == TRUE)
498 panic("vm_page_physget: called _after_ bootstrap");
499
500 if (vm_physmem[lcv].free_list != freelist)
501 continue;
502
503 /* try from front */
504 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
505 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
506 *paddrp = ptoa(vm_physmem[lcv].avail_start);
507 vm_physmem[lcv].avail_start++;
508 vm_physmem[lcv].start++;
509 /* nothing left? nuke it */
510 if (vm_physmem[lcv].avail_start ==
511 vm_physmem[lcv].end) {
512 if (vm_nphysseg == 1)
513 panic("vm_page_physget: out of memory!");
514 vm_nphysseg--;
515 for (x = lcv ; x < vm_nphysseg ; x++)
516 /* structure copy */
517 vm_physmem[x] = vm_physmem[x+1];
518 }
519 return (TRUE);
520 }
521
522 /* try from rear */
523 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
524 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
525 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
526 vm_physmem[lcv].avail_end--;
527 vm_physmem[lcv].end--;
528 /* nothing left? nuke it */
529 if (vm_physmem[lcv].avail_end ==
530 vm_physmem[lcv].start) {
531 if (vm_nphysseg == 1)
532 panic("vm_page_physget: out of memory!");
533 vm_nphysseg--;
534 for (x = lcv ; x < vm_nphysseg ; x++)
535 /* structure copy */
536 vm_physmem[x] = vm_physmem[x+1];
537 }
538 return (TRUE);
539 }
540 }
541
542 /* pass2: forget about matching ends, just allocate something */
543 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
544 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
545 #else
546 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
547 #endif
548 {
549
550 /* any room in this bank? */
551 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
552 continue; /* nope */
553
554 *paddrp = ptoa(vm_physmem[lcv].avail_start);
555 vm_physmem[lcv].avail_start++;
556 /* truncate! */
557 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
558
559 /* nothing left? nuke it */
560 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
561 if (vm_nphysseg == 1)
562 panic("vm_page_physget: out of memory!");
563 vm_nphysseg--;
564 for (x = lcv ; x < vm_nphysseg ; x++)
565 /* structure copy */
566 vm_physmem[x] = vm_physmem[x+1];
567 }
568 return (TRUE);
569 }
570
571 return (FALSE); /* whoops! */
572 }
573
574 boolean_t
575 uvm_page_physget(paddrp)
576 paddr_t *paddrp;
577 {
578 int i;
579
580 /* try in the order of freelist preference */
581 for (i = 0; i < VM_NFREELIST; i++)
582 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
583 return (TRUE);
584 return (FALSE);
585 }
586 #endif /* PMAP_STEAL_MEMORY */
587
588 /*
589 * uvm_page_physload: load physical memory into VM system
590 *
591 * => all args are PFs
592 * => all pages in start/end get vm_page structures
593 * => areas marked by avail_start/avail_end get added to the free page pool
594 * => we are limited to VM_PHYSSEG_MAX physical memory segments
595 */
596
597 void
598 uvm_page_physload(start, end, avail_start, avail_end, free_list)
599 paddr_t start, end, avail_start, avail_end;
600 int free_list;
601 {
602 int preload, lcv;
603 psize_t npages;
604 struct vm_page *pgs;
605 struct vm_physseg *ps;
606
607 if (uvmexp.pagesize == 0)
608 panic("vm_page_physload: page size not set!");
609
610 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
611 panic("uvm_page_physload: bad free list %d\n", free_list);
612
613 if (start >= end)
614 panic("uvm_page_physload: start >= end");
615
616 /*
617 * do we have room?
618 */
619 if (vm_nphysseg == VM_PHYSSEG_MAX) {
620 printf("vm_page_physload: unable to load physical memory "
621 "segment\n");
622 printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
623 VM_PHYSSEG_MAX, start, end);
624 return;
625 }
626
627 /*
628 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
629 * called yet, so malloc is not available).
630 */
631 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
632 if (vm_physmem[lcv].pgs)
633 break;
634 }
635 preload = (lcv == vm_nphysseg);
636
637 /*
638 * if VM is already running, attempt to malloc() vm_page structures
639 */
640 if (!preload) {
641 #if defined(VM_PHYSSEG_NOADD)
642 panic("vm_page_physload: tried to add RAM after vm_mem_init");
643 #else
644 /* XXXCDC: need some sort of lockout for this case */
645 paddr_t paddr;
646 npages = end - start; /* # of pages */
647 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
648 M_VMPAGE, M_NOWAIT);
649 if (pgs == NULL) {
650 printf("vm_page_physload: can not malloc vm_page "
651 "structs for segment\n");
652 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
653 return;
654 }
655 /* zero data, init phys_addr and free_list, and free pages */
656 memset(pgs, 0, sizeof(struct vm_page) * npages);
657 for (lcv = 0, paddr = ptoa(start) ;
658 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
659 pgs[lcv].phys_addr = paddr;
660 pgs[lcv].free_list = free_list;
661 if (atop(paddr) >= avail_start &&
662 atop(paddr) <= avail_end)
663 uvm_pagefree(&pgs[lcv]);
664 }
665 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
666 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
667 #endif
668 } else {
669
670 /* gcc complains if these don't get init'd */
671 pgs = NULL;
672 npages = 0;
673
674 }
675
676 /*
677 * now insert us in the proper place in vm_physmem[]
678 */
679
680 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
681
682 /* random: put it at the end (easy!) */
683 ps = &vm_physmem[vm_nphysseg];
684
685 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
686
687 {
688 int x;
689 /* sort by address for binary search */
690 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
691 if (start < vm_physmem[lcv].start)
692 break;
693 ps = &vm_physmem[lcv];
694 /* move back other entries, if necessary ... */
695 for (x = vm_nphysseg ; x > lcv ; x--)
696 /* structure copy */
697 vm_physmem[x] = vm_physmem[x - 1];
698 }
699
700 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
701
702 {
703 int x;
704 /* sort by largest segment first */
705 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
706 if ((end - start) >
707 (vm_physmem[lcv].end - vm_physmem[lcv].start))
708 break;
709 ps = &vm_physmem[lcv];
710 /* move back other entries, if necessary ... */
711 for (x = vm_nphysseg ; x > lcv ; x--)
712 /* structure copy */
713 vm_physmem[x] = vm_physmem[x - 1];
714 }
715
716 #else
717
718 panic("vm_page_physload: unknown physseg strategy selected!");
719
720 #endif
721
722 ps->start = start;
723 ps->end = end;
724 ps->avail_start = avail_start;
725 ps->avail_end = avail_end;
726 if (preload) {
727 ps->pgs = NULL;
728 } else {
729 ps->pgs = pgs;
730 ps->lastpg = pgs + npages - 1;
731 }
732 ps->free_list = free_list;
733 vm_nphysseg++;
734
735 /*
736 * done!
737 */
738
739 if (!preload)
740 uvm_page_rehash();
741
742 return;
743 }
744
745 /*
746 * uvm_page_rehash: reallocate hash table based on number of free pages.
747 */
748
749 void
750 uvm_page_rehash()
751 {
752 int freepages, lcv, bucketcount, s, oldcount;
753 struct pglist *newbuckets, *oldbuckets;
754 struct vm_page *pg;
755 size_t newsize, oldsize;
756
757 /*
758 * compute number of pages that can go in the free pool
759 */
760
761 freepages = 0;
762 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
763 freepages +=
764 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
765
766 /*
767 * compute number of buckets needed for this number of pages
768 */
769
770 bucketcount = 1;
771 while (bucketcount < freepages)
772 bucketcount = bucketcount * 2;
773
774 /*
775 * compute the size of the current table and new table.
776 */
777
778 oldbuckets = uvm.page_hash;
779 oldcount = uvm.page_nhash;
780 oldsize = round_page(sizeof(struct pglist) * oldcount);
781 newsize = round_page(sizeof(struct pglist) * bucketcount);
782
783 /*
784 * allocate the new buckets
785 */
786
787 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
788 if (newbuckets == NULL) {
789 printf("uvm_page_physrehash: WARNING: could not grow page "
790 "hash table\n");
791 return;
792 }
793 for (lcv = 0 ; lcv < bucketcount ; lcv++)
794 TAILQ_INIT(&newbuckets[lcv]);
795
796 /*
797 * now replace the old buckets with the new ones and rehash everything
798 */
799
800 s = splimp();
801 simple_lock(&uvm.hashlock);
802 uvm.page_hash = newbuckets;
803 uvm.page_nhash = bucketcount;
804 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
805
806 /* ... and rehash */
807 for (lcv = 0 ; lcv < oldcount ; lcv++) {
808 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
809 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
810 TAILQ_INSERT_TAIL(
811 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
812 pg, hashq);
813 }
814 }
815 simple_unlock(&uvm.hashlock);
816 splx(s);
817
818 /*
819 * free old bucket array if is not the boot-time table
820 */
821
822 if (oldbuckets != &uvm_bootbucket)
823 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
824
825 /*
826 * done
827 */
828 return;
829 }
830
831
832 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
833
834 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
835
836 /* call from DDB */
837 void
838 uvm_page_physdump()
839 {
840 int lcv;
841
842 printf("rehash: physical memory config [segs=%d of %d]:\n",
843 vm_nphysseg, VM_PHYSSEG_MAX);
844 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
845 printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
846 vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
847 vm_physmem[lcv].avail_end);
848 printf("STRATEGY = ");
849 switch (VM_PHYSSEG_STRAT) {
850 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
851 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
852 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
853 default: printf("<<UNKNOWN>>!!!!\n");
854 }
855 printf("number of buckets = %d\n", uvm.page_nhash);
856 }
857 #endif
858
859 /*
860 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
861 *
862 * => return null if no pages free
863 * => wake up pagedaemon if number of free pages drops below low water mark
864 * => if obj != NULL, obj must be locked (to put in hash)
865 * => if anon != NULL, anon must be locked (to put in anon)
866 * => only one of obj or anon can be non-null
867 * => caller must activate/deactivate page if it is not wired.
868 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
869 * => policy decision: it is more important to pull a page off of the
870 * appropriate priority free list than it is to get a zero'd or
871 * unknown contents page. This is because we live with the
872 * consequences of a bad free list decision for the entire
873 * lifetime of the page, e.g. if the page comes from memory that
874 * is slower to access.
875 */
876
877 struct vm_page *
878 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
879 struct uvm_object *obj;
880 voff_t off;
881 int flags;
882 struct vm_anon *anon;
883 int strat, free_list;
884 {
885 int lcv, try1, try2, s, zeroit = 0;
886 struct vm_page *pg;
887 struct pglist *freeq;
888 struct pgfreelist *pgfl;
889 boolean_t use_reserve;
890
891 #ifdef DIAGNOSTIC
892 /* sanity check */
893 if (obj && anon)
894 panic("uvm_pagealloc: obj and anon != NULL");
895 #endif
896
897 s = uvm_lock_fpageq(); /* lock free page queue */
898
899 /*
900 * check to see if we need to generate some free pages waking
901 * the pagedaemon.
902 */
903
904 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
905 uvmexp.inactive < uvmexp.inactarg))
906 wakeup(&uvm.pagedaemon);
907
908 /*
909 * fail if any of these conditions is true:
910 * [1] there really are no free pages, or
911 * [2] only kernel "reserved" pages remain and
912 * the page isn't being allocated to a kernel object.
913 * [3] only pagedaemon "reserved" pages remain and
914 * the requestor isn't the pagedaemon.
915 */
916
917 use_reserve = (flags & UVM_PGA_USERESERVE) ||
918 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
919 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
920 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
921 !(use_reserve && curproc == uvm.pagedaemon_proc)))
922 goto fail;
923
924 #if PGFL_NQUEUES != 2
925 #error uvm_pagealloc_strat needs to be updated
926 #endif
927
928 /*
929 * If we want a zero'd page, try the ZEROS queue first, otherwise
930 * we try the UNKNOWN queue first.
931 */
932 if (flags & UVM_PGA_ZERO) {
933 try1 = PGFL_ZEROS;
934 try2 = PGFL_UNKNOWN;
935 } else {
936 try1 = PGFL_UNKNOWN;
937 try2 = PGFL_ZEROS;
938 }
939
940 again:
941 switch (strat) {
942 case UVM_PGA_STRAT_NORMAL:
943 /* Check all freelists in descending priority order. */
944 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
945 pgfl = &uvm.page_free[lcv];
946 if ((pg = TAILQ_FIRST((freeq =
947 &pgfl->pgfl_queues[try1]))) != NULL ||
948 (pg = TAILQ_FIRST((freeq =
949 &pgfl->pgfl_queues[try2]))) != NULL)
950 goto gotit;
951 }
952
953 /* No pages free! */
954 goto fail;
955
956 case UVM_PGA_STRAT_ONLY:
957 case UVM_PGA_STRAT_FALLBACK:
958 /* Attempt to allocate from the specified free list. */
959 #ifdef DIAGNOSTIC
960 if (free_list >= VM_NFREELIST || free_list < 0)
961 panic("uvm_pagealloc_strat: bad free list %d",
962 free_list);
963 #endif
964 pgfl = &uvm.page_free[free_list];
965 if ((pg = TAILQ_FIRST((freeq =
966 &pgfl->pgfl_queues[try1]))) != NULL ||
967 (pg = TAILQ_FIRST((freeq =
968 &pgfl->pgfl_queues[try2]))) != NULL)
969 goto gotit;
970
971 /* Fall back, if possible. */
972 if (strat == UVM_PGA_STRAT_FALLBACK) {
973 strat = UVM_PGA_STRAT_NORMAL;
974 goto again;
975 }
976
977 /* No pages free! */
978 goto fail;
979
980 default:
981 panic("uvm_pagealloc_strat: bad strat %d", strat);
982 /* NOTREACHED */
983 }
984
985 gotit:
986 TAILQ_REMOVE(freeq, pg, pageq);
987 uvmexp.free--;
988
989 /* update zero'd page count */
990 if (pg->flags & PG_ZERO)
991 uvmexp.zeropages--;
992
993 /*
994 * update allocation statistics and remember if we have to
995 * zero the page
996 */
997 if (flags & UVM_PGA_ZERO) {
998 if (pg->flags & PG_ZERO) {
999 uvmexp.pga_zerohit++;
1000 zeroit = 0;
1001 } else {
1002 uvmexp.pga_zeromiss++;
1003 zeroit = 1;
1004 }
1005 }
1006
1007 uvm_unlock_fpageq(s); /* unlock free page queue */
1008
1009 pg->offset = off;
1010 pg->uobject = obj;
1011 pg->uanon = anon;
1012 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1013 pg->version++;
1014 pg->wire_count = 0;
1015 pg->loan_count = 0;
1016 if (anon) {
1017 anon->u.an_page = pg;
1018 pg->pqflags = PQ_ANON;
1019 } else {
1020 if (obj)
1021 uvm_pageinsert(pg);
1022 pg->pqflags = 0;
1023 }
1024 #if defined(UVM_PAGE_TRKOWN)
1025 pg->owner_tag = NULL;
1026 #endif
1027 UVM_PAGE_OWN(pg, "new alloc");
1028
1029 if (flags & UVM_PGA_ZERO) {
1030 /*
1031 * A zero'd page is not clean. If we got a page not already
1032 * zero'd, then we have to zero it ourselves.
1033 */
1034 pg->flags &= ~PG_CLEAN;
1035 if (zeroit)
1036 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1037 }
1038
1039 return(pg);
1040
1041 fail:
1042 uvm_unlock_fpageq(s);
1043 return (NULL);
1044 }
1045
1046 /*
1047 * uvm_pagerealloc: reallocate a page from one object to another
1048 *
1049 * => both objects must be locked
1050 */
1051
1052 void
1053 uvm_pagerealloc(pg, newobj, newoff)
1054 struct vm_page *pg;
1055 struct uvm_object *newobj;
1056 voff_t newoff;
1057 {
1058 /*
1059 * remove it from the old object
1060 */
1061
1062 if (pg->uobject) {
1063 uvm_pageremove(pg);
1064 }
1065
1066 /*
1067 * put it in the new object
1068 */
1069
1070 if (newobj) {
1071 pg->uobject = newobj;
1072 pg->offset = newoff;
1073 pg->version++;
1074 uvm_pageinsert(pg);
1075 }
1076
1077 return;
1078 }
1079
1080
1081 /*
1082 * uvm_pagefree: free page
1083 *
1084 * => erase page's identity (i.e. remove from hash/object)
1085 * => put page on free list
1086 * => caller must lock owning object (either anon or uvm_object)
1087 * => caller must lock page queues
1088 * => assumes all valid mappings of pg are gone
1089 */
1090
1091 void uvm_pagefree(pg)
1092
1093 struct vm_page *pg;
1094
1095 {
1096 int s;
1097 int saved_loan_count = pg->loan_count;
1098
1099 /*
1100 * if the page was an object page (and thus "TABLED"), remove it
1101 * from the object.
1102 */
1103
1104 if (pg->flags & PG_TABLED) {
1105
1106 /*
1107 * if the object page is on loan we are going to drop ownership.
1108 * it is possible that an anon will take over as owner for this
1109 * page later on. the anon will want a !PG_CLEAN page so that
1110 * it knows it needs to allocate swap if it wants to page the
1111 * page out.
1112 */
1113
1114 if (saved_loan_count)
1115 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1116
1117 uvm_pageremove(pg);
1118
1119 /*
1120 * if our page was on loan, then we just lost control over it
1121 * (in fact, if it was loaned to an anon, the anon may have
1122 * already taken over ownership of the page by now and thus
1123 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1124 * return (when the last loan is dropped, then the page can be
1125 * freed by whatever was holding the last loan).
1126 */
1127 if (saved_loan_count)
1128 return;
1129
1130 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1131
1132 /*
1133 * if our page is owned by an anon and is loaned out to the
1134 * kernel then we just want to drop ownership and return.
1135 * the kernel must free the page when all its loans clear ...
1136 * note that the kernel can't change the loan status of our
1137 * page as long as we are holding PQ lock.
1138 */
1139 pg->pqflags &= ~PQ_ANON;
1140 pg->uanon = NULL;
1141 return;
1142 }
1143
1144 #ifdef DIAGNOSTIC
1145 if (saved_loan_count) {
1146 printf("uvm_pagefree: warning: freeing page with a loan "
1147 "count of %d\n", saved_loan_count);
1148 panic("uvm_pagefree: loan count");
1149 }
1150 #endif
1151
1152
1153 /*
1154 * now remove the page from the queues
1155 */
1156
1157 if (pg->pqflags & PQ_ACTIVE) {
1158 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1159 pg->pqflags &= ~PQ_ACTIVE;
1160 uvmexp.active--;
1161 }
1162 if (pg->pqflags & PQ_INACTIVE) {
1163 if (pg->pqflags & PQ_SWAPBACKED)
1164 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1165 else
1166 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1167 pg->pqflags &= ~PQ_INACTIVE;
1168 uvmexp.inactive--;
1169 }
1170
1171 /*
1172 * if the page was wired, unwire it now.
1173 */
1174 if (pg->wire_count) {
1175 pg->wire_count = 0;
1176 uvmexp.wired--;
1177 }
1178
1179 /*
1180 * and put on free queue
1181 */
1182
1183 pg->flags &= ~PG_ZERO;
1184
1185 s = uvm_lock_fpageq();
1186 TAILQ_INSERT_TAIL(&uvm.page_free[
1187 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1188 pg->pqflags = PQ_FREE;
1189 #ifdef DEBUG
1190 pg->uobject = (void *)0xdeadbeef;
1191 pg->offset = 0xdeadbeef;
1192 pg->uanon = (void *)0xdeadbeef;
1193 #endif
1194 uvmexp.free++;
1195
1196 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1197 uvm.page_idle_zero = vm_page_zero_enable;
1198
1199 uvm_unlock_fpageq(s);
1200 }
1201
1202 #if defined(UVM_PAGE_TRKOWN)
1203 /*
1204 * uvm_page_own: set or release page ownership
1205 *
1206 * => this is a debugging function that keeps track of who sets PG_BUSY
1207 * and where they do it. it can be used to track down problems
1208 * such a process setting "PG_BUSY" and never releasing it.
1209 * => page's object [if any] must be locked
1210 * => if "tag" is NULL then we are releasing page ownership
1211 */
1212 void
1213 uvm_page_own(pg, tag)
1214 struct vm_page *pg;
1215 char *tag;
1216 {
1217 /* gain ownership? */
1218 if (tag) {
1219 if (pg->owner_tag) {
1220 printf("uvm_page_own: page %p already owned "
1221 "by proc %d [%s]\n", pg,
1222 pg->owner, pg->owner_tag);
1223 panic("uvm_page_own");
1224 }
1225 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1226 pg->owner_tag = tag;
1227 return;
1228 }
1229
1230 /* drop ownership */
1231 if (pg->owner_tag == NULL) {
1232 printf("uvm_page_own: dropping ownership of an non-owned "
1233 "page (%p)\n", pg);
1234 panic("uvm_page_own");
1235 }
1236 pg->owner_tag = NULL;
1237 return;
1238 }
1239 #endif
1240
1241 /*
1242 * uvm_pageidlezero: zero free pages while the system is idle.
1243 *
1244 * => we do at least one iteration per call, if we are below the target.
1245 * => we loop until we either reach the target or whichqs indicates that
1246 * there is a process ready to run.
1247 */
1248 void
1249 uvm_pageidlezero()
1250 {
1251 struct vm_page *pg;
1252 struct pgfreelist *pgfl;
1253 int free_list, s;
1254
1255 do {
1256 s = uvm_lock_fpageq();
1257
1258 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1259 uvm.page_idle_zero = FALSE;
1260 uvm_unlock_fpageq(s);
1261 return;
1262 }
1263
1264 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1265 pgfl = &uvm.page_free[free_list];
1266 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1267 PGFL_UNKNOWN])) != NULL)
1268 break;
1269 }
1270
1271 if (pg == NULL) {
1272 /*
1273 * No non-zero'd pages; don't bother trying again
1274 * until we know we have non-zero'd pages free.
1275 */
1276 uvm.page_idle_zero = FALSE;
1277 uvm_unlock_fpageq(s);
1278 return;
1279 }
1280
1281 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1282 uvmexp.free--;
1283 uvm_unlock_fpageq(s);
1284
1285 #ifdef PMAP_PAGEIDLEZERO
1286 PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg));
1287 #else
1288 /*
1289 * XXX This will toast the cache unless the pmap_zero_page()
1290 * XXX implementation does uncached access.
1291 */
1292 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1293 #endif
1294 pg->flags |= PG_ZERO;
1295
1296 s = uvm_lock_fpageq();
1297 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1298 uvmexp.free++;
1299 uvmexp.zeropages++;
1300 uvm_unlock_fpageq(s);
1301 } while (sched_whichqs == 0);
1302 }
1303