uvm_page.c revision 1.37 1 /* $NetBSD: uvm_page.c,v 1.37 2000/06/09 04:43:19 soda Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/sched.h>
77
78 #include <vm/vm.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_kern.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101
102 boolean_t vm_page_zero_enable = TRUE;
103
104 /*
105 * local variables
106 */
107
108 /*
109 * these variables record the values returned by vm_page_bootstrap,
110 * for debugging purposes. The implementation of uvm_pageboot_alloc
111 * and pmap_startup here also uses them internally.
112 */
113
114 static vaddr_t virtual_space_start;
115 static vaddr_t virtual_space_end;
116
117 /*
118 * we use a hash table with only one bucket during bootup. we will
119 * later rehash (resize) the hash table once the allocator is ready.
120 * we static allocate the one bootstrap bucket below...
121 */
122
123 static struct pglist uvm_bootbucket;
124
125 /*
126 * local prototypes
127 */
128
129 static void uvm_pageinsert __P((struct vm_page *));
130
131
132 /*
133 * inline functions
134 */
135
136 /*
137 * uvm_pageinsert: insert a page in the object and the hash table
138 *
139 * => caller must lock object
140 * => caller must lock page queues
141 * => call should have already set pg's object and offset pointers
142 * and bumped the version counter
143 */
144
145 __inline static void
146 uvm_pageinsert(pg)
147 struct vm_page *pg;
148 {
149 struct pglist *buck;
150 int s;
151
152 #ifdef DIAGNOSTIC
153 if (pg->flags & PG_TABLED)
154 panic("uvm_pageinsert: already inserted");
155 #endif
156
157 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
158 s = splimp();
159 simple_lock(&uvm.hashlock);
160 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
161 simple_unlock(&uvm.hashlock);
162 splx(s);
163
164 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
165 pg->flags |= PG_TABLED;
166 pg->uobject->uo_npages++;
167
168 }
169
170 /*
171 * uvm_page_remove: remove page from object and hash
172 *
173 * => caller must lock object
174 * => caller must lock page queues
175 */
176
177 void __inline
178 uvm_pageremove(pg)
179 struct vm_page *pg;
180 {
181 struct pglist *buck;
182 int s;
183
184 #ifdef DIAGNOSTIC
185 if ((pg->flags & (PG_FAULTING)) != 0)
186 panic("uvm_pageremove: page is faulting");
187 #endif
188
189 if ((pg->flags & PG_TABLED) == 0)
190 return; /* XXX: log */
191
192 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
193 s = splimp();
194 simple_lock(&uvm.hashlock);
195 TAILQ_REMOVE(buck, pg, hashq);
196 simple_unlock(&uvm.hashlock);
197 splx(s);
198
199 /* object should be locked */
200 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
201
202 pg->flags &= ~PG_TABLED;
203 pg->uobject->uo_npages--;
204 pg->uobject = NULL;
205 pg->version++;
206
207 }
208
209 /*
210 * uvm_page_init: init the page system. called from uvm_init().
211 *
212 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
213 */
214
215 void
216 uvm_page_init(kvm_startp, kvm_endp)
217 vaddr_t *kvm_startp, *kvm_endp;
218 {
219 vsize_t freepages, pagecount, n;
220 vm_page_t pagearray;
221 int lcv, i;
222 paddr_t paddr;
223
224
225 /*
226 * step 1: init the page queues and page queue locks
227 */
228 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
229 for (i = 0; i < PGFL_NQUEUES; i++)
230 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
231 }
232 TAILQ_INIT(&uvm.page_active);
233 TAILQ_INIT(&uvm.page_inactive_swp);
234 TAILQ_INIT(&uvm.page_inactive_obj);
235 simple_lock_init(&uvm.pageqlock);
236 simple_lock_init(&uvm.fpageqlock);
237
238 /*
239 * step 2: init the <obj,offset> => <page> hash table. for now
240 * we just have one bucket (the bootstrap bucket). later on we
241 * will allocate new buckets as we dynamically resize the hash table.
242 */
243
244 uvm.page_nhash = 1; /* 1 bucket */
245 uvm.page_hashmask = 0; /* mask for hash function */
246 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
247 TAILQ_INIT(uvm.page_hash); /* init hash table */
248 simple_lock_init(&uvm.hashlock); /* init hash table lock */
249
250 /*
251 * step 3: allocate vm_page structures.
252 */
253
254 /*
255 * sanity check:
256 * before calling this function the MD code is expected to register
257 * some free RAM with the uvm_page_physload() function. our job
258 * now is to allocate vm_page structures for this memory.
259 */
260
261 if (vm_nphysseg == 0)
262 panic("vm_page_bootstrap: no memory pre-allocated");
263
264 /*
265 * first calculate the number of free pages...
266 *
267 * note that we use start/end rather than avail_start/avail_end.
268 * this allows us to allocate extra vm_page structures in case we
269 * want to return some memory to the pool after booting.
270 */
271
272 freepages = 0;
273 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
274 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
275
276 /*
277 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
278 * use. for each page of memory we use we need a vm_page structure.
279 * thus, the total number of pages we can use is the total size of
280 * the memory divided by the PAGE_SIZE plus the size of the vm_page
281 * structure. we add one to freepages as a fudge factor to avoid
282 * truncation errors (since we can only allocate in terms of whole
283 * pages).
284 */
285
286 pagecount = ((freepages + 1) << PAGE_SHIFT) /
287 (PAGE_SIZE + sizeof(struct vm_page));
288 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
289 sizeof(struct vm_page));
290 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
291
292 /*
293 * step 4: init the vm_page structures and put them in the correct
294 * place...
295 */
296
297 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
298
299 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
300 if (n > pagecount) {
301 printf("uvm_page_init: lost %ld page(s) in init\n",
302 (long)(n - pagecount));
303 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
304 /* n = pagecount; */
305 }
306 /* set up page array pointers */
307 vm_physmem[lcv].pgs = pagearray;
308 pagearray += n;
309 pagecount -= n;
310 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
311
312 /* init and free vm_pages (we've already zeroed them) */
313 paddr = ptoa(vm_physmem[lcv].start);
314 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
315 vm_physmem[lcv].pgs[i].phys_addr = paddr;
316 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
317 atop(paddr) <= vm_physmem[lcv].avail_end) {
318 uvmexp.npages++;
319 /* add page to free pool */
320 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
321 }
322 }
323 }
324 /*
325 * step 5: pass up the values of virtual_space_start and
326 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
327 * layers of the VM.
328 */
329
330 *kvm_startp = round_page(virtual_space_start);
331 *kvm_endp = trunc_page(virtual_space_end);
332
333 /*
334 * step 6: init pagedaemon lock
335 */
336
337 simple_lock_init(&uvm.pagedaemon_lock);
338
339 /*
340 * step 7: init reserve thresholds
341 * XXXCDC - values may need adjusting
342 */
343 uvmexp.reserve_pagedaemon = 1;
344 uvmexp.reserve_kernel = 5;
345
346 /*
347 * step 8: determine if we should zero pages in the idle
348 * loop.
349 *
350 * XXXJRT - might consider zero'ing up to the target *now*,
351 * but that could take an awfully long time if you
352 * have a lot of memory.
353 */
354 uvm.page_idle_zero = vm_page_zero_enable;
355
356 /*
357 * done!
358 */
359
360 uvm.page_init_done = TRUE;
361 }
362
363 /*
364 * uvm_setpagesize: set the page size
365 *
366 * => sets page_shift and page_mask from uvmexp.pagesize.
367 * => XXXCDC: move global vars.
368 */
369
370 void
371 uvm_setpagesize()
372 {
373 if (uvmexp.pagesize == 0)
374 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
375 uvmexp.pagemask = uvmexp.pagesize - 1;
376 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
377 panic("uvm_setpagesize: page size not a power of two");
378 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
379 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
380 break;
381 }
382
383 /*
384 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
385 */
386
387 vaddr_t
388 uvm_pageboot_alloc(size)
389 vsize_t size;
390 {
391 #if defined(PMAP_STEAL_MEMORY)
392 vaddr_t addr;
393
394 /*
395 * defer bootstrap allocation to MD code (it may want to allocate
396 * from a direct-mapped segment). pmap_steal_memory should round
397 * off virtual_space_start/virtual_space_end.
398 */
399
400 addr = pmap_steal_memory(size, &virtual_space_start,
401 &virtual_space_end);
402
403 return(addr);
404
405 #else /* !PMAP_STEAL_MEMORY */
406
407 static boolean_t initialized = FALSE;
408 vaddr_t addr, vaddr;
409 paddr_t paddr;
410
411 /* round to page size */
412 size = round_page(size);
413
414 /*
415 * on first call to this function, initialize ourselves.
416 */
417 if (initialized == FALSE) {
418 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
419
420 /* round it the way we like it */
421 virtual_space_start = round_page(virtual_space_start);
422 virtual_space_end = trunc_page(virtual_space_end);
423
424 initialized = TRUE;
425 }
426
427 /*
428 * allocate virtual memory for this request
429 */
430 if (virtual_space_start == virtual_space_end ||
431 (virtual_space_end - virtual_space_start) < size)
432 panic("uvm_pageboot_alloc: out of virtual space");
433
434 addr = virtual_space_start;
435
436 #ifdef PMAP_GROWKERNEL
437 /*
438 * If the kernel pmap can't map the requested space,
439 * then allocate more resources for it.
440 */
441 if (uvm_maxkaddr < (addr + size)) {
442 uvm_maxkaddr = pmap_growkernel(addr + size);
443 if (uvm_maxkaddr < (addr + size))
444 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
445 }
446 #endif
447
448 virtual_space_start += size;
449
450 /*
451 * allocate and mapin physical pages to back new virtual pages
452 */
453
454 for (vaddr = round_page(addr) ; vaddr < addr + size ;
455 vaddr += PAGE_SIZE) {
456
457 if (!uvm_page_physget(&paddr))
458 panic("uvm_pageboot_alloc: out of memory");
459
460 /*
461 * Note this memory is no longer managed, so using
462 * pmap_kenter is safe.
463 */
464 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
465 }
466 return(addr);
467 #endif /* PMAP_STEAL_MEMORY */
468 }
469
470 #if !defined(PMAP_STEAL_MEMORY)
471 /*
472 * uvm_page_physget: "steal" one page from the vm_physmem structure.
473 *
474 * => attempt to allocate it off the end of a segment in which the "avail"
475 * values match the start/end values. if we can't do that, then we
476 * will advance both values (making them equal, and removing some
477 * vm_page structures from the non-avail area).
478 * => return false if out of memory.
479 */
480
481 /* subroutine: try to allocate from memory chunks on the specified freelist */
482 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
483
484 static boolean_t
485 uvm_page_physget_freelist(paddrp, freelist)
486 paddr_t *paddrp;
487 int freelist;
488 {
489 int lcv, x;
490
491 /* pass 1: try allocating from a matching end */
492 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
493 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
494 #else
495 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
496 #endif
497 {
498
499 if (uvm.page_init_done == TRUE)
500 panic("vm_page_physget: called _after_ bootstrap");
501
502 if (vm_physmem[lcv].free_list != freelist)
503 continue;
504
505 /* try from front */
506 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
507 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
508 *paddrp = ptoa(vm_physmem[lcv].avail_start);
509 vm_physmem[lcv].avail_start++;
510 vm_physmem[lcv].start++;
511 /* nothing left? nuke it */
512 if (vm_physmem[lcv].avail_start ==
513 vm_physmem[lcv].end) {
514 if (vm_nphysseg == 1)
515 panic("vm_page_physget: out of memory!");
516 vm_nphysseg--;
517 for (x = lcv ; x < vm_nphysseg ; x++)
518 /* structure copy */
519 vm_physmem[x] = vm_physmem[x+1];
520 }
521 return (TRUE);
522 }
523
524 /* try from rear */
525 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
526 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
527 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
528 vm_physmem[lcv].avail_end--;
529 vm_physmem[lcv].end--;
530 /* nothing left? nuke it */
531 if (vm_physmem[lcv].avail_end ==
532 vm_physmem[lcv].start) {
533 if (vm_nphysseg == 1)
534 panic("vm_page_physget: out of memory!");
535 vm_nphysseg--;
536 for (x = lcv ; x < vm_nphysseg ; x++)
537 /* structure copy */
538 vm_physmem[x] = vm_physmem[x+1];
539 }
540 return (TRUE);
541 }
542 }
543
544 /* pass2: forget about matching ends, just allocate something */
545 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
546 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
547 #else
548 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
549 #endif
550 {
551
552 /* any room in this bank? */
553 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
554 continue; /* nope */
555
556 *paddrp = ptoa(vm_physmem[lcv].avail_start);
557 vm_physmem[lcv].avail_start++;
558 /* truncate! */
559 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
560
561 /* nothing left? nuke it */
562 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
563 if (vm_nphysseg == 1)
564 panic("vm_page_physget: out of memory!");
565 vm_nphysseg--;
566 for (x = lcv ; x < vm_nphysseg ; x++)
567 /* structure copy */
568 vm_physmem[x] = vm_physmem[x+1];
569 }
570 return (TRUE);
571 }
572
573 return (FALSE); /* whoops! */
574 }
575
576 boolean_t
577 uvm_page_physget(paddrp)
578 paddr_t *paddrp;
579 {
580 int i;
581
582 /* try in the order of freelist preference */
583 for (i = 0; i < VM_NFREELIST; i++)
584 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
585 return (TRUE);
586 return (FALSE);
587 }
588 #endif /* PMAP_STEAL_MEMORY */
589
590 /*
591 * uvm_page_physload: load physical memory into VM system
592 *
593 * => all args are PFs
594 * => all pages in start/end get vm_page structures
595 * => areas marked by avail_start/avail_end get added to the free page pool
596 * => we are limited to VM_PHYSSEG_MAX physical memory segments
597 */
598
599 void
600 uvm_page_physload(start, end, avail_start, avail_end, free_list)
601 paddr_t start, end, avail_start, avail_end;
602 int free_list;
603 {
604 int preload, lcv;
605 psize_t npages;
606 struct vm_page *pgs;
607 struct vm_physseg *ps;
608
609 if (uvmexp.pagesize == 0)
610 panic("vm_page_physload: page size not set!");
611
612 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
613 panic("uvm_page_physload: bad free list %d\n", free_list);
614
615 if (start >= end)
616 panic("uvm_page_physload: start >= end");
617
618 /*
619 * do we have room?
620 */
621 if (vm_nphysseg == VM_PHYSSEG_MAX) {
622 printf("vm_page_physload: unable to load physical memory "
623 "segment\n");
624 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
625 VM_PHYSSEG_MAX, (long long)start, (long long)end);
626 return;
627 }
628
629 /*
630 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
631 * called yet, so malloc is not available).
632 */
633 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
634 if (vm_physmem[lcv].pgs)
635 break;
636 }
637 preload = (lcv == vm_nphysseg);
638
639 /*
640 * if VM is already running, attempt to malloc() vm_page structures
641 */
642 if (!preload) {
643 #if defined(VM_PHYSSEG_NOADD)
644 panic("vm_page_physload: tried to add RAM after vm_mem_init");
645 #else
646 /* XXXCDC: need some sort of lockout for this case */
647 paddr_t paddr;
648 npages = end - start; /* # of pages */
649 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
650 M_VMPAGE, M_NOWAIT);
651 if (pgs == NULL) {
652 printf("vm_page_physload: can not malloc vm_page "
653 "structs for segment\n");
654 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
655 return;
656 }
657 /* zero data, init phys_addr and free_list, and free pages */
658 memset(pgs, 0, sizeof(struct vm_page) * npages);
659 for (lcv = 0, paddr = ptoa(start) ;
660 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
661 pgs[lcv].phys_addr = paddr;
662 pgs[lcv].free_list = free_list;
663 if (atop(paddr) >= avail_start &&
664 atop(paddr) <= avail_end)
665 uvm_pagefree(&pgs[lcv]);
666 }
667 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
668 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
669 #endif
670 } else {
671
672 /* gcc complains if these don't get init'd */
673 pgs = NULL;
674 npages = 0;
675
676 }
677
678 /*
679 * now insert us in the proper place in vm_physmem[]
680 */
681
682 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
683
684 /* random: put it at the end (easy!) */
685 ps = &vm_physmem[vm_nphysseg];
686
687 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
688
689 {
690 int x;
691 /* sort by address for binary search */
692 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
693 if (start < vm_physmem[lcv].start)
694 break;
695 ps = &vm_physmem[lcv];
696 /* move back other entries, if necessary ... */
697 for (x = vm_nphysseg ; x > lcv ; x--)
698 /* structure copy */
699 vm_physmem[x] = vm_physmem[x - 1];
700 }
701
702 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
703
704 {
705 int x;
706 /* sort by largest segment first */
707 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
708 if ((end - start) >
709 (vm_physmem[lcv].end - vm_physmem[lcv].start))
710 break;
711 ps = &vm_physmem[lcv];
712 /* move back other entries, if necessary ... */
713 for (x = vm_nphysseg ; x > lcv ; x--)
714 /* structure copy */
715 vm_physmem[x] = vm_physmem[x - 1];
716 }
717
718 #else
719
720 panic("vm_page_physload: unknown physseg strategy selected!");
721
722 #endif
723
724 ps->start = start;
725 ps->end = end;
726 ps->avail_start = avail_start;
727 ps->avail_end = avail_end;
728 if (preload) {
729 ps->pgs = NULL;
730 } else {
731 ps->pgs = pgs;
732 ps->lastpg = pgs + npages - 1;
733 }
734 ps->free_list = free_list;
735 vm_nphysseg++;
736
737 /*
738 * done!
739 */
740
741 if (!preload)
742 uvm_page_rehash();
743
744 return;
745 }
746
747 /*
748 * uvm_page_rehash: reallocate hash table based on number of free pages.
749 */
750
751 void
752 uvm_page_rehash()
753 {
754 int freepages, lcv, bucketcount, s, oldcount;
755 struct pglist *newbuckets, *oldbuckets;
756 struct vm_page *pg;
757 size_t newsize, oldsize;
758
759 /*
760 * compute number of pages that can go in the free pool
761 */
762
763 freepages = 0;
764 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
765 freepages +=
766 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
767
768 /*
769 * compute number of buckets needed for this number of pages
770 */
771
772 bucketcount = 1;
773 while (bucketcount < freepages)
774 bucketcount = bucketcount * 2;
775
776 /*
777 * compute the size of the current table and new table.
778 */
779
780 oldbuckets = uvm.page_hash;
781 oldcount = uvm.page_nhash;
782 oldsize = round_page(sizeof(struct pglist) * oldcount);
783 newsize = round_page(sizeof(struct pglist) * bucketcount);
784
785 /*
786 * allocate the new buckets
787 */
788
789 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
790 if (newbuckets == NULL) {
791 printf("uvm_page_physrehash: WARNING: could not grow page "
792 "hash table\n");
793 return;
794 }
795 for (lcv = 0 ; lcv < bucketcount ; lcv++)
796 TAILQ_INIT(&newbuckets[lcv]);
797
798 /*
799 * now replace the old buckets with the new ones and rehash everything
800 */
801
802 s = splimp();
803 simple_lock(&uvm.hashlock);
804 uvm.page_hash = newbuckets;
805 uvm.page_nhash = bucketcount;
806 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
807
808 /* ... and rehash */
809 for (lcv = 0 ; lcv < oldcount ; lcv++) {
810 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
811 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
812 TAILQ_INSERT_TAIL(
813 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
814 pg, hashq);
815 }
816 }
817 simple_unlock(&uvm.hashlock);
818 splx(s);
819
820 /*
821 * free old bucket array if is not the boot-time table
822 */
823
824 if (oldbuckets != &uvm_bootbucket)
825 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
826
827 /*
828 * done
829 */
830 return;
831 }
832
833
834 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
835
836 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
837
838 /* call from DDB */
839 void
840 uvm_page_physdump()
841 {
842 int lcv;
843
844 printf("rehash: physical memory config [segs=%d of %d]:\n",
845 vm_nphysseg, VM_PHYSSEG_MAX);
846 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
847 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
848 (long long)vm_physmem[lcv].start,
849 (long long)vm_physmem[lcv].end,
850 (long long)vm_physmem[lcv].avail_start,
851 (long long)vm_physmem[lcv].avail_end);
852 printf("STRATEGY = ");
853 switch (VM_PHYSSEG_STRAT) {
854 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
855 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
856 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
857 default: printf("<<UNKNOWN>>!!!!\n");
858 }
859 printf("number of buckets = %d\n", uvm.page_nhash);
860 }
861 #endif
862
863 /*
864 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
865 *
866 * => return null if no pages free
867 * => wake up pagedaemon if number of free pages drops below low water mark
868 * => if obj != NULL, obj must be locked (to put in hash)
869 * => if anon != NULL, anon must be locked (to put in anon)
870 * => only one of obj or anon can be non-null
871 * => caller must activate/deactivate page if it is not wired.
872 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
873 * => policy decision: it is more important to pull a page off of the
874 * appropriate priority free list than it is to get a zero'd or
875 * unknown contents page. This is because we live with the
876 * consequences of a bad free list decision for the entire
877 * lifetime of the page, e.g. if the page comes from memory that
878 * is slower to access.
879 */
880
881 struct vm_page *
882 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
883 struct uvm_object *obj;
884 voff_t off;
885 int flags;
886 struct vm_anon *anon;
887 int strat, free_list;
888 {
889 int lcv, try1, try2, s, zeroit = 0;
890 struct vm_page *pg;
891 struct pglist *freeq;
892 struct pgfreelist *pgfl;
893 boolean_t use_reserve;
894
895 #ifdef DIAGNOSTIC
896 /* sanity check */
897 if (obj && anon)
898 panic("uvm_pagealloc: obj and anon != NULL");
899 #endif
900
901 s = uvm_lock_fpageq(); /* lock free page queue */
902
903 /*
904 * check to see if we need to generate some free pages waking
905 * the pagedaemon.
906 */
907
908 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
909 uvmexp.inactive < uvmexp.inactarg))
910 wakeup(&uvm.pagedaemon);
911
912 /*
913 * fail if any of these conditions is true:
914 * [1] there really are no free pages, or
915 * [2] only kernel "reserved" pages remain and
916 * the page isn't being allocated to a kernel object.
917 * [3] only pagedaemon "reserved" pages remain and
918 * the requestor isn't the pagedaemon.
919 */
920
921 use_reserve = (flags & UVM_PGA_USERESERVE) ||
922 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
923 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
924 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
925 !(use_reserve && curproc == uvm.pagedaemon_proc)))
926 goto fail;
927
928 #if PGFL_NQUEUES != 2
929 #error uvm_pagealloc_strat needs to be updated
930 #endif
931
932 /*
933 * If we want a zero'd page, try the ZEROS queue first, otherwise
934 * we try the UNKNOWN queue first.
935 */
936 if (flags & UVM_PGA_ZERO) {
937 try1 = PGFL_ZEROS;
938 try2 = PGFL_UNKNOWN;
939 } else {
940 try1 = PGFL_UNKNOWN;
941 try2 = PGFL_ZEROS;
942 }
943
944 again:
945 switch (strat) {
946 case UVM_PGA_STRAT_NORMAL:
947 /* Check all freelists in descending priority order. */
948 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
949 pgfl = &uvm.page_free[lcv];
950 if ((pg = TAILQ_FIRST((freeq =
951 &pgfl->pgfl_queues[try1]))) != NULL ||
952 (pg = TAILQ_FIRST((freeq =
953 &pgfl->pgfl_queues[try2]))) != NULL)
954 goto gotit;
955 }
956
957 /* No pages free! */
958 goto fail;
959
960 case UVM_PGA_STRAT_ONLY:
961 case UVM_PGA_STRAT_FALLBACK:
962 /* Attempt to allocate from the specified free list. */
963 #ifdef DIAGNOSTIC
964 if (free_list >= VM_NFREELIST || free_list < 0)
965 panic("uvm_pagealloc_strat: bad free list %d",
966 free_list);
967 #endif
968 pgfl = &uvm.page_free[free_list];
969 if ((pg = TAILQ_FIRST((freeq =
970 &pgfl->pgfl_queues[try1]))) != NULL ||
971 (pg = TAILQ_FIRST((freeq =
972 &pgfl->pgfl_queues[try2]))) != NULL)
973 goto gotit;
974
975 /* Fall back, if possible. */
976 if (strat == UVM_PGA_STRAT_FALLBACK) {
977 strat = UVM_PGA_STRAT_NORMAL;
978 goto again;
979 }
980
981 /* No pages free! */
982 goto fail;
983
984 default:
985 panic("uvm_pagealloc_strat: bad strat %d", strat);
986 /* NOTREACHED */
987 }
988
989 gotit:
990 TAILQ_REMOVE(freeq, pg, pageq);
991 uvmexp.free--;
992
993 /* update zero'd page count */
994 if (pg->flags & PG_ZERO)
995 uvmexp.zeropages--;
996
997 /*
998 * update allocation statistics and remember if we have to
999 * zero the page
1000 */
1001 if (flags & UVM_PGA_ZERO) {
1002 if (pg->flags & PG_ZERO) {
1003 uvmexp.pga_zerohit++;
1004 zeroit = 0;
1005 } else {
1006 uvmexp.pga_zeromiss++;
1007 zeroit = 1;
1008 }
1009 }
1010
1011 uvm_unlock_fpageq(s); /* unlock free page queue */
1012
1013 pg->offset = off;
1014 pg->uobject = obj;
1015 pg->uanon = anon;
1016 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1017 pg->version++;
1018 pg->wire_count = 0;
1019 pg->loan_count = 0;
1020 if (anon) {
1021 anon->u.an_page = pg;
1022 pg->pqflags = PQ_ANON;
1023 } else {
1024 if (obj)
1025 uvm_pageinsert(pg);
1026 pg->pqflags = 0;
1027 }
1028 #if defined(UVM_PAGE_TRKOWN)
1029 pg->owner_tag = NULL;
1030 #endif
1031 UVM_PAGE_OWN(pg, "new alloc");
1032
1033 if (flags & UVM_PGA_ZERO) {
1034 /*
1035 * A zero'd page is not clean. If we got a page not already
1036 * zero'd, then we have to zero it ourselves.
1037 */
1038 pg->flags &= ~PG_CLEAN;
1039 if (zeroit)
1040 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1041 }
1042
1043 return(pg);
1044
1045 fail:
1046 uvm_unlock_fpageq(s);
1047 return (NULL);
1048 }
1049
1050 /*
1051 * uvm_pagerealloc: reallocate a page from one object to another
1052 *
1053 * => both objects must be locked
1054 */
1055
1056 void
1057 uvm_pagerealloc(pg, newobj, newoff)
1058 struct vm_page *pg;
1059 struct uvm_object *newobj;
1060 voff_t newoff;
1061 {
1062 /*
1063 * remove it from the old object
1064 */
1065
1066 if (pg->uobject) {
1067 uvm_pageremove(pg);
1068 }
1069
1070 /*
1071 * put it in the new object
1072 */
1073
1074 if (newobj) {
1075 pg->uobject = newobj;
1076 pg->offset = newoff;
1077 pg->version++;
1078 uvm_pageinsert(pg);
1079 }
1080
1081 return;
1082 }
1083
1084
1085 /*
1086 * uvm_pagefree: free page
1087 *
1088 * => erase page's identity (i.e. remove from hash/object)
1089 * => put page on free list
1090 * => caller must lock owning object (either anon or uvm_object)
1091 * => caller must lock page queues
1092 * => assumes all valid mappings of pg are gone
1093 */
1094
1095 void uvm_pagefree(pg)
1096
1097 struct vm_page *pg;
1098
1099 {
1100 int s;
1101 int saved_loan_count = pg->loan_count;
1102
1103 /*
1104 * if the page was an object page (and thus "TABLED"), remove it
1105 * from the object.
1106 */
1107
1108 if (pg->flags & PG_TABLED) {
1109
1110 /*
1111 * if the object page is on loan we are going to drop ownership.
1112 * it is possible that an anon will take over as owner for this
1113 * page later on. the anon will want a !PG_CLEAN page so that
1114 * it knows it needs to allocate swap if it wants to page the
1115 * page out.
1116 */
1117
1118 if (saved_loan_count)
1119 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1120
1121 uvm_pageremove(pg);
1122
1123 /*
1124 * if our page was on loan, then we just lost control over it
1125 * (in fact, if it was loaned to an anon, the anon may have
1126 * already taken over ownership of the page by now and thus
1127 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1128 * return (when the last loan is dropped, then the page can be
1129 * freed by whatever was holding the last loan).
1130 */
1131 if (saved_loan_count)
1132 return;
1133
1134 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1135
1136 /*
1137 * if our page is owned by an anon and is loaned out to the
1138 * kernel then we just want to drop ownership and return.
1139 * the kernel must free the page when all its loans clear ...
1140 * note that the kernel can't change the loan status of our
1141 * page as long as we are holding PQ lock.
1142 */
1143 pg->pqflags &= ~PQ_ANON;
1144 pg->uanon = NULL;
1145 return;
1146 }
1147
1148 #ifdef DIAGNOSTIC
1149 if (saved_loan_count) {
1150 printf("uvm_pagefree: warning: freeing page with a loan "
1151 "count of %d\n", saved_loan_count);
1152 panic("uvm_pagefree: loan count");
1153 }
1154 #endif
1155
1156
1157 /*
1158 * now remove the page from the queues
1159 */
1160
1161 if (pg->pqflags & PQ_ACTIVE) {
1162 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1163 pg->pqflags &= ~PQ_ACTIVE;
1164 uvmexp.active--;
1165 }
1166 if (pg->pqflags & PQ_INACTIVE) {
1167 if (pg->pqflags & PQ_SWAPBACKED)
1168 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1169 else
1170 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1171 pg->pqflags &= ~PQ_INACTIVE;
1172 uvmexp.inactive--;
1173 }
1174
1175 /*
1176 * if the page was wired, unwire it now.
1177 */
1178 if (pg->wire_count) {
1179 pg->wire_count = 0;
1180 uvmexp.wired--;
1181 }
1182
1183 /*
1184 * and put on free queue
1185 */
1186
1187 pg->flags &= ~PG_ZERO;
1188
1189 s = uvm_lock_fpageq();
1190 TAILQ_INSERT_TAIL(&uvm.page_free[
1191 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1192 pg->pqflags = PQ_FREE;
1193 #ifdef DEBUG
1194 pg->uobject = (void *)0xdeadbeef;
1195 pg->offset = 0xdeadbeef;
1196 pg->uanon = (void *)0xdeadbeef;
1197 #endif
1198 uvmexp.free++;
1199
1200 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1201 uvm.page_idle_zero = vm_page_zero_enable;
1202
1203 uvm_unlock_fpageq(s);
1204 }
1205
1206 #if defined(UVM_PAGE_TRKOWN)
1207 /*
1208 * uvm_page_own: set or release page ownership
1209 *
1210 * => this is a debugging function that keeps track of who sets PG_BUSY
1211 * and where they do it. it can be used to track down problems
1212 * such a process setting "PG_BUSY" and never releasing it.
1213 * => page's object [if any] must be locked
1214 * => if "tag" is NULL then we are releasing page ownership
1215 */
1216 void
1217 uvm_page_own(pg, tag)
1218 struct vm_page *pg;
1219 char *tag;
1220 {
1221 /* gain ownership? */
1222 if (tag) {
1223 if (pg->owner_tag) {
1224 printf("uvm_page_own: page %p already owned "
1225 "by proc %d [%s]\n", pg,
1226 pg->owner, pg->owner_tag);
1227 panic("uvm_page_own");
1228 }
1229 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1230 pg->owner_tag = tag;
1231 return;
1232 }
1233
1234 /* drop ownership */
1235 if (pg->owner_tag == NULL) {
1236 printf("uvm_page_own: dropping ownership of an non-owned "
1237 "page (%p)\n", pg);
1238 panic("uvm_page_own");
1239 }
1240 pg->owner_tag = NULL;
1241 return;
1242 }
1243 #endif
1244
1245 /*
1246 * uvm_pageidlezero: zero free pages while the system is idle.
1247 *
1248 * => we do at least one iteration per call, if we are below the target.
1249 * => we loop until we either reach the target or whichqs indicates that
1250 * there is a process ready to run.
1251 */
1252 void
1253 uvm_pageidlezero()
1254 {
1255 struct vm_page *pg;
1256 struct pgfreelist *pgfl;
1257 int free_list, s;
1258
1259 do {
1260 s = uvm_lock_fpageq();
1261
1262 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1263 uvm.page_idle_zero = FALSE;
1264 uvm_unlock_fpageq(s);
1265 return;
1266 }
1267
1268 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1269 pgfl = &uvm.page_free[free_list];
1270 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1271 PGFL_UNKNOWN])) != NULL)
1272 break;
1273 }
1274
1275 if (pg == NULL) {
1276 /*
1277 * No non-zero'd pages; don't bother trying again
1278 * until we know we have non-zero'd pages free.
1279 */
1280 uvm.page_idle_zero = FALSE;
1281 uvm_unlock_fpageq(s);
1282 return;
1283 }
1284
1285 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1286 uvmexp.free--;
1287 uvm_unlock_fpageq(s);
1288
1289 #ifdef PMAP_PAGEIDLEZERO
1290 PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg));
1291 #else
1292 /*
1293 * XXX This will toast the cache unless the pmap_zero_page()
1294 * XXX implementation does uncached access.
1295 */
1296 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1297 #endif
1298 pg->flags |= PG_ZERO;
1299
1300 s = uvm_lock_fpageq();
1301 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1302 uvmexp.free++;
1303 uvmexp.zeropages++;
1304 uvm_unlock_fpageq(s);
1305 } while (sched_whichqs == 0);
1306 }
1307