uvm_page.c revision 1.41 1 /* $NetBSD: uvm_page.c,v 1.41 2000/09/21 17:46:04 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/sched.h>
77
78 #define UVM_PAGE /* pull in uvm_page.h functions */
79 #include <uvm/uvm.h>
80
81 /*
82 * global vars... XXXCDC: move to uvm. structure.
83 */
84
85 /*
86 * physical memory config is stored in vm_physmem.
87 */
88
89 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
90 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
91
92 /*
93 * Some supported CPUs in a given architecture don't support all
94 * of the things necessary to do idle page zero'ing efficiently.
95 * We therefore provide a way to disable it from machdep code here.
96 */
97
98 boolean_t vm_page_zero_enable = TRUE;
99
100 /*
101 * local variables
102 */
103
104 /*
105 * these variables record the values returned by vm_page_bootstrap,
106 * for debugging purposes. The implementation of uvm_pageboot_alloc
107 * and pmap_startup here also uses them internally.
108 */
109
110 static vaddr_t virtual_space_start;
111 static vaddr_t virtual_space_end;
112
113 /*
114 * we use a hash table with only one bucket during bootup. we will
115 * later rehash (resize) the hash table once the allocator is ready.
116 * we static allocate the one bootstrap bucket below...
117 */
118
119 static struct pglist uvm_bootbucket;
120
121 /*
122 * local prototypes
123 */
124
125 static void uvm_pageinsert __P((struct vm_page *));
126
127
128 /*
129 * inline functions
130 */
131
132 /*
133 * uvm_pageinsert: insert a page in the object and the hash table
134 *
135 * => caller must lock object
136 * => caller must lock page queues
137 * => call should have already set pg's object and offset pointers
138 * and bumped the version counter
139 */
140
141 __inline static void
142 uvm_pageinsert(pg)
143 struct vm_page *pg;
144 {
145 struct pglist *buck;
146 int s;
147
148 #ifdef DIAGNOSTIC
149 if (pg->flags & PG_TABLED)
150 panic("uvm_pageinsert: already inserted");
151 #endif
152
153 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
154 s = splimp();
155 simple_lock(&uvm.hashlock);
156 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
157 simple_unlock(&uvm.hashlock);
158 splx(s);
159
160 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
161 pg->flags |= PG_TABLED;
162 pg->uobject->uo_npages++;
163
164 }
165
166 /*
167 * uvm_page_remove: remove page from object and hash
168 *
169 * => caller must lock object
170 * => caller must lock page queues
171 */
172
173 void __inline
174 uvm_pageremove(pg)
175 struct vm_page *pg;
176 {
177 struct pglist *buck;
178 int s;
179
180 #ifdef DIAGNOSTIC
181 if ((pg->flags & (PG_FAULTING)) != 0)
182 panic("uvm_pageremove: page is faulting");
183 #endif
184
185 if ((pg->flags & PG_TABLED) == 0)
186 return; /* XXX: log */
187
188 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
189 s = splimp();
190 simple_lock(&uvm.hashlock);
191 TAILQ_REMOVE(buck, pg, hashq);
192 simple_unlock(&uvm.hashlock);
193 splx(s);
194
195 /* object should be locked */
196 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
197
198 pg->flags &= ~PG_TABLED;
199 pg->uobject->uo_npages--;
200 pg->uobject = NULL;
201 pg->version++;
202
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, i;
218 paddr_t paddr;
219
220
221 /*
222 * step 1: init the page queues and page queue locks
223 */
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (i = 0; i < PGFL_NQUEUES; i++)
226 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 }
228 TAILQ_INIT(&uvm.page_active);
229 TAILQ_INIT(&uvm.page_inactive_swp);
230 TAILQ_INIT(&uvm.page_inactive_obj);
231 simple_lock_init(&uvm.pageqlock);
232 simple_lock_init(&uvm.fpageqlock);
233
234 /*
235 * step 2: init the <obj,offset> => <page> hash table. for now
236 * we just have one bucket (the bootstrap bucket). later on we
237 * will allocate new buckets as we dynamically resize the hash table.
238 */
239
240 uvm.page_nhash = 1; /* 1 bucket */
241 uvm.page_hashmask = 0; /* mask for hash function */
242 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
243 TAILQ_INIT(uvm.page_hash); /* init hash table */
244 simple_lock_init(&uvm.hashlock); /* init hash table lock */
245
246 /*
247 * step 3: allocate vm_page structures.
248 */
249
250 /*
251 * sanity check:
252 * before calling this function the MD code is expected to register
253 * some free RAM with the uvm_page_physload() function. our job
254 * now is to allocate vm_page structures for this memory.
255 */
256
257 if (vm_nphysseg == 0)
258 panic("vm_page_bootstrap: no memory pre-allocated");
259
260 /*
261 * first calculate the number of free pages...
262 *
263 * note that we use start/end rather than avail_start/avail_end.
264 * this allows us to allocate extra vm_page structures in case we
265 * want to return some memory to the pool after booting.
266 */
267
268 freepages = 0;
269 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272 /*
273 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 * use. for each page of memory we use we need a vm_page structure.
275 * thus, the total number of pages we can use is the total size of
276 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 * structure. we add one to freepages as a fudge factor to avoid
278 * truncation errors (since we can only allocate in terms of whole
279 * pages).
280 */
281
282 pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 (PAGE_SIZE + sizeof(struct vm_page));
284 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 sizeof(struct vm_page));
286 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288 /*
289 * step 4: init the vm_page structures and put them in the correct
290 * place...
291 */
292
293 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
294
295 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
296 if (n > pagecount) {
297 printf("uvm_page_init: lost %ld page(s) in init\n",
298 (long)(n - pagecount));
299 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
300 /* n = pagecount; */
301 }
302 /* set up page array pointers */
303 vm_physmem[lcv].pgs = pagearray;
304 pagearray += n;
305 pagecount -= n;
306 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
307
308 /* init and free vm_pages (we've already zeroed them) */
309 paddr = ptoa(vm_physmem[lcv].start);
310 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
311 vm_physmem[lcv].pgs[i].phys_addr = paddr;
312 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
313 atop(paddr) <= vm_physmem[lcv].avail_end) {
314 uvmexp.npages++;
315 /* add page to free pool */
316 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
317 }
318 }
319 }
320 /*
321 * step 5: pass up the values of virtual_space_start and
322 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323 * layers of the VM.
324 */
325
326 *kvm_startp = round_page(virtual_space_start);
327 *kvm_endp = trunc_page(virtual_space_end);
328
329 /*
330 * step 6: init pagedaemon lock
331 */
332
333 simple_lock_init(&uvm.pagedaemon_lock);
334
335 /*
336 * step 7: init reserve thresholds
337 * XXXCDC - values may need adjusting
338 */
339 uvmexp.reserve_pagedaemon = 1;
340 uvmexp.reserve_kernel = 5;
341
342 /*
343 * step 8: determine if we should zero pages in the idle
344 * loop.
345 *
346 * XXXJRT - might consider zero'ing up to the target *now*,
347 * but that could take an awfully long time if you
348 * have a lot of memory.
349 */
350 uvm.page_idle_zero = vm_page_zero_enable;
351
352 /*
353 * done!
354 */
355
356 uvm.page_init_done = TRUE;
357 }
358
359 /*
360 * uvm_setpagesize: set the page size
361 *
362 * => sets page_shift and page_mask from uvmexp.pagesize.
363 * => XXXCDC: move global vars.
364 */
365
366 void
367 uvm_setpagesize()
368 {
369 if (uvmexp.pagesize == 0)
370 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
371 uvmexp.pagemask = uvmexp.pagesize - 1;
372 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
373 panic("uvm_setpagesize: page size not a power of two");
374 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
375 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
376 break;
377 }
378
379 /*
380 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
381 */
382
383 vaddr_t
384 uvm_pageboot_alloc(size)
385 vsize_t size;
386 {
387 #if defined(PMAP_STEAL_MEMORY)
388 vaddr_t addr;
389
390 /*
391 * defer bootstrap allocation to MD code (it may want to allocate
392 * from a direct-mapped segment). pmap_steal_memory should round
393 * off virtual_space_start/virtual_space_end.
394 */
395
396 addr = pmap_steal_memory(size, &virtual_space_start,
397 &virtual_space_end);
398
399 return(addr);
400
401 #else /* !PMAP_STEAL_MEMORY */
402
403 static boolean_t initialized = FALSE;
404 vaddr_t addr, vaddr;
405 paddr_t paddr;
406
407 /* round to page size */
408 size = round_page(size);
409
410 /*
411 * on first call to this function, initialize ourselves.
412 */
413 if (initialized == FALSE) {
414 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
415
416 /* round it the way we like it */
417 virtual_space_start = round_page(virtual_space_start);
418 virtual_space_end = trunc_page(virtual_space_end);
419
420 initialized = TRUE;
421 }
422
423 /*
424 * allocate virtual memory for this request
425 */
426 if (virtual_space_start == virtual_space_end ||
427 (virtual_space_end - virtual_space_start) < size)
428 panic("uvm_pageboot_alloc: out of virtual space");
429
430 addr = virtual_space_start;
431
432 #ifdef PMAP_GROWKERNEL
433 /*
434 * If the kernel pmap can't map the requested space,
435 * then allocate more resources for it.
436 */
437 if (uvm_maxkaddr < (addr + size)) {
438 uvm_maxkaddr = pmap_growkernel(addr + size);
439 if (uvm_maxkaddr < (addr + size))
440 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
441 }
442 #endif
443
444 virtual_space_start += size;
445
446 /*
447 * allocate and mapin physical pages to back new virtual pages
448 */
449
450 for (vaddr = round_page(addr) ; vaddr < addr + size ;
451 vaddr += PAGE_SIZE) {
452
453 if (!uvm_page_physget(&paddr))
454 panic("uvm_pageboot_alloc: out of memory");
455
456 /*
457 * Note this memory is no longer managed, so using
458 * pmap_kenter is safe.
459 */
460 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
461 }
462 return(addr);
463 #endif /* PMAP_STEAL_MEMORY */
464 }
465
466 #if !defined(PMAP_STEAL_MEMORY)
467 /*
468 * uvm_page_physget: "steal" one page from the vm_physmem structure.
469 *
470 * => attempt to allocate it off the end of a segment in which the "avail"
471 * values match the start/end values. if we can't do that, then we
472 * will advance both values (making them equal, and removing some
473 * vm_page structures from the non-avail area).
474 * => return false if out of memory.
475 */
476
477 /* subroutine: try to allocate from memory chunks on the specified freelist */
478 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
479
480 static boolean_t
481 uvm_page_physget_freelist(paddrp, freelist)
482 paddr_t *paddrp;
483 int freelist;
484 {
485 int lcv, x;
486
487 /* pass 1: try allocating from a matching end */
488 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
489 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
490 #else
491 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
492 #endif
493 {
494
495 if (uvm.page_init_done == TRUE)
496 panic("vm_page_physget: called _after_ bootstrap");
497
498 if (vm_physmem[lcv].free_list != freelist)
499 continue;
500
501 /* try from front */
502 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
503 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
504 *paddrp = ptoa(vm_physmem[lcv].avail_start);
505 vm_physmem[lcv].avail_start++;
506 vm_physmem[lcv].start++;
507 /* nothing left? nuke it */
508 if (vm_physmem[lcv].avail_start ==
509 vm_physmem[lcv].end) {
510 if (vm_nphysseg == 1)
511 panic("vm_page_physget: out of memory!");
512 vm_nphysseg--;
513 for (x = lcv ; x < vm_nphysseg ; x++)
514 /* structure copy */
515 vm_physmem[x] = vm_physmem[x+1];
516 }
517 return (TRUE);
518 }
519
520 /* try from rear */
521 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
522 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
523 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
524 vm_physmem[lcv].avail_end--;
525 vm_physmem[lcv].end--;
526 /* nothing left? nuke it */
527 if (vm_physmem[lcv].avail_end ==
528 vm_physmem[lcv].start) {
529 if (vm_nphysseg == 1)
530 panic("vm_page_physget: out of memory!");
531 vm_nphysseg--;
532 for (x = lcv ; x < vm_nphysseg ; x++)
533 /* structure copy */
534 vm_physmem[x] = vm_physmem[x+1];
535 }
536 return (TRUE);
537 }
538 }
539
540 /* pass2: forget about matching ends, just allocate something */
541 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
542 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
543 #else
544 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
545 #endif
546 {
547
548 /* any room in this bank? */
549 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
550 continue; /* nope */
551
552 *paddrp = ptoa(vm_physmem[lcv].avail_start);
553 vm_physmem[lcv].avail_start++;
554 /* truncate! */
555 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
556
557 /* nothing left? nuke it */
558 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
559 if (vm_nphysseg == 1)
560 panic("vm_page_physget: out of memory!");
561 vm_nphysseg--;
562 for (x = lcv ; x < vm_nphysseg ; x++)
563 /* structure copy */
564 vm_physmem[x] = vm_physmem[x+1];
565 }
566 return (TRUE);
567 }
568
569 return (FALSE); /* whoops! */
570 }
571
572 boolean_t
573 uvm_page_physget(paddrp)
574 paddr_t *paddrp;
575 {
576 int i;
577
578 /* try in the order of freelist preference */
579 for (i = 0; i < VM_NFREELIST; i++)
580 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
581 return (TRUE);
582 return (FALSE);
583 }
584 #endif /* PMAP_STEAL_MEMORY */
585
586 /*
587 * uvm_page_physload: load physical memory into VM system
588 *
589 * => all args are PFs
590 * => all pages in start/end get vm_page structures
591 * => areas marked by avail_start/avail_end get added to the free page pool
592 * => we are limited to VM_PHYSSEG_MAX physical memory segments
593 */
594
595 void
596 uvm_page_physload(start, end, avail_start, avail_end, free_list)
597 paddr_t start, end, avail_start, avail_end;
598 int free_list;
599 {
600 int preload, lcv;
601 psize_t npages;
602 struct vm_page *pgs;
603 struct vm_physseg *ps;
604
605 if (uvmexp.pagesize == 0)
606 panic("vm_page_physload: page size not set!");
607
608 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
609 panic("uvm_page_physload: bad free list %d\n", free_list);
610
611 if (start >= end)
612 panic("uvm_page_physload: start >= end");
613
614 /*
615 * do we have room?
616 */
617 if (vm_nphysseg == VM_PHYSSEG_MAX) {
618 printf("vm_page_physload: unable to load physical memory "
619 "segment\n");
620 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
621 VM_PHYSSEG_MAX, (long long)start, (long long)end);
622 return;
623 }
624
625 /*
626 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
627 * called yet, so malloc is not available).
628 */
629 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
630 if (vm_physmem[lcv].pgs)
631 break;
632 }
633 preload = (lcv == vm_nphysseg);
634
635 /*
636 * if VM is already running, attempt to malloc() vm_page structures
637 */
638 if (!preload) {
639 #if defined(VM_PHYSSEG_NOADD)
640 panic("vm_page_physload: tried to add RAM after vm_mem_init");
641 #else
642 /* XXXCDC: need some sort of lockout for this case */
643 paddr_t paddr;
644 npages = end - start; /* # of pages */
645 pgs = malloc(sizeof(struct vm_page) * npages,
646 M_VMPAGE, M_NOWAIT);
647 if (pgs == NULL) {
648 printf("vm_page_physload: can not malloc vm_page "
649 "structs for segment\n");
650 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
651 return;
652 }
653 /* zero data, init phys_addr and free_list, and free pages */
654 memset(pgs, 0, sizeof(struct vm_page) * npages);
655 for (lcv = 0, paddr = ptoa(start) ;
656 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
657 pgs[lcv].phys_addr = paddr;
658 pgs[lcv].free_list = free_list;
659 if (atop(paddr) >= avail_start &&
660 atop(paddr) <= avail_end)
661 uvm_pagefree(&pgs[lcv]);
662 }
663 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
664 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
665 #endif
666 } else {
667
668 /* gcc complains if these don't get init'd */
669 pgs = NULL;
670 npages = 0;
671
672 }
673
674 /*
675 * now insert us in the proper place in vm_physmem[]
676 */
677
678 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
679
680 /* random: put it at the end (easy!) */
681 ps = &vm_physmem[vm_nphysseg];
682
683 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
684
685 {
686 int x;
687 /* sort by address for binary search */
688 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
689 if (start < vm_physmem[lcv].start)
690 break;
691 ps = &vm_physmem[lcv];
692 /* move back other entries, if necessary ... */
693 for (x = vm_nphysseg ; x > lcv ; x--)
694 /* structure copy */
695 vm_physmem[x] = vm_physmem[x - 1];
696 }
697
698 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
699
700 {
701 int x;
702 /* sort by largest segment first */
703 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
704 if ((end - start) >
705 (vm_physmem[lcv].end - vm_physmem[lcv].start))
706 break;
707 ps = &vm_physmem[lcv];
708 /* move back other entries, if necessary ... */
709 for (x = vm_nphysseg ; x > lcv ; x--)
710 /* structure copy */
711 vm_physmem[x] = vm_physmem[x - 1];
712 }
713
714 #else
715
716 panic("vm_page_physload: unknown physseg strategy selected!");
717
718 #endif
719
720 ps->start = start;
721 ps->end = end;
722 ps->avail_start = avail_start;
723 ps->avail_end = avail_end;
724 if (preload) {
725 ps->pgs = NULL;
726 } else {
727 ps->pgs = pgs;
728 ps->lastpg = pgs + npages - 1;
729 }
730 ps->free_list = free_list;
731 vm_nphysseg++;
732
733 /*
734 * done!
735 */
736
737 if (!preload)
738 uvm_page_rehash();
739
740 return;
741 }
742
743 /*
744 * uvm_page_rehash: reallocate hash table based on number of free pages.
745 */
746
747 void
748 uvm_page_rehash()
749 {
750 int freepages, lcv, bucketcount, s, oldcount;
751 struct pglist *newbuckets, *oldbuckets;
752 struct vm_page *pg;
753 size_t newsize, oldsize;
754
755 /*
756 * compute number of pages that can go in the free pool
757 */
758
759 freepages = 0;
760 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
761 freepages +=
762 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
763
764 /*
765 * compute number of buckets needed for this number of pages
766 */
767
768 bucketcount = 1;
769 while (bucketcount < freepages)
770 bucketcount = bucketcount * 2;
771
772 /*
773 * compute the size of the current table and new table.
774 */
775
776 oldbuckets = uvm.page_hash;
777 oldcount = uvm.page_nhash;
778 oldsize = round_page(sizeof(struct pglist) * oldcount);
779 newsize = round_page(sizeof(struct pglist) * bucketcount);
780
781 /*
782 * allocate the new buckets
783 */
784
785 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
786 if (newbuckets == NULL) {
787 printf("uvm_page_physrehash: WARNING: could not grow page "
788 "hash table\n");
789 return;
790 }
791 for (lcv = 0 ; lcv < bucketcount ; lcv++)
792 TAILQ_INIT(&newbuckets[lcv]);
793
794 /*
795 * now replace the old buckets with the new ones and rehash everything
796 */
797
798 s = splimp();
799 simple_lock(&uvm.hashlock);
800 uvm.page_hash = newbuckets;
801 uvm.page_nhash = bucketcount;
802 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
803
804 /* ... and rehash */
805 for (lcv = 0 ; lcv < oldcount ; lcv++) {
806 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
807 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
808 TAILQ_INSERT_TAIL(
809 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
810 pg, hashq);
811 }
812 }
813 simple_unlock(&uvm.hashlock);
814 splx(s);
815
816 /*
817 * free old bucket array if is not the boot-time table
818 */
819
820 if (oldbuckets != &uvm_bootbucket)
821 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
822
823 /*
824 * done
825 */
826 return;
827 }
828
829
830 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
831
832 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
833
834 /* call from DDB */
835 void
836 uvm_page_physdump()
837 {
838 int lcv;
839
840 printf("rehash: physical memory config [segs=%d of %d]:\n",
841 vm_nphysseg, VM_PHYSSEG_MAX);
842 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
843 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
844 (long long)vm_physmem[lcv].start,
845 (long long)vm_physmem[lcv].end,
846 (long long)vm_physmem[lcv].avail_start,
847 (long long)vm_physmem[lcv].avail_end);
848 printf("STRATEGY = ");
849 switch (VM_PHYSSEG_STRAT) {
850 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
851 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
852 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
853 default: printf("<<UNKNOWN>>!!!!\n");
854 }
855 printf("number of buckets = %d\n", uvm.page_nhash);
856 }
857 #endif
858
859 /*
860 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
861 *
862 * => return null if no pages free
863 * => wake up pagedaemon if number of free pages drops below low water mark
864 * => if obj != NULL, obj must be locked (to put in hash)
865 * => if anon != NULL, anon must be locked (to put in anon)
866 * => only one of obj or anon can be non-null
867 * => caller must activate/deactivate page if it is not wired.
868 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
869 * => policy decision: it is more important to pull a page off of the
870 * appropriate priority free list than it is to get a zero'd or
871 * unknown contents page. This is because we live with the
872 * consequences of a bad free list decision for the entire
873 * lifetime of the page, e.g. if the page comes from memory that
874 * is slower to access.
875 */
876
877 struct vm_page *
878 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
879 struct uvm_object *obj;
880 voff_t off;
881 int flags;
882 struct vm_anon *anon;
883 int strat, free_list;
884 {
885 int lcv, try1, try2, s, zeroit = 0;
886 struct vm_page *pg;
887 struct pglist *freeq;
888 struct pgfreelist *pgfl;
889 boolean_t use_reserve;
890
891 #ifdef DIAGNOSTIC
892 /* sanity check */
893 if (obj && anon)
894 panic("uvm_pagealloc: obj and anon != NULL");
895 #endif
896
897 s = uvm_lock_fpageq(); /* lock free page queue */
898
899 /*
900 * check to see if we need to generate some free pages waking
901 * the pagedaemon.
902 */
903
904 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
905 uvmexp.inactive < uvmexp.inactarg))
906 wakeup(&uvm.pagedaemon);
907
908 /*
909 * fail if any of these conditions is true:
910 * [1] there really are no free pages, or
911 * [2] only kernel "reserved" pages remain and
912 * the page isn't being allocated to a kernel object.
913 * [3] only pagedaemon "reserved" pages remain and
914 * the requestor isn't the pagedaemon.
915 */
916
917 use_reserve = (flags & UVM_PGA_USERESERVE) ||
918 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
919 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
920 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
921 !(use_reserve && curproc == uvm.pagedaemon_proc)))
922 goto fail;
923
924 #if PGFL_NQUEUES != 2
925 #error uvm_pagealloc_strat needs to be updated
926 #endif
927
928 /*
929 * If we want a zero'd page, try the ZEROS queue first, otherwise
930 * we try the UNKNOWN queue first.
931 */
932 if (flags & UVM_PGA_ZERO) {
933 try1 = PGFL_ZEROS;
934 try2 = PGFL_UNKNOWN;
935 } else {
936 try1 = PGFL_UNKNOWN;
937 try2 = PGFL_ZEROS;
938 }
939
940 again:
941 switch (strat) {
942 case UVM_PGA_STRAT_NORMAL:
943 /* Check all freelists in descending priority order. */
944 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
945 pgfl = &uvm.page_free[lcv];
946 if ((pg = TAILQ_FIRST((freeq =
947 &pgfl->pgfl_queues[try1]))) != NULL ||
948 (pg = TAILQ_FIRST((freeq =
949 &pgfl->pgfl_queues[try2]))) != NULL)
950 goto gotit;
951 }
952
953 /* No pages free! */
954 goto fail;
955
956 case UVM_PGA_STRAT_ONLY:
957 case UVM_PGA_STRAT_FALLBACK:
958 /* Attempt to allocate from the specified free list. */
959 #ifdef DIAGNOSTIC
960 if (free_list >= VM_NFREELIST || free_list < 0)
961 panic("uvm_pagealloc_strat: bad free list %d",
962 free_list);
963 #endif
964 pgfl = &uvm.page_free[free_list];
965 if ((pg = TAILQ_FIRST((freeq =
966 &pgfl->pgfl_queues[try1]))) != NULL ||
967 (pg = TAILQ_FIRST((freeq =
968 &pgfl->pgfl_queues[try2]))) != NULL)
969 goto gotit;
970
971 /* Fall back, if possible. */
972 if (strat == UVM_PGA_STRAT_FALLBACK) {
973 strat = UVM_PGA_STRAT_NORMAL;
974 goto again;
975 }
976
977 /* No pages free! */
978 goto fail;
979
980 default:
981 panic("uvm_pagealloc_strat: bad strat %d", strat);
982 /* NOTREACHED */
983 }
984
985 gotit:
986 TAILQ_REMOVE(freeq, pg, pageq);
987 uvmexp.free--;
988
989 /* update zero'd page count */
990 if (pg->flags & PG_ZERO)
991 uvmexp.zeropages--;
992
993 /*
994 * update allocation statistics and remember if we have to
995 * zero the page
996 */
997 if (flags & UVM_PGA_ZERO) {
998 if (pg->flags & PG_ZERO) {
999 uvmexp.pga_zerohit++;
1000 zeroit = 0;
1001 } else {
1002 uvmexp.pga_zeromiss++;
1003 zeroit = 1;
1004 }
1005 }
1006
1007 uvm_unlock_fpageq(s); /* unlock free page queue */
1008
1009 pg->offset = off;
1010 pg->uobject = obj;
1011 pg->uanon = anon;
1012 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1013 pg->version++;
1014 pg->wire_count = 0;
1015 pg->loan_count = 0;
1016 if (anon) {
1017 anon->u.an_page = pg;
1018 pg->pqflags = PQ_ANON;
1019 } else {
1020 if (obj)
1021 uvm_pageinsert(pg);
1022 pg->pqflags = 0;
1023 }
1024 #if defined(UVM_PAGE_TRKOWN)
1025 pg->owner_tag = NULL;
1026 #endif
1027 UVM_PAGE_OWN(pg, "new alloc");
1028
1029 if (flags & UVM_PGA_ZERO) {
1030 /*
1031 * A zero'd page is not clean. If we got a page not already
1032 * zero'd, then we have to zero it ourselves.
1033 */
1034 pg->flags &= ~PG_CLEAN;
1035 if (zeroit)
1036 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1037 }
1038
1039 return(pg);
1040
1041 fail:
1042 uvm_unlock_fpageq(s);
1043 return (NULL);
1044 }
1045
1046 /*
1047 * uvm_pagerealloc: reallocate a page from one object to another
1048 *
1049 * => both objects must be locked
1050 */
1051
1052 void
1053 uvm_pagerealloc(pg, newobj, newoff)
1054 struct vm_page *pg;
1055 struct uvm_object *newobj;
1056 voff_t newoff;
1057 {
1058 /*
1059 * remove it from the old object
1060 */
1061
1062 if (pg->uobject) {
1063 uvm_pageremove(pg);
1064 }
1065
1066 /*
1067 * put it in the new object
1068 */
1069
1070 if (newobj) {
1071 pg->uobject = newobj;
1072 pg->offset = newoff;
1073 pg->version++;
1074 uvm_pageinsert(pg);
1075 }
1076
1077 return;
1078 }
1079
1080
1081 /*
1082 * uvm_pagefree: free page
1083 *
1084 * => erase page's identity (i.e. remove from hash/object)
1085 * => put page on free list
1086 * => caller must lock owning object (either anon or uvm_object)
1087 * => caller must lock page queues
1088 * => assumes all valid mappings of pg are gone
1089 */
1090
1091 void uvm_pagefree(pg)
1092
1093 struct vm_page *pg;
1094
1095 {
1096 int s;
1097 int saved_loan_count = pg->loan_count;
1098
1099 /*
1100 * if the page was an object page (and thus "TABLED"), remove it
1101 * from the object.
1102 */
1103
1104 if (pg->flags & PG_TABLED) {
1105
1106 /*
1107 * if the object page is on loan we are going to drop ownership.
1108 * it is possible that an anon will take over as owner for this
1109 * page later on. the anon will want a !PG_CLEAN page so that
1110 * it knows it needs to allocate swap if it wants to page the
1111 * page out.
1112 */
1113
1114 if (saved_loan_count)
1115 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1116
1117 uvm_pageremove(pg);
1118
1119 /*
1120 * if our page was on loan, then we just lost control over it
1121 * (in fact, if it was loaned to an anon, the anon may have
1122 * already taken over ownership of the page by now and thus
1123 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1124 * return (when the last loan is dropped, then the page can be
1125 * freed by whatever was holding the last loan).
1126 */
1127 if (saved_loan_count)
1128 return;
1129
1130 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1131
1132 /*
1133 * if our page is owned by an anon and is loaned out to the
1134 * kernel then we just want to drop ownership and return.
1135 * the kernel must free the page when all its loans clear ...
1136 * note that the kernel can't change the loan status of our
1137 * page as long as we are holding PQ lock.
1138 */
1139 pg->pqflags &= ~PQ_ANON;
1140 pg->uanon = NULL;
1141 return;
1142 }
1143
1144 #ifdef DIAGNOSTIC
1145 if (saved_loan_count) {
1146 printf("uvm_pagefree: warning: freeing page with a loan "
1147 "count of %d\n", saved_loan_count);
1148 panic("uvm_pagefree: loan count");
1149 }
1150 #endif
1151
1152
1153 /*
1154 * now remove the page from the queues
1155 */
1156
1157 if (pg->pqflags & PQ_ACTIVE) {
1158 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1159 pg->pqflags &= ~PQ_ACTIVE;
1160 uvmexp.active--;
1161 }
1162 if (pg->pqflags & PQ_INACTIVE) {
1163 if (pg->pqflags & PQ_SWAPBACKED)
1164 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1165 else
1166 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1167 pg->pqflags &= ~PQ_INACTIVE;
1168 uvmexp.inactive--;
1169 }
1170
1171 /*
1172 * if the page was wired, unwire it now.
1173 */
1174 if (pg->wire_count) {
1175 pg->wire_count = 0;
1176 uvmexp.wired--;
1177 }
1178
1179 /*
1180 * and put on free queue
1181 */
1182
1183 pg->flags &= ~PG_ZERO;
1184
1185 s = uvm_lock_fpageq();
1186 TAILQ_INSERT_TAIL(&uvm.page_free[
1187 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1188 pg->pqflags = PQ_FREE;
1189 #ifdef DEBUG
1190 pg->uobject = (void *)0xdeadbeef;
1191 pg->offset = 0xdeadbeef;
1192 pg->uanon = (void *)0xdeadbeef;
1193 #endif
1194 uvmexp.free++;
1195
1196 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1197 uvm.page_idle_zero = vm_page_zero_enable;
1198
1199 uvm_unlock_fpageq(s);
1200 }
1201
1202 #if defined(UVM_PAGE_TRKOWN)
1203 /*
1204 * uvm_page_own: set or release page ownership
1205 *
1206 * => this is a debugging function that keeps track of who sets PG_BUSY
1207 * and where they do it. it can be used to track down problems
1208 * such a process setting "PG_BUSY" and never releasing it.
1209 * => page's object [if any] must be locked
1210 * => if "tag" is NULL then we are releasing page ownership
1211 */
1212 void
1213 uvm_page_own(pg, tag)
1214 struct vm_page *pg;
1215 char *tag;
1216 {
1217 /* gain ownership? */
1218 if (tag) {
1219 if (pg->owner_tag) {
1220 printf("uvm_page_own: page %p already owned "
1221 "by proc %d [%s]\n", pg,
1222 pg->owner, pg->owner_tag);
1223 panic("uvm_page_own");
1224 }
1225 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1226 pg->owner_tag = tag;
1227 return;
1228 }
1229
1230 /* drop ownership */
1231 if (pg->owner_tag == NULL) {
1232 printf("uvm_page_own: dropping ownership of an non-owned "
1233 "page (%p)\n", pg);
1234 panic("uvm_page_own");
1235 }
1236 pg->owner_tag = NULL;
1237 return;
1238 }
1239 #endif
1240
1241 /*
1242 * uvm_pageidlezero: zero free pages while the system is idle.
1243 *
1244 * => we do at least one iteration per call, if we are below the target.
1245 * => we loop until we either reach the target or whichqs indicates that
1246 * there is a process ready to run.
1247 */
1248 void
1249 uvm_pageidlezero()
1250 {
1251 struct vm_page *pg;
1252 struct pgfreelist *pgfl;
1253 int free_list, s;
1254
1255 do {
1256 s = uvm_lock_fpageq();
1257
1258 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1259 uvm.page_idle_zero = FALSE;
1260 uvm_unlock_fpageq(s);
1261 return;
1262 }
1263
1264 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1265 pgfl = &uvm.page_free[free_list];
1266 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1267 PGFL_UNKNOWN])) != NULL)
1268 break;
1269 }
1270
1271 if (pg == NULL) {
1272 /*
1273 * No non-zero'd pages; don't bother trying again
1274 * until we know we have non-zero'd pages free.
1275 */
1276 uvm.page_idle_zero = FALSE;
1277 uvm_unlock_fpageq(s);
1278 return;
1279 }
1280
1281 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1282 uvmexp.free--;
1283 uvm_unlock_fpageq(s);
1284
1285 #ifdef PMAP_PAGEIDLEZERO
1286 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1287 /*
1288 * The machine-dependent code detected some
1289 * reason for us to abort zeroing pages,
1290 * probably because there is a process now
1291 * ready to run.
1292 */
1293 s = uvm_lock_fpageq();
1294 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1295 pg, pageq);
1296 uvmexp.free++;
1297 uvmexp.zeroaborts++;
1298 uvm_unlock_fpageq(s);
1299 return;
1300 }
1301 #else
1302 /*
1303 * XXX This will toast the cache unless the pmap_zero_page()
1304 * XXX implementation does uncached access.
1305 */
1306 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1307 #endif
1308 pg->flags |= PG_ZERO;
1309
1310 s = uvm_lock_fpageq();
1311 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1312 uvmexp.free++;
1313 uvmexp.zeropages++;
1314 uvm_unlock_fpageq(s);
1315 } while (sched_whichqs == 0);
1316 }
1317