Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.44
      1 /*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include "opt_uvmhist.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/malloc.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 
     81 #define UVM_PAGE                /* pull in uvm_page.h functions */
     82 #include <uvm/uvm.h>
     83 
     84 /*
     85  * global vars... XXXCDC: move to uvm. structure.
     86  */
     87 
     88 /*
     89  * physical memory config is stored in vm_physmem.
     90  */
     91 
     92 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     93 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     94 
     95 /*
     96  * Some supported CPUs in a given architecture don't support all
     97  * of the things necessary to do idle page zero'ing efficiently.
     98  * We therefore provide a way to disable it from machdep code here.
     99  */
    100 /*
    101  * XXX disabled until we can find a way to do this without causing
    102  * problems for either cpu caches or DMA latency.
    103  */
    104 boolean_t vm_page_zero_enable = FALSE;
    105 
    106 u_long uvm_pgcnt_anon;
    107 u_long uvm_pgcnt_vnode;
    108 extern struct uvm_pagerops uvm_vnodeops;
    109 
    110 /*
    111  * local variables
    112  */
    113 
    114 /*
    115  * these variables record the values returned by vm_page_bootstrap,
    116  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    117  * and pmap_startup here also uses them internally.
    118  */
    119 
    120 static vaddr_t      virtual_space_start;
    121 static vaddr_t      virtual_space_end;
    122 
    123 /*
    124  * we use a hash table with only one bucket during bootup.  we will
    125  * later rehash (resize) the hash table once the allocator is ready.
    126  * we static allocate the one bootstrap bucket below...
    127  */
    128 
    129 static struct pglist uvm_bootbucket;
    130 
    131 /*
    132  * local prototypes
    133  */
    134 
    135 static void uvm_pageinsert __P((struct vm_page *));
    136 static void uvm_pageremove __P((struct vm_page *));
    137 
    138 /*
    139  * inline functions
    140  */
    141 
    142 /*
    143  * uvm_pageinsert: insert a page in the object and the hash table
    144  *
    145  * => caller must lock object
    146  * => caller must lock page queues
    147  * => call should have already set pg's object and offset pointers
    148  *    and bumped the version counter
    149  */
    150 
    151 __inline static void
    152 uvm_pageinsert(pg)
    153 	struct vm_page *pg;
    154 {
    155 	struct pglist *buck;
    156 	int s;
    157 
    158 #ifdef DIAGNOSTIC
    159 	if (pg->flags & PG_TABLED)
    160 		panic("uvm_pageinsert: already inserted");
    161 #endif
    162 
    163 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    164 	s = splimp();
    165 	simple_lock(&uvm.hashlock);
    166 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    167 	simple_unlock(&uvm.hashlock);
    168 	splx(s);
    169 
    170 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    171 	pg->flags |= PG_TABLED;
    172 	pg->uobject->uo_npages++;
    173 }
    174 
    175 /*
    176  * uvm_page_remove: remove page from object and hash
    177  *
    178  * => caller must lock object
    179  * => caller must lock page queues
    180  */
    181 
    182 static __inline void
    183 uvm_pageremove(pg)
    184 	struct vm_page *pg;
    185 {
    186 	struct pglist *buck;
    187 	int s;
    188 
    189 	KASSERT(pg->flags & PG_TABLED);
    190 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    191 	s = splimp();
    192 	simple_lock(&uvm.hashlock);
    193 	TAILQ_REMOVE(buck, pg, hashq);
    194 	simple_unlock(&uvm.hashlock);
    195 	splx(s);
    196 
    197 	if (pg->uobject->pgops == &uvm_vnodeops) {
    198 		uvm_pgcnt_vnode--;
    199 	}
    200 
    201 	/* object should be locked */
    202 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    203 
    204 	pg->flags &= ~PG_TABLED;
    205 	pg->uobject->uo_npages--;
    206 	pg->uobject = NULL;
    207 	pg->version++;
    208 }
    209 
    210 /*
    211  * uvm_page_init: init the page system.   called from uvm_init().
    212  *
    213  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    214  */
    215 
    216 void
    217 uvm_page_init(kvm_startp, kvm_endp)
    218 	vaddr_t *kvm_startp, *kvm_endp;
    219 {
    220 	vsize_t freepages, pagecount, n;
    221 	vm_page_t pagearray;
    222 	int lcv, i;
    223 	paddr_t paddr;
    224 
    225 	/*
    226 	 * step 1: init the page queues and page queue locks
    227 	 */
    228 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    229 		for (i = 0; i < PGFL_NQUEUES; i++)
    230 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
    231 	}
    232 	TAILQ_INIT(&uvm.page_active);
    233 	TAILQ_INIT(&uvm.page_inactive_swp);
    234 	TAILQ_INIT(&uvm.page_inactive_obj);
    235 	simple_lock_init(&uvm.pageqlock);
    236 	simple_lock_init(&uvm.fpageqlock);
    237 
    238 	/*
    239 	 * step 2: init the <obj,offset> => <page> hash table. for now
    240 	 * we just have one bucket (the bootstrap bucket).   later on we
    241 	 * will allocate new buckets as we dynamically resize the hash table.
    242 	 */
    243 
    244 	uvm.page_nhash = 1;			/* 1 bucket */
    245 	uvm.page_hashmask = 0;			/* mask for hash function */
    246 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    247 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    248 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    249 
    250 	/*
    251 	 * step 3: allocate vm_page structures.
    252 	 */
    253 
    254 	/*
    255 	 * sanity check:
    256 	 * before calling this function the MD code is expected to register
    257 	 * some free RAM with the uvm_page_physload() function.   our job
    258 	 * now is to allocate vm_page structures for this memory.
    259 	 */
    260 
    261 	if (vm_nphysseg == 0)
    262 		panic("uvm_page_bootstrap: no memory pre-allocated");
    263 
    264 	/*
    265 	 * first calculate the number of free pages...
    266 	 *
    267 	 * note that we use start/end rather than avail_start/avail_end.
    268 	 * this allows us to allocate extra vm_page structures in case we
    269 	 * want to return some memory to the pool after booting.
    270 	 */
    271 
    272 	freepages = 0;
    273 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    274 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    275 
    276 	/*
    277 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    278 	 * use.   for each page of memory we use we need a vm_page structure.
    279 	 * thus, the total number of pages we can use is the total size of
    280 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    281 	 * structure.   we add one to freepages as a fudge factor to avoid
    282 	 * truncation errors (since we can only allocate in terms of whole
    283 	 * pages).
    284 	 */
    285 
    286 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    287 	    (PAGE_SIZE + sizeof(struct vm_page));
    288 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    289 	    sizeof(struct vm_page));
    290 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    291 
    292 	/*
    293 	 * step 4: init the vm_page structures and put them in the correct
    294 	 * place...
    295 	 */
    296 
    297 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    298 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    299 		if (n > pagecount) {
    300 			printf("uvm_page_init: lost %ld page(s) in init\n",
    301 			    (long)(n - pagecount));
    302 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    303 			/* n = pagecount; */
    304 		}
    305 		/* set up page array pointers */
    306 		vm_physmem[lcv].pgs = pagearray;
    307 		pagearray += n;
    308 		pagecount -= n;
    309 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    310 
    311 		/* init and free vm_pages (we've already zeroed them) */
    312 		paddr = ptoa(vm_physmem[lcv].start);
    313 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    314 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    315 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    316 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    317 				uvmexp.npages++;
    318 				/* add page to free pool */
    319 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    320 			}
    321 		}
    322 	}
    323 
    324 	/*
    325 	 * step 5: pass up the values of virtual_space_start and
    326 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    327 	 * layers of the VM.
    328 	 */
    329 
    330 	*kvm_startp = round_page(virtual_space_start);
    331 	*kvm_endp = trunc_page(virtual_space_end);
    332 
    333 	/*
    334 	 * step 6: init locks for kernel threads
    335 	 */
    336 
    337 	simple_lock_init(&uvm.pagedaemon_lock);
    338 	simple_lock_init(&uvm.aiodoned_lock);
    339 
    340 	/*
    341 	 * step 7: init reserve thresholds
    342 	 * XXXCDC - values may need adjusting
    343 	 */
    344 	uvmexp.reserve_pagedaemon = 1;
    345 	uvmexp.reserve_kernel = 5;
    346 
    347 	/*
    348 	 * step 8: determine if we should zero pages in the idle
    349 	 * loop.
    350 	 */
    351 	uvm.page_idle_zero = vm_page_zero_enable;
    352 
    353 	/*
    354 	 * done!
    355 	 */
    356 
    357 	uvm.page_init_done = TRUE;
    358 }
    359 
    360 /*
    361  * uvm_setpagesize: set the page size
    362  *
    363  * => sets page_shift and page_mask from uvmexp.pagesize.
    364  */
    365 
    366 void
    367 uvm_setpagesize()
    368 {
    369 	if (uvmexp.pagesize == 0)
    370 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    371 	uvmexp.pagemask = uvmexp.pagesize - 1;
    372 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    373 		panic("uvm_setpagesize: page size not a power of two");
    374 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    375 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    376 			break;
    377 }
    378 
    379 /*
    380  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    381  */
    382 
    383 vaddr_t
    384 uvm_pageboot_alloc(size)
    385 	vsize_t size;
    386 {
    387 #if defined(PMAP_STEAL_MEMORY)
    388 	vaddr_t addr;
    389 
    390 	/*
    391 	 * defer bootstrap allocation to MD code (it may want to allocate
    392 	 * from a direct-mapped segment).  pmap_steal_memory should round
    393 	 * off virtual_space_start/virtual_space_end.
    394 	 */
    395 
    396 	addr = pmap_steal_memory(size, &virtual_space_start,
    397 	    &virtual_space_end);
    398 
    399 	return(addr);
    400 
    401 #else /* !PMAP_STEAL_MEMORY */
    402 
    403 	static boolean_t initialized = FALSE;
    404 	vaddr_t addr, vaddr;
    405 	paddr_t paddr;
    406 
    407 	/* round to page size */
    408 	size = round_page(size);
    409 
    410 	/*
    411 	 * on first call to this function, initialize ourselves.
    412 	 */
    413 	if (initialized == FALSE) {
    414 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    415 
    416 		/* round it the way we like it */
    417 		virtual_space_start = round_page(virtual_space_start);
    418 		virtual_space_end = trunc_page(virtual_space_end);
    419 
    420 		initialized = TRUE;
    421 	}
    422 
    423 	/*
    424 	 * allocate virtual memory for this request
    425 	 */
    426 	if (virtual_space_start == virtual_space_end ||
    427 	    (virtual_space_end - virtual_space_start) < size)
    428 		panic("uvm_pageboot_alloc: out of virtual space");
    429 
    430 	addr = virtual_space_start;
    431 
    432 #ifdef PMAP_GROWKERNEL
    433 	/*
    434 	 * If the kernel pmap can't map the requested space,
    435 	 * then allocate more resources for it.
    436 	 */
    437 	if (uvm_maxkaddr < (addr + size)) {
    438 		uvm_maxkaddr = pmap_growkernel(addr + size);
    439 		if (uvm_maxkaddr < (addr + size))
    440 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    441 	}
    442 #endif
    443 
    444 	virtual_space_start += size;
    445 
    446 	/*
    447 	 * allocate and mapin physical pages to back new virtual pages
    448 	 */
    449 
    450 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    451 	    vaddr += PAGE_SIZE) {
    452 
    453 		if (!uvm_page_physget(&paddr))
    454 			panic("uvm_pageboot_alloc: out of memory");
    455 
    456 		/*
    457 		 * Note this memory is no longer managed, so using
    458 		 * pmap_kenter is safe.
    459 		 */
    460 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    461 	}
    462 	return(addr);
    463 #endif	/* PMAP_STEAL_MEMORY */
    464 }
    465 
    466 #if !defined(PMAP_STEAL_MEMORY)
    467 /*
    468  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    469  *
    470  * => attempt to allocate it off the end of a segment in which the "avail"
    471  *    values match the start/end values.   if we can't do that, then we
    472  *    will advance both values (making them equal, and removing some
    473  *    vm_page structures from the non-avail area).
    474  * => return false if out of memory.
    475  */
    476 
    477 /* subroutine: try to allocate from memory chunks on the specified freelist */
    478 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    479 
    480 static boolean_t
    481 uvm_page_physget_freelist(paddrp, freelist)
    482 	paddr_t *paddrp;
    483 	int freelist;
    484 {
    485 	int lcv, x;
    486 
    487 	/* pass 1: try allocating from a matching end */
    488 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    489 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    490 #else
    491 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    492 #endif
    493 	{
    494 
    495 		if (uvm.page_init_done == TRUE)
    496 			panic("uvm_page_physget: called _after_ bootstrap");
    497 
    498 		if (vm_physmem[lcv].free_list != freelist)
    499 			continue;
    500 
    501 		/* try from front */
    502 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    503 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    504 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    505 			vm_physmem[lcv].avail_start++;
    506 			vm_physmem[lcv].start++;
    507 			/* nothing left?   nuke it */
    508 			if (vm_physmem[lcv].avail_start ==
    509 			    vm_physmem[lcv].end) {
    510 				if (vm_nphysseg == 1)
    511 				    panic("vum_page_physget: out of memory!");
    512 				vm_nphysseg--;
    513 				for (x = lcv ; x < vm_nphysseg ; x++)
    514 					/* structure copy */
    515 					vm_physmem[x] = vm_physmem[x+1];
    516 			}
    517 			return (TRUE);
    518 		}
    519 
    520 		/* try from rear */
    521 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    522 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    523 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    524 			vm_physmem[lcv].avail_end--;
    525 			vm_physmem[lcv].end--;
    526 			/* nothing left?   nuke it */
    527 			if (vm_physmem[lcv].avail_end ==
    528 			    vm_physmem[lcv].start) {
    529 				if (vm_nphysseg == 1)
    530 				    panic("uvm_page_physget: out of memory!");
    531 				vm_nphysseg--;
    532 				for (x = lcv ; x < vm_nphysseg ; x++)
    533 					/* structure copy */
    534 					vm_physmem[x] = vm_physmem[x+1];
    535 			}
    536 			return (TRUE);
    537 		}
    538 	}
    539 
    540 	/* pass2: forget about matching ends, just allocate something */
    541 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    542 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    543 #else
    544 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    545 #endif
    546 	{
    547 
    548 		/* any room in this bank? */
    549 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    550 			continue;  /* nope */
    551 
    552 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    553 		vm_physmem[lcv].avail_start++;
    554 		/* truncate! */
    555 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    556 
    557 		/* nothing left?   nuke it */
    558 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    559 			if (vm_nphysseg == 1)
    560 				panic("uvm_page_physget: out of memory!");
    561 			vm_nphysseg--;
    562 			for (x = lcv ; x < vm_nphysseg ; x++)
    563 				/* structure copy */
    564 				vm_physmem[x] = vm_physmem[x+1];
    565 		}
    566 		return (TRUE);
    567 	}
    568 
    569 	return (FALSE);        /* whoops! */
    570 }
    571 
    572 boolean_t
    573 uvm_page_physget(paddrp)
    574 	paddr_t *paddrp;
    575 {
    576 	int i;
    577 
    578 	/* try in the order of freelist preference */
    579 	for (i = 0; i < VM_NFREELIST; i++)
    580 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    581 			return (TRUE);
    582 	return (FALSE);
    583 }
    584 #endif /* PMAP_STEAL_MEMORY */
    585 
    586 /*
    587  * uvm_page_physload: load physical memory into VM system
    588  *
    589  * => all args are PFs
    590  * => all pages in start/end get vm_page structures
    591  * => areas marked by avail_start/avail_end get added to the free page pool
    592  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    593  */
    594 
    595 void
    596 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    597 	paddr_t start, end, avail_start, avail_end;
    598 	int free_list;
    599 {
    600 	int preload, lcv;
    601 	psize_t npages;
    602 	struct vm_page *pgs;
    603 	struct vm_physseg *ps;
    604 
    605 	if (uvmexp.pagesize == 0)
    606 		panic("uvm_page_physload: page size not set!");
    607 
    608 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    609 		panic("uvm_page_physload: bad free list %d\n", free_list);
    610 
    611 	if (start >= end)
    612 		panic("uvm_page_physload: start >= end");
    613 
    614 	/*
    615 	 * do we have room?
    616 	 */
    617 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    618 		printf("uvm_page_physload: unable to load physical memory "
    619 		    "segment\n");
    620 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    621 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    622 		printf("\tincrease VM_PHYSSEG_MAX\n");
    623 		return;
    624 	}
    625 
    626 	/*
    627 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    628 	 * called yet, so malloc is not available).
    629 	 */
    630 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    631 		if (vm_physmem[lcv].pgs)
    632 			break;
    633 	}
    634 	preload = (lcv == vm_nphysseg);
    635 
    636 	/*
    637 	 * if VM is already running, attempt to malloc() vm_page structures
    638 	 */
    639 	if (!preload) {
    640 #if defined(VM_PHYSSEG_NOADD)
    641 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    642 #else
    643 		/* XXXCDC: need some sort of lockout for this case */
    644 		paddr_t paddr;
    645 		npages = end - start;  /* # of pages */
    646 		pgs = malloc(sizeof(struct vm_page) * npages,
    647 		    M_VMPAGE, M_NOWAIT);
    648 		if (pgs == NULL) {
    649 			printf("uvm_page_physload: can not malloc vm_page "
    650 			    "structs for segment\n");
    651 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    652 			return;
    653 		}
    654 		/* zero data, init phys_addr and free_list, and free pages */
    655 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    656 		for (lcv = 0, paddr = ptoa(start) ;
    657 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    658 			pgs[lcv].phys_addr = paddr;
    659 			pgs[lcv].free_list = free_list;
    660 			if (atop(paddr) >= avail_start &&
    661 			    atop(paddr) <= avail_end)
    662 				uvm_pagefree(&pgs[lcv]);
    663 		}
    664 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    665 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    666 #endif
    667 	} else {
    668 
    669 		/* gcc complains if these don't get init'd */
    670 		pgs = NULL;
    671 		npages = 0;
    672 
    673 	}
    674 
    675 	/*
    676 	 * now insert us in the proper place in vm_physmem[]
    677 	 */
    678 
    679 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    680 
    681 	/* random: put it at the end (easy!) */
    682 	ps = &vm_physmem[vm_nphysseg];
    683 
    684 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    685 
    686 	{
    687 		int x;
    688 		/* sort by address for binary search */
    689 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    690 			if (start < vm_physmem[lcv].start)
    691 				break;
    692 		ps = &vm_physmem[lcv];
    693 		/* move back other entries, if necessary ... */
    694 		for (x = vm_nphysseg ; x > lcv ; x--)
    695 			/* structure copy */
    696 			vm_physmem[x] = vm_physmem[x - 1];
    697 	}
    698 
    699 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    700 
    701 	{
    702 		int x;
    703 		/* sort by largest segment first */
    704 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    705 			if ((end - start) >
    706 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    707 				break;
    708 		ps = &vm_physmem[lcv];
    709 		/* move back other entries, if necessary ... */
    710 		for (x = vm_nphysseg ; x > lcv ; x--)
    711 			/* structure copy */
    712 			vm_physmem[x] = vm_physmem[x - 1];
    713 	}
    714 
    715 #else
    716 
    717 	panic("uvm_page_physload: unknown physseg strategy selected!");
    718 
    719 #endif
    720 
    721 	ps->start = start;
    722 	ps->end = end;
    723 	ps->avail_start = avail_start;
    724 	ps->avail_end = avail_end;
    725 	if (preload) {
    726 		ps->pgs = NULL;
    727 	} else {
    728 		ps->pgs = pgs;
    729 		ps->lastpg = pgs + npages - 1;
    730 	}
    731 	ps->free_list = free_list;
    732 	vm_nphysseg++;
    733 
    734 	/*
    735 	 * done!
    736 	 */
    737 
    738 	if (!preload)
    739 		uvm_page_rehash();
    740 
    741 	return;
    742 }
    743 
    744 /*
    745  * uvm_page_rehash: reallocate hash table based on number of free pages.
    746  */
    747 
    748 void
    749 uvm_page_rehash()
    750 {
    751 	int freepages, lcv, bucketcount, s, oldcount;
    752 	struct pglist *newbuckets, *oldbuckets;
    753 	struct vm_page *pg;
    754 	size_t newsize, oldsize;
    755 
    756 	/*
    757 	 * compute number of pages that can go in the free pool
    758 	 */
    759 
    760 	freepages = 0;
    761 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    762 		freepages +=
    763 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    764 
    765 	/*
    766 	 * compute number of buckets needed for this number of pages
    767 	 */
    768 
    769 	bucketcount = 1;
    770 	while (bucketcount < freepages)
    771 		bucketcount = bucketcount * 2;
    772 
    773 	/*
    774 	 * compute the size of the current table and new table.
    775 	 */
    776 
    777 	oldbuckets = uvm.page_hash;
    778 	oldcount = uvm.page_nhash;
    779 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    780 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    781 
    782 	/*
    783 	 * allocate the new buckets
    784 	 */
    785 
    786 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    787 	if (newbuckets == NULL) {
    788 		printf("uvm_page_physrehash: WARNING: could not grow page "
    789 		    "hash table\n");
    790 		return;
    791 	}
    792 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    793 		TAILQ_INIT(&newbuckets[lcv]);
    794 
    795 	/*
    796 	 * now replace the old buckets with the new ones and rehash everything
    797 	 */
    798 
    799 	s = splimp();
    800 	simple_lock(&uvm.hashlock);
    801 	uvm.page_hash = newbuckets;
    802 	uvm.page_nhash = bucketcount;
    803 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    804 
    805 	/* ... and rehash */
    806 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    807 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    808 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    809 			TAILQ_INSERT_TAIL(
    810 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    811 			  pg, hashq);
    812 		}
    813 	}
    814 	simple_unlock(&uvm.hashlock);
    815 	splx(s);
    816 
    817 	/*
    818 	 * free old bucket array if is not the boot-time table
    819 	 */
    820 
    821 	if (oldbuckets != &uvm_bootbucket)
    822 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    823 
    824 	/*
    825 	 * done
    826 	 */
    827 	return;
    828 }
    829 
    830 
    831 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    832 
    833 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    834 
    835 /* call from DDB */
    836 void
    837 uvm_page_physdump()
    838 {
    839 	int lcv;
    840 
    841 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    842 				 vm_nphysseg, VM_PHYSSEG_MAX);
    843 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    844 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
    845 		    (long long)vm_physmem[lcv].start,
    846 		    (long long)vm_physmem[lcv].end,
    847 		    (long long)vm_physmem[lcv].avail_start,
    848 		    (long long)vm_physmem[lcv].avail_end);
    849 	printf("STRATEGY = ");
    850 	switch (VM_PHYSSEG_STRAT) {
    851 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    852 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    853 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    854 	default: printf("<<UNKNOWN>>!!!!\n");
    855 	}
    856 	printf("number of buckets = %d\n", uvm.page_nhash);
    857 }
    858 #endif
    859 
    860 /*
    861  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    862  *
    863  * => return null if no pages free
    864  * => wake up pagedaemon if number of free pages drops below low water mark
    865  * => if obj != NULL, obj must be locked (to put in hash)
    866  * => if anon != NULL, anon must be locked (to put in anon)
    867  * => only one of obj or anon can be non-null
    868  * => caller must activate/deactivate page if it is not wired.
    869  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    870  * => policy decision: it is more important to pull a page off of the
    871  *	appropriate priority free list than it is to get a zero'd or
    872  *	unknown contents page.  This is because we live with the
    873  *	consequences of a bad free list decision for the entire
    874  *	lifetime of the page, e.g. if the page comes from memory that
    875  *	is slower to access.
    876  */
    877 
    878 struct vm_page *
    879 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    880 	struct uvm_object *obj;
    881 	voff_t off;
    882 	int flags;
    883 	struct vm_anon *anon;
    884 	int strat, free_list;
    885 {
    886 	int lcv, try1, try2, s, zeroit = 0;
    887 	struct vm_page *pg;
    888 	struct pglist *freeq;
    889 	struct pgfreelist *pgfl;
    890 	boolean_t use_reserve;
    891 
    892 	KASSERT(obj == NULL || anon == NULL);
    893 	KASSERT(off == trunc_page(off));
    894 	s = uvm_lock_fpageq();
    895 
    896 	/*
    897 	 * check to see if we need to generate some free pages waking
    898 	 * the pagedaemon.
    899 	 */
    900 
    901 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    902 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    903 	     uvmexp.inactive < uvmexp.inactarg)) {
    904 		wakeup(&uvm.pagedaemon);
    905 	}
    906 
    907 	/*
    908 	 * fail if any of these conditions is true:
    909 	 * [1]  there really are no free pages, or
    910 	 * [2]  only kernel "reserved" pages remain and
    911 	 *        the page isn't being allocated to a kernel object.
    912 	 * [3]  only pagedaemon "reserved" pages remain and
    913 	 *        the requestor isn't the pagedaemon.
    914 	 */
    915 
    916 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
    917 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
    918 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
    919 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    920 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
    921 		goto fail;
    922 
    923 #if PGFL_NQUEUES != 2
    924 #error uvm_pagealloc_strat needs to be updated
    925 #endif
    926 
    927 	/*
    928 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    929 	 * we try the UNKNOWN queue first.
    930 	 */
    931 	if (flags & UVM_PGA_ZERO) {
    932 		try1 = PGFL_ZEROS;
    933 		try2 = PGFL_UNKNOWN;
    934 	} else {
    935 		try1 = PGFL_UNKNOWN;
    936 		try2 = PGFL_ZEROS;
    937 	}
    938 
    939  again:
    940 	switch (strat) {
    941 	case UVM_PGA_STRAT_NORMAL:
    942 		/* Check all freelists in descending priority order. */
    943 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    944 			pgfl = &uvm.page_free[lcv];
    945 			if ((pg = TAILQ_FIRST((freeq =
    946 			      &pgfl->pgfl_queues[try1]))) != NULL ||
    947 			    (pg = TAILQ_FIRST((freeq =
    948 			      &pgfl->pgfl_queues[try2]))) != NULL)
    949 				goto gotit;
    950 		}
    951 
    952 		/* No pages free! */
    953 		goto fail;
    954 
    955 	case UVM_PGA_STRAT_ONLY:
    956 	case UVM_PGA_STRAT_FALLBACK:
    957 		/* Attempt to allocate from the specified free list. */
    958 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    959 		pgfl = &uvm.page_free[free_list];
    960 		if ((pg = TAILQ_FIRST((freeq =
    961 		      &pgfl->pgfl_queues[try1]))) != NULL ||
    962 		    (pg = TAILQ_FIRST((freeq =
    963 		      &pgfl->pgfl_queues[try2]))) != NULL)
    964 			goto gotit;
    965 
    966 		/* Fall back, if possible. */
    967 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    968 			strat = UVM_PGA_STRAT_NORMAL;
    969 			goto again;
    970 		}
    971 
    972 		/* No pages free! */
    973 		goto fail;
    974 
    975 	default:
    976 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    977 		/* NOTREACHED */
    978 	}
    979 
    980  gotit:
    981 	TAILQ_REMOVE(freeq, pg, pageq);
    982 	uvmexp.free--;
    983 
    984 	/* update zero'd page count */
    985 	if (pg->flags & PG_ZERO)
    986 		uvmexp.zeropages--;
    987 
    988 	/*
    989 	 * update allocation statistics and remember if we have to
    990 	 * zero the page
    991 	 */
    992 	if (flags & UVM_PGA_ZERO) {
    993 		if (pg->flags & PG_ZERO) {
    994 			uvmexp.pga_zerohit++;
    995 			zeroit = 0;
    996 		} else {
    997 			uvmexp.pga_zeromiss++;
    998 			zeroit = 1;
    999 		}
   1000 	}
   1001 
   1002 	uvm_unlock_fpageq(s);		/* unlock free page queue */
   1003 
   1004 	pg->offset = off;
   1005 	pg->uobject = obj;
   1006 	pg->uanon = anon;
   1007 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1008 	pg->version++;
   1009 	if (anon) {
   1010 		anon->u.an_page = pg;
   1011 		pg->pqflags = PQ_ANON;
   1012 		uvm_pgcnt_anon++;
   1013 	} else {
   1014 		if (obj)
   1015 			uvm_pageinsert(pg);
   1016 		pg->pqflags = 0;
   1017 	}
   1018 #if defined(UVM_PAGE_TRKOWN)
   1019 	pg->owner_tag = NULL;
   1020 #endif
   1021 	UVM_PAGE_OWN(pg, "new alloc");
   1022 
   1023 	if (flags & UVM_PGA_ZERO) {
   1024 		/*
   1025 		 * A zero'd page is not clean.  If we got a page not already
   1026 		 * zero'd, then we have to zero it ourselves.
   1027 		 */
   1028 		pg->flags &= ~PG_CLEAN;
   1029 		if (zeroit)
   1030 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1031 	}
   1032 
   1033 	return(pg);
   1034 
   1035  fail:
   1036 	uvm_unlock_fpageq(s);
   1037 	return (NULL);
   1038 }
   1039 
   1040 /*
   1041  * uvm_pagerealloc: reallocate a page from one object to another
   1042  *
   1043  * => both objects must be locked
   1044  */
   1045 
   1046 void
   1047 uvm_pagerealloc(pg, newobj, newoff)
   1048 	struct vm_page *pg;
   1049 	struct uvm_object *newobj;
   1050 	voff_t newoff;
   1051 {
   1052 	/*
   1053 	 * remove it from the old object
   1054 	 */
   1055 
   1056 	if (pg->uobject) {
   1057 		uvm_pageremove(pg);
   1058 	}
   1059 
   1060 	/*
   1061 	 * put it in the new object
   1062 	 */
   1063 
   1064 	if (newobj) {
   1065 		pg->uobject = newobj;
   1066 		pg->offset = newoff;
   1067 		pg->version++;
   1068 		uvm_pageinsert(pg);
   1069 	}
   1070 }
   1071 
   1072 
   1073 /*
   1074  * uvm_pagefree: free page
   1075  *
   1076  * => erase page's identity (i.e. remove from hash/object)
   1077  * => put page on free list
   1078  * => caller must lock owning object (either anon or uvm_object)
   1079  * => caller must lock page queues
   1080  * => assumes all valid mappings of pg are gone
   1081  */
   1082 
   1083 void
   1084 uvm_pagefree(pg)
   1085 	struct vm_page *pg;
   1086 {
   1087 	int s;
   1088 	int saved_loan_count = pg->loan_count;
   1089 
   1090 #ifdef DEBUG
   1091 	if (pg->uobject == (void *)0xdeadbeef &&
   1092 	    pg->uanon == (void *)0xdeadbeef) {
   1093 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1094 	}
   1095 #endif
   1096 
   1097 	/*
   1098 	 * if the page was an object page (and thus "TABLED"), remove it
   1099 	 * from the object.
   1100 	 */
   1101 
   1102 	if (pg->flags & PG_TABLED) {
   1103 
   1104 		/*
   1105 		 * if the object page is on loan we are going to drop ownership.
   1106 		 * it is possible that an anon will take over as owner for this
   1107 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1108 		 * it knows it needs to allocate swap if it wants to page the
   1109 		 * page out.
   1110 		 */
   1111 
   1112 		if (saved_loan_count)
   1113 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1114 		uvm_pageremove(pg);
   1115 
   1116 		/*
   1117 		 * if our page was on loan, then we just lost control over it
   1118 		 * (in fact, if it was loaned to an anon, the anon may have
   1119 		 * already taken over ownership of the page by now and thus
   1120 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1121 		 * return (when the last loan is dropped, then the page can be
   1122 		 * freed by whatever was holding the last loan).
   1123 		 */
   1124 
   1125 		if (saved_loan_count)
   1126 			return;
   1127 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1128 
   1129 		/*
   1130 		 * if our page is owned by an anon and is loaned out to the
   1131 		 * kernel then we just want to drop ownership and return.
   1132 		 * the kernel must free the page when all its loans clear ...
   1133 		 * note that the kernel can't change the loan status of our
   1134 		 * page as long as we are holding PQ lock.
   1135 		 */
   1136 
   1137 		pg->pqflags &= ~PQ_ANON;
   1138 		pg->uanon = NULL;
   1139 		return;
   1140 	}
   1141 	KASSERT(saved_loan_count == 0);
   1142 
   1143 	/*
   1144 	 * now remove the page from the queues
   1145 	 */
   1146 
   1147 	if (pg->pqflags & PQ_ACTIVE) {
   1148 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1149 		pg->pqflags &= ~PQ_ACTIVE;
   1150 		uvmexp.active--;
   1151 	}
   1152 	if (pg->pqflags & PQ_INACTIVE) {
   1153 		if (pg->pqflags & PQ_SWAPBACKED)
   1154 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1155 		else
   1156 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1157 		pg->pqflags &= ~PQ_INACTIVE;
   1158 		uvmexp.inactive--;
   1159 	}
   1160 
   1161 	/*
   1162 	 * if the page was wired, unwire it now.
   1163 	 */
   1164 
   1165 	if (pg->wire_count) {
   1166 		pg->wire_count = 0;
   1167 		uvmexp.wired--;
   1168 	}
   1169 	if (pg->uanon) {
   1170 		uvm_pgcnt_anon--;
   1171 	}
   1172 
   1173 	/*
   1174 	 * and put on free queue
   1175 	 */
   1176 
   1177 	pg->flags &= ~PG_ZERO;
   1178 
   1179 	s = uvm_lock_fpageq();
   1180 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1181 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1182 	pg->pqflags = PQ_FREE;
   1183 #ifdef DEBUG
   1184 	pg->uobject = (void *)0xdeadbeef;
   1185 	pg->offset = 0xdeadbeef;
   1186 	pg->uanon = (void *)0xdeadbeef;
   1187 #endif
   1188 	uvmexp.free++;
   1189 
   1190 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1191 		uvm.page_idle_zero = vm_page_zero_enable;
   1192 
   1193 	uvm_unlock_fpageq(s);
   1194 }
   1195 
   1196 /*
   1197  * uvm_page_unbusy: unbusy an array of pages.
   1198  *
   1199  * => pages must either all belong to the same object, or all belong to anons.
   1200  * => if pages are object-owned, object must be locked.
   1201  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
   1202  */
   1203 
   1204 void
   1205 uvm_page_unbusy(pgs, npgs)
   1206 	struct vm_page **pgs;
   1207 	int npgs;
   1208 {
   1209 	struct vm_page *pg;
   1210 	struct uvm_object *uobj;
   1211 	int i;
   1212 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1213 
   1214 	for (i = 0; i < npgs; i++) {
   1215 		pg = pgs[i];
   1216 
   1217 		if (pg == NULL) {
   1218 			continue;
   1219 		}
   1220 		if (pg->flags & PG_WANTED) {
   1221 			wakeup(pg);
   1222 		}
   1223 		if (pg->flags & PG_RELEASED) {
   1224 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1225 			uobj = pg->uobject;
   1226 			if (uobj != NULL) {
   1227 				uobj->pgops->pgo_releasepg(pg, NULL);
   1228 			} else {
   1229 				pg->flags &= ~(PG_BUSY);
   1230 				UVM_PAGE_OWN(pg, NULL);
   1231 				uvm_anfree(pg->uanon);
   1232 			}
   1233 		} else {
   1234 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1235 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1236 			UVM_PAGE_OWN(pg, NULL);
   1237 		}
   1238 	}
   1239 }
   1240 
   1241 #if defined(UVM_PAGE_TRKOWN)
   1242 /*
   1243  * uvm_page_own: set or release page ownership
   1244  *
   1245  * => this is a debugging function that keeps track of who sets PG_BUSY
   1246  *	and where they do it.   it can be used to track down problems
   1247  *	such a process setting "PG_BUSY" and never releasing it.
   1248  * => page's object [if any] must be locked
   1249  * => if "tag" is NULL then we are releasing page ownership
   1250  */
   1251 void
   1252 uvm_page_own(pg, tag)
   1253 	struct vm_page *pg;
   1254 	char *tag;
   1255 {
   1256 	/* gain ownership? */
   1257 	if (tag) {
   1258 		if (pg->owner_tag) {
   1259 			printf("uvm_page_own: page %p already owned "
   1260 			    "by proc %d [%s]\n", pg,
   1261 			     pg->owner, pg->owner_tag);
   1262 			panic("uvm_page_own");
   1263 		}
   1264 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1265 		pg->owner_tag = tag;
   1266 		return;
   1267 	}
   1268 
   1269 	/* drop ownership */
   1270 	if (pg->owner_tag == NULL) {
   1271 		printf("uvm_page_own: dropping ownership of an non-owned "
   1272 		    "page (%p)\n", pg);
   1273 		panic("uvm_page_own");
   1274 	}
   1275 	pg->owner_tag = NULL;
   1276 	return;
   1277 }
   1278 #endif
   1279 
   1280 /*
   1281  * uvm_pageidlezero: zero free pages while the system is idle.
   1282  *
   1283  * => we do at least one iteration per call, if we are below the target.
   1284  * => we loop until we either reach the target or whichqs indicates that
   1285  *	there is a process ready to run.
   1286  */
   1287 void
   1288 uvm_pageidlezero()
   1289 {
   1290 	struct vm_page *pg;
   1291 	struct pgfreelist *pgfl;
   1292 	int free_list, s;
   1293 
   1294 	do {
   1295 		s = uvm_lock_fpageq();
   1296 
   1297 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1298 			uvm.page_idle_zero = FALSE;
   1299 			uvm_unlock_fpageq(s);
   1300 			return;
   1301 		}
   1302 
   1303 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1304 			pgfl = &uvm.page_free[free_list];
   1305 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
   1306 			    PGFL_UNKNOWN])) != NULL)
   1307 				break;
   1308 		}
   1309 
   1310 		if (pg == NULL) {
   1311 			/*
   1312 			 * No non-zero'd pages; don't bother trying again
   1313 			 * until we know we have non-zero'd pages free.
   1314 			 */
   1315 			uvm.page_idle_zero = FALSE;
   1316 			uvm_unlock_fpageq(s);
   1317 			return;
   1318 		}
   1319 
   1320 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1321 		uvmexp.free--;
   1322 		uvm_unlock_fpageq(s);
   1323 
   1324 #ifdef PMAP_PAGEIDLEZERO
   1325 		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
   1326 			/*
   1327 			 * The machine-dependent code detected some
   1328 			 * reason for us to abort zeroing pages,
   1329 			 * probably because there is a process now
   1330 			 * ready to run.
   1331 			 */
   1332 			s = uvm_lock_fpageq();
   1333 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
   1334 			    pg, pageq);
   1335 			uvmexp.free++;
   1336 			uvmexp.zeroaborts++;
   1337 			uvm_unlock_fpageq(s);
   1338 			return;
   1339 		}
   1340 #else
   1341 		/*
   1342 		 * XXX This will toast the cache unless the pmap_zero_page()
   1343 		 * XXX implementation does uncached access.
   1344 		 */
   1345 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1346 #endif
   1347 		pg->flags |= PG_ZERO;
   1348 
   1349 		s = uvm_lock_fpageq();
   1350 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
   1351 		uvmexp.free++;
   1352 		uvmexp.zeropages++;
   1353 		uvm_unlock_fpageq(s);
   1354 	} while (sched_whichqs == 0);
   1355 }
   1356