uvm_page.c revision 1.45 1 /* $NetBSD: uvm_page.c,v 1.45 2000/11/30 11:04:44 simonb Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80
81 #define UVM_PAGE /* pull in uvm_page.h functions */
82 #include <uvm/uvm.h>
83
84 /*
85 * global vars... XXXCDC: move to uvm. structure.
86 */
87
88 /*
89 * physical memory config is stored in vm_physmem.
90 */
91
92 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
93 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
94
95 /*
96 * Some supported CPUs in a given architecture don't support all
97 * of the things necessary to do idle page zero'ing efficiently.
98 * We therefore provide a way to disable it from machdep code here.
99 */
100 /*
101 * XXX disabled until we can find a way to do this without causing
102 * problems for either cpu caches or DMA latency.
103 */
104 boolean_t vm_page_zero_enable = FALSE;
105
106 extern struct uvm_pagerops uvm_vnodeops;
107
108 /*
109 * local variables
110 */
111
112 /*
113 * these variables record the values returned by vm_page_bootstrap,
114 * for debugging purposes. The implementation of uvm_pageboot_alloc
115 * and pmap_startup here also uses them internally.
116 */
117
118 static vaddr_t virtual_space_start;
119 static vaddr_t virtual_space_end;
120
121 /*
122 * we use a hash table with only one bucket during bootup. we will
123 * later rehash (resize) the hash table once the allocator is ready.
124 * we static allocate the one bootstrap bucket below...
125 */
126
127 static struct pglist uvm_bootbucket;
128
129 /*
130 * local prototypes
131 */
132
133 static void uvm_pageinsert __P((struct vm_page *));
134 static void uvm_pageremove __P((struct vm_page *));
135
136 /*
137 * inline functions
138 */
139
140 /*
141 * uvm_pageinsert: insert a page in the object and the hash table
142 *
143 * => caller must lock object
144 * => caller must lock page queues
145 * => call should have already set pg's object and offset pointers
146 * and bumped the version counter
147 */
148
149 __inline static void
150 uvm_pageinsert(pg)
151 struct vm_page *pg;
152 {
153 struct pglist *buck;
154 int s;
155
156 #ifdef DIAGNOSTIC
157 if (pg->flags & PG_TABLED)
158 panic("uvm_pageinsert: already inserted");
159 #endif
160
161 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
162 s = splimp();
163 simple_lock(&uvm.hashlock);
164 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
165 simple_unlock(&uvm.hashlock);
166 splx(s);
167
168 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
169 pg->flags |= PG_TABLED;
170 pg->uobject->uo_npages++;
171 }
172
173 /*
174 * uvm_page_remove: remove page from object and hash
175 *
176 * => caller must lock object
177 * => caller must lock page queues
178 */
179
180 static __inline void
181 uvm_pageremove(pg)
182 struct vm_page *pg;
183 {
184 struct pglist *buck;
185 int s;
186
187 KASSERT(pg->flags & PG_TABLED);
188 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
189 s = splimp();
190 simple_lock(&uvm.hashlock);
191 TAILQ_REMOVE(buck, pg, hashq);
192 simple_unlock(&uvm.hashlock);
193 splx(s);
194
195 if (pg->uobject->pgops == &uvm_vnodeops) {
196 uvmexp.vnodepages--;
197 }
198
199 /* object should be locked */
200 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
201
202 pg->flags &= ~PG_TABLED;
203 pg->uobject->uo_npages--;
204 pg->uobject = NULL;
205 pg->version++;
206 }
207
208 /*
209 * uvm_page_init: init the page system. called from uvm_init().
210 *
211 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
212 */
213
214 void
215 uvm_page_init(kvm_startp, kvm_endp)
216 vaddr_t *kvm_startp, *kvm_endp;
217 {
218 vsize_t freepages, pagecount, n;
219 vm_page_t pagearray;
220 int lcv, i;
221 paddr_t paddr;
222
223 /*
224 * step 1: init the page queues and page queue locks
225 */
226 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
227 for (i = 0; i < PGFL_NQUEUES; i++)
228 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
229 }
230 TAILQ_INIT(&uvm.page_active);
231 TAILQ_INIT(&uvm.page_inactive_swp);
232 TAILQ_INIT(&uvm.page_inactive_obj);
233 simple_lock_init(&uvm.pageqlock);
234 simple_lock_init(&uvm.fpageqlock);
235
236 /*
237 * step 2: init the <obj,offset> => <page> hash table. for now
238 * we just have one bucket (the bootstrap bucket). later on we
239 * will allocate new buckets as we dynamically resize the hash table.
240 */
241
242 uvm.page_nhash = 1; /* 1 bucket */
243 uvm.page_hashmask = 0; /* mask for hash function */
244 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
245 TAILQ_INIT(uvm.page_hash); /* init hash table */
246 simple_lock_init(&uvm.hashlock); /* init hash table lock */
247
248 /*
249 * step 3: allocate vm_page structures.
250 */
251
252 /*
253 * sanity check:
254 * before calling this function the MD code is expected to register
255 * some free RAM with the uvm_page_physload() function. our job
256 * now is to allocate vm_page structures for this memory.
257 */
258
259 if (vm_nphysseg == 0)
260 panic("uvm_page_bootstrap: no memory pre-allocated");
261
262 /*
263 * first calculate the number of free pages...
264 *
265 * note that we use start/end rather than avail_start/avail_end.
266 * this allows us to allocate extra vm_page structures in case we
267 * want to return some memory to the pool after booting.
268 */
269
270 freepages = 0;
271 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
272 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
273
274 /*
275 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
276 * use. for each page of memory we use we need a vm_page structure.
277 * thus, the total number of pages we can use is the total size of
278 * the memory divided by the PAGE_SIZE plus the size of the vm_page
279 * structure. we add one to freepages as a fudge factor to avoid
280 * truncation errors (since we can only allocate in terms of whole
281 * pages).
282 */
283
284 pagecount = ((freepages + 1) << PAGE_SHIFT) /
285 (PAGE_SIZE + sizeof(struct vm_page));
286 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
287 sizeof(struct vm_page));
288 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
289
290 /*
291 * step 4: init the vm_page structures and put them in the correct
292 * place...
293 */
294
295 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
296 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
297 if (n > pagecount) {
298 printf("uvm_page_init: lost %ld page(s) in init\n",
299 (long)(n - pagecount));
300 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
301 /* n = pagecount; */
302 }
303 /* set up page array pointers */
304 vm_physmem[lcv].pgs = pagearray;
305 pagearray += n;
306 pagecount -= n;
307 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
308
309 /* init and free vm_pages (we've already zeroed them) */
310 paddr = ptoa(vm_physmem[lcv].start);
311 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
312 vm_physmem[lcv].pgs[i].phys_addr = paddr;
313 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
314 atop(paddr) <= vm_physmem[lcv].avail_end) {
315 uvmexp.npages++;
316 /* add page to free pool */
317 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
318 }
319 }
320 }
321
322 /*
323 * step 5: pass up the values of virtual_space_start and
324 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
325 * layers of the VM.
326 */
327
328 *kvm_startp = round_page(virtual_space_start);
329 *kvm_endp = trunc_page(virtual_space_end);
330
331 /*
332 * step 6: init locks for kernel threads
333 */
334
335 simple_lock_init(&uvm.pagedaemon_lock);
336 simple_lock_init(&uvm.aiodoned_lock);
337
338 /*
339 * step 7: init reserve thresholds
340 * XXXCDC - values may need adjusting
341 */
342 uvmexp.reserve_pagedaemon = 1;
343 uvmexp.reserve_kernel = 5;
344
345 /*
346 * step 8: determine if we should zero pages in the idle
347 * loop.
348 */
349 uvm.page_idle_zero = vm_page_zero_enable;
350
351 /*
352 * done!
353 */
354
355 uvm.page_init_done = TRUE;
356 }
357
358 /*
359 * uvm_setpagesize: set the page size
360 *
361 * => sets page_shift and page_mask from uvmexp.pagesize.
362 */
363
364 void
365 uvm_setpagesize()
366 {
367 if (uvmexp.pagesize == 0)
368 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
369 uvmexp.pagemask = uvmexp.pagesize - 1;
370 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
371 panic("uvm_setpagesize: page size not a power of two");
372 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
373 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
374 break;
375 }
376
377 /*
378 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
379 */
380
381 vaddr_t
382 uvm_pageboot_alloc(size)
383 vsize_t size;
384 {
385 #if defined(PMAP_STEAL_MEMORY)
386 vaddr_t addr;
387
388 /*
389 * defer bootstrap allocation to MD code (it may want to allocate
390 * from a direct-mapped segment). pmap_steal_memory should round
391 * off virtual_space_start/virtual_space_end.
392 */
393
394 addr = pmap_steal_memory(size, &virtual_space_start,
395 &virtual_space_end);
396
397 return(addr);
398
399 #else /* !PMAP_STEAL_MEMORY */
400
401 static boolean_t initialized = FALSE;
402 vaddr_t addr, vaddr;
403 paddr_t paddr;
404
405 /* round to page size */
406 size = round_page(size);
407
408 /*
409 * on first call to this function, initialize ourselves.
410 */
411 if (initialized == FALSE) {
412 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
413
414 /* round it the way we like it */
415 virtual_space_start = round_page(virtual_space_start);
416 virtual_space_end = trunc_page(virtual_space_end);
417
418 initialized = TRUE;
419 }
420
421 /*
422 * allocate virtual memory for this request
423 */
424 if (virtual_space_start == virtual_space_end ||
425 (virtual_space_end - virtual_space_start) < size)
426 panic("uvm_pageboot_alloc: out of virtual space");
427
428 addr = virtual_space_start;
429
430 #ifdef PMAP_GROWKERNEL
431 /*
432 * If the kernel pmap can't map the requested space,
433 * then allocate more resources for it.
434 */
435 if (uvm_maxkaddr < (addr + size)) {
436 uvm_maxkaddr = pmap_growkernel(addr + size);
437 if (uvm_maxkaddr < (addr + size))
438 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
439 }
440 #endif
441
442 virtual_space_start += size;
443
444 /*
445 * allocate and mapin physical pages to back new virtual pages
446 */
447
448 for (vaddr = round_page(addr) ; vaddr < addr + size ;
449 vaddr += PAGE_SIZE) {
450
451 if (!uvm_page_physget(&paddr))
452 panic("uvm_pageboot_alloc: out of memory");
453
454 /*
455 * Note this memory is no longer managed, so using
456 * pmap_kenter is safe.
457 */
458 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
459 }
460 return(addr);
461 #endif /* PMAP_STEAL_MEMORY */
462 }
463
464 #if !defined(PMAP_STEAL_MEMORY)
465 /*
466 * uvm_page_physget: "steal" one page from the vm_physmem structure.
467 *
468 * => attempt to allocate it off the end of a segment in which the "avail"
469 * values match the start/end values. if we can't do that, then we
470 * will advance both values (making them equal, and removing some
471 * vm_page structures from the non-avail area).
472 * => return false if out of memory.
473 */
474
475 /* subroutine: try to allocate from memory chunks on the specified freelist */
476 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
477
478 static boolean_t
479 uvm_page_physget_freelist(paddrp, freelist)
480 paddr_t *paddrp;
481 int freelist;
482 {
483 int lcv, x;
484
485 /* pass 1: try allocating from a matching end */
486 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
487 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
488 #else
489 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
490 #endif
491 {
492
493 if (uvm.page_init_done == TRUE)
494 panic("uvm_page_physget: called _after_ bootstrap");
495
496 if (vm_physmem[lcv].free_list != freelist)
497 continue;
498
499 /* try from front */
500 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
501 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
502 *paddrp = ptoa(vm_physmem[lcv].avail_start);
503 vm_physmem[lcv].avail_start++;
504 vm_physmem[lcv].start++;
505 /* nothing left? nuke it */
506 if (vm_physmem[lcv].avail_start ==
507 vm_physmem[lcv].end) {
508 if (vm_nphysseg == 1)
509 panic("vum_page_physget: out of memory!");
510 vm_nphysseg--;
511 for (x = lcv ; x < vm_nphysseg ; x++)
512 /* structure copy */
513 vm_physmem[x] = vm_physmem[x+1];
514 }
515 return (TRUE);
516 }
517
518 /* try from rear */
519 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
520 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
521 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
522 vm_physmem[lcv].avail_end--;
523 vm_physmem[lcv].end--;
524 /* nothing left? nuke it */
525 if (vm_physmem[lcv].avail_end ==
526 vm_physmem[lcv].start) {
527 if (vm_nphysseg == 1)
528 panic("uvm_page_physget: out of memory!");
529 vm_nphysseg--;
530 for (x = lcv ; x < vm_nphysseg ; x++)
531 /* structure copy */
532 vm_physmem[x] = vm_physmem[x+1];
533 }
534 return (TRUE);
535 }
536 }
537
538 /* pass2: forget about matching ends, just allocate something */
539 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
540 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
541 #else
542 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
543 #endif
544 {
545
546 /* any room in this bank? */
547 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
548 continue; /* nope */
549
550 *paddrp = ptoa(vm_physmem[lcv].avail_start);
551 vm_physmem[lcv].avail_start++;
552 /* truncate! */
553 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
554
555 /* nothing left? nuke it */
556 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
557 if (vm_nphysseg == 1)
558 panic("uvm_page_physget: out of memory!");
559 vm_nphysseg--;
560 for (x = lcv ; x < vm_nphysseg ; x++)
561 /* structure copy */
562 vm_physmem[x] = vm_physmem[x+1];
563 }
564 return (TRUE);
565 }
566
567 return (FALSE); /* whoops! */
568 }
569
570 boolean_t
571 uvm_page_physget(paddrp)
572 paddr_t *paddrp;
573 {
574 int i;
575
576 /* try in the order of freelist preference */
577 for (i = 0; i < VM_NFREELIST; i++)
578 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
579 return (TRUE);
580 return (FALSE);
581 }
582 #endif /* PMAP_STEAL_MEMORY */
583
584 /*
585 * uvm_page_physload: load physical memory into VM system
586 *
587 * => all args are PFs
588 * => all pages in start/end get vm_page structures
589 * => areas marked by avail_start/avail_end get added to the free page pool
590 * => we are limited to VM_PHYSSEG_MAX physical memory segments
591 */
592
593 void
594 uvm_page_physload(start, end, avail_start, avail_end, free_list)
595 paddr_t start, end, avail_start, avail_end;
596 int free_list;
597 {
598 int preload, lcv;
599 psize_t npages;
600 struct vm_page *pgs;
601 struct vm_physseg *ps;
602
603 if (uvmexp.pagesize == 0)
604 panic("uvm_page_physload: page size not set!");
605
606 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
607 panic("uvm_page_physload: bad free list %d\n", free_list);
608
609 if (start >= end)
610 panic("uvm_page_physload: start >= end");
611
612 /*
613 * do we have room?
614 */
615 if (vm_nphysseg == VM_PHYSSEG_MAX) {
616 printf("uvm_page_physload: unable to load physical memory "
617 "segment\n");
618 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
619 VM_PHYSSEG_MAX, (long long)start, (long long)end);
620 printf("\tincrease VM_PHYSSEG_MAX\n");
621 return;
622 }
623
624 /*
625 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
626 * called yet, so malloc is not available).
627 */
628 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
629 if (vm_physmem[lcv].pgs)
630 break;
631 }
632 preload = (lcv == vm_nphysseg);
633
634 /*
635 * if VM is already running, attempt to malloc() vm_page structures
636 */
637 if (!preload) {
638 #if defined(VM_PHYSSEG_NOADD)
639 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
640 #else
641 /* XXXCDC: need some sort of lockout for this case */
642 paddr_t paddr;
643 npages = end - start; /* # of pages */
644 pgs = malloc(sizeof(struct vm_page) * npages,
645 M_VMPAGE, M_NOWAIT);
646 if (pgs == NULL) {
647 printf("uvm_page_physload: can not malloc vm_page "
648 "structs for segment\n");
649 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
650 return;
651 }
652 /* zero data, init phys_addr and free_list, and free pages */
653 memset(pgs, 0, sizeof(struct vm_page) * npages);
654 for (lcv = 0, paddr = ptoa(start) ;
655 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
656 pgs[lcv].phys_addr = paddr;
657 pgs[lcv].free_list = free_list;
658 if (atop(paddr) >= avail_start &&
659 atop(paddr) <= avail_end)
660 uvm_pagefree(&pgs[lcv]);
661 }
662 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
663 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
664 #endif
665 } else {
666
667 /* gcc complains if these don't get init'd */
668 pgs = NULL;
669 npages = 0;
670
671 }
672
673 /*
674 * now insert us in the proper place in vm_physmem[]
675 */
676
677 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
678
679 /* random: put it at the end (easy!) */
680 ps = &vm_physmem[vm_nphysseg];
681
682 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
683
684 {
685 int x;
686 /* sort by address for binary search */
687 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
688 if (start < vm_physmem[lcv].start)
689 break;
690 ps = &vm_physmem[lcv];
691 /* move back other entries, if necessary ... */
692 for (x = vm_nphysseg ; x > lcv ; x--)
693 /* structure copy */
694 vm_physmem[x] = vm_physmem[x - 1];
695 }
696
697 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
698
699 {
700 int x;
701 /* sort by largest segment first */
702 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
703 if ((end - start) >
704 (vm_physmem[lcv].end - vm_physmem[lcv].start))
705 break;
706 ps = &vm_physmem[lcv];
707 /* move back other entries, if necessary ... */
708 for (x = vm_nphysseg ; x > lcv ; x--)
709 /* structure copy */
710 vm_physmem[x] = vm_physmem[x - 1];
711 }
712
713 #else
714
715 panic("uvm_page_physload: unknown physseg strategy selected!");
716
717 #endif
718
719 ps->start = start;
720 ps->end = end;
721 ps->avail_start = avail_start;
722 ps->avail_end = avail_end;
723 if (preload) {
724 ps->pgs = NULL;
725 } else {
726 ps->pgs = pgs;
727 ps->lastpg = pgs + npages - 1;
728 }
729 ps->free_list = free_list;
730 vm_nphysseg++;
731
732 /*
733 * done!
734 */
735
736 if (!preload)
737 uvm_page_rehash();
738
739 return;
740 }
741
742 /*
743 * uvm_page_rehash: reallocate hash table based on number of free pages.
744 */
745
746 void
747 uvm_page_rehash()
748 {
749 int freepages, lcv, bucketcount, s, oldcount;
750 struct pglist *newbuckets, *oldbuckets;
751 struct vm_page *pg;
752 size_t newsize, oldsize;
753
754 /*
755 * compute number of pages that can go in the free pool
756 */
757
758 freepages = 0;
759 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
760 freepages +=
761 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
762
763 /*
764 * compute number of buckets needed for this number of pages
765 */
766
767 bucketcount = 1;
768 while (bucketcount < freepages)
769 bucketcount = bucketcount * 2;
770
771 /*
772 * compute the size of the current table and new table.
773 */
774
775 oldbuckets = uvm.page_hash;
776 oldcount = uvm.page_nhash;
777 oldsize = round_page(sizeof(struct pglist) * oldcount);
778 newsize = round_page(sizeof(struct pglist) * bucketcount);
779
780 /*
781 * allocate the new buckets
782 */
783
784 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
785 if (newbuckets == NULL) {
786 printf("uvm_page_physrehash: WARNING: could not grow page "
787 "hash table\n");
788 return;
789 }
790 for (lcv = 0 ; lcv < bucketcount ; lcv++)
791 TAILQ_INIT(&newbuckets[lcv]);
792
793 /*
794 * now replace the old buckets with the new ones and rehash everything
795 */
796
797 s = splimp();
798 simple_lock(&uvm.hashlock);
799 uvm.page_hash = newbuckets;
800 uvm.page_nhash = bucketcount;
801 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
802
803 /* ... and rehash */
804 for (lcv = 0 ; lcv < oldcount ; lcv++) {
805 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
806 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
807 TAILQ_INSERT_TAIL(
808 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
809 pg, hashq);
810 }
811 }
812 simple_unlock(&uvm.hashlock);
813 splx(s);
814
815 /*
816 * free old bucket array if is not the boot-time table
817 */
818
819 if (oldbuckets != &uvm_bootbucket)
820 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
821
822 /*
823 * done
824 */
825 return;
826 }
827
828
829 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
830
831 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
832
833 /* call from DDB */
834 void
835 uvm_page_physdump()
836 {
837 int lcv;
838
839 printf("rehash: physical memory config [segs=%d of %d]:\n",
840 vm_nphysseg, VM_PHYSSEG_MAX);
841 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
842 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
843 (long long)vm_physmem[lcv].start,
844 (long long)vm_physmem[lcv].end,
845 (long long)vm_physmem[lcv].avail_start,
846 (long long)vm_physmem[lcv].avail_end);
847 printf("STRATEGY = ");
848 switch (VM_PHYSSEG_STRAT) {
849 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
850 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
851 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
852 default: printf("<<UNKNOWN>>!!!!\n");
853 }
854 printf("number of buckets = %d\n", uvm.page_nhash);
855 }
856 #endif
857
858 /*
859 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
860 *
861 * => return null if no pages free
862 * => wake up pagedaemon if number of free pages drops below low water mark
863 * => if obj != NULL, obj must be locked (to put in hash)
864 * => if anon != NULL, anon must be locked (to put in anon)
865 * => only one of obj or anon can be non-null
866 * => caller must activate/deactivate page if it is not wired.
867 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
868 * => policy decision: it is more important to pull a page off of the
869 * appropriate priority free list than it is to get a zero'd or
870 * unknown contents page. This is because we live with the
871 * consequences of a bad free list decision for the entire
872 * lifetime of the page, e.g. if the page comes from memory that
873 * is slower to access.
874 */
875
876 struct vm_page *
877 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
878 struct uvm_object *obj;
879 voff_t off;
880 int flags;
881 struct vm_anon *anon;
882 int strat, free_list;
883 {
884 int lcv, try1, try2, s, zeroit = 0;
885 struct vm_page *pg;
886 struct pglist *freeq;
887 struct pgfreelist *pgfl;
888 boolean_t use_reserve;
889
890 KASSERT(obj == NULL || anon == NULL);
891 KASSERT(off == trunc_page(off));
892 s = uvm_lock_fpageq();
893
894 /*
895 * check to see if we need to generate some free pages waking
896 * the pagedaemon.
897 */
898
899 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
900 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
901 uvmexp.inactive < uvmexp.inactarg)) {
902 wakeup(&uvm.pagedaemon);
903 }
904
905 /*
906 * fail if any of these conditions is true:
907 * [1] there really are no free pages, or
908 * [2] only kernel "reserved" pages remain and
909 * the page isn't being allocated to a kernel object.
910 * [3] only pagedaemon "reserved" pages remain and
911 * the requestor isn't the pagedaemon.
912 */
913
914 use_reserve = (flags & UVM_PGA_USERESERVE) ||
915 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
916 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
917 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
918 !(use_reserve && curproc == uvm.pagedaemon_proc)))
919 goto fail;
920
921 #if PGFL_NQUEUES != 2
922 #error uvm_pagealloc_strat needs to be updated
923 #endif
924
925 /*
926 * If we want a zero'd page, try the ZEROS queue first, otherwise
927 * we try the UNKNOWN queue first.
928 */
929 if (flags & UVM_PGA_ZERO) {
930 try1 = PGFL_ZEROS;
931 try2 = PGFL_UNKNOWN;
932 } else {
933 try1 = PGFL_UNKNOWN;
934 try2 = PGFL_ZEROS;
935 }
936
937 again:
938 switch (strat) {
939 case UVM_PGA_STRAT_NORMAL:
940 /* Check all freelists in descending priority order. */
941 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
942 pgfl = &uvm.page_free[lcv];
943 if ((pg = TAILQ_FIRST((freeq =
944 &pgfl->pgfl_queues[try1]))) != NULL ||
945 (pg = TAILQ_FIRST((freeq =
946 &pgfl->pgfl_queues[try2]))) != NULL)
947 goto gotit;
948 }
949
950 /* No pages free! */
951 goto fail;
952
953 case UVM_PGA_STRAT_ONLY:
954 case UVM_PGA_STRAT_FALLBACK:
955 /* Attempt to allocate from the specified free list. */
956 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
957 pgfl = &uvm.page_free[free_list];
958 if ((pg = TAILQ_FIRST((freeq =
959 &pgfl->pgfl_queues[try1]))) != NULL ||
960 (pg = TAILQ_FIRST((freeq =
961 &pgfl->pgfl_queues[try2]))) != NULL)
962 goto gotit;
963
964 /* Fall back, if possible. */
965 if (strat == UVM_PGA_STRAT_FALLBACK) {
966 strat = UVM_PGA_STRAT_NORMAL;
967 goto again;
968 }
969
970 /* No pages free! */
971 goto fail;
972
973 default:
974 panic("uvm_pagealloc_strat: bad strat %d", strat);
975 /* NOTREACHED */
976 }
977
978 gotit:
979 TAILQ_REMOVE(freeq, pg, pageq);
980 uvmexp.free--;
981
982 /* update zero'd page count */
983 if (pg->flags & PG_ZERO)
984 uvmexp.zeropages--;
985
986 /*
987 * update allocation statistics and remember if we have to
988 * zero the page
989 */
990 if (flags & UVM_PGA_ZERO) {
991 if (pg->flags & PG_ZERO) {
992 uvmexp.pga_zerohit++;
993 zeroit = 0;
994 } else {
995 uvmexp.pga_zeromiss++;
996 zeroit = 1;
997 }
998 }
999
1000 uvm_unlock_fpageq(s); /* unlock free page queue */
1001
1002 pg->offset = off;
1003 pg->uobject = obj;
1004 pg->uanon = anon;
1005 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1006 pg->version++;
1007 if (anon) {
1008 anon->u.an_page = pg;
1009 pg->pqflags = PQ_ANON;
1010 uvmexp.anonpages++;
1011 } else {
1012 if (obj)
1013 uvm_pageinsert(pg);
1014 pg->pqflags = 0;
1015 }
1016 #if defined(UVM_PAGE_TRKOWN)
1017 pg->owner_tag = NULL;
1018 #endif
1019 UVM_PAGE_OWN(pg, "new alloc");
1020
1021 if (flags & UVM_PGA_ZERO) {
1022 /*
1023 * A zero'd page is not clean. If we got a page not already
1024 * zero'd, then we have to zero it ourselves.
1025 */
1026 pg->flags &= ~PG_CLEAN;
1027 if (zeroit)
1028 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1029 }
1030
1031 return(pg);
1032
1033 fail:
1034 uvm_unlock_fpageq(s);
1035 return (NULL);
1036 }
1037
1038 /*
1039 * uvm_pagerealloc: reallocate a page from one object to another
1040 *
1041 * => both objects must be locked
1042 */
1043
1044 void
1045 uvm_pagerealloc(pg, newobj, newoff)
1046 struct vm_page *pg;
1047 struct uvm_object *newobj;
1048 voff_t newoff;
1049 {
1050 /*
1051 * remove it from the old object
1052 */
1053
1054 if (pg->uobject) {
1055 uvm_pageremove(pg);
1056 }
1057
1058 /*
1059 * put it in the new object
1060 */
1061
1062 if (newobj) {
1063 pg->uobject = newobj;
1064 pg->offset = newoff;
1065 pg->version++;
1066 uvm_pageinsert(pg);
1067 }
1068 }
1069
1070
1071 /*
1072 * uvm_pagefree: free page
1073 *
1074 * => erase page's identity (i.e. remove from hash/object)
1075 * => put page on free list
1076 * => caller must lock owning object (either anon or uvm_object)
1077 * => caller must lock page queues
1078 * => assumes all valid mappings of pg are gone
1079 */
1080
1081 void
1082 uvm_pagefree(pg)
1083 struct vm_page *pg;
1084 {
1085 int s;
1086 int saved_loan_count = pg->loan_count;
1087
1088 #ifdef DEBUG
1089 if (pg->uobject == (void *)0xdeadbeef &&
1090 pg->uanon == (void *)0xdeadbeef) {
1091 panic("uvm_pagefree: freeing free page %p\n", pg);
1092 }
1093 #endif
1094
1095 /*
1096 * if the page was an object page (and thus "TABLED"), remove it
1097 * from the object.
1098 */
1099
1100 if (pg->flags & PG_TABLED) {
1101
1102 /*
1103 * if the object page is on loan we are going to drop ownership.
1104 * it is possible that an anon will take over as owner for this
1105 * page later on. the anon will want a !PG_CLEAN page so that
1106 * it knows it needs to allocate swap if it wants to page the
1107 * page out.
1108 */
1109
1110 if (saved_loan_count)
1111 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1112 uvm_pageremove(pg);
1113
1114 /*
1115 * if our page was on loan, then we just lost control over it
1116 * (in fact, if it was loaned to an anon, the anon may have
1117 * already taken over ownership of the page by now and thus
1118 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1119 * return (when the last loan is dropped, then the page can be
1120 * freed by whatever was holding the last loan).
1121 */
1122
1123 if (saved_loan_count)
1124 return;
1125 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1126
1127 /*
1128 * if our page is owned by an anon and is loaned out to the
1129 * kernel then we just want to drop ownership and return.
1130 * the kernel must free the page when all its loans clear ...
1131 * note that the kernel can't change the loan status of our
1132 * page as long as we are holding PQ lock.
1133 */
1134
1135 pg->pqflags &= ~PQ_ANON;
1136 pg->uanon = NULL;
1137 return;
1138 }
1139 KASSERT(saved_loan_count == 0);
1140
1141 /*
1142 * now remove the page from the queues
1143 */
1144
1145 if (pg->pqflags & PQ_ACTIVE) {
1146 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1147 pg->pqflags &= ~PQ_ACTIVE;
1148 uvmexp.active--;
1149 }
1150 if (pg->pqflags & PQ_INACTIVE) {
1151 if (pg->pqflags & PQ_SWAPBACKED)
1152 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1153 else
1154 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1155 pg->pqflags &= ~PQ_INACTIVE;
1156 uvmexp.inactive--;
1157 }
1158
1159 /*
1160 * if the page was wired, unwire it now.
1161 */
1162
1163 if (pg->wire_count) {
1164 pg->wire_count = 0;
1165 uvmexp.wired--;
1166 }
1167 if (pg->uanon) {
1168 uvmexp.anonpages--;
1169 }
1170
1171 /*
1172 * and put on free queue
1173 */
1174
1175 pg->flags &= ~PG_ZERO;
1176
1177 s = uvm_lock_fpageq();
1178 TAILQ_INSERT_TAIL(&uvm.page_free[
1179 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1180 pg->pqflags = PQ_FREE;
1181 #ifdef DEBUG
1182 pg->uobject = (void *)0xdeadbeef;
1183 pg->offset = 0xdeadbeef;
1184 pg->uanon = (void *)0xdeadbeef;
1185 #endif
1186 uvmexp.free++;
1187
1188 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1189 uvm.page_idle_zero = vm_page_zero_enable;
1190
1191 uvm_unlock_fpageq(s);
1192 }
1193
1194 /*
1195 * uvm_page_unbusy: unbusy an array of pages.
1196 *
1197 * => pages must either all belong to the same object, or all belong to anons.
1198 * => if pages are object-owned, object must be locked.
1199 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1200 */
1201
1202 void
1203 uvm_page_unbusy(pgs, npgs)
1204 struct vm_page **pgs;
1205 int npgs;
1206 {
1207 struct vm_page *pg;
1208 struct uvm_object *uobj;
1209 int i;
1210 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1211
1212 for (i = 0; i < npgs; i++) {
1213 pg = pgs[i];
1214
1215 if (pg == NULL) {
1216 continue;
1217 }
1218 if (pg->flags & PG_WANTED) {
1219 wakeup(pg);
1220 }
1221 if (pg->flags & PG_RELEASED) {
1222 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1223 uobj = pg->uobject;
1224 if (uobj != NULL) {
1225 uobj->pgops->pgo_releasepg(pg, NULL);
1226 } else {
1227 pg->flags &= ~(PG_BUSY);
1228 UVM_PAGE_OWN(pg, NULL);
1229 uvm_anfree(pg->uanon);
1230 }
1231 } else {
1232 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1233 pg->flags &= ~(PG_WANTED|PG_BUSY);
1234 UVM_PAGE_OWN(pg, NULL);
1235 }
1236 }
1237 }
1238
1239 #if defined(UVM_PAGE_TRKOWN)
1240 /*
1241 * uvm_page_own: set or release page ownership
1242 *
1243 * => this is a debugging function that keeps track of who sets PG_BUSY
1244 * and where they do it. it can be used to track down problems
1245 * such a process setting "PG_BUSY" and never releasing it.
1246 * => page's object [if any] must be locked
1247 * => if "tag" is NULL then we are releasing page ownership
1248 */
1249 void
1250 uvm_page_own(pg, tag)
1251 struct vm_page *pg;
1252 char *tag;
1253 {
1254 /* gain ownership? */
1255 if (tag) {
1256 if (pg->owner_tag) {
1257 printf("uvm_page_own: page %p already owned "
1258 "by proc %d [%s]\n", pg,
1259 pg->owner, pg->owner_tag);
1260 panic("uvm_page_own");
1261 }
1262 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1263 pg->owner_tag = tag;
1264 return;
1265 }
1266
1267 /* drop ownership */
1268 if (pg->owner_tag == NULL) {
1269 printf("uvm_page_own: dropping ownership of an non-owned "
1270 "page (%p)\n", pg);
1271 panic("uvm_page_own");
1272 }
1273 pg->owner_tag = NULL;
1274 return;
1275 }
1276 #endif
1277
1278 /*
1279 * uvm_pageidlezero: zero free pages while the system is idle.
1280 *
1281 * => we do at least one iteration per call, if we are below the target.
1282 * => we loop until we either reach the target or whichqs indicates that
1283 * there is a process ready to run.
1284 */
1285 void
1286 uvm_pageidlezero()
1287 {
1288 struct vm_page *pg;
1289 struct pgfreelist *pgfl;
1290 int free_list, s;
1291
1292 do {
1293 s = uvm_lock_fpageq();
1294
1295 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1296 uvm.page_idle_zero = FALSE;
1297 uvm_unlock_fpageq(s);
1298 return;
1299 }
1300
1301 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1302 pgfl = &uvm.page_free[free_list];
1303 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1304 PGFL_UNKNOWN])) != NULL)
1305 break;
1306 }
1307
1308 if (pg == NULL) {
1309 /*
1310 * No non-zero'd pages; don't bother trying again
1311 * until we know we have non-zero'd pages free.
1312 */
1313 uvm.page_idle_zero = FALSE;
1314 uvm_unlock_fpageq(s);
1315 return;
1316 }
1317
1318 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1319 uvmexp.free--;
1320 uvm_unlock_fpageq(s);
1321
1322 #ifdef PMAP_PAGEIDLEZERO
1323 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1324 /*
1325 * The machine-dependent code detected some
1326 * reason for us to abort zeroing pages,
1327 * probably because there is a process now
1328 * ready to run.
1329 */
1330 s = uvm_lock_fpageq();
1331 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1332 pg, pageq);
1333 uvmexp.free++;
1334 uvmexp.zeroaborts++;
1335 uvm_unlock_fpageq(s);
1336 return;
1337 }
1338 #else
1339 /*
1340 * XXX This will toast the cache unless the pmap_zero_page()
1341 * XXX implementation does uncached access.
1342 */
1343 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1344 #endif
1345 pg->flags |= PG_ZERO;
1346
1347 s = uvm_lock_fpageq();
1348 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1349 uvmexp.free++;
1350 uvmexp.zeropages++;
1351 uvm_unlock_fpageq(s);
1352 } while (sched_whichqs == 0);
1353 }
1354