Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.45
      1 /*	$NetBSD: uvm_page.c,v 1.45 2000/11/30 11:04:44 simonb Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include "opt_uvmhist.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/malloc.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 
     81 #define UVM_PAGE                /* pull in uvm_page.h functions */
     82 #include <uvm/uvm.h>
     83 
     84 /*
     85  * global vars... XXXCDC: move to uvm. structure.
     86  */
     87 
     88 /*
     89  * physical memory config is stored in vm_physmem.
     90  */
     91 
     92 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     93 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     94 
     95 /*
     96  * Some supported CPUs in a given architecture don't support all
     97  * of the things necessary to do idle page zero'ing efficiently.
     98  * We therefore provide a way to disable it from machdep code here.
     99  */
    100 /*
    101  * XXX disabled until we can find a way to do this without causing
    102  * problems for either cpu caches or DMA latency.
    103  */
    104 boolean_t vm_page_zero_enable = FALSE;
    105 
    106 extern struct uvm_pagerops uvm_vnodeops;
    107 
    108 /*
    109  * local variables
    110  */
    111 
    112 /*
    113  * these variables record the values returned by vm_page_bootstrap,
    114  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    115  * and pmap_startup here also uses them internally.
    116  */
    117 
    118 static vaddr_t      virtual_space_start;
    119 static vaddr_t      virtual_space_end;
    120 
    121 /*
    122  * we use a hash table with only one bucket during bootup.  we will
    123  * later rehash (resize) the hash table once the allocator is ready.
    124  * we static allocate the one bootstrap bucket below...
    125  */
    126 
    127 static struct pglist uvm_bootbucket;
    128 
    129 /*
    130  * local prototypes
    131  */
    132 
    133 static void uvm_pageinsert __P((struct vm_page *));
    134 static void uvm_pageremove __P((struct vm_page *));
    135 
    136 /*
    137  * inline functions
    138  */
    139 
    140 /*
    141  * uvm_pageinsert: insert a page in the object and the hash table
    142  *
    143  * => caller must lock object
    144  * => caller must lock page queues
    145  * => call should have already set pg's object and offset pointers
    146  *    and bumped the version counter
    147  */
    148 
    149 __inline static void
    150 uvm_pageinsert(pg)
    151 	struct vm_page *pg;
    152 {
    153 	struct pglist *buck;
    154 	int s;
    155 
    156 #ifdef DIAGNOSTIC
    157 	if (pg->flags & PG_TABLED)
    158 		panic("uvm_pageinsert: already inserted");
    159 #endif
    160 
    161 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    162 	s = splimp();
    163 	simple_lock(&uvm.hashlock);
    164 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    165 	simple_unlock(&uvm.hashlock);
    166 	splx(s);
    167 
    168 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    169 	pg->flags |= PG_TABLED;
    170 	pg->uobject->uo_npages++;
    171 }
    172 
    173 /*
    174  * uvm_page_remove: remove page from object and hash
    175  *
    176  * => caller must lock object
    177  * => caller must lock page queues
    178  */
    179 
    180 static __inline void
    181 uvm_pageremove(pg)
    182 	struct vm_page *pg;
    183 {
    184 	struct pglist *buck;
    185 	int s;
    186 
    187 	KASSERT(pg->flags & PG_TABLED);
    188 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    189 	s = splimp();
    190 	simple_lock(&uvm.hashlock);
    191 	TAILQ_REMOVE(buck, pg, hashq);
    192 	simple_unlock(&uvm.hashlock);
    193 	splx(s);
    194 
    195 	if (pg->uobject->pgops == &uvm_vnodeops) {
    196 		uvmexp.vnodepages--;
    197 	}
    198 
    199 	/* object should be locked */
    200 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    201 
    202 	pg->flags &= ~PG_TABLED;
    203 	pg->uobject->uo_npages--;
    204 	pg->uobject = NULL;
    205 	pg->version++;
    206 }
    207 
    208 /*
    209  * uvm_page_init: init the page system.   called from uvm_init().
    210  *
    211  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    212  */
    213 
    214 void
    215 uvm_page_init(kvm_startp, kvm_endp)
    216 	vaddr_t *kvm_startp, *kvm_endp;
    217 {
    218 	vsize_t freepages, pagecount, n;
    219 	vm_page_t pagearray;
    220 	int lcv, i;
    221 	paddr_t paddr;
    222 
    223 	/*
    224 	 * step 1: init the page queues and page queue locks
    225 	 */
    226 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    227 		for (i = 0; i < PGFL_NQUEUES; i++)
    228 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
    229 	}
    230 	TAILQ_INIT(&uvm.page_active);
    231 	TAILQ_INIT(&uvm.page_inactive_swp);
    232 	TAILQ_INIT(&uvm.page_inactive_obj);
    233 	simple_lock_init(&uvm.pageqlock);
    234 	simple_lock_init(&uvm.fpageqlock);
    235 
    236 	/*
    237 	 * step 2: init the <obj,offset> => <page> hash table. for now
    238 	 * we just have one bucket (the bootstrap bucket).   later on we
    239 	 * will allocate new buckets as we dynamically resize the hash table.
    240 	 */
    241 
    242 	uvm.page_nhash = 1;			/* 1 bucket */
    243 	uvm.page_hashmask = 0;			/* mask for hash function */
    244 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    245 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    246 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    247 
    248 	/*
    249 	 * step 3: allocate vm_page structures.
    250 	 */
    251 
    252 	/*
    253 	 * sanity check:
    254 	 * before calling this function the MD code is expected to register
    255 	 * some free RAM with the uvm_page_physload() function.   our job
    256 	 * now is to allocate vm_page structures for this memory.
    257 	 */
    258 
    259 	if (vm_nphysseg == 0)
    260 		panic("uvm_page_bootstrap: no memory pre-allocated");
    261 
    262 	/*
    263 	 * first calculate the number of free pages...
    264 	 *
    265 	 * note that we use start/end rather than avail_start/avail_end.
    266 	 * this allows us to allocate extra vm_page structures in case we
    267 	 * want to return some memory to the pool after booting.
    268 	 */
    269 
    270 	freepages = 0;
    271 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    272 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    273 
    274 	/*
    275 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    276 	 * use.   for each page of memory we use we need a vm_page structure.
    277 	 * thus, the total number of pages we can use is the total size of
    278 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    279 	 * structure.   we add one to freepages as a fudge factor to avoid
    280 	 * truncation errors (since we can only allocate in terms of whole
    281 	 * pages).
    282 	 */
    283 
    284 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    285 	    (PAGE_SIZE + sizeof(struct vm_page));
    286 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    287 	    sizeof(struct vm_page));
    288 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    289 
    290 	/*
    291 	 * step 4: init the vm_page structures and put them in the correct
    292 	 * place...
    293 	 */
    294 
    295 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    296 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    297 		if (n > pagecount) {
    298 			printf("uvm_page_init: lost %ld page(s) in init\n",
    299 			    (long)(n - pagecount));
    300 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    301 			/* n = pagecount; */
    302 		}
    303 		/* set up page array pointers */
    304 		vm_physmem[lcv].pgs = pagearray;
    305 		pagearray += n;
    306 		pagecount -= n;
    307 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    308 
    309 		/* init and free vm_pages (we've already zeroed them) */
    310 		paddr = ptoa(vm_physmem[lcv].start);
    311 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    312 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    313 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    314 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    315 				uvmexp.npages++;
    316 				/* add page to free pool */
    317 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    318 			}
    319 		}
    320 	}
    321 
    322 	/*
    323 	 * step 5: pass up the values of virtual_space_start and
    324 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    325 	 * layers of the VM.
    326 	 */
    327 
    328 	*kvm_startp = round_page(virtual_space_start);
    329 	*kvm_endp = trunc_page(virtual_space_end);
    330 
    331 	/*
    332 	 * step 6: init locks for kernel threads
    333 	 */
    334 
    335 	simple_lock_init(&uvm.pagedaemon_lock);
    336 	simple_lock_init(&uvm.aiodoned_lock);
    337 
    338 	/*
    339 	 * step 7: init reserve thresholds
    340 	 * XXXCDC - values may need adjusting
    341 	 */
    342 	uvmexp.reserve_pagedaemon = 1;
    343 	uvmexp.reserve_kernel = 5;
    344 
    345 	/*
    346 	 * step 8: determine if we should zero pages in the idle
    347 	 * loop.
    348 	 */
    349 	uvm.page_idle_zero = vm_page_zero_enable;
    350 
    351 	/*
    352 	 * done!
    353 	 */
    354 
    355 	uvm.page_init_done = TRUE;
    356 }
    357 
    358 /*
    359  * uvm_setpagesize: set the page size
    360  *
    361  * => sets page_shift and page_mask from uvmexp.pagesize.
    362  */
    363 
    364 void
    365 uvm_setpagesize()
    366 {
    367 	if (uvmexp.pagesize == 0)
    368 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    369 	uvmexp.pagemask = uvmexp.pagesize - 1;
    370 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    371 		panic("uvm_setpagesize: page size not a power of two");
    372 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    373 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    374 			break;
    375 }
    376 
    377 /*
    378  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    379  */
    380 
    381 vaddr_t
    382 uvm_pageboot_alloc(size)
    383 	vsize_t size;
    384 {
    385 #if defined(PMAP_STEAL_MEMORY)
    386 	vaddr_t addr;
    387 
    388 	/*
    389 	 * defer bootstrap allocation to MD code (it may want to allocate
    390 	 * from a direct-mapped segment).  pmap_steal_memory should round
    391 	 * off virtual_space_start/virtual_space_end.
    392 	 */
    393 
    394 	addr = pmap_steal_memory(size, &virtual_space_start,
    395 	    &virtual_space_end);
    396 
    397 	return(addr);
    398 
    399 #else /* !PMAP_STEAL_MEMORY */
    400 
    401 	static boolean_t initialized = FALSE;
    402 	vaddr_t addr, vaddr;
    403 	paddr_t paddr;
    404 
    405 	/* round to page size */
    406 	size = round_page(size);
    407 
    408 	/*
    409 	 * on first call to this function, initialize ourselves.
    410 	 */
    411 	if (initialized == FALSE) {
    412 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    413 
    414 		/* round it the way we like it */
    415 		virtual_space_start = round_page(virtual_space_start);
    416 		virtual_space_end = trunc_page(virtual_space_end);
    417 
    418 		initialized = TRUE;
    419 	}
    420 
    421 	/*
    422 	 * allocate virtual memory for this request
    423 	 */
    424 	if (virtual_space_start == virtual_space_end ||
    425 	    (virtual_space_end - virtual_space_start) < size)
    426 		panic("uvm_pageboot_alloc: out of virtual space");
    427 
    428 	addr = virtual_space_start;
    429 
    430 #ifdef PMAP_GROWKERNEL
    431 	/*
    432 	 * If the kernel pmap can't map the requested space,
    433 	 * then allocate more resources for it.
    434 	 */
    435 	if (uvm_maxkaddr < (addr + size)) {
    436 		uvm_maxkaddr = pmap_growkernel(addr + size);
    437 		if (uvm_maxkaddr < (addr + size))
    438 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    439 	}
    440 #endif
    441 
    442 	virtual_space_start += size;
    443 
    444 	/*
    445 	 * allocate and mapin physical pages to back new virtual pages
    446 	 */
    447 
    448 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    449 	    vaddr += PAGE_SIZE) {
    450 
    451 		if (!uvm_page_physget(&paddr))
    452 			panic("uvm_pageboot_alloc: out of memory");
    453 
    454 		/*
    455 		 * Note this memory is no longer managed, so using
    456 		 * pmap_kenter is safe.
    457 		 */
    458 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    459 	}
    460 	return(addr);
    461 #endif	/* PMAP_STEAL_MEMORY */
    462 }
    463 
    464 #if !defined(PMAP_STEAL_MEMORY)
    465 /*
    466  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    467  *
    468  * => attempt to allocate it off the end of a segment in which the "avail"
    469  *    values match the start/end values.   if we can't do that, then we
    470  *    will advance both values (making them equal, and removing some
    471  *    vm_page structures from the non-avail area).
    472  * => return false if out of memory.
    473  */
    474 
    475 /* subroutine: try to allocate from memory chunks on the specified freelist */
    476 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    477 
    478 static boolean_t
    479 uvm_page_physget_freelist(paddrp, freelist)
    480 	paddr_t *paddrp;
    481 	int freelist;
    482 {
    483 	int lcv, x;
    484 
    485 	/* pass 1: try allocating from a matching end */
    486 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    487 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    488 #else
    489 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    490 #endif
    491 	{
    492 
    493 		if (uvm.page_init_done == TRUE)
    494 			panic("uvm_page_physget: called _after_ bootstrap");
    495 
    496 		if (vm_physmem[lcv].free_list != freelist)
    497 			continue;
    498 
    499 		/* try from front */
    500 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    501 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    502 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    503 			vm_physmem[lcv].avail_start++;
    504 			vm_physmem[lcv].start++;
    505 			/* nothing left?   nuke it */
    506 			if (vm_physmem[lcv].avail_start ==
    507 			    vm_physmem[lcv].end) {
    508 				if (vm_nphysseg == 1)
    509 				    panic("vum_page_physget: out of memory!");
    510 				vm_nphysseg--;
    511 				for (x = lcv ; x < vm_nphysseg ; x++)
    512 					/* structure copy */
    513 					vm_physmem[x] = vm_physmem[x+1];
    514 			}
    515 			return (TRUE);
    516 		}
    517 
    518 		/* try from rear */
    519 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    520 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    521 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    522 			vm_physmem[lcv].avail_end--;
    523 			vm_physmem[lcv].end--;
    524 			/* nothing left?   nuke it */
    525 			if (vm_physmem[lcv].avail_end ==
    526 			    vm_physmem[lcv].start) {
    527 				if (vm_nphysseg == 1)
    528 				    panic("uvm_page_physget: out of memory!");
    529 				vm_nphysseg--;
    530 				for (x = lcv ; x < vm_nphysseg ; x++)
    531 					/* structure copy */
    532 					vm_physmem[x] = vm_physmem[x+1];
    533 			}
    534 			return (TRUE);
    535 		}
    536 	}
    537 
    538 	/* pass2: forget about matching ends, just allocate something */
    539 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    540 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    541 #else
    542 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    543 #endif
    544 	{
    545 
    546 		/* any room in this bank? */
    547 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    548 			continue;  /* nope */
    549 
    550 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    551 		vm_physmem[lcv].avail_start++;
    552 		/* truncate! */
    553 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    554 
    555 		/* nothing left?   nuke it */
    556 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    557 			if (vm_nphysseg == 1)
    558 				panic("uvm_page_physget: out of memory!");
    559 			vm_nphysseg--;
    560 			for (x = lcv ; x < vm_nphysseg ; x++)
    561 				/* structure copy */
    562 				vm_physmem[x] = vm_physmem[x+1];
    563 		}
    564 		return (TRUE);
    565 	}
    566 
    567 	return (FALSE);        /* whoops! */
    568 }
    569 
    570 boolean_t
    571 uvm_page_physget(paddrp)
    572 	paddr_t *paddrp;
    573 {
    574 	int i;
    575 
    576 	/* try in the order of freelist preference */
    577 	for (i = 0; i < VM_NFREELIST; i++)
    578 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    579 			return (TRUE);
    580 	return (FALSE);
    581 }
    582 #endif /* PMAP_STEAL_MEMORY */
    583 
    584 /*
    585  * uvm_page_physload: load physical memory into VM system
    586  *
    587  * => all args are PFs
    588  * => all pages in start/end get vm_page structures
    589  * => areas marked by avail_start/avail_end get added to the free page pool
    590  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    591  */
    592 
    593 void
    594 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    595 	paddr_t start, end, avail_start, avail_end;
    596 	int free_list;
    597 {
    598 	int preload, lcv;
    599 	psize_t npages;
    600 	struct vm_page *pgs;
    601 	struct vm_physseg *ps;
    602 
    603 	if (uvmexp.pagesize == 0)
    604 		panic("uvm_page_physload: page size not set!");
    605 
    606 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    607 		panic("uvm_page_physload: bad free list %d\n", free_list);
    608 
    609 	if (start >= end)
    610 		panic("uvm_page_physload: start >= end");
    611 
    612 	/*
    613 	 * do we have room?
    614 	 */
    615 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    616 		printf("uvm_page_physload: unable to load physical memory "
    617 		    "segment\n");
    618 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    619 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    620 		printf("\tincrease VM_PHYSSEG_MAX\n");
    621 		return;
    622 	}
    623 
    624 	/*
    625 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    626 	 * called yet, so malloc is not available).
    627 	 */
    628 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    629 		if (vm_physmem[lcv].pgs)
    630 			break;
    631 	}
    632 	preload = (lcv == vm_nphysseg);
    633 
    634 	/*
    635 	 * if VM is already running, attempt to malloc() vm_page structures
    636 	 */
    637 	if (!preload) {
    638 #if defined(VM_PHYSSEG_NOADD)
    639 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    640 #else
    641 		/* XXXCDC: need some sort of lockout for this case */
    642 		paddr_t paddr;
    643 		npages = end - start;  /* # of pages */
    644 		pgs = malloc(sizeof(struct vm_page) * npages,
    645 		    M_VMPAGE, M_NOWAIT);
    646 		if (pgs == NULL) {
    647 			printf("uvm_page_physload: can not malloc vm_page "
    648 			    "structs for segment\n");
    649 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    650 			return;
    651 		}
    652 		/* zero data, init phys_addr and free_list, and free pages */
    653 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    654 		for (lcv = 0, paddr = ptoa(start) ;
    655 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    656 			pgs[lcv].phys_addr = paddr;
    657 			pgs[lcv].free_list = free_list;
    658 			if (atop(paddr) >= avail_start &&
    659 			    atop(paddr) <= avail_end)
    660 				uvm_pagefree(&pgs[lcv]);
    661 		}
    662 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    663 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    664 #endif
    665 	} else {
    666 
    667 		/* gcc complains if these don't get init'd */
    668 		pgs = NULL;
    669 		npages = 0;
    670 
    671 	}
    672 
    673 	/*
    674 	 * now insert us in the proper place in vm_physmem[]
    675 	 */
    676 
    677 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    678 
    679 	/* random: put it at the end (easy!) */
    680 	ps = &vm_physmem[vm_nphysseg];
    681 
    682 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    683 
    684 	{
    685 		int x;
    686 		/* sort by address for binary search */
    687 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    688 			if (start < vm_physmem[lcv].start)
    689 				break;
    690 		ps = &vm_physmem[lcv];
    691 		/* move back other entries, if necessary ... */
    692 		for (x = vm_nphysseg ; x > lcv ; x--)
    693 			/* structure copy */
    694 			vm_physmem[x] = vm_physmem[x - 1];
    695 	}
    696 
    697 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    698 
    699 	{
    700 		int x;
    701 		/* sort by largest segment first */
    702 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    703 			if ((end - start) >
    704 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    705 				break;
    706 		ps = &vm_physmem[lcv];
    707 		/* move back other entries, if necessary ... */
    708 		for (x = vm_nphysseg ; x > lcv ; x--)
    709 			/* structure copy */
    710 			vm_physmem[x] = vm_physmem[x - 1];
    711 	}
    712 
    713 #else
    714 
    715 	panic("uvm_page_physload: unknown physseg strategy selected!");
    716 
    717 #endif
    718 
    719 	ps->start = start;
    720 	ps->end = end;
    721 	ps->avail_start = avail_start;
    722 	ps->avail_end = avail_end;
    723 	if (preload) {
    724 		ps->pgs = NULL;
    725 	} else {
    726 		ps->pgs = pgs;
    727 		ps->lastpg = pgs + npages - 1;
    728 	}
    729 	ps->free_list = free_list;
    730 	vm_nphysseg++;
    731 
    732 	/*
    733 	 * done!
    734 	 */
    735 
    736 	if (!preload)
    737 		uvm_page_rehash();
    738 
    739 	return;
    740 }
    741 
    742 /*
    743  * uvm_page_rehash: reallocate hash table based on number of free pages.
    744  */
    745 
    746 void
    747 uvm_page_rehash()
    748 {
    749 	int freepages, lcv, bucketcount, s, oldcount;
    750 	struct pglist *newbuckets, *oldbuckets;
    751 	struct vm_page *pg;
    752 	size_t newsize, oldsize;
    753 
    754 	/*
    755 	 * compute number of pages that can go in the free pool
    756 	 */
    757 
    758 	freepages = 0;
    759 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    760 		freepages +=
    761 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    762 
    763 	/*
    764 	 * compute number of buckets needed for this number of pages
    765 	 */
    766 
    767 	bucketcount = 1;
    768 	while (bucketcount < freepages)
    769 		bucketcount = bucketcount * 2;
    770 
    771 	/*
    772 	 * compute the size of the current table and new table.
    773 	 */
    774 
    775 	oldbuckets = uvm.page_hash;
    776 	oldcount = uvm.page_nhash;
    777 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    778 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    779 
    780 	/*
    781 	 * allocate the new buckets
    782 	 */
    783 
    784 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    785 	if (newbuckets == NULL) {
    786 		printf("uvm_page_physrehash: WARNING: could not grow page "
    787 		    "hash table\n");
    788 		return;
    789 	}
    790 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    791 		TAILQ_INIT(&newbuckets[lcv]);
    792 
    793 	/*
    794 	 * now replace the old buckets with the new ones and rehash everything
    795 	 */
    796 
    797 	s = splimp();
    798 	simple_lock(&uvm.hashlock);
    799 	uvm.page_hash = newbuckets;
    800 	uvm.page_nhash = bucketcount;
    801 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    802 
    803 	/* ... and rehash */
    804 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    805 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    806 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    807 			TAILQ_INSERT_TAIL(
    808 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    809 			  pg, hashq);
    810 		}
    811 	}
    812 	simple_unlock(&uvm.hashlock);
    813 	splx(s);
    814 
    815 	/*
    816 	 * free old bucket array if is not the boot-time table
    817 	 */
    818 
    819 	if (oldbuckets != &uvm_bootbucket)
    820 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    821 
    822 	/*
    823 	 * done
    824 	 */
    825 	return;
    826 }
    827 
    828 
    829 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    830 
    831 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    832 
    833 /* call from DDB */
    834 void
    835 uvm_page_physdump()
    836 {
    837 	int lcv;
    838 
    839 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    840 				 vm_nphysseg, VM_PHYSSEG_MAX);
    841 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    842 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
    843 		    (long long)vm_physmem[lcv].start,
    844 		    (long long)vm_physmem[lcv].end,
    845 		    (long long)vm_physmem[lcv].avail_start,
    846 		    (long long)vm_physmem[lcv].avail_end);
    847 	printf("STRATEGY = ");
    848 	switch (VM_PHYSSEG_STRAT) {
    849 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    850 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    851 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    852 	default: printf("<<UNKNOWN>>!!!!\n");
    853 	}
    854 	printf("number of buckets = %d\n", uvm.page_nhash);
    855 }
    856 #endif
    857 
    858 /*
    859  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    860  *
    861  * => return null if no pages free
    862  * => wake up pagedaemon if number of free pages drops below low water mark
    863  * => if obj != NULL, obj must be locked (to put in hash)
    864  * => if anon != NULL, anon must be locked (to put in anon)
    865  * => only one of obj or anon can be non-null
    866  * => caller must activate/deactivate page if it is not wired.
    867  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    868  * => policy decision: it is more important to pull a page off of the
    869  *	appropriate priority free list than it is to get a zero'd or
    870  *	unknown contents page.  This is because we live with the
    871  *	consequences of a bad free list decision for the entire
    872  *	lifetime of the page, e.g. if the page comes from memory that
    873  *	is slower to access.
    874  */
    875 
    876 struct vm_page *
    877 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    878 	struct uvm_object *obj;
    879 	voff_t off;
    880 	int flags;
    881 	struct vm_anon *anon;
    882 	int strat, free_list;
    883 {
    884 	int lcv, try1, try2, s, zeroit = 0;
    885 	struct vm_page *pg;
    886 	struct pglist *freeq;
    887 	struct pgfreelist *pgfl;
    888 	boolean_t use_reserve;
    889 
    890 	KASSERT(obj == NULL || anon == NULL);
    891 	KASSERT(off == trunc_page(off));
    892 	s = uvm_lock_fpageq();
    893 
    894 	/*
    895 	 * check to see if we need to generate some free pages waking
    896 	 * the pagedaemon.
    897 	 */
    898 
    899 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
    900 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
    901 	     uvmexp.inactive < uvmexp.inactarg)) {
    902 		wakeup(&uvm.pagedaemon);
    903 	}
    904 
    905 	/*
    906 	 * fail if any of these conditions is true:
    907 	 * [1]  there really are no free pages, or
    908 	 * [2]  only kernel "reserved" pages remain and
    909 	 *        the page isn't being allocated to a kernel object.
    910 	 * [3]  only pagedaemon "reserved" pages remain and
    911 	 *        the requestor isn't the pagedaemon.
    912 	 */
    913 
    914 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
    915 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
    916 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
    917 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    918 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
    919 		goto fail;
    920 
    921 #if PGFL_NQUEUES != 2
    922 #error uvm_pagealloc_strat needs to be updated
    923 #endif
    924 
    925 	/*
    926 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
    927 	 * we try the UNKNOWN queue first.
    928 	 */
    929 	if (flags & UVM_PGA_ZERO) {
    930 		try1 = PGFL_ZEROS;
    931 		try2 = PGFL_UNKNOWN;
    932 	} else {
    933 		try1 = PGFL_UNKNOWN;
    934 		try2 = PGFL_ZEROS;
    935 	}
    936 
    937  again:
    938 	switch (strat) {
    939 	case UVM_PGA_STRAT_NORMAL:
    940 		/* Check all freelists in descending priority order. */
    941 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    942 			pgfl = &uvm.page_free[lcv];
    943 			if ((pg = TAILQ_FIRST((freeq =
    944 			      &pgfl->pgfl_queues[try1]))) != NULL ||
    945 			    (pg = TAILQ_FIRST((freeq =
    946 			      &pgfl->pgfl_queues[try2]))) != NULL)
    947 				goto gotit;
    948 		}
    949 
    950 		/* No pages free! */
    951 		goto fail;
    952 
    953 	case UVM_PGA_STRAT_ONLY:
    954 	case UVM_PGA_STRAT_FALLBACK:
    955 		/* Attempt to allocate from the specified free list. */
    956 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
    957 		pgfl = &uvm.page_free[free_list];
    958 		if ((pg = TAILQ_FIRST((freeq =
    959 		      &pgfl->pgfl_queues[try1]))) != NULL ||
    960 		    (pg = TAILQ_FIRST((freeq =
    961 		      &pgfl->pgfl_queues[try2]))) != NULL)
    962 			goto gotit;
    963 
    964 		/* Fall back, if possible. */
    965 		if (strat == UVM_PGA_STRAT_FALLBACK) {
    966 			strat = UVM_PGA_STRAT_NORMAL;
    967 			goto again;
    968 		}
    969 
    970 		/* No pages free! */
    971 		goto fail;
    972 
    973 	default:
    974 		panic("uvm_pagealloc_strat: bad strat %d", strat);
    975 		/* NOTREACHED */
    976 	}
    977 
    978  gotit:
    979 	TAILQ_REMOVE(freeq, pg, pageq);
    980 	uvmexp.free--;
    981 
    982 	/* update zero'd page count */
    983 	if (pg->flags & PG_ZERO)
    984 		uvmexp.zeropages--;
    985 
    986 	/*
    987 	 * update allocation statistics and remember if we have to
    988 	 * zero the page
    989 	 */
    990 	if (flags & UVM_PGA_ZERO) {
    991 		if (pg->flags & PG_ZERO) {
    992 			uvmexp.pga_zerohit++;
    993 			zeroit = 0;
    994 		} else {
    995 			uvmexp.pga_zeromiss++;
    996 			zeroit = 1;
    997 		}
    998 	}
    999 
   1000 	uvm_unlock_fpageq(s);		/* unlock free page queue */
   1001 
   1002 	pg->offset = off;
   1003 	pg->uobject = obj;
   1004 	pg->uanon = anon;
   1005 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1006 	pg->version++;
   1007 	if (anon) {
   1008 		anon->u.an_page = pg;
   1009 		pg->pqflags = PQ_ANON;
   1010 		uvmexp.anonpages++;
   1011 	} else {
   1012 		if (obj)
   1013 			uvm_pageinsert(pg);
   1014 		pg->pqflags = 0;
   1015 	}
   1016 #if defined(UVM_PAGE_TRKOWN)
   1017 	pg->owner_tag = NULL;
   1018 #endif
   1019 	UVM_PAGE_OWN(pg, "new alloc");
   1020 
   1021 	if (flags & UVM_PGA_ZERO) {
   1022 		/*
   1023 		 * A zero'd page is not clean.  If we got a page not already
   1024 		 * zero'd, then we have to zero it ourselves.
   1025 		 */
   1026 		pg->flags &= ~PG_CLEAN;
   1027 		if (zeroit)
   1028 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1029 	}
   1030 
   1031 	return(pg);
   1032 
   1033  fail:
   1034 	uvm_unlock_fpageq(s);
   1035 	return (NULL);
   1036 }
   1037 
   1038 /*
   1039  * uvm_pagerealloc: reallocate a page from one object to another
   1040  *
   1041  * => both objects must be locked
   1042  */
   1043 
   1044 void
   1045 uvm_pagerealloc(pg, newobj, newoff)
   1046 	struct vm_page *pg;
   1047 	struct uvm_object *newobj;
   1048 	voff_t newoff;
   1049 {
   1050 	/*
   1051 	 * remove it from the old object
   1052 	 */
   1053 
   1054 	if (pg->uobject) {
   1055 		uvm_pageremove(pg);
   1056 	}
   1057 
   1058 	/*
   1059 	 * put it in the new object
   1060 	 */
   1061 
   1062 	if (newobj) {
   1063 		pg->uobject = newobj;
   1064 		pg->offset = newoff;
   1065 		pg->version++;
   1066 		uvm_pageinsert(pg);
   1067 	}
   1068 }
   1069 
   1070 
   1071 /*
   1072  * uvm_pagefree: free page
   1073  *
   1074  * => erase page's identity (i.e. remove from hash/object)
   1075  * => put page on free list
   1076  * => caller must lock owning object (either anon or uvm_object)
   1077  * => caller must lock page queues
   1078  * => assumes all valid mappings of pg are gone
   1079  */
   1080 
   1081 void
   1082 uvm_pagefree(pg)
   1083 	struct vm_page *pg;
   1084 {
   1085 	int s;
   1086 	int saved_loan_count = pg->loan_count;
   1087 
   1088 #ifdef DEBUG
   1089 	if (pg->uobject == (void *)0xdeadbeef &&
   1090 	    pg->uanon == (void *)0xdeadbeef) {
   1091 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1092 	}
   1093 #endif
   1094 
   1095 	/*
   1096 	 * if the page was an object page (and thus "TABLED"), remove it
   1097 	 * from the object.
   1098 	 */
   1099 
   1100 	if (pg->flags & PG_TABLED) {
   1101 
   1102 		/*
   1103 		 * if the object page is on loan we are going to drop ownership.
   1104 		 * it is possible that an anon will take over as owner for this
   1105 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1106 		 * it knows it needs to allocate swap if it wants to page the
   1107 		 * page out.
   1108 		 */
   1109 
   1110 		if (saved_loan_count)
   1111 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1112 		uvm_pageremove(pg);
   1113 
   1114 		/*
   1115 		 * if our page was on loan, then we just lost control over it
   1116 		 * (in fact, if it was loaned to an anon, the anon may have
   1117 		 * already taken over ownership of the page by now and thus
   1118 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1119 		 * return (when the last loan is dropped, then the page can be
   1120 		 * freed by whatever was holding the last loan).
   1121 		 */
   1122 
   1123 		if (saved_loan_count)
   1124 			return;
   1125 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1126 
   1127 		/*
   1128 		 * if our page is owned by an anon and is loaned out to the
   1129 		 * kernel then we just want to drop ownership and return.
   1130 		 * the kernel must free the page when all its loans clear ...
   1131 		 * note that the kernel can't change the loan status of our
   1132 		 * page as long as we are holding PQ lock.
   1133 		 */
   1134 
   1135 		pg->pqflags &= ~PQ_ANON;
   1136 		pg->uanon = NULL;
   1137 		return;
   1138 	}
   1139 	KASSERT(saved_loan_count == 0);
   1140 
   1141 	/*
   1142 	 * now remove the page from the queues
   1143 	 */
   1144 
   1145 	if (pg->pqflags & PQ_ACTIVE) {
   1146 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1147 		pg->pqflags &= ~PQ_ACTIVE;
   1148 		uvmexp.active--;
   1149 	}
   1150 	if (pg->pqflags & PQ_INACTIVE) {
   1151 		if (pg->pqflags & PQ_SWAPBACKED)
   1152 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1153 		else
   1154 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1155 		pg->pqflags &= ~PQ_INACTIVE;
   1156 		uvmexp.inactive--;
   1157 	}
   1158 
   1159 	/*
   1160 	 * if the page was wired, unwire it now.
   1161 	 */
   1162 
   1163 	if (pg->wire_count) {
   1164 		pg->wire_count = 0;
   1165 		uvmexp.wired--;
   1166 	}
   1167 	if (pg->uanon) {
   1168 		uvmexp.anonpages--;
   1169 	}
   1170 
   1171 	/*
   1172 	 * and put on free queue
   1173 	 */
   1174 
   1175 	pg->flags &= ~PG_ZERO;
   1176 
   1177 	s = uvm_lock_fpageq();
   1178 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1179 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1180 	pg->pqflags = PQ_FREE;
   1181 #ifdef DEBUG
   1182 	pg->uobject = (void *)0xdeadbeef;
   1183 	pg->offset = 0xdeadbeef;
   1184 	pg->uanon = (void *)0xdeadbeef;
   1185 #endif
   1186 	uvmexp.free++;
   1187 
   1188 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1189 		uvm.page_idle_zero = vm_page_zero_enable;
   1190 
   1191 	uvm_unlock_fpageq(s);
   1192 }
   1193 
   1194 /*
   1195  * uvm_page_unbusy: unbusy an array of pages.
   1196  *
   1197  * => pages must either all belong to the same object, or all belong to anons.
   1198  * => if pages are object-owned, object must be locked.
   1199  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
   1200  */
   1201 
   1202 void
   1203 uvm_page_unbusy(pgs, npgs)
   1204 	struct vm_page **pgs;
   1205 	int npgs;
   1206 {
   1207 	struct vm_page *pg;
   1208 	struct uvm_object *uobj;
   1209 	int i;
   1210 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1211 
   1212 	for (i = 0; i < npgs; i++) {
   1213 		pg = pgs[i];
   1214 
   1215 		if (pg == NULL) {
   1216 			continue;
   1217 		}
   1218 		if (pg->flags & PG_WANTED) {
   1219 			wakeup(pg);
   1220 		}
   1221 		if (pg->flags & PG_RELEASED) {
   1222 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1223 			uobj = pg->uobject;
   1224 			if (uobj != NULL) {
   1225 				uobj->pgops->pgo_releasepg(pg, NULL);
   1226 			} else {
   1227 				pg->flags &= ~(PG_BUSY);
   1228 				UVM_PAGE_OWN(pg, NULL);
   1229 				uvm_anfree(pg->uanon);
   1230 			}
   1231 		} else {
   1232 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1233 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1234 			UVM_PAGE_OWN(pg, NULL);
   1235 		}
   1236 	}
   1237 }
   1238 
   1239 #if defined(UVM_PAGE_TRKOWN)
   1240 /*
   1241  * uvm_page_own: set or release page ownership
   1242  *
   1243  * => this is a debugging function that keeps track of who sets PG_BUSY
   1244  *	and where they do it.   it can be used to track down problems
   1245  *	such a process setting "PG_BUSY" and never releasing it.
   1246  * => page's object [if any] must be locked
   1247  * => if "tag" is NULL then we are releasing page ownership
   1248  */
   1249 void
   1250 uvm_page_own(pg, tag)
   1251 	struct vm_page *pg;
   1252 	char *tag;
   1253 {
   1254 	/* gain ownership? */
   1255 	if (tag) {
   1256 		if (pg->owner_tag) {
   1257 			printf("uvm_page_own: page %p already owned "
   1258 			    "by proc %d [%s]\n", pg,
   1259 			     pg->owner, pg->owner_tag);
   1260 			panic("uvm_page_own");
   1261 		}
   1262 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1263 		pg->owner_tag = tag;
   1264 		return;
   1265 	}
   1266 
   1267 	/* drop ownership */
   1268 	if (pg->owner_tag == NULL) {
   1269 		printf("uvm_page_own: dropping ownership of an non-owned "
   1270 		    "page (%p)\n", pg);
   1271 		panic("uvm_page_own");
   1272 	}
   1273 	pg->owner_tag = NULL;
   1274 	return;
   1275 }
   1276 #endif
   1277 
   1278 /*
   1279  * uvm_pageidlezero: zero free pages while the system is idle.
   1280  *
   1281  * => we do at least one iteration per call, if we are below the target.
   1282  * => we loop until we either reach the target or whichqs indicates that
   1283  *	there is a process ready to run.
   1284  */
   1285 void
   1286 uvm_pageidlezero()
   1287 {
   1288 	struct vm_page *pg;
   1289 	struct pgfreelist *pgfl;
   1290 	int free_list, s;
   1291 
   1292 	do {
   1293 		s = uvm_lock_fpageq();
   1294 
   1295 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1296 			uvm.page_idle_zero = FALSE;
   1297 			uvm_unlock_fpageq(s);
   1298 			return;
   1299 		}
   1300 
   1301 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1302 			pgfl = &uvm.page_free[free_list];
   1303 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
   1304 			    PGFL_UNKNOWN])) != NULL)
   1305 				break;
   1306 		}
   1307 
   1308 		if (pg == NULL) {
   1309 			/*
   1310 			 * No non-zero'd pages; don't bother trying again
   1311 			 * until we know we have non-zero'd pages free.
   1312 			 */
   1313 			uvm.page_idle_zero = FALSE;
   1314 			uvm_unlock_fpageq(s);
   1315 			return;
   1316 		}
   1317 
   1318 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1319 		uvmexp.free--;
   1320 		uvm_unlock_fpageq(s);
   1321 
   1322 #ifdef PMAP_PAGEIDLEZERO
   1323 		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
   1324 			/*
   1325 			 * The machine-dependent code detected some
   1326 			 * reason for us to abort zeroing pages,
   1327 			 * probably because there is a process now
   1328 			 * ready to run.
   1329 			 */
   1330 			s = uvm_lock_fpageq();
   1331 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
   1332 			    pg, pageq);
   1333 			uvmexp.free++;
   1334 			uvmexp.zeroaborts++;
   1335 			uvm_unlock_fpageq(s);
   1336 			return;
   1337 		}
   1338 #else
   1339 		/*
   1340 		 * XXX This will toast the cache unless the pmap_zero_page()
   1341 		 * XXX implementation does uncached access.
   1342 		 */
   1343 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1344 #endif
   1345 		pg->flags |= PG_ZERO;
   1346 
   1347 		s = uvm_lock_fpageq();
   1348 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
   1349 		uvmexp.free++;
   1350 		uvmexp.zeropages++;
   1351 		uvm_unlock_fpageq(s);
   1352 	} while (sched_whichqs == 0);
   1353 }
   1354