uvm_page.c revision 1.51 1 /* $NetBSD: uvm_page.c,v 1.51 2001/03/09 01:02:12 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101 /*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105 boolean_t vm_page_zero_enable = FALSE;
106
107 /*
108 * local variables
109 */
110
111 /*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes. The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117 static vaddr_t virtual_space_start;
118 static vaddr_t virtual_space_end;
119
120 /*
121 * we use a hash table with only one bucket during bootup. we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126 static struct pglist uvm_bootbucket;
127
128 /*
129 * local prototypes
130 */
131
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134
135 /*
136 * inline functions
137 */
138
139 /*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 * and bumped the version counter
146 */
147
148 __inline static void
149 uvm_pageinsert(pg)
150 struct vm_page *pg;
151 {
152 struct pglist *buck;
153 int s;
154
155 KASSERT((pg->flags & PG_TABLED) == 0);
156 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 s = splvm();
158 simple_lock(&uvm.hashlock);
159 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
160 simple_unlock(&uvm.hashlock);
161 splx(s);
162
163 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 pg->flags |= PG_TABLED;
165 pg->uobject->uo_npages++;
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 static __inline void
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 KASSERT(pg->flags & PG_TABLED);
183 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 s = splvm();
185 simple_lock(&uvm.hashlock);
186 TAILQ_REMOVE(buck, pg, hashq);
187 simple_unlock(&uvm.hashlock);
188 splx(s);
189
190 if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 uvmexp.vtextpages--;
192 } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 uvmexp.vnodepages--;
194 }
195
196 /* object should be locked */
197 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199 pg->flags &= ~PG_TABLED;
200 pg->uobject->uo_npages--;
201 pg->uobject = NULL;
202 pg->version++;
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, i;
218 paddr_t paddr;
219
220 /*
221 * init the page queues and page queue locks
222 */
223
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (i = 0; i < PGFL_NQUEUES; i++)
226 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 }
228 TAILQ_INIT(&uvm.page_active);
229 TAILQ_INIT(&uvm.page_inactive_swp);
230 TAILQ_INIT(&uvm.page_inactive_obj);
231 simple_lock_init(&uvm.pageqlock);
232 simple_lock_init(&uvm.fpageqlock);
233
234 /*
235 * init the <obj,offset> => <page> hash table. for now
236 * we just have one bucket (the bootstrap bucket). later on we
237 * will allocate new buckets as we dynamically resize the hash table.
238 */
239
240 uvm.page_nhash = 1; /* 1 bucket */
241 uvm.page_hashmask = 0; /* mask for hash function */
242 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
243 TAILQ_INIT(uvm.page_hash); /* init hash table */
244 simple_lock_init(&uvm.hashlock); /* init hash table lock */
245
246 /*
247 * allocate vm_page structures.
248 */
249
250 /*
251 * sanity check:
252 * before calling this function the MD code is expected to register
253 * some free RAM with the uvm_page_physload() function. our job
254 * now is to allocate vm_page structures for this memory.
255 */
256
257 if (vm_nphysseg == 0)
258 panic("uvm_page_bootstrap: no memory pre-allocated");
259
260 /*
261 * first calculate the number of free pages...
262 *
263 * note that we use start/end rather than avail_start/avail_end.
264 * this allows us to allocate extra vm_page structures in case we
265 * want to return some memory to the pool after booting.
266 */
267
268 freepages = 0;
269 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272 /*
273 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 * use. for each page of memory we use we need a vm_page structure.
275 * thus, the total number of pages we can use is the total size of
276 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 * structure. we add one to freepages as a fudge factor to avoid
278 * truncation errors (since we can only allocate in terms of whole
279 * pages).
280 */
281
282 pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 (PAGE_SIZE + sizeof(struct vm_page));
284 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 sizeof(struct vm_page));
286 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288 /*
289 * init the vm_page structures and put them in the correct place.
290 */
291
292 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294 if (n > pagecount) {
295 printf("uvm_page_init: lost %ld page(s) in init\n",
296 (long)(n - pagecount));
297 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
298 /* n = pagecount; */
299 }
300
301 /* set up page array pointers */
302 vm_physmem[lcv].pgs = pagearray;
303 pagearray += n;
304 pagecount -= n;
305 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306
307 /* init and free vm_pages (we've already zeroed them) */
308 paddr = ptoa(vm_physmem[lcv].start);
309 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310 vm_physmem[lcv].pgs[i].phys_addr = paddr;
311 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
312 atop(paddr) <= vm_physmem[lcv].avail_end) {
313 uvmexp.npages++;
314 /* add page to free pool */
315 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
316 }
317 }
318 }
319
320 /*
321 * pass up the values of virtual_space_start and
322 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323 * layers of the VM.
324 */
325
326 *kvm_startp = round_page(virtual_space_start);
327 *kvm_endp = trunc_page(virtual_space_end);
328
329 /*
330 * init locks for kernel threads
331 */
332
333 simple_lock_init(&uvm.pagedaemon_lock);
334 simple_lock_init(&uvm.aiodoned_lock);
335
336 /*
337 * init various thresholds.
338 * XXXCDC - values may need adjusting
339 */
340
341 uvmexp.reserve_pagedaemon = 1;
342 uvmexp.reserve_kernel = 5;
343 uvmexp.anonminpct = 10;
344 uvmexp.vnodeminpct = 10;
345 uvmexp.vtextminpct = 5;
346 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
347 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
348 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
349
350 /*
351 * determine if we should zero pages in the idle loop.
352 */
353
354 uvm.page_idle_zero = vm_page_zero_enable;
355
356 /*
357 * done!
358 */
359
360 uvm.page_init_done = TRUE;
361 }
362
363 /*
364 * uvm_setpagesize: set the page size
365 *
366 * => sets page_shift and page_mask from uvmexp.pagesize.
367 */
368
369 void
370 uvm_setpagesize()
371 {
372 if (uvmexp.pagesize == 0)
373 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
374 uvmexp.pagemask = uvmexp.pagesize - 1;
375 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
376 panic("uvm_setpagesize: page size not a power of two");
377 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
378 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
379 break;
380 }
381
382 /*
383 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
384 */
385
386 vaddr_t
387 uvm_pageboot_alloc(size)
388 vsize_t size;
389 {
390 #if defined(PMAP_STEAL_MEMORY)
391 vaddr_t addr;
392
393 /*
394 * defer bootstrap allocation to MD code (it may want to allocate
395 * from a direct-mapped segment). pmap_steal_memory should round
396 * off virtual_space_start/virtual_space_end.
397 */
398
399 addr = pmap_steal_memory(size, &virtual_space_start,
400 &virtual_space_end);
401
402 return(addr);
403
404 #else /* !PMAP_STEAL_MEMORY */
405
406 static boolean_t initialized = FALSE;
407 vaddr_t addr, vaddr;
408 paddr_t paddr;
409
410 /* round to page size */
411 size = round_page(size);
412
413 /*
414 * on first call to this function, initialize ourselves.
415 */
416 if (initialized == FALSE) {
417 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
418
419 /* round it the way we like it */
420 virtual_space_start = round_page(virtual_space_start);
421 virtual_space_end = trunc_page(virtual_space_end);
422
423 initialized = TRUE;
424 }
425
426 /*
427 * allocate virtual memory for this request
428 */
429 if (virtual_space_start == virtual_space_end ||
430 (virtual_space_end - virtual_space_start) < size)
431 panic("uvm_pageboot_alloc: out of virtual space");
432
433 addr = virtual_space_start;
434
435 #ifdef PMAP_GROWKERNEL
436 /*
437 * If the kernel pmap can't map the requested space,
438 * then allocate more resources for it.
439 */
440 if (uvm_maxkaddr < (addr + size)) {
441 uvm_maxkaddr = pmap_growkernel(addr + size);
442 if (uvm_maxkaddr < (addr + size))
443 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
444 }
445 #endif
446
447 virtual_space_start += size;
448
449 /*
450 * allocate and mapin physical pages to back new virtual pages
451 */
452
453 for (vaddr = round_page(addr) ; vaddr < addr + size ;
454 vaddr += PAGE_SIZE) {
455
456 if (!uvm_page_physget(&paddr))
457 panic("uvm_pageboot_alloc: out of memory");
458
459 /*
460 * Note this memory is no longer managed, so using
461 * pmap_kenter is safe.
462 */
463 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
464 }
465 return(addr);
466 #endif /* PMAP_STEAL_MEMORY */
467 }
468
469 #if !defined(PMAP_STEAL_MEMORY)
470 /*
471 * uvm_page_physget: "steal" one page from the vm_physmem structure.
472 *
473 * => attempt to allocate it off the end of a segment in which the "avail"
474 * values match the start/end values. if we can't do that, then we
475 * will advance both values (making them equal, and removing some
476 * vm_page structures from the non-avail area).
477 * => return false if out of memory.
478 */
479
480 /* subroutine: try to allocate from memory chunks on the specified freelist */
481 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
482
483 static boolean_t
484 uvm_page_physget_freelist(paddrp, freelist)
485 paddr_t *paddrp;
486 int freelist;
487 {
488 int lcv, x;
489
490 /* pass 1: try allocating from a matching end */
491 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
492 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
493 #else
494 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
495 #endif
496 {
497
498 if (uvm.page_init_done == TRUE)
499 panic("uvm_page_physget: called _after_ bootstrap");
500
501 if (vm_physmem[lcv].free_list != freelist)
502 continue;
503
504 /* try from front */
505 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
506 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
507 *paddrp = ptoa(vm_physmem[lcv].avail_start);
508 vm_physmem[lcv].avail_start++;
509 vm_physmem[lcv].start++;
510 /* nothing left? nuke it */
511 if (vm_physmem[lcv].avail_start ==
512 vm_physmem[lcv].end) {
513 if (vm_nphysseg == 1)
514 panic("vum_page_physget: out of memory!");
515 vm_nphysseg--;
516 for (x = lcv ; x < vm_nphysseg ; x++)
517 /* structure copy */
518 vm_physmem[x] = vm_physmem[x+1];
519 }
520 return (TRUE);
521 }
522
523 /* try from rear */
524 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
525 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
526 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
527 vm_physmem[lcv].avail_end--;
528 vm_physmem[lcv].end--;
529 /* nothing left? nuke it */
530 if (vm_physmem[lcv].avail_end ==
531 vm_physmem[lcv].start) {
532 if (vm_nphysseg == 1)
533 panic("uvm_page_physget: out of memory!");
534 vm_nphysseg--;
535 for (x = lcv ; x < vm_nphysseg ; x++)
536 /* structure copy */
537 vm_physmem[x] = vm_physmem[x+1];
538 }
539 return (TRUE);
540 }
541 }
542
543 /* pass2: forget about matching ends, just allocate something */
544 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
545 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
546 #else
547 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
548 #endif
549 {
550
551 /* any room in this bank? */
552 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
553 continue; /* nope */
554
555 *paddrp = ptoa(vm_physmem[lcv].avail_start);
556 vm_physmem[lcv].avail_start++;
557 /* truncate! */
558 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
559
560 /* nothing left? nuke it */
561 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
562 if (vm_nphysseg == 1)
563 panic("uvm_page_physget: out of memory!");
564 vm_nphysseg--;
565 for (x = lcv ; x < vm_nphysseg ; x++)
566 /* structure copy */
567 vm_physmem[x] = vm_physmem[x+1];
568 }
569 return (TRUE);
570 }
571
572 return (FALSE); /* whoops! */
573 }
574
575 boolean_t
576 uvm_page_physget(paddrp)
577 paddr_t *paddrp;
578 {
579 int i;
580
581 /* try in the order of freelist preference */
582 for (i = 0; i < VM_NFREELIST; i++)
583 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
584 return (TRUE);
585 return (FALSE);
586 }
587 #endif /* PMAP_STEAL_MEMORY */
588
589 /*
590 * uvm_page_physload: load physical memory into VM system
591 *
592 * => all args are PFs
593 * => all pages in start/end get vm_page structures
594 * => areas marked by avail_start/avail_end get added to the free page pool
595 * => we are limited to VM_PHYSSEG_MAX physical memory segments
596 */
597
598 void
599 uvm_page_physload(start, end, avail_start, avail_end, free_list)
600 paddr_t start, end, avail_start, avail_end;
601 int free_list;
602 {
603 int preload, lcv;
604 psize_t npages;
605 struct vm_page *pgs;
606 struct vm_physseg *ps;
607
608 if (uvmexp.pagesize == 0)
609 panic("uvm_page_physload: page size not set!");
610
611 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
612 panic("uvm_page_physload: bad free list %d\n", free_list);
613
614 if (start >= end)
615 panic("uvm_page_physload: start >= end");
616
617 /*
618 * do we have room?
619 */
620 if (vm_nphysseg == VM_PHYSSEG_MAX) {
621 printf("uvm_page_physload: unable to load physical memory "
622 "segment\n");
623 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
624 VM_PHYSSEG_MAX, (long long)start, (long long)end);
625 printf("\tincrease VM_PHYSSEG_MAX\n");
626 return;
627 }
628
629 /*
630 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
631 * called yet, so malloc is not available).
632 */
633 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
634 if (vm_physmem[lcv].pgs)
635 break;
636 }
637 preload = (lcv == vm_nphysseg);
638
639 /*
640 * if VM is already running, attempt to malloc() vm_page structures
641 */
642 if (!preload) {
643 #if defined(VM_PHYSSEG_NOADD)
644 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
645 #else
646 /* XXXCDC: need some sort of lockout for this case */
647 paddr_t paddr;
648 npages = end - start; /* # of pages */
649 pgs = malloc(sizeof(struct vm_page) * npages,
650 M_VMPAGE, M_NOWAIT);
651 if (pgs == NULL) {
652 printf("uvm_page_physload: can not malloc vm_page "
653 "structs for segment\n");
654 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
655 return;
656 }
657 /* zero data, init phys_addr and free_list, and free pages */
658 memset(pgs, 0, sizeof(struct vm_page) * npages);
659 for (lcv = 0, paddr = ptoa(start) ;
660 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
661 pgs[lcv].phys_addr = paddr;
662 pgs[lcv].free_list = free_list;
663 if (atop(paddr) >= avail_start &&
664 atop(paddr) <= avail_end)
665 uvm_pagefree(&pgs[lcv]);
666 }
667 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
668 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
669 #endif
670 } else {
671
672 /* gcc complains if these don't get init'd */
673 pgs = NULL;
674 npages = 0;
675
676 }
677
678 /*
679 * now insert us in the proper place in vm_physmem[]
680 */
681
682 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
683
684 /* random: put it at the end (easy!) */
685 ps = &vm_physmem[vm_nphysseg];
686
687 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
688
689 {
690 int x;
691 /* sort by address for binary search */
692 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
693 if (start < vm_physmem[lcv].start)
694 break;
695 ps = &vm_physmem[lcv];
696 /* move back other entries, if necessary ... */
697 for (x = vm_nphysseg ; x > lcv ; x--)
698 /* structure copy */
699 vm_physmem[x] = vm_physmem[x - 1];
700 }
701
702 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
703
704 {
705 int x;
706 /* sort by largest segment first */
707 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
708 if ((end - start) >
709 (vm_physmem[lcv].end - vm_physmem[lcv].start))
710 break;
711 ps = &vm_physmem[lcv];
712 /* move back other entries, if necessary ... */
713 for (x = vm_nphysseg ; x > lcv ; x--)
714 /* structure copy */
715 vm_physmem[x] = vm_physmem[x - 1];
716 }
717
718 #else
719
720 panic("uvm_page_physload: unknown physseg strategy selected!");
721
722 #endif
723
724 ps->start = start;
725 ps->end = end;
726 ps->avail_start = avail_start;
727 ps->avail_end = avail_end;
728 if (preload) {
729 ps->pgs = NULL;
730 } else {
731 ps->pgs = pgs;
732 ps->lastpg = pgs + npages - 1;
733 }
734 ps->free_list = free_list;
735 vm_nphysseg++;
736
737 /*
738 * done!
739 */
740
741 if (!preload)
742 uvm_page_rehash();
743
744 return;
745 }
746
747 /*
748 * uvm_page_rehash: reallocate hash table based on number of free pages.
749 */
750
751 void
752 uvm_page_rehash()
753 {
754 int freepages, lcv, bucketcount, s, oldcount;
755 struct pglist *newbuckets, *oldbuckets;
756 struct vm_page *pg;
757 size_t newsize, oldsize;
758
759 /*
760 * compute number of pages that can go in the free pool
761 */
762
763 freepages = 0;
764 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
765 freepages +=
766 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
767
768 /*
769 * compute number of buckets needed for this number of pages
770 */
771
772 bucketcount = 1;
773 while (bucketcount < freepages)
774 bucketcount = bucketcount * 2;
775
776 /*
777 * compute the size of the current table and new table.
778 */
779
780 oldbuckets = uvm.page_hash;
781 oldcount = uvm.page_nhash;
782 oldsize = round_page(sizeof(struct pglist) * oldcount);
783 newsize = round_page(sizeof(struct pglist) * bucketcount);
784
785 /*
786 * allocate the new buckets
787 */
788
789 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
790 if (newbuckets == NULL) {
791 printf("uvm_page_physrehash: WARNING: could not grow page "
792 "hash table\n");
793 return;
794 }
795 for (lcv = 0 ; lcv < bucketcount ; lcv++)
796 TAILQ_INIT(&newbuckets[lcv]);
797
798 /*
799 * now replace the old buckets with the new ones and rehash everything
800 */
801
802 s = splvm();
803 simple_lock(&uvm.hashlock);
804 uvm.page_hash = newbuckets;
805 uvm.page_nhash = bucketcount;
806 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
807
808 /* ... and rehash */
809 for (lcv = 0 ; lcv < oldcount ; lcv++) {
810 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
811 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
812 TAILQ_INSERT_TAIL(
813 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
814 pg, hashq);
815 }
816 }
817 simple_unlock(&uvm.hashlock);
818 splx(s);
819
820 /*
821 * free old bucket array if is not the boot-time table
822 */
823
824 if (oldbuckets != &uvm_bootbucket)
825 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
826
827 /*
828 * done
829 */
830 return;
831 }
832
833
834 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
835
836 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
837
838 /* call from DDB */
839 void
840 uvm_page_physdump()
841 {
842 int lcv;
843
844 printf("rehash: physical memory config [segs=%d of %d]:\n",
845 vm_nphysseg, VM_PHYSSEG_MAX);
846 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
847 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
848 (long long)vm_physmem[lcv].start,
849 (long long)vm_physmem[lcv].end,
850 (long long)vm_physmem[lcv].avail_start,
851 (long long)vm_physmem[lcv].avail_end);
852 printf("STRATEGY = ");
853 switch (VM_PHYSSEG_STRAT) {
854 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
855 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
856 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
857 default: printf("<<UNKNOWN>>!!!!\n");
858 }
859 printf("number of buckets = %d\n", uvm.page_nhash);
860 }
861 #endif
862
863 /*
864 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
865 *
866 * => return null if no pages free
867 * => wake up pagedaemon if number of free pages drops below low water mark
868 * => if obj != NULL, obj must be locked (to put in hash)
869 * => if anon != NULL, anon must be locked (to put in anon)
870 * => only one of obj or anon can be non-null
871 * => caller must activate/deactivate page if it is not wired.
872 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
873 * => policy decision: it is more important to pull a page off of the
874 * appropriate priority free list than it is to get a zero'd or
875 * unknown contents page. This is because we live with the
876 * consequences of a bad free list decision for the entire
877 * lifetime of the page, e.g. if the page comes from memory that
878 * is slower to access.
879 */
880
881 struct vm_page *
882 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
883 struct uvm_object *obj;
884 voff_t off;
885 int flags;
886 struct vm_anon *anon;
887 int strat, free_list;
888 {
889 int lcv, try1, try2, s, zeroit = 0;
890 struct vm_page *pg;
891 struct pglist *freeq;
892 struct pgfreelist *pgfl;
893 boolean_t use_reserve;
894
895 KASSERT(obj == NULL || anon == NULL);
896 KASSERT(off == trunc_page(off));
897
898 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
899 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
900
901 s = uvm_lock_fpageq();
902
903 /*
904 * check to see if we need to generate some free pages waking
905 * the pagedaemon.
906 */
907
908 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
909 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
910 uvmexp.inactive < uvmexp.inactarg)) {
911 wakeup(&uvm.pagedaemon);
912 }
913
914 /*
915 * fail if any of these conditions is true:
916 * [1] there really are no free pages, or
917 * [2] only kernel "reserved" pages remain and
918 * the page isn't being allocated to a kernel object.
919 * [3] only pagedaemon "reserved" pages remain and
920 * the requestor isn't the pagedaemon.
921 */
922
923 use_reserve = (flags & UVM_PGA_USERESERVE) ||
924 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
925 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
926 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
927 !(use_reserve && curproc == uvm.pagedaemon_proc)))
928 goto fail;
929
930 #if PGFL_NQUEUES != 2
931 #error uvm_pagealloc_strat needs to be updated
932 #endif
933
934 /*
935 * If we want a zero'd page, try the ZEROS queue first, otherwise
936 * we try the UNKNOWN queue first.
937 */
938 if (flags & UVM_PGA_ZERO) {
939 try1 = PGFL_ZEROS;
940 try2 = PGFL_UNKNOWN;
941 } else {
942 try1 = PGFL_UNKNOWN;
943 try2 = PGFL_ZEROS;
944 }
945
946 again:
947 switch (strat) {
948 case UVM_PGA_STRAT_NORMAL:
949 /* Check all freelists in descending priority order. */
950 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
951 pgfl = &uvm.page_free[lcv];
952 if ((pg = TAILQ_FIRST((freeq =
953 &pgfl->pgfl_queues[try1]))) != NULL ||
954 (pg = TAILQ_FIRST((freeq =
955 &pgfl->pgfl_queues[try2]))) != NULL)
956 goto gotit;
957 }
958
959 /* No pages free! */
960 goto fail;
961
962 case UVM_PGA_STRAT_ONLY:
963 case UVM_PGA_STRAT_FALLBACK:
964 /* Attempt to allocate from the specified free list. */
965 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
966 pgfl = &uvm.page_free[free_list];
967 if ((pg = TAILQ_FIRST((freeq =
968 &pgfl->pgfl_queues[try1]))) != NULL ||
969 (pg = TAILQ_FIRST((freeq =
970 &pgfl->pgfl_queues[try2]))) != NULL)
971 goto gotit;
972
973 /* Fall back, if possible. */
974 if (strat == UVM_PGA_STRAT_FALLBACK) {
975 strat = UVM_PGA_STRAT_NORMAL;
976 goto again;
977 }
978
979 /* No pages free! */
980 goto fail;
981
982 default:
983 panic("uvm_pagealloc_strat: bad strat %d", strat);
984 /* NOTREACHED */
985 }
986
987 gotit:
988 TAILQ_REMOVE(freeq, pg, pageq);
989 uvmexp.free--;
990
991 /* update zero'd page count */
992 if (pg->flags & PG_ZERO)
993 uvmexp.zeropages--;
994
995 /*
996 * update allocation statistics and remember if we have to
997 * zero the page
998 */
999 if (flags & UVM_PGA_ZERO) {
1000 if (pg->flags & PG_ZERO) {
1001 uvmexp.pga_zerohit++;
1002 zeroit = 0;
1003 } else {
1004 uvmexp.pga_zeromiss++;
1005 zeroit = 1;
1006 }
1007 }
1008
1009 uvm_unlock_fpageq(s); /* unlock free page queue */
1010
1011 pg->offset = off;
1012 pg->uobject = obj;
1013 pg->uanon = anon;
1014 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1015 pg->version++;
1016 if (anon) {
1017 anon->u.an_page = pg;
1018 pg->pqflags = PQ_ANON;
1019 uvmexp.anonpages++;
1020 } else {
1021 if (obj)
1022 uvm_pageinsert(pg);
1023 pg->pqflags = 0;
1024 }
1025 #if defined(UVM_PAGE_TRKOWN)
1026 pg->owner_tag = NULL;
1027 #endif
1028 UVM_PAGE_OWN(pg, "new alloc");
1029
1030 if (flags & UVM_PGA_ZERO) {
1031 /*
1032 * A zero'd page is not clean. If we got a page not already
1033 * zero'd, then we have to zero it ourselves.
1034 */
1035 pg->flags &= ~PG_CLEAN;
1036 if (zeroit)
1037 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1038 }
1039
1040 return(pg);
1041
1042 fail:
1043 uvm_unlock_fpageq(s);
1044 return (NULL);
1045 }
1046
1047 /*
1048 * uvm_pagerealloc: reallocate a page from one object to another
1049 *
1050 * => both objects must be locked
1051 */
1052
1053 void
1054 uvm_pagerealloc(pg, newobj, newoff)
1055 struct vm_page *pg;
1056 struct uvm_object *newobj;
1057 voff_t newoff;
1058 {
1059 /*
1060 * remove it from the old object
1061 */
1062
1063 if (pg->uobject) {
1064 uvm_pageremove(pg);
1065 }
1066
1067 /*
1068 * put it in the new object
1069 */
1070
1071 if (newobj) {
1072 pg->uobject = newobj;
1073 pg->offset = newoff;
1074 pg->version++;
1075 uvm_pageinsert(pg);
1076 }
1077 }
1078
1079
1080 /*
1081 * uvm_pagefree: free page
1082 *
1083 * => erase page's identity (i.e. remove from hash/object)
1084 * => put page on free list
1085 * => caller must lock owning object (either anon or uvm_object)
1086 * => caller must lock page queues
1087 * => assumes all valid mappings of pg are gone
1088 */
1089
1090 void
1091 uvm_pagefree(pg)
1092 struct vm_page *pg;
1093 {
1094 int s;
1095 int saved_loan_count = pg->loan_count;
1096
1097 #ifdef DEBUG
1098 if (pg->uobject == (void *)0xdeadbeef &&
1099 pg->uanon == (void *)0xdeadbeef) {
1100 panic("uvm_pagefree: freeing free page %p\n", pg);
1101 }
1102 #endif
1103
1104 /*
1105 * if the page was an object page (and thus "TABLED"), remove it
1106 * from the object.
1107 */
1108
1109 if (pg->flags & PG_TABLED) {
1110
1111 /*
1112 * if the object page is on loan we are going to drop ownership.
1113 * it is possible that an anon will take over as owner for this
1114 * page later on. the anon will want a !PG_CLEAN page so that
1115 * it knows it needs to allocate swap if it wants to page the
1116 * page out.
1117 */
1118
1119 if (saved_loan_count)
1120 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1121 uvm_pageremove(pg);
1122
1123 /*
1124 * if our page was on loan, then we just lost control over it
1125 * (in fact, if it was loaned to an anon, the anon may have
1126 * already taken over ownership of the page by now and thus
1127 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1128 * return (when the last loan is dropped, then the page can be
1129 * freed by whatever was holding the last loan).
1130 */
1131
1132 if (saved_loan_count)
1133 return;
1134 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1135
1136 /*
1137 * if our page is owned by an anon and is loaned out to the
1138 * kernel then we just want to drop ownership and return.
1139 * the kernel must free the page when all its loans clear ...
1140 * note that the kernel can't change the loan status of our
1141 * page as long as we are holding PQ lock.
1142 */
1143
1144 pg->pqflags &= ~PQ_ANON;
1145 pg->uanon = NULL;
1146 return;
1147 }
1148 KASSERT(saved_loan_count == 0);
1149
1150 /*
1151 * now remove the page from the queues
1152 */
1153
1154 if (pg->pqflags & PQ_ACTIVE) {
1155 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1156 pg->pqflags &= ~PQ_ACTIVE;
1157 uvmexp.active--;
1158 }
1159 if (pg->pqflags & PQ_INACTIVE) {
1160 if (pg->pqflags & PQ_SWAPBACKED)
1161 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1162 else
1163 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1164 pg->pqflags &= ~PQ_INACTIVE;
1165 uvmexp.inactive--;
1166 }
1167
1168 /*
1169 * if the page was wired, unwire it now.
1170 */
1171
1172 if (pg->wire_count) {
1173 pg->wire_count = 0;
1174 uvmexp.wired--;
1175 }
1176 if (pg->uanon) {
1177 uvmexp.anonpages--;
1178 }
1179
1180 /*
1181 * and put on free queue
1182 */
1183
1184 pg->flags &= ~PG_ZERO;
1185
1186 s = uvm_lock_fpageq();
1187 TAILQ_INSERT_TAIL(&uvm.page_free[
1188 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1189 pg->pqflags = PQ_FREE;
1190 #ifdef DEBUG
1191 pg->uobject = (void *)0xdeadbeef;
1192 pg->offset = 0xdeadbeef;
1193 pg->uanon = (void *)0xdeadbeef;
1194 #endif
1195 uvmexp.free++;
1196
1197 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1198 uvm.page_idle_zero = vm_page_zero_enable;
1199
1200 uvm_unlock_fpageq(s);
1201 }
1202
1203 /*
1204 * uvm_page_unbusy: unbusy an array of pages.
1205 *
1206 * => pages must either all belong to the same object, or all belong to anons.
1207 * => if pages are object-owned, object must be locked.
1208 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1209 */
1210
1211 void
1212 uvm_page_unbusy(pgs, npgs)
1213 struct vm_page **pgs;
1214 int npgs;
1215 {
1216 struct vm_page *pg;
1217 struct uvm_object *uobj;
1218 int i;
1219 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1220
1221 for (i = 0; i < npgs; i++) {
1222 pg = pgs[i];
1223
1224 if (pg == NULL) {
1225 continue;
1226 }
1227 if (pg->flags & PG_WANTED) {
1228 wakeup(pg);
1229 }
1230 if (pg->flags & PG_RELEASED) {
1231 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1232 uobj = pg->uobject;
1233 if (uobj != NULL) {
1234 uobj->pgops->pgo_releasepg(pg, NULL);
1235 } else {
1236 pg->flags &= ~(PG_BUSY);
1237 UVM_PAGE_OWN(pg, NULL);
1238 uvm_anfree(pg->uanon);
1239 }
1240 } else {
1241 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1242 KASSERT(pg->wire_count ||
1243 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1244 pg->flags &= ~(PG_WANTED|PG_BUSY);
1245 UVM_PAGE_OWN(pg, NULL);
1246 }
1247 }
1248 }
1249
1250 #if defined(UVM_PAGE_TRKOWN)
1251 /*
1252 * uvm_page_own: set or release page ownership
1253 *
1254 * => this is a debugging function that keeps track of who sets PG_BUSY
1255 * and where they do it. it can be used to track down problems
1256 * such a process setting "PG_BUSY" and never releasing it.
1257 * => page's object [if any] must be locked
1258 * => if "tag" is NULL then we are releasing page ownership
1259 */
1260 void
1261 uvm_page_own(pg, tag)
1262 struct vm_page *pg;
1263 char *tag;
1264 {
1265 /* gain ownership? */
1266 if (tag) {
1267 if (pg->owner_tag) {
1268 printf("uvm_page_own: page %p already owned "
1269 "by proc %d [%s]\n", pg,
1270 pg->owner, pg->owner_tag);
1271 panic("uvm_page_own");
1272 }
1273 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1274 pg->owner_tag = tag;
1275 return;
1276 }
1277
1278 /* drop ownership */
1279 if (pg->owner_tag == NULL) {
1280 printf("uvm_page_own: dropping ownership of an non-owned "
1281 "page (%p)\n", pg);
1282 panic("uvm_page_own");
1283 }
1284 pg->owner_tag = NULL;
1285 return;
1286 }
1287 #endif
1288
1289 /*
1290 * uvm_pageidlezero: zero free pages while the system is idle.
1291 *
1292 * => we do at least one iteration per call, if we are below the target.
1293 * => we loop until we either reach the target or whichqs indicates that
1294 * there is a process ready to run.
1295 */
1296 void
1297 uvm_pageidlezero()
1298 {
1299 struct vm_page *pg;
1300 struct pgfreelist *pgfl;
1301 int free_list, s;
1302
1303 do {
1304 s = uvm_lock_fpageq();
1305
1306 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1307 uvm.page_idle_zero = FALSE;
1308 uvm_unlock_fpageq(s);
1309 return;
1310 }
1311
1312 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1313 pgfl = &uvm.page_free[free_list];
1314 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1315 PGFL_UNKNOWN])) != NULL)
1316 break;
1317 }
1318
1319 if (pg == NULL) {
1320 /*
1321 * No non-zero'd pages; don't bother trying again
1322 * until we know we have non-zero'd pages free.
1323 */
1324 uvm.page_idle_zero = FALSE;
1325 uvm_unlock_fpageq(s);
1326 return;
1327 }
1328
1329 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1330 uvmexp.free--;
1331 uvm_unlock_fpageq(s);
1332
1333 #ifdef PMAP_PAGEIDLEZERO
1334 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1335 /*
1336 * The machine-dependent code detected some
1337 * reason for us to abort zeroing pages,
1338 * probably because there is a process now
1339 * ready to run.
1340 */
1341 s = uvm_lock_fpageq();
1342 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1343 pg, pageq);
1344 uvmexp.free++;
1345 uvmexp.zeroaborts++;
1346 uvm_unlock_fpageq(s);
1347 return;
1348 }
1349 #else
1350 /*
1351 * XXX This will toast the cache unless the pmap_zero_page()
1352 * XXX implementation does uncached access.
1353 */
1354 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1355 #endif
1356 pg->flags |= PG_ZERO;
1357
1358 s = uvm_lock_fpageq();
1359 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1360 uvmexp.free++;
1361 uvmexp.zeropages++;
1362 uvm_unlock_fpageq(s);
1363 } while (sched_whichqs == 0);
1364 }
1365