uvm_page.c revision 1.52 1 /* $NetBSD: uvm_page.c,v 1.52 2001/04/22 17:22:58 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101 /*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105 boolean_t vm_page_zero_enable = FALSE;
106
107 /*
108 * local variables
109 */
110
111 /*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes. The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117 static vaddr_t virtual_space_start;
118 static vaddr_t virtual_space_end;
119
120 /*
121 * we use a hash table with only one bucket during bootup. we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126 static struct pglist uvm_bootbucket;
127
128 /*
129 * local prototypes
130 */
131
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134
135 /*
136 * inline functions
137 */
138
139 /*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 * and bumped the version counter
146 */
147
148 __inline static void
149 uvm_pageinsert(pg)
150 struct vm_page *pg;
151 {
152 struct pglist *buck;
153 int s;
154
155 KASSERT((pg->flags & PG_TABLED) == 0);
156 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 s = splvm();
158 simple_lock(&uvm.hashlock);
159 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
160 simple_unlock(&uvm.hashlock);
161 splx(s);
162
163 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 pg->flags |= PG_TABLED;
165 pg->uobject->uo_npages++;
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 static __inline void
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 KASSERT(pg->flags & PG_TABLED);
183 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 s = splvm();
185 simple_lock(&uvm.hashlock);
186 TAILQ_REMOVE(buck, pg, hashq);
187 simple_unlock(&uvm.hashlock);
188 splx(s);
189
190 if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 uvmexp.vtextpages--;
192 } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 uvmexp.vnodepages--;
194 }
195
196 /* object should be locked */
197 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199 pg->flags &= ~PG_TABLED;
200 pg->uobject->uo_npages--;
201 pg->uobject = NULL;
202 pg->version++;
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, i;
218 paddr_t paddr;
219
220 /*
221 * init the page queues and page queue locks
222 */
223
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (i = 0; i < PGFL_NQUEUES; i++)
226 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 }
228 TAILQ_INIT(&uvm.page_active);
229 TAILQ_INIT(&uvm.page_inactive_swp);
230 TAILQ_INIT(&uvm.page_inactive_obj);
231 simple_lock_init(&uvm.pageqlock);
232 simple_lock_init(&uvm.fpageqlock);
233
234 /*
235 * init the <obj,offset> => <page> hash table. for now
236 * we just have one bucket (the bootstrap bucket). later on we
237 * will allocate new buckets as we dynamically resize the hash table.
238 */
239
240 uvm.page_nhash = 1; /* 1 bucket */
241 uvm.page_hashmask = 0; /* mask for hash function */
242 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
243 TAILQ_INIT(uvm.page_hash); /* init hash table */
244 simple_lock_init(&uvm.hashlock); /* init hash table lock */
245
246 /*
247 * allocate vm_page structures.
248 */
249
250 /*
251 * sanity check:
252 * before calling this function the MD code is expected to register
253 * some free RAM with the uvm_page_physload() function. our job
254 * now is to allocate vm_page structures for this memory.
255 */
256
257 if (vm_nphysseg == 0)
258 panic("uvm_page_bootstrap: no memory pre-allocated");
259
260 /*
261 * first calculate the number of free pages...
262 *
263 * note that we use start/end rather than avail_start/avail_end.
264 * this allows us to allocate extra vm_page structures in case we
265 * want to return some memory to the pool after booting.
266 */
267
268 freepages = 0;
269 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272 /*
273 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 * use. for each page of memory we use we need a vm_page structure.
275 * thus, the total number of pages we can use is the total size of
276 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 * structure. we add one to freepages as a fudge factor to avoid
278 * truncation errors (since we can only allocate in terms of whole
279 * pages).
280 */
281
282 pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 (PAGE_SIZE + sizeof(struct vm_page));
284 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 sizeof(struct vm_page));
286 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288 /*
289 * init the vm_page structures and put them in the correct place.
290 */
291
292 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294 if (n > pagecount) {
295 printf("uvm_page_init: lost %ld page(s) in init\n",
296 (long)(n - pagecount));
297 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
298 /* n = pagecount; */
299 }
300
301 /* set up page array pointers */
302 vm_physmem[lcv].pgs = pagearray;
303 pagearray += n;
304 pagecount -= n;
305 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306
307 /* init and free vm_pages (we've already zeroed them) */
308 paddr = ptoa(vm_physmem[lcv].start);
309 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310 vm_physmem[lcv].pgs[i].phys_addr = paddr;
311 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
312 atop(paddr) <= vm_physmem[lcv].avail_end) {
313 uvmexp.npages++;
314 /* add page to free pool */
315 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
316 }
317 }
318 }
319
320 /*
321 * pass up the values of virtual_space_start and
322 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323 * layers of the VM.
324 */
325
326 *kvm_startp = round_page(virtual_space_start);
327 *kvm_endp = trunc_page(virtual_space_end);
328
329 /*
330 * init locks for kernel threads
331 */
332
333 simple_lock_init(&uvm.pagedaemon_lock);
334 simple_lock_init(&uvm.aiodoned_lock);
335
336 /*
337 * init various thresholds.
338 * XXXCDC - values may need adjusting
339 */
340
341 uvmexp.reserve_pagedaemon = 1;
342 uvmexp.reserve_kernel = 5;
343 uvmexp.anonminpct = 10;
344 uvmexp.vnodeminpct = 10;
345 uvmexp.vtextminpct = 5;
346 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
347 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
348 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
349
350 /*
351 * determine if we should zero pages in the idle loop.
352 */
353
354 uvm.page_idle_zero = vm_page_zero_enable;
355
356 /*
357 * done!
358 */
359
360 uvm.page_init_done = TRUE;
361 }
362
363 /*
364 * uvm_setpagesize: set the page size
365 *
366 * => sets page_shift and page_mask from uvmexp.pagesize.
367 */
368
369 void
370 uvm_setpagesize()
371 {
372 if (uvmexp.pagesize == 0)
373 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
374 uvmexp.pagemask = uvmexp.pagesize - 1;
375 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
376 panic("uvm_setpagesize: page size not a power of two");
377 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
378 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
379 break;
380 }
381
382 /*
383 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
384 */
385
386 vaddr_t
387 uvm_pageboot_alloc(size)
388 vsize_t size;
389 {
390 static boolean_t initialized = FALSE;
391 vaddr_t addr;
392 #if !defined(PMAP_STEAL_MEMORY)
393 vaddr_t vaddr;
394 paddr_t paddr;
395 #endif
396
397 /*
398 * on first call to this function, initialize ourselves.
399 */
400 if (initialized == FALSE) {
401 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
402
403 /* round it the way we like it */
404 virtual_space_start = round_page(virtual_space_start);
405 virtual_space_end = trunc_page(virtual_space_end);
406
407 initialized = TRUE;
408 }
409
410 /* round to page size */
411 size = round_page(size);
412
413 #if defined(PMAP_STEAL_MEMORY)
414
415 /*
416 * defer bootstrap allocation to MD code (it may want to allocate
417 * from a direct-mapped segment). pmap_steal_memory should adjust
418 * virtual_space_start/virtual_space_end if necessary.
419 */
420
421 addr = pmap_steal_memory(size, &virtual_space_start,
422 &virtual_space_end);
423
424 return(addr);
425
426 #else /* !PMAP_STEAL_MEMORY */
427
428 /*
429 * allocate virtual memory for this request
430 */
431 if (virtual_space_start == virtual_space_end ||
432 (virtual_space_end - virtual_space_start) < size)
433 panic("uvm_pageboot_alloc: out of virtual space");
434
435 addr = virtual_space_start;
436
437 #ifdef PMAP_GROWKERNEL
438 /*
439 * If the kernel pmap can't map the requested space,
440 * then allocate more resources for it.
441 */
442 if (uvm_maxkaddr < (addr + size)) {
443 uvm_maxkaddr = pmap_growkernel(addr + size);
444 if (uvm_maxkaddr < (addr + size))
445 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446 }
447 #endif
448
449 virtual_space_start += size;
450
451 /*
452 * allocate and mapin physical pages to back new virtual pages
453 */
454
455 for (vaddr = round_page(addr) ; vaddr < addr + size ;
456 vaddr += PAGE_SIZE) {
457
458 if (!uvm_page_physget(&paddr))
459 panic("uvm_pageboot_alloc: out of memory");
460
461 /*
462 * Note this memory is no longer managed, so using
463 * pmap_kenter is safe.
464 */
465 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466 }
467 return(addr);
468 #endif /* PMAP_STEAL_MEMORY */
469 }
470
471 #if !defined(PMAP_STEAL_MEMORY)
472 /*
473 * uvm_page_physget: "steal" one page from the vm_physmem structure.
474 *
475 * => attempt to allocate it off the end of a segment in which the "avail"
476 * values match the start/end values. if we can't do that, then we
477 * will advance both values (making them equal, and removing some
478 * vm_page structures from the non-avail area).
479 * => return false if out of memory.
480 */
481
482 /* subroutine: try to allocate from memory chunks on the specified freelist */
483 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
484
485 static boolean_t
486 uvm_page_physget_freelist(paddrp, freelist)
487 paddr_t *paddrp;
488 int freelist;
489 {
490 int lcv, x;
491
492 /* pass 1: try allocating from a matching end */
493 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
494 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
495 #else
496 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
497 #endif
498 {
499
500 if (uvm.page_init_done == TRUE)
501 panic("uvm_page_physget: called _after_ bootstrap");
502
503 if (vm_physmem[lcv].free_list != freelist)
504 continue;
505
506 /* try from front */
507 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
508 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
509 *paddrp = ptoa(vm_physmem[lcv].avail_start);
510 vm_physmem[lcv].avail_start++;
511 vm_physmem[lcv].start++;
512 /* nothing left? nuke it */
513 if (vm_physmem[lcv].avail_start ==
514 vm_physmem[lcv].end) {
515 if (vm_nphysseg == 1)
516 panic("vum_page_physget: out of memory!");
517 vm_nphysseg--;
518 for (x = lcv ; x < vm_nphysseg ; x++)
519 /* structure copy */
520 vm_physmem[x] = vm_physmem[x+1];
521 }
522 return (TRUE);
523 }
524
525 /* try from rear */
526 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
527 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
528 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
529 vm_physmem[lcv].avail_end--;
530 vm_physmem[lcv].end--;
531 /* nothing left? nuke it */
532 if (vm_physmem[lcv].avail_end ==
533 vm_physmem[lcv].start) {
534 if (vm_nphysseg == 1)
535 panic("uvm_page_physget: out of memory!");
536 vm_nphysseg--;
537 for (x = lcv ; x < vm_nphysseg ; x++)
538 /* structure copy */
539 vm_physmem[x] = vm_physmem[x+1];
540 }
541 return (TRUE);
542 }
543 }
544
545 /* pass2: forget about matching ends, just allocate something */
546 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
547 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
548 #else
549 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
550 #endif
551 {
552
553 /* any room in this bank? */
554 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
555 continue; /* nope */
556
557 *paddrp = ptoa(vm_physmem[lcv].avail_start);
558 vm_physmem[lcv].avail_start++;
559 /* truncate! */
560 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
561
562 /* nothing left? nuke it */
563 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
564 if (vm_nphysseg == 1)
565 panic("uvm_page_physget: out of memory!");
566 vm_nphysseg--;
567 for (x = lcv ; x < vm_nphysseg ; x++)
568 /* structure copy */
569 vm_physmem[x] = vm_physmem[x+1];
570 }
571 return (TRUE);
572 }
573
574 return (FALSE); /* whoops! */
575 }
576
577 boolean_t
578 uvm_page_physget(paddrp)
579 paddr_t *paddrp;
580 {
581 int i;
582
583 /* try in the order of freelist preference */
584 for (i = 0; i < VM_NFREELIST; i++)
585 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
586 return (TRUE);
587 return (FALSE);
588 }
589 #endif /* PMAP_STEAL_MEMORY */
590
591 /*
592 * uvm_page_physload: load physical memory into VM system
593 *
594 * => all args are PFs
595 * => all pages in start/end get vm_page structures
596 * => areas marked by avail_start/avail_end get added to the free page pool
597 * => we are limited to VM_PHYSSEG_MAX physical memory segments
598 */
599
600 void
601 uvm_page_physload(start, end, avail_start, avail_end, free_list)
602 paddr_t start, end, avail_start, avail_end;
603 int free_list;
604 {
605 int preload, lcv;
606 psize_t npages;
607 struct vm_page *pgs;
608 struct vm_physseg *ps;
609
610 if (uvmexp.pagesize == 0)
611 panic("uvm_page_physload: page size not set!");
612
613 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
614 panic("uvm_page_physload: bad free list %d\n", free_list);
615
616 if (start >= end)
617 panic("uvm_page_physload: start >= end");
618
619 /*
620 * do we have room?
621 */
622 if (vm_nphysseg == VM_PHYSSEG_MAX) {
623 printf("uvm_page_physload: unable to load physical memory "
624 "segment\n");
625 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
626 VM_PHYSSEG_MAX, (long long)start, (long long)end);
627 printf("\tincrease VM_PHYSSEG_MAX\n");
628 return;
629 }
630
631 /*
632 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
633 * called yet, so malloc is not available).
634 */
635 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
636 if (vm_physmem[lcv].pgs)
637 break;
638 }
639 preload = (lcv == vm_nphysseg);
640
641 /*
642 * if VM is already running, attempt to malloc() vm_page structures
643 */
644 if (!preload) {
645 #if defined(VM_PHYSSEG_NOADD)
646 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
647 #else
648 /* XXXCDC: need some sort of lockout for this case */
649 paddr_t paddr;
650 npages = end - start; /* # of pages */
651 pgs = malloc(sizeof(struct vm_page) * npages,
652 M_VMPAGE, M_NOWAIT);
653 if (pgs == NULL) {
654 printf("uvm_page_physload: can not malloc vm_page "
655 "structs for segment\n");
656 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
657 return;
658 }
659 /* zero data, init phys_addr and free_list, and free pages */
660 memset(pgs, 0, sizeof(struct vm_page) * npages);
661 for (lcv = 0, paddr = ptoa(start) ;
662 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
663 pgs[lcv].phys_addr = paddr;
664 pgs[lcv].free_list = free_list;
665 if (atop(paddr) >= avail_start &&
666 atop(paddr) <= avail_end)
667 uvm_pagefree(&pgs[lcv]);
668 }
669 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
670 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
671 #endif
672 } else {
673
674 /* gcc complains if these don't get init'd */
675 pgs = NULL;
676 npages = 0;
677
678 }
679
680 /*
681 * now insert us in the proper place in vm_physmem[]
682 */
683
684 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
685
686 /* random: put it at the end (easy!) */
687 ps = &vm_physmem[vm_nphysseg];
688
689 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
690
691 {
692 int x;
693 /* sort by address for binary search */
694 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
695 if (start < vm_physmem[lcv].start)
696 break;
697 ps = &vm_physmem[lcv];
698 /* move back other entries, if necessary ... */
699 for (x = vm_nphysseg ; x > lcv ; x--)
700 /* structure copy */
701 vm_physmem[x] = vm_physmem[x - 1];
702 }
703
704 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
705
706 {
707 int x;
708 /* sort by largest segment first */
709 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
710 if ((end - start) >
711 (vm_physmem[lcv].end - vm_physmem[lcv].start))
712 break;
713 ps = &vm_physmem[lcv];
714 /* move back other entries, if necessary ... */
715 for (x = vm_nphysseg ; x > lcv ; x--)
716 /* structure copy */
717 vm_physmem[x] = vm_physmem[x - 1];
718 }
719
720 #else
721
722 panic("uvm_page_physload: unknown physseg strategy selected!");
723
724 #endif
725
726 ps->start = start;
727 ps->end = end;
728 ps->avail_start = avail_start;
729 ps->avail_end = avail_end;
730 if (preload) {
731 ps->pgs = NULL;
732 } else {
733 ps->pgs = pgs;
734 ps->lastpg = pgs + npages - 1;
735 }
736 ps->free_list = free_list;
737 vm_nphysseg++;
738
739 /*
740 * done!
741 */
742
743 if (!preload)
744 uvm_page_rehash();
745
746 return;
747 }
748
749 /*
750 * uvm_page_rehash: reallocate hash table based on number of free pages.
751 */
752
753 void
754 uvm_page_rehash()
755 {
756 int freepages, lcv, bucketcount, s, oldcount;
757 struct pglist *newbuckets, *oldbuckets;
758 struct vm_page *pg;
759 size_t newsize, oldsize;
760
761 /*
762 * compute number of pages that can go in the free pool
763 */
764
765 freepages = 0;
766 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
767 freepages +=
768 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
769
770 /*
771 * compute number of buckets needed for this number of pages
772 */
773
774 bucketcount = 1;
775 while (bucketcount < freepages)
776 bucketcount = bucketcount * 2;
777
778 /*
779 * compute the size of the current table and new table.
780 */
781
782 oldbuckets = uvm.page_hash;
783 oldcount = uvm.page_nhash;
784 oldsize = round_page(sizeof(struct pglist) * oldcount);
785 newsize = round_page(sizeof(struct pglist) * bucketcount);
786
787 /*
788 * allocate the new buckets
789 */
790
791 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
792 if (newbuckets == NULL) {
793 printf("uvm_page_physrehash: WARNING: could not grow page "
794 "hash table\n");
795 return;
796 }
797 for (lcv = 0 ; lcv < bucketcount ; lcv++)
798 TAILQ_INIT(&newbuckets[lcv]);
799
800 /*
801 * now replace the old buckets with the new ones and rehash everything
802 */
803
804 s = splvm();
805 simple_lock(&uvm.hashlock);
806 uvm.page_hash = newbuckets;
807 uvm.page_nhash = bucketcount;
808 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
809
810 /* ... and rehash */
811 for (lcv = 0 ; lcv < oldcount ; lcv++) {
812 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
813 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
814 TAILQ_INSERT_TAIL(
815 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
816 pg, hashq);
817 }
818 }
819 simple_unlock(&uvm.hashlock);
820 splx(s);
821
822 /*
823 * free old bucket array if is not the boot-time table
824 */
825
826 if (oldbuckets != &uvm_bootbucket)
827 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
828
829 /*
830 * done
831 */
832 return;
833 }
834
835
836 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
837
838 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
839
840 /* call from DDB */
841 void
842 uvm_page_physdump()
843 {
844 int lcv;
845
846 printf("rehash: physical memory config [segs=%d of %d]:\n",
847 vm_nphysseg, VM_PHYSSEG_MAX);
848 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
849 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
850 (long long)vm_physmem[lcv].start,
851 (long long)vm_physmem[lcv].end,
852 (long long)vm_physmem[lcv].avail_start,
853 (long long)vm_physmem[lcv].avail_end);
854 printf("STRATEGY = ");
855 switch (VM_PHYSSEG_STRAT) {
856 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
857 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
858 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
859 default: printf("<<UNKNOWN>>!!!!\n");
860 }
861 printf("number of buckets = %d\n", uvm.page_nhash);
862 }
863 #endif
864
865 /*
866 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
867 *
868 * => return null if no pages free
869 * => wake up pagedaemon if number of free pages drops below low water mark
870 * => if obj != NULL, obj must be locked (to put in hash)
871 * => if anon != NULL, anon must be locked (to put in anon)
872 * => only one of obj or anon can be non-null
873 * => caller must activate/deactivate page if it is not wired.
874 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
875 * => policy decision: it is more important to pull a page off of the
876 * appropriate priority free list than it is to get a zero'd or
877 * unknown contents page. This is because we live with the
878 * consequences of a bad free list decision for the entire
879 * lifetime of the page, e.g. if the page comes from memory that
880 * is slower to access.
881 */
882
883 struct vm_page *
884 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
885 struct uvm_object *obj;
886 voff_t off;
887 int flags;
888 struct vm_anon *anon;
889 int strat, free_list;
890 {
891 int lcv, try1, try2, s, zeroit = 0;
892 struct vm_page *pg;
893 struct pglist *freeq;
894 struct pgfreelist *pgfl;
895 boolean_t use_reserve;
896
897 KASSERT(obj == NULL || anon == NULL);
898 KASSERT(off == trunc_page(off));
899
900 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
901 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
902
903 s = uvm_lock_fpageq();
904
905 /*
906 * check to see if we need to generate some free pages waking
907 * the pagedaemon.
908 */
909
910 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
911 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
912 uvmexp.inactive < uvmexp.inactarg)) {
913 wakeup(&uvm.pagedaemon);
914 }
915
916 /*
917 * fail if any of these conditions is true:
918 * [1] there really are no free pages, or
919 * [2] only kernel "reserved" pages remain and
920 * the page isn't being allocated to a kernel object.
921 * [3] only pagedaemon "reserved" pages remain and
922 * the requestor isn't the pagedaemon.
923 */
924
925 use_reserve = (flags & UVM_PGA_USERESERVE) ||
926 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
927 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
928 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
929 !(use_reserve && curproc == uvm.pagedaemon_proc)))
930 goto fail;
931
932 #if PGFL_NQUEUES != 2
933 #error uvm_pagealloc_strat needs to be updated
934 #endif
935
936 /*
937 * If we want a zero'd page, try the ZEROS queue first, otherwise
938 * we try the UNKNOWN queue first.
939 */
940 if (flags & UVM_PGA_ZERO) {
941 try1 = PGFL_ZEROS;
942 try2 = PGFL_UNKNOWN;
943 } else {
944 try1 = PGFL_UNKNOWN;
945 try2 = PGFL_ZEROS;
946 }
947
948 again:
949 switch (strat) {
950 case UVM_PGA_STRAT_NORMAL:
951 /* Check all freelists in descending priority order. */
952 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
953 pgfl = &uvm.page_free[lcv];
954 if ((pg = TAILQ_FIRST((freeq =
955 &pgfl->pgfl_queues[try1]))) != NULL ||
956 (pg = TAILQ_FIRST((freeq =
957 &pgfl->pgfl_queues[try2]))) != NULL)
958 goto gotit;
959 }
960
961 /* No pages free! */
962 goto fail;
963
964 case UVM_PGA_STRAT_ONLY:
965 case UVM_PGA_STRAT_FALLBACK:
966 /* Attempt to allocate from the specified free list. */
967 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
968 pgfl = &uvm.page_free[free_list];
969 if ((pg = TAILQ_FIRST((freeq =
970 &pgfl->pgfl_queues[try1]))) != NULL ||
971 (pg = TAILQ_FIRST((freeq =
972 &pgfl->pgfl_queues[try2]))) != NULL)
973 goto gotit;
974
975 /* Fall back, if possible. */
976 if (strat == UVM_PGA_STRAT_FALLBACK) {
977 strat = UVM_PGA_STRAT_NORMAL;
978 goto again;
979 }
980
981 /* No pages free! */
982 goto fail;
983
984 default:
985 panic("uvm_pagealloc_strat: bad strat %d", strat);
986 /* NOTREACHED */
987 }
988
989 gotit:
990 TAILQ_REMOVE(freeq, pg, pageq);
991 uvmexp.free--;
992
993 /* update zero'd page count */
994 if (pg->flags & PG_ZERO)
995 uvmexp.zeropages--;
996
997 /*
998 * update allocation statistics and remember if we have to
999 * zero the page
1000 */
1001 if (flags & UVM_PGA_ZERO) {
1002 if (pg->flags & PG_ZERO) {
1003 uvmexp.pga_zerohit++;
1004 zeroit = 0;
1005 } else {
1006 uvmexp.pga_zeromiss++;
1007 zeroit = 1;
1008 }
1009 }
1010
1011 uvm_unlock_fpageq(s); /* unlock free page queue */
1012
1013 pg->offset = off;
1014 pg->uobject = obj;
1015 pg->uanon = anon;
1016 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1017 pg->version++;
1018 if (anon) {
1019 anon->u.an_page = pg;
1020 pg->pqflags = PQ_ANON;
1021 uvmexp.anonpages++;
1022 } else {
1023 if (obj)
1024 uvm_pageinsert(pg);
1025 pg->pqflags = 0;
1026 }
1027 #if defined(UVM_PAGE_TRKOWN)
1028 pg->owner_tag = NULL;
1029 #endif
1030 UVM_PAGE_OWN(pg, "new alloc");
1031
1032 if (flags & UVM_PGA_ZERO) {
1033 /*
1034 * A zero'd page is not clean. If we got a page not already
1035 * zero'd, then we have to zero it ourselves.
1036 */
1037 pg->flags &= ~PG_CLEAN;
1038 if (zeroit)
1039 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1040 }
1041
1042 return(pg);
1043
1044 fail:
1045 uvm_unlock_fpageq(s);
1046 return (NULL);
1047 }
1048
1049 /*
1050 * uvm_pagerealloc: reallocate a page from one object to another
1051 *
1052 * => both objects must be locked
1053 */
1054
1055 void
1056 uvm_pagerealloc(pg, newobj, newoff)
1057 struct vm_page *pg;
1058 struct uvm_object *newobj;
1059 voff_t newoff;
1060 {
1061 /*
1062 * remove it from the old object
1063 */
1064
1065 if (pg->uobject) {
1066 uvm_pageremove(pg);
1067 }
1068
1069 /*
1070 * put it in the new object
1071 */
1072
1073 if (newobj) {
1074 pg->uobject = newobj;
1075 pg->offset = newoff;
1076 pg->version++;
1077 uvm_pageinsert(pg);
1078 }
1079 }
1080
1081
1082 /*
1083 * uvm_pagefree: free page
1084 *
1085 * => erase page's identity (i.e. remove from hash/object)
1086 * => put page on free list
1087 * => caller must lock owning object (either anon or uvm_object)
1088 * => caller must lock page queues
1089 * => assumes all valid mappings of pg are gone
1090 */
1091
1092 void
1093 uvm_pagefree(pg)
1094 struct vm_page *pg;
1095 {
1096 int s;
1097 int saved_loan_count = pg->loan_count;
1098
1099 #ifdef DEBUG
1100 if (pg->uobject == (void *)0xdeadbeef &&
1101 pg->uanon == (void *)0xdeadbeef) {
1102 panic("uvm_pagefree: freeing free page %p\n", pg);
1103 }
1104 #endif
1105
1106 /*
1107 * if the page was an object page (and thus "TABLED"), remove it
1108 * from the object.
1109 */
1110
1111 if (pg->flags & PG_TABLED) {
1112
1113 /*
1114 * if the object page is on loan we are going to drop ownership.
1115 * it is possible that an anon will take over as owner for this
1116 * page later on. the anon will want a !PG_CLEAN page so that
1117 * it knows it needs to allocate swap if it wants to page the
1118 * page out.
1119 */
1120
1121 if (saved_loan_count)
1122 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1123 uvm_pageremove(pg);
1124
1125 /*
1126 * if our page was on loan, then we just lost control over it
1127 * (in fact, if it was loaned to an anon, the anon may have
1128 * already taken over ownership of the page by now and thus
1129 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1130 * return (when the last loan is dropped, then the page can be
1131 * freed by whatever was holding the last loan).
1132 */
1133
1134 if (saved_loan_count)
1135 return;
1136 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1137
1138 /*
1139 * if our page is owned by an anon and is loaned out to the
1140 * kernel then we just want to drop ownership and return.
1141 * the kernel must free the page when all its loans clear ...
1142 * note that the kernel can't change the loan status of our
1143 * page as long as we are holding PQ lock.
1144 */
1145
1146 pg->pqflags &= ~PQ_ANON;
1147 pg->uanon = NULL;
1148 return;
1149 }
1150 KASSERT(saved_loan_count == 0);
1151
1152 /*
1153 * now remove the page from the queues
1154 */
1155
1156 if (pg->pqflags & PQ_ACTIVE) {
1157 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1158 pg->pqflags &= ~PQ_ACTIVE;
1159 uvmexp.active--;
1160 }
1161 if (pg->pqflags & PQ_INACTIVE) {
1162 if (pg->pqflags & PQ_SWAPBACKED)
1163 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1164 else
1165 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1166 pg->pqflags &= ~PQ_INACTIVE;
1167 uvmexp.inactive--;
1168 }
1169
1170 /*
1171 * if the page was wired, unwire it now.
1172 */
1173
1174 if (pg->wire_count) {
1175 pg->wire_count = 0;
1176 uvmexp.wired--;
1177 }
1178 if (pg->uanon) {
1179 uvmexp.anonpages--;
1180 }
1181
1182 /*
1183 * and put on free queue
1184 */
1185
1186 pg->flags &= ~PG_ZERO;
1187
1188 s = uvm_lock_fpageq();
1189 TAILQ_INSERT_TAIL(&uvm.page_free[
1190 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1191 pg->pqflags = PQ_FREE;
1192 #ifdef DEBUG
1193 pg->uobject = (void *)0xdeadbeef;
1194 pg->offset = 0xdeadbeef;
1195 pg->uanon = (void *)0xdeadbeef;
1196 #endif
1197 uvmexp.free++;
1198
1199 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1200 uvm.page_idle_zero = vm_page_zero_enable;
1201
1202 uvm_unlock_fpageq(s);
1203 }
1204
1205 /*
1206 * uvm_page_unbusy: unbusy an array of pages.
1207 *
1208 * => pages must either all belong to the same object, or all belong to anons.
1209 * => if pages are object-owned, object must be locked.
1210 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1211 */
1212
1213 void
1214 uvm_page_unbusy(pgs, npgs)
1215 struct vm_page **pgs;
1216 int npgs;
1217 {
1218 struct vm_page *pg;
1219 struct uvm_object *uobj;
1220 int i;
1221 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1222
1223 for (i = 0; i < npgs; i++) {
1224 pg = pgs[i];
1225
1226 if (pg == NULL) {
1227 continue;
1228 }
1229 if (pg->flags & PG_WANTED) {
1230 wakeup(pg);
1231 }
1232 if (pg->flags & PG_RELEASED) {
1233 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1234 uobj = pg->uobject;
1235 if (uobj != NULL) {
1236 uobj->pgops->pgo_releasepg(pg, NULL);
1237 } else {
1238 pg->flags &= ~(PG_BUSY);
1239 UVM_PAGE_OWN(pg, NULL);
1240 uvm_anfree(pg->uanon);
1241 }
1242 } else {
1243 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1244 KASSERT(pg->wire_count ||
1245 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1246 pg->flags &= ~(PG_WANTED|PG_BUSY);
1247 UVM_PAGE_OWN(pg, NULL);
1248 }
1249 }
1250 }
1251
1252 #if defined(UVM_PAGE_TRKOWN)
1253 /*
1254 * uvm_page_own: set or release page ownership
1255 *
1256 * => this is a debugging function that keeps track of who sets PG_BUSY
1257 * and where they do it. it can be used to track down problems
1258 * such a process setting "PG_BUSY" and never releasing it.
1259 * => page's object [if any] must be locked
1260 * => if "tag" is NULL then we are releasing page ownership
1261 */
1262 void
1263 uvm_page_own(pg, tag)
1264 struct vm_page *pg;
1265 char *tag;
1266 {
1267 /* gain ownership? */
1268 if (tag) {
1269 if (pg->owner_tag) {
1270 printf("uvm_page_own: page %p already owned "
1271 "by proc %d [%s]\n", pg,
1272 pg->owner, pg->owner_tag);
1273 panic("uvm_page_own");
1274 }
1275 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1276 pg->owner_tag = tag;
1277 return;
1278 }
1279
1280 /* drop ownership */
1281 if (pg->owner_tag == NULL) {
1282 printf("uvm_page_own: dropping ownership of an non-owned "
1283 "page (%p)\n", pg);
1284 panic("uvm_page_own");
1285 }
1286 pg->owner_tag = NULL;
1287 return;
1288 }
1289 #endif
1290
1291 /*
1292 * uvm_pageidlezero: zero free pages while the system is idle.
1293 *
1294 * => we do at least one iteration per call, if we are below the target.
1295 * => we loop until we either reach the target or whichqs indicates that
1296 * there is a process ready to run.
1297 */
1298 void
1299 uvm_pageidlezero()
1300 {
1301 struct vm_page *pg;
1302 struct pgfreelist *pgfl;
1303 int free_list, s;
1304
1305 do {
1306 s = uvm_lock_fpageq();
1307
1308 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1309 uvm.page_idle_zero = FALSE;
1310 uvm_unlock_fpageq(s);
1311 return;
1312 }
1313
1314 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1315 pgfl = &uvm.page_free[free_list];
1316 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1317 PGFL_UNKNOWN])) != NULL)
1318 break;
1319 }
1320
1321 if (pg == NULL) {
1322 /*
1323 * No non-zero'd pages; don't bother trying again
1324 * until we know we have non-zero'd pages free.
1325 */
1326 uvm.page_idle_zero = FALSE;
1327 uvm_unlock_fpageq(s);
1328 return;
1329 }
1330
1331 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1332 uvmexp.free--;
1333 uvm_unlock_fpageq(s);
1334
1335 #ifdef PMAP_PAGEIDLEZERO
1336 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1337 /*
1338 * The machine-dependent code detected some
1339 * reason for us to abort zeroing pages,
1340 * probably because there is a process now
1341 * ready to run.
1342 */
1343 s = uvm_lock_fpageq();
1344 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1345 pg, pageq);
1346 uvmexp.free++;
1347 uvmexp.zeroaborts++;
1348 uvm_unlock_fpageq(s);
1349 return;
1350 }
1351 #else
1352 /*
1353 * XXX This will toast the cache unless the pmap_zero_page()
1354 * XXX implementation does uncached access.
1355 */
1356 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1357 #endif
1358 pg->flags |= PG_ZERO;
1359
1360 s = uvm_lock_fpageq();
1361 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1362 uvmexp.free++;
1363 uvmexp.zeropages++;
1364 uvm_unlock_fpageq(s);
1365 } while (sched_whichqs == 0);
1366 }
1367