uvm_page.c revision 1.53 1 /* $NetBSD: uvm_page.c,v 1.53 2001/04/24 04:31:18 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101 /*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105 boolean_t vm_page_zero_enable = FALSE;
106
107 /*
108 * local variables
109 */
110
111 /*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes. The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117 static vaddr_t virtual_space_start;
118 static vaddr_t virtual_space_end;
119
120 /*
121 * we use a hash table with only one bucket during bootup. we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126 static struct pglist uvm_bootbucket;
127
128 /*
129 * local prototypes
130 */
131
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134
135 /*
136 * inline functions
137 */
138
139 /*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 * and bumped the version counter
146 */
147
148 __inline static void
149 uvm_pageinsert(pg)
150 struct vm_page *pg;
151 {
152 struct pglist *buck;
153 int s;
154
155 KASSERT((pg->flags & PG_TABLED) == 0);
156 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 s = splvm();
158 simple_lock(&uvm.hashlock);
159 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
160 simple_unlock(&uvm.hashlock);
161 splx(s);
162
163 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 pg->flags |= PG_TABLED;
165 pg->uobject->uo_npages++;
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 static __inline void
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 KASSERT(pg->flags & PG_TABLED);
183 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 s = splvm();
185 simple_lock(&uvm.hashlock);
186 TAILQ_REMOVE(buck, pg, hashq);
187 simple_unlock(&uvm.hashlock);
188 splx(s);
189
190 if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 uvmexp.vtextpages--;
192 } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 uvmexp.vnodepages--;
194 }
195
196 /* object should be locked */
197 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199 pg->flags &= ~PG_TABLED;
200 pg->uobject->uo_npages--;
201 pg->uobject = NULL;
202 pg->version++;
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, i;
218 paddr_t paddr;
219
220 /*
221 * init the page queues and page queue locks
222 */
223
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (i = 0; i < PGFL_NQUEUES; i++)
226 TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 }
228 TAILQ_INIT(&uvm.page_active);
229 TAILQ_INIT(&uvm.page_inactive_swp);
230 TAILQ_INIT(&uvm.page_inactive_obj);
231 simple_lock_init(&uvm.pageqlock);
232 simple_lock_init(&uvm.fpageqlock);
233
234 /*
235 * init the <obj,offset> => <page> hash table. for now
236 * we just have one bucket (the bootstrap bucket). later on we
237 * will allocate new buckets as we dynamically resize the hash table.
238 */
239
240 uvm.page_nhash = 1; /* 1 bucket */
241 uvm.page_hashmask = 0; /* mask for hash function */
242 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
243 TAILQ_INIT(uvm.page_hash); /* init hash table */
244 simple_lock_init(&uvm.hashlock); /* init hash table lock */
245
246 /*
247 * allocate vm_page structures.
248 */
249
250 /*
251 * sanity check:
252 * before calling this function the MD code is expected to register
253 * some free RAM with the uvm_page_physload() function. our job
254 * now is to allocate vm_page structures for this memory.
255 */
256
257 if (vm_nphysseg == 0)
258 panic("uvm_page_bootstrap: no memory pre-allocated");
259
260 /*
261 * first calculate the number of free pages...
262 *
263 * note that we use start/end rather than avail_start/avail_end.
264 * this allows us to allocate extra vm_page structures in case we
265 * want to return some memory to the pool after booting.
266 */
267
268 freepages = 0;
269 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272 /*
273 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 * use. for each page of memory we use we need a vm_page structure.
275 * thus, the total number of pages we can use is the total size of
276 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 * structure. we add one to freepages as a fudge factor to avoid
278 * truncation errors (since we can only allocate in terms of whole
279 * pages).
280 */
281
282 pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 (PAGE_SIZE + sizeof(struct vm_page));
284 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 sizeof(struct vm_page));
286 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288 /*
289 * init the vm_page structures and put them in the correct place.
290 */
291
292 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294 if (n > pagecount) {
295 printf("uvm_page_init: lost %ld page(s) in init\n",
296 (long)(n - pagecount));
297 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
298 /* n = pagecount; */
299 }
300
301 /* set up page array pointers */
302 vm_physmem[lcv].pgs = pagearray;
303 pagearray += n;
304 pagecount -= n;
305 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306
307 /* init and free vm_pages (we've already zeroed them) */
308 paddr = ptoa(vm_physmem[lcv].start);
309 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310 vm_physmem[lcv].pgs[i].phys_addr = paddr;
311 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
312 atop(paddr) <= vm_physmem[lcv].avail_end) {
313 uvmexp.npages++;
314 /* add page to free pool */
315 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
316 }
317 }
318 }
319
320 /*
321 * pass up the values of virtual_space_start and
322 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323 * layers of the VM.
324 */
325
326 *kvm_startp = round_page(virtual_space_start);
327 *kvm_endp = trunc_page(virtual_space_end);
328
329 /*
330 * init locks for kernel threads
331 */
332
333 simple_lock_init(&uvm.pagedaemon_lock);
334 simple_lock_init(&uvm.aiodoned_lock);
335
336 /*
337 * init various thresholds.
338 * XXXCDC - values may need adjusting
339 */
340
341 uvmexp.reserve_pagedaemon = 1;
342 uvmexp.reserve_kernel = 5;
343 uvmexp.anonminpct = 10;
344 uvmexp.vnodeminpct = 10;
345 uvmexp.vtextminpct = 5;
346 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
347 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
348 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
349
350 /*
351 * determine if we should zero pages in the idle loop.
352 */
353
354 uvm.page_idle_zero = vm_page_zero_enable;
355
356 /*
357 * done!
358 */
359
360 uvm.page_init_done = TRUE;
361 }
362
363 /*
364 * uvm_setpagesize: set the page size
365 *
366 * => sets page_shift and page_mask from uvmexp.pagesize.
367 */
368
369 void
370 uvm_setpagesize()
371 {
372 if (uvmexp.pagesize == 0)
373 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
374 uvmexp.pagemask = uvmexp.pagesize - 1;
375 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
376 panic("uvm_setpagesize: page size not a power of two");
377 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
378 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
379 break;
380 }
381
382 /*
383 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
384 */
385
386 vaddr_t
387 uvm_pageboot_alloc(size)
388 vsize_t size;
389 {
390 static boolean_t initialized = FALSE;
391 vaddr_t addr;
392 #if !defined(PMAP_STEAL_MEMORY)
393 vaddr_t vaddr;
394 paddr_t paddr;
395 #endif
396
397 /*
398 * on first call to this function, initialize ourselves.
399 */
400 if (initialized == FALSE) {
401 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
402
403 /* round it the way we like it */
404 virtual_space_start = round_page(virtual_space_start);
405 virtual_space_end = trunc_page(virtual_space_end);
406
407 initialized = TRUE;
408 }
409
410 /* round to page size */
411 size = round_page(size);
412
413 #if defined(PMAP_STEAL_MEMORY)
414
415 /*
416 * defer bootstrap allocation to MD code (it may want to allocate
417 * from a direct-mapped segment). pmap_steal_memory should adjust
418 * virtual_space_start/virtual_space_end if necessary.
419 */
420
421 addr = pmap_steal_memory(size, &virtual_space_start,
422 &virtual_space_end);
423
424 return(addr);
425
426 #else /* !PMAP_STEAL_MEMORY */
427
428 /*
429 * allocate virtual memory for this request
430 */
431 if (virtual_space_start == virtual_space_end ||
432 (virtual_space_end - virtual_space_start) < size)
433 panic("uvm_pageboot_alloc: out of virtual space");
434
435 addr = virtual_space_start;
436
437 #ifdef PMAP_GROWKERNEL
438 /*
439 * If the kernel pmap can't map the requested space,
440 * then allocate more resources for it.
441 */
442 if (uvm_maxkaddr < (addr + size)) {
443 uvm_maxkaddr = pmap_growkernel(addr + size);
444 if (uvm_maxkaddr < (addr + size))
445 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446 }
447 #endif
448
449 virtual_space_start += size;
450
451 /*
452 * allocate and mapin physical pages to back new virtual pages
453 */
454
455 for (vaddr = round_page(addr) ; vaddr < addr + size ;
456 vaddr += PAGE_SIZE) {
457
458 if (!uvm_page_physget(&paddr))
459 panic("uvm_pageboot_alloc: out of memory");
460
461 /*
462 * Note this memory is no longer managed, so using
463 * pmap_kenter is safe.
464 */
465 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466 }
467 pmap_update();
468 return(addr);
469 #endif /* PMAP_STEAL_MEMORY */
470 }
471
472 #if !defined(PMAP_STEAL_MEMORY)
473 /*
474 * uvm_page_physget: "steal" one page from the vm_physmem structure.
475 *
476 * => attempt to allocate it off the end of a segment in which the "avail"
477 * values match the start/end values. if we can't do that, then we
478 * will advance both values (making them equal, and removing some
479 * vm_page structures from the non-avail area).
480 * => return false if out of memory.
481 */
482
483 /* subroutine: try to allocate from memory chunks on the specified freelist */
484 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
485
486 static boolean_t
487 uvm_page_physget_freelist(paddrp, freelist)
488 paddr_t *paddrp;
489 int freelist;
490 {
491 int lcv, x;
492
493 /* pass 1: try allocating from a matching end */
494 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
495 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
496 #else
497 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
498 #endif
499 {
500
501 if (uvm.page_init_done == TRUE)
502 panic("uvm_page_physget: called _after_ bootstrap");
503
504 if (vm_physmem[lcv].free_list != freelist)
505 continue;
506
507 /* try from front */
508 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
509 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
510 *paddrp = ptoa(vm_physmem[lcv].avail_start);
511 vm_physmem[lcv].avail_start++;
512 vm_physmem[lcv].start++;
513 /* nothing left? nuke it */
514 if (vm_physmem[lcv].avail_start ==
515 vm_physmem[lcv].end) {
516 if (vm_nphysseg == 1)
517 panic("vum_page_physget: out of memory!");
518 vm_nphysseg--;
519 for (x = lcv ; x < vm_nphysseg ; x++)
520 /* structure copy */
521 vm_physmem[x] = vm_physmem[x+1];
522 }
523 return (TRUE);
524 }
525
526 /* try from rear */
527 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
528 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
529 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
530 vm_physmem[lcv].avail_end--;
531 vm_physmem[lcv].end--;
532 /* nothing left? nuke it */
533 if (vm_physmem[lcv].avail_end ==
534 vm_physmem[lcv].start) {
535 if (vm_nphysseg == 1)
536 panic("uvm_page_physget: out of memory!");
537 vm_nphysseg--;
538 for (x = lcv ; x < vm_nphysseg ; x++)
539 /* structure copy */
540 vm_physmem[x] = vm_physmem[x+1];
541 }
542 return (TRUE);
543 }
544 }
545
546 /* pass2: forget about matching ends, just allocate something */
547 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
548 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
549 #else
550 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
551 #endif
552 {
553
554 /* any room in this bank? */
555 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
556 continue; /* nope */
557
558 *paddrp = ptoa(vm_physmem[lcv].avail_start);
559 vm_physmem[lcv].avail_start++;
560 /* truncate! */
561 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
562
563 /* nothing left? nuke it */
564 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
565 if (vm_nphysseg == 1)
566 panic("uvm_page_physget: out of memory!");
567 vm_nphysseg--;
568 for (x = lcv ; x < vm_nphysseg ; x++)
569 /* structure copy */
570 vm_physmem[x] = vm_physmem[x+1];
571 }
572 return (TRUE);
573 }
574
575 return (FALSE); /* whoops! */
576 }
577
578 boolean_t
579 uvm_page_physget(paddrp)
580 paddr_t *paddrp;
581 {
582 int i;
583
584 /* try in the order of freelist preference */
585 for (i = 0; i < VM_NFREELIST; i++)
586 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
587 return (TRUE);
588 return (FALSE);
589 }
590 #endif /* PMAP_STEAL_MEMORY */
591
592 /*
593 * uvm_page_physload: load physical memory into VM system
594 *
595 * => all args are PFs
596 * => all pages in start/end get vm_page structures
597 * => areas marked by avail_start/avail_end get added to the free page pool
598 * => we are limited to VM_PHYSSEG_MAX physical memory segments
599 */
600
601 void
602 uvm_page_physload(start, end, avail_start, avail_end, free_list)
603 paddr_t start, end, avail_start, avail_end;
604 int free_list;
605 {
606 int preload, lcv;
607 psize_t npages;
608 struct vm_page *pgs;
609 struct vm_physseg *ps;
610
611 if (uvmexp.pagesize == 0)
612 panic("uvm_page_physload: page size not set!");
613
614 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
615 panic("uvm_page_physload: bad free list %d\n", free_list);
616
617 if (start >= end)
618 panic("uvm_page_physload: start >= end");
619
620 /*
621 * do we have room?
622 */
623 if (vm_nphysseg == VM_PHYSSEG_MAX) {
624 printf("uvm_page_physload: unable to load physical memory "
625 "segment\n");
626 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
627 VM_PHYSSEG_MAX, (long long)start, (long long)end);
628 printf("\tincrease VM_PHYSSEG_MAX\n");
629 return;
630 }
631
632 /*
633 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
634 * called yet, so malloc is not available).
635 */
636 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
637 if (vm_physmem[lcv].pgs)
638 break;
639 }
640 preload = (lcv == vm_nphysseg);
641
642 /*
643 * if VM is already running, attempt to malloc() vm_page structures
644 */
645 if (!preload) {
646 #if defined(VM_PHYSSEG_NOADD)
647 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
648 #else
649 /* XXXCDC: need some sort of lockout for this case */
650 paddr_t paddr;
651 npages = end - start; /* # of pages */
652 pgs = malloc(sizeof(struct vm_page) * npages,
653 M_VMPAGE, M_NOWAIT);
654 if (pgs == NULL) {
655 printf("uvm_page_physload: can not malloc vm_page "
656 "structs for segment\n");
657 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
658 return;
659 }
660 /* zero data, init phys_addr and free_list, and free pages */
661 memset(pgs, 0, sizeof(struct vm_page) * npages);
662 for (lcv = 0, paddr = ptoa(start) ;
663 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
664 pgs[lcv].phys_addr = paddr;
665 pgs[lcv].free_list = free_list;
666 if (atop(paddr) >= avail_start &&
667 atop(paddr) <= avail_end)
668 uvm_pagefree(&pgs[lcv]);
669 }
670 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
671 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
672 #endif
673 } else {
674
675 /* gcc complains if these don't get init'd */
676 pgs = NULL;
677 npages = 0;
678
679 }
680
681 /*
682 * now insert us in the proper place in vm_physmem[]
683 */
684
685 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
686
687 /* random: put it at the end (easy!) */
688 ps = &vm_physmem[vm_nphysseg];
689
690 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
691
692 {
693 int x;
694 /* sort by address for binary search */
695 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
696 if (start < vm_physmem[lcv].start)
697 break;
698 ps = &vm_physmem[lcv];
699 /* move back other entries, if necessary ... */
700 for (x = vm_nphysseg ; x > lcv ; x--)
701 /* structure copy */
702 vm_physmem[x] = vm_physmem[x - 1];
703 }
704
705 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
706
707 {
708 int x;
709 /* sort by largest segment first */
710 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
711 if ((end - start) >
712 (vm_physmem[lcv].end - vm_physmem[lcv].start))
713 break;
714 ps = &vm_physmem[lcv];
715 /* move back other entries, if necessary ... */
716 for (x = vm_nphysseg ; x > lcv ; x--)
717 /* structure copy */
718 vm_physmem[x] = vm_physmem[x - 1];
719 }
720
721 #else
722
723 panic("uvm_page_physload: unknown physseg strategy selected!");
724
725 #endif
726
727 ps->start = start;
728 ps->end = end;
729 ps->avail_start = avail_start;
730 ps->avail_end = avail_end;
731 if (preload) {
732 ps->pgs = NULL;
733 } else {
734 ps->pgs = pgs;
735 ps->lastpg = pgs + npages - 1;
736 }
737 ps->free_list = free_list;
738 vm_nphysseg++;
739
740 /*
741 * done!
742 */
743
744 if (!preload)
745 uvm_page_rehash();
746
747 return;
748 }
749
750 /*
751 * uvm_page_rehash: reallocate hash table based on number of free pages.
752 */
753
754 void
755 uvm_page_rehash()
756 {
757 int freepages, lcv, bucketcount, s, oldcount;
758 struct pglist *newbuckets, *oldbuckets;
759 struct vm_page *pg;
760 size_t newsize, oldsize;
761
762 /*
763 * compute number of pages that can go in the free pool
764 */
765
766 freepages = 0;
767 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
768 freepages +=
769 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
770
771 /*
772 * compute number of buckets needed for this number of pages
773 */
774
775 bucketcount = 1;
776 while (bucketcount < freepages)
777 bucketcount = bucketcount * 2;
778
779 /*
780 * compute the size of the current table and new table.
781 */
782
783 oldbuckets = uvm.page_hash;
784 oldcount = uvm.page_nhash;
785 oldsize = round_page(sizeof(struct pglist) * oldcount);
786 newsize = round_page(sizeof(struct pglist) * bucketcount);
787
788 /*
789 * allocate the new buckets
790 */
791
792 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
793 if (newbuckets == NULL) {
794 printf("uvm_page_physrehash: WARNING: could not grow page "
795 "hash table\n");
796 return;
797 }
798 for (lcv = 0 ; lcv < bucketcount ; lcv++)
799 TAILQ_INIT(&newbuckets[lcv]);
800
801 /*
802 * now replace the old buckets with the new ones and rehash everything
803 */
804
805 s = splvm();
806 simple_lock(&uvm.hashlock);
807 uvm.page_hash = newbuckets;
808 uvm.page_nhash = bucketcount;
809 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
810
811 /* ... and rehash */
812 for (lcv = 0 ; lcv < oldcount ; lcv++) {
813 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
814 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
815 TAILQ_INSERT_TAIL(
816 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
817 pg, hashq);
818 }
819 }
820 simple_unlock(&uvm.hashlock);
821 splx(s);
822
823 /*
824 * free old bucket array if is not the boot-time table
825 */
826
827 if (oldbuckets != &uvm_bootbucket)
828 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
829
830 /*
831 * done
832 */
833 return;
834 }
835
836
837 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
838
839 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
840
841 /* call from DDB */
842 void
843 uvm_page_physdump()
844 {
845 int lcv;
846
847 printf("rehash: physical memory config [segs=%d of %d]:\n",
848 vm_nphysseg, VM_PHYSSEG_MAX);
849 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
850 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
851 (long long)vm_physmem[lcv].start,
852 (long long)vm_physmem[lcv].end,
853 (long long)vm_physmem[lcv].avail_start,
854 (long long)vm_physmem[lcv].avail_end);
855 printf("STRATEGY = ");
856 switch (VM_PHYSSEG_STRAT) {
857 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
858 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
859 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
860 default: printf("<<UNKNOWN>>!!!!\n");
861 }
862 printf("number of buckets = %d\n", uvm.page_nhash);
863 }
864 #endif
865
866 /*
867 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
868 *
869 * => return null if no pages free
870 * => wake up pagedaemon if number of free pages drops below low water mark
871 * => if obj != NULL, obj must be locked (to put in hash)
872 * => if anon != NULL, anon must be locked (to put in anon)
873 * => only one of obj or anon can be non-null
874 * => caller must activate/deactivate page if it is not wired.
875 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
876 * => policy decision: it is more important to pull a page off of the
877 * appropriate priority free list than it is to get a zero'd or
878 * unknown contents page. This is because we live with the
879 * consequences of a bad free list decision for the entire
880 * lifetime of the page, e.g. if the page comes from memory that
881 * is slower to access.
882 */
883
884 struct vm_page *
885 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
886 struct uvm_object *obj;
887 voff_t off;
888 int flags;
889 struct vm_anon *anon;
890 int strat, free_list;
891 {
892 int lcv, try1, try2, s, zeroit = 0;
893 struct vm_page *pg;
894 struct pglist *freeq;
895 struct pgfreelist *pgfl;
896 boolean_t use_reserve;
897
898 KASSERT(obj == NULL || anon == NULL);
899 KASSERT(off == trunc_page(off));
900
901 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
902 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
903
904 s = uvm_lock_fpageq();
905
906 /*
907 * check to see if we need to generate some free pages waking
908 * the pagedaemon.
909 */
910
911 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
912 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
913 uvmexp.inactive < uvmexp.inactarg)) {
914 wakeup(&uvm.pagedaemon);
915 }
916
917 /*
918 * fail if any of these conditions is true:
919 * [1] there really are no free pages, or
920 * [2] only kernel "reserved" pages remain and
921 * the page isn't being allocated to a kernel object.
922 * [3] only pagedaemon "reserved" pages remain and
923 * the requestor isn't the pagedaemon.
924 */
925
926 use_reserve = (flags & UVM_PGA_USERESERVE) ||
927 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
928 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
929 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
930 !(use_reserve && curproc == uvm.pagedaemon_proc)))
931 goto fail;
932
933 #if PGFL_NQUEUES != 2
934 #error uvm_pagealloc_strat needs to be updated
935 #endif
936
937 /*
938 * If we want a zero'd page, try the ZEROS queue first, otherwise
939 * we try the UNKNOWN queue first.
940 */
941 if (flags & UVM_PGA_ZERO) {
942 try1 = PGFL_ZEROS;
943 try2 = PGFL_UNKNOWN;
944 } else {
945 try1 = PGFL_UNKNOWN;
946 try2 = PGFL_ZEROS;
947 }
948
949 again:
950 switch (strat) {
951 case UVM_PGA_STRAT_NORMAL:
952 /* Check all freelists in descending priority order. */
953 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
954 pgfl = &uvm.page_free[lcv];
955 if ((pg = TAILQ_FIRST((freeq =
956 &pgfl->pgfl_queues[try1]))) != NULL ||
957 (pg = TAILQ_FIRST((freeq =
958 &pgfl->pgfl_queues[try2]))) != NULL)
959 goto gotit;
960 }
961
962 /* No pages free! */
963 goto fail;
964
965 case UVM_PGA_STRAT_ONLY:
966 case UVM_PGA_STRAT_FALLBACK:
967 /* Attempt to allocate from the specified free list. */
968 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
969 pgfl = &uvm.page_free[free_list];
970 if ((pg = TAILQ_FIRST((freeq =
971 &pgfl->pgfl_queues[try1]))) != NULL ||
972 (pg = TAILQ_FIRST((freeq =
973 &pgfl->pgfl_queues[try2]))) != NULL)
974 goto gotit;
975
976 /* Fall back, if possible. */
977 if (strat == UVM_PGA_STRAT_FALLBACK) {
978 strat = UVM_PGA_STRAT_NORMAL;
979 goto again;
980 }
981
982 /* No pages free! */
983 goto fail;
984
985 default:
986 panic("uvm_pagealloc_strat: bad strat %d", strat);
987 /* NOTREACHED */
988 }
989
990 gotit:
991 TAILQ_REMOVE(freeq, pg, pageq);
992 uvmexp.free--;
993
994 /* update zero'd page count */
995 if (pg->flags & PG_ZERO)
996 uvmexp.zeropages--;
997
998 /*
999 * update allocation statistics and remember if we have to
1000 * zero the page
1001 */
1002 if (flags & UVM_PGA_ZERO) {
1003 if (pg->flags & PG_ZERO) {
1004 uvmexp.pga_zerohit++;
1005 zeroit = 0;
1006 } else {
1007 uvmexp.pga_zeromiss++;
1008 zeroit = 1;
1009 }
1010 }
1011
1012 uvm_unlock_fpageq(s); /* unlock free page queue */
1013
1014 pg->offset = off;
1015 pg->uobject = obj;
1016 pg->uanon = anon;
1017 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1018 pg->version++;
1019 if (anon) {
1020 anon->u.an_page = pg;
1021 pg->pqflags = PQ_ANON;
1022 uvmexp.anonpages++;
1023 } else {
1024 if (obj)
1025 uvm_pageinsert(pg);
1026 pg->pqflags = 0;
1027 }
1028 #if defined(UVM_PAGE_TRKOWN)
1029 pg->owner_tag = NULL;
1030 #endif
1031 UVM_PAGE_OWN(pg, "new alloc");
1032
1033 if (flags & UVM_PGA_ZERO) {
1034 /*
1035 * A zero'd page is not clean. If we got a page not already
1036 * zero'd, then we have to zero it ourselves.
1037 */
1038 pg->flags &= ~PG_CLEAN;
1039 if (zeroit)
1040 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1041 }
1042
1043 return(pg);
1044
1045 fail:
1046 uvm_unlock_fpageq(s);
1047 return (NULL);
1048 }
1049
1050 /*
1051 * uvm_pagerealloc: reallocate a page from one object to another
1052 *
1053 * => both objects must be locked
1054 */
1055
1056 void
1057 uvm_pagerealloc(pg, newobj, newoff)
1058 struct vm_page *pg;
1059 struct uvm_object *newobj;
1060 voff_t newoff;
1061 {
1062 /*
1063 * remove it from the old object
1064 */
1065
1066 if (pg->uobject) {
1067 uvm_pageremove(pg);
1068 }
1069
1070 /*
1071 * put it in the new object
1072 */
1073
1074 if (newobj) {
1075 pg->uobject = newobj;
1076 pg->offset = newoff;
1077 pg->version++;
1078 uvm_pageinsert(pg);
1079 }
1080 }
1081
1082
1083 /*
1084 * uvm_pagefree: free page
1085 *
1086 * => erase page's identity (i.e. remove from hash/object)
1087 * => put page on free list
1088 * => caller must lock owning object (either anon or uvm_object)
1089 * => caller must lock page queues
1090 * => assumes all valid mappings of pg are gone
1091 */
1092
1093 void
1094 uvm_pagefree(pg)
1095 struct vm_page *pg;
1096 {
1097 int s;
1098 int saved_loan_count = pg->loan_count;
1099
1100 #ifdef DEBUG
1101 if (pg->uobject == (void *)0xdeadbeef &&
1102 pg->uanon == (void *)0xdeadbeef) {
1103 panic("uvm_pagefree: freeing free page %p\n", pg);
1104 }
1105 #endif
1106
1107 /*
1108 * if the page was an object page (and thus "TABLED"), remove it
1109 * from the object.
1110 */
1111
1112 if (pg->flags & PG_TABLED) {
1113
1114 /*
1115 * if the object page is on loan we are going to drop ownership.
1116 * it is possible that an anon will take over as owner for this
1117 * page later on. the anon will want a !PG_CLEAN page so that
1118 * it knows it needs to allocate swap if it wants to page the
1119 * page out.
1120 */
1121
1122 if (saved_loan_count)
1123 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1124 uvm_pageremove(pg);
1125
1126 /*
1127 * if our page was on loan, then we just lost control over it
1128 * (in fact, if it was loaned to an anon, the anon may have
1129 * already taken over ownership of the page by now and thus
1130 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1131 * return (when the last loan is dropped, then the page can be
1132 * freed by whatever was holding the last loan).
1133 */
1134
1135 if (saved_loan_count)
1136 return;
1137 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1138
1139 /*
1140 * if our page is owned by an anon and is loaned out to the
1141 * kernel then we just want to drop ownership and return.
1142 * the kernel must free the page when all its loans clear ...
1143 * note that the kernel can't change the loan status of our
1144 * page as long as we are holding PQ lock.
1145 */
1146
1147 pg->pqflags &= ~PQ_ANON;
1148 pg->uanon = NULL;
1149 return;
1150 }
1151 KASSERT(saved_loan_count == 0);
1152
1153 /*
1154 * now remove the page from the queues
1155 */
1156
1157 if (pg->pqflags & PQ_ACTIVE) {
1158 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1159 pg->pqflags &= ~PQ_ACTIVE;
1160 uvmexp.active--;
1161 }
1162 if (pg->pqflags & PQ_INACTIVE) {
1163 if (pg->pqflags & PQ_SWAPBACKED)
1164 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1165 else
1166 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1167 pg->pqflags &= ~PQ_INACTIVE;
1168 uvmexp.inactive--;
1169 }
1170
1171 /*
1172 * if the page was wired, unwire it now.
1173 */
1174
1175 if (pg->wire_count) {
1176 pg->wire_count = 0;
1177 uvmexp.wired--;
1178 }
1179 if (pg->uanon) {
1180 uvmexp.anonpages--;
1181 }
1182
1183 /*
1184 * and put on free queue
1185 */
1186
1187 pg->flags &= ~PG_ZERO;
1188
1189 s = uvm_lock_fpageq();
1190 TAILQ_INSERT_TAIL(&uvm.page_free[
1191 uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1192 pg->pqflags = PQ_FREE;
1193 #ifdef DEBUG
1194 pg->uobject = (void *)0xdeadbeef;
1195 pg->offset = 0xdeadbeef;
1196 pg->uanon = (void *)0xdeadbeef;
1197 #endif
1198 uvmexp.free++;
1199
1200 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1201 uvm.page_idle_zero = vm_page_zero_enable;
1202
1203 uvm_unlock_fpageq(s);
1204 }
1205
1206 /*
1207 * uvm_page_unbusy: unbusy an array of pages.
1208 *
1209 * => pages must either all belong to the same object, or all belong to anons.
1210 * => if pages are object-owned, object must be locked.
1211 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1212 */
1213
1214 void
1215 uvm_page_unbusy(pgs, npgs)
1216 struct vm_page **pgs;
1217 int npgs;
1218 {
1219 struct vm_page *pg;
1220 struct uvm_object *uobj;
1221 int i;
1222 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1223
1224 for (i = 0; i < npgs; i++) {
1225 pg = pgs[i];
1226
1227 if (pg == NULL) {
1228 continue;
1229 }
1230 if (pg->flags & PG_WANTED) {
1231 wakeup(pg);
1232 }
1233 if (pg->flags & PG_RELEASED) {
1234 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1235 uobj = pg->uobject;
1236 if (uobj != NULL) {
1237 uobj->pgops->pgo_releasepg(pg, NULL);
1238 } else {
1239 pg->flags &= ~(PG_BUSY);
1240 UVM_PAGE_OWN(pg, NULL);
1241 uvm_anfree(pg->uanon);
1242 }
1243 } else {
1244 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1245 KASSERT(pg->wire_count ||
1246 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1247 pg->flags &= ~(PG_WANTED|PG_BUSY);
1248 UVM_PAGE_OWN(pg, NULL);
1249 }
1250 }
1251 }
1252
1253 #if defined(UVM_PAGE_TRKOWN)
1254 /*
1255 * uvm_page_own: set or release page ownership
1256 *
1257 * => this is a debugging function that keeps track of who sets PG_BUSY
1258 * and where they do it. it can be used to track down problems
1259 * such a process setting "PG_BUSY" and never releasing it.
1260 * => page's object [if any] must be locked
1261 * => if "tag" is NULL then we are releasing page ownership
1262 */
1263 void
1264 uvm_page_own(pg, tag)
1265 struct vm_page *pg;
1266 char *tag;
1267 {
1268 /* gain ownership? */
1269 if (tag) {
1270 if (pg->owner_tag) {
1271 printf("uvm_page_own: page %p already owned "
1272 "by proc %d [%s]\n", pg,
1273 pg->owner, pg->owner_tag);
1274 panic("uvm_page_own");
1275 }
1276 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1277 pg->owner_tag = tag;
1278 return;
1279 }
1280
1281 /* drop ownership */
1282 if (pg->owner_tag == NULL) {
1283 printf("uvm_page_own: dropping ownership of an non-owned "
1284 "page (%p)\n", pg);
1285 panic("uvm_page_own");
1286 }
1287 pg->owner_tag = NULL;
1288 return;
1289 }
1290 #endif
1291
1292 /*
1293 * uvm_pageidlezero: zero free pages while the system is idle.
1294 *
1295 * => we do at least one iteration per call, if we are below the target.
1296 * => we loop until we either reach the target or whichqs indicates that
1297 * there is a process ready to run.
1298 */
1299 void
1300 uvm_pageidlezero()
1301 {
1302 struct vm_page *pg;
1303 struct pgfreelist *pgfl;
1304 int free_list, s;
1305
1306 do {
1307 s = uvm_lock_fpageq();
1308
1309 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1310 uvm.page_idle_zero = FALSE;
1311 uvm_unlock_fpageq(s);
1312 return;
1313 }
1314
1315 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1316 pgfl = &uvm.page_free[free_list];
1317 if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1318 PGFL_UNKNOWN])) != NULL)
1319 break;
1320 }
1321
1322 if (pg == NULL) {
1323 /*
1324 * No non-zero'd pages; don't bother trying again
1325 * until we know we have non-zero'd pages free.
1326 */
1327 uvm.page_idle_zero = FALSE;
1328 uvm_unlock_fpageq(s);
1329 return;
1330 }
1331
1332 TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1333 uvmexp.free--;
1334 uvm_unlock_fpageq(s);
1335
1336 #ifdef PMAP_PAGEIDLEZERO
1337 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1338 /*
1339 * The machine-dependent code detected some
1340 * reason for us to abort zeroing pages,
1341 * probably because there is a process now
1342 * ready to run.
1343 */
1344 s = uvm_lock_fpageq();
1345 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1346 pg, pageq);
1347 uvmexp.free++;
1348 uvmexp.zeroaborts++;
1349 uvm_unlock_fpageq(s);
1350 return;
1351 }
1352 #else
1353 /*
1354 * XXX This will toast the cache unless the pmap_zero_page()
1355 * XXX implementation does uncached access.
1356 */
1357 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1358 #endif
1359 pg->flags |= PG_ZERO;
1360
1361 s = uvm_lock_fpageq();
1362 TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1363 uvmexp.free++;
1364 uvmexp.zeropages++;
1365 uvm_unlock_fpageq(s);
1366 } while (sched_whichqs == 0);
1367 }
1368