uvm_page.c revision 1.55 1 /* $NetBSD: uvm_page.c,v 1.55 2001/04/29 22:44:39 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101 /*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105 boolean_t vm_page_zero_enable = FALSE;
106
107 /*
108 * local variables
109 */
110
111 /*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes. The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117 static vaddr_t virtual_space_start;
118 static vaddr_t virtual_space_end;
119
120 /*
121 * we use a hash table with only one bucket during bootup. we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126 static struct pglist uvm_bootbucket;
127
128 /*
129 * local prototypes
130 */
131
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134
135 /*
136 * inline functions
137 */
138
139 /*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 * and bumped the version counter
146 */
147
148 __inline static void
149 uvm_pageinsert(pg)
150 struct vm_page *pg;
151 {
152 struct pglist *buck;
153 int s;
154
155 KASSERT((pg->flags & PG_TABLED) == 0);
156 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 s = splvm();
158 simple_lock(&uvm.hashlock);
159 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
160 simple_unlock(&uvm.hashlock);
161 splx(s);
162
163 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 pg->flags |= PG_TABLED;
165 pg->uobject->uo_npages++;
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 static __inline void
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 KASSERT(pg->flags & PG_TABLED);
183 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 s = splvm();
185 simple_lock(&uvm.hashlock);
186 TAILQ_REMOVE(buck, pg, hashq);
187 simple_unlock(&uvm.hashlock);
188 splx(s);
189
190 if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 uvmexp.vtextpages--;
192 } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 uvmexp.vnodepages--;
194 }
195
196 /* object should be locked */
197 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199 pg->flags &= ~PG_TABLED;
200 pg->uobject->uo_npages--;
201 pg->uobject = NULL;
202 pg->version++;
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, color, i;
218 paddr_t paddr;
219
220 /*
221 * init the page queues and page queue locks
222 */
223
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (color = 0; color < VM_PGCOLOR_BUCKETS; color++) {
226 for (i = 0; i < PGFL_NQUEUES; i++) {
227 TAILQ_INIT(&uvm.page_free[lcv].pgfl_buckets[
228 color].pgfl_queues[i]);
229 }
230 }
231 }
232 TAILQ_INIT(&uvm.page_active);
233 TAILQ_INIT(&uvm.page_inactive_swp);
234 TAILQ_INIT(&uvm.page_inactive_obj);
235 simple_lock_init(&uvm.pageqlock);
236 simple_lock_init(&uvm.fpageqlock);
237
238 /*
239 * init the <obj,offset> => <page> hash table. for now
240 * we just have one bucket (the bootstrap bucket). later on we
241 * will allocate new buckets as we dynamically resize the hash table.
242 */
243
244 uvm.page_nhash = 1; /* 1 bucket */
245 uvm.page_hashmask = 0; /* mask for hash function */
246 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
247 TAILQ_INIT(uvm.page_hash); /* init hash table */
248 simple_lock_init(&uvm.hashlock); /* init hash table lock */
249
250 /*
251 * allocate vm_page structures.
252 */
253
254 /*
255 * sanity check:
256 * before calling this function the MD code is expected to register
257 * some free RAM with the uvm_page_physload() function. our job
258 * now is to allocate vm_page structures for this memory.
259 */
260
261 if (vm_nphysseg == 0)
262 panic("uvm_page_bootstrap: no memory pre-allocated");
263
264 /*
265 * first calculate the number of free pages...
266 *
267 * note that we use start/end rather than avail_start/avail_end.
268 * this allows us to allocate extra vm_page structures in case we
269 * want to return some memory to the pool after booting.
270 */
271
272 freepages = 0;
273 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
274 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
275
276 /*
277 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
278 * use. for each page of memory we use we need a vm_page structure.
279 * thus, the total number of pages we can use is the total size of
280 * the memory divided by the PAGE_SIZE plus the size of the vm_page
281 * structure. we add one to freepages as a fudge factor to avoid
282 * truncation errors (since we can only allocate in terms of whole
283 * pages).
284 */
285
286 pagecount = ((freepages + 1) << PAGE_SHIFT) /
287 (PAGE_SIZE + sizeof(struct vm_page));
288 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
289 sizeof(struct vm_page));
290 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
291
292 /*
293 * init the vm_page structures and put them in the correct place.
294 */
295
296 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
297 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
298 if (n > pagecount) {
299 printf("uvm_page_init: lost %ld page(s) in init\n",
300 (long)(n - pagecount));
301 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
302 /* n = pagecount; */
303 }
304
305 /* set up page array pointers */
306 vm_physmem[lcv].pgs = pagearray;
307 pagearray += n;
308 pagecount -= n;
309 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
310
311 /* init and free vm_pages (we've already zeroed them) */
312 paddr = ptoa(vm_physmem[lcv].start);
313 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
314 vm_physmem[lcv].pgs[i].phys_addr = paddr;
315 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
316 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
317 atop(paddr) <= vm_physmem[lcv].avail_end) {
318 uvmexp.npages++;
319 /* add page to free pool */
320 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
321 }
322 }
323 }
324
325 /*
326 * pass up the values of virtual_space_start and
327 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
328 * layers of the VM.
329 */
330
331 *kvm_startp = round_page(virtual_space_start);
332 *kvm_endp = trunc_page(virtual_space_end);
333
334 /*
335 * init locks for kernel threads
336 */
337
338 simple_lock_init(&uvm.pagedaemon_lock);
339 simple_lock_init(&uvm.aiodoned_lock);
340
341 /*
342 * init various thresholds.
343 * XXXCDC - values may need adjusting
344 */
345
346 uvmexp.reserve_pagedaemon = 1;
347 uvmexp.reserve_kernel = 5;
348 uvmexp.anonminpct = 10;
349 uvmexp.vnodeminpct = 10;
350 uvmexp.vtextminpct = 5;
351 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
352 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
353 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
354
355 /*
356 * determine if we should zero pages in the idle loop.
357 */
358
359 uvm.page_idle_zero = vm_page_zero_enable;
360
361 /*
362 * done!
363 */
364
365 uvm.page_init_done = TRUE;
366 }
367
368 /*
369 * uvm_setpagesize: set the page size
370 *
371 * => sets page_shift and page_mask from uvmexp.pagesize.
372 */
373
374 void
375 uvm_setpagesize()
376 {
377 if (uvmexp.pagesize == 0)
378 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
379 uvmexp.pagemask = uvmexp.pagesize - 1;
380 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
381 panic("uvm_setpagesize: page size not a power of two");
382 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
383 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
384 break;
385 }
386
387 /*
388 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
389 */
390
391 vaddr_t
392 uvm_pageboot_alloc(size)
393 vsize_t size;
394 {
395 static boolean_t initialized = FALSE;
396 vaddr_t addr;
397 #if !defined(PMAP_STEAL_MEMORY)
398 vaddr_t vaddr;
399 paddr_t paddr;
400 #endif
401
402 /*
403 * on first call to this function, initialize ourselves.
404 */
405 if (initialized == FALSE) {
406 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
407
408 /* round it the way we like it */
409 virtual_space_start = round_page(virtual_space_start);
410 virtual_space_end = trunc_page(virtual_space_end);
411
412 initialized = TRUE;
413 }
414
415 /* round to page size */
416 size = round_page(size);
417
418 #if defined(PMAP_STEAL_MEMORY)
419
420 /*
421 * defer bootstrap allocation to MD code (it may want to allocate
422 * from a direct-mapped segment). pmap_steal_memory should adjust
423 * virtual_space_start/virtual_space_end if necessary.
424 */
425
426 addr = pmap_steal_memory(size, &virtual_space_start,
427 &virtual_space_end);
428
429 return(addr);
430
431 #else /* !PMAP_STEAL_MEMORY */
432
433 /*
434 * allocate virtual memory for this request
435 */
436 if (virtual_space_start == virtual_space_end ||
437 (virtual_space_end - virtual_space_start) < size)
438 panic("uvm_pageboot_alloc: out of virtual space");
439
440 addr = virtual_space_start;
441
442 #ifdef PMAP_GROWKERNEL
443 /*
444 * If the kernel pmap can't map the requested space,
445 * then allocate more resources for it.
446 */
447 if (uvm_maxkaddr < (addr + size)) {
448 uvm_maxkaddr = pmap_growkernel(addr + size);
449 if (uvm_maxkaddr < (addr + size))
450 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
451 }
452 #endif
453
454 virtual_space_start += size;
455
456 /*
457 * allocate and mapin physical pages to back new virtual pages
458 */
459
460 for (vaddr = round_page(addr) ; vaddr < addr + size ;
461 vaddr += PAGE_SIZE) {
462
463 if (!uvm_page_physget(&paddr))
464 panic("uvm_pageboot_alloc: out of memory");
465
466 /*
467 * Note this memory is no longer managed, so using
468 * pmap_kenter is safe.
469 */
470 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
471 }
472 pmap_update();
473 return(addr);
474 #endif /* PMAP_STEAL_MEMORY */
475 }
476
477 #if !defined(PMAP_STEAL_MEMORY)
478 /*
479 * uvm_page_physget: "steal" one page from the vm_physmem structure.
480 *
481 * => attempt to allocate it off the end of a segment in which the "avail"
482 * values match the start/end values. if we can't do that, then we
483 * will advance both values (making them equal, and removing some
484 * vm_page structures from the non-avail area).
485 * => return false if out of memory.
486 */
487
488 /* subroutine: try to allocate from memory chunks on the specified freelist */
489 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
490
491 static boolean_t
492 uvm_page_physget_freelist(paddrp, freelist)
493 paddr_t *paddrp;
494 int freelist;
495 {
496 int lcv, x;
497
498 /* pass 1: try allocating from a matching end */
499 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
500 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
501 #else
502 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
503 #endif
504 {
505
506 if (uvm.page_init_done == TRUE)
507 panic("uvm_page_physget: called _after_ bootstrap");
508
509 if (vm_physmem[lcv].free_list != freelist)
510 continue;
511
512 /* try from front */
513 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
514 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
515 *paddrp = ptoa(vm_physmem[lcv].avail_start);
516 vm_physmem[lcv].avail_start++;
517 vm_physmem[lcv].start++;
518 /* nothing left? nuke it */
519 if (vm_physmem[lcv].avail_start ==
520 vm_physmem[lcv].end) {
521 if (vm_nphysseg == 1)
522 panic("vum_page_physget: out of memory!");
523 vm_nphysseg--;
524 for (x = lcv ; x < vm_nphysseg ; x++)
525 /* structure copy */
526 vm_physmem[x] = vm_physmem[x+1];
527 }
528 return (TRUE);
529 }
530
531 /* try from rear */
532 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
533 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
534 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
535 vm_physmem[lcv].avail_end--;
536 vm_physmem[lcv].end--;
537 /* nothing left? nuke it */
538 if (vm_physmem[lcv].avail_end ==
539 vm_physmem[lcv].start) {
540 if (vm_nphysseg == 1)
541 panic("uvm_page_physget: out of memory!");
542 vm_nphysseg--;
543 for (x = lcv ; x < vm_nphysseg ; x++)
544 /* structure copy */
545 vm_physmem[x] = vm_physmem[x+1];
546 }
547 return (TRUE);
548 }
549 }
550
551 /* pass2: forget about matching ends, just allocate something */
552 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
553 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
554 #else
555 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
556 #endif
557 {
558
559 /* any room in this bank? */
560 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
561 continue; /* nope */
562
563 *paddrp = ptoa(vm_physmem[lcv].avail_start);
564 vm_physmem[lcv].avail_start++;
565 /* truncate! */
566 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
567
568 /* nothing left? nuke it */
569 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
570 if (vm_nphysseg == 1)
571 panic("uvm_page_physget: out of memory!");
572 vm_nphysseg--;
573 for (x = lcv ; x < vm_nphysseg ; x++)
574 /* structure copy */
575 vm_physmem[x] = vm_physmem[x+1];
576 }
577 return (TRUE);
578 }
579
580 return (FALSE); /* whoops! */
581 }
582
583 boolean_t
584 uvm_page_physget(paddrp)
585 paddr_t *paddrp;
586 {
587 int i;
588
589 /* try in the order of freelist preference */
590 for (i = 0; i < VM_NFREELIST; i++)
591 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
592 return (TRUE);
593 return (FALSE);
594 }
595 #endif /* PMAP_STEAL_MEMORY */
596
597 /*
598 * uvm_page_physload: load physical memory into VM system
599 *
600 * => all args are PFs
601 * => all pages in start/end get vm_page structures
602 * => areas marked by avail_start/avail_end get added to the free page pool
603 * => we are limited to VM_PHYSSEG_MAX physical memory segments
604 */
605
606 void
607 uvm_page_physload(start, end, avail_start, avail_end, free_list)
608 paddr_t start, end, avail_start, avail_end;
609 int free_list;
610 {
611 int preload, lcv;
612 psize_t npages;
613 struct vm_page *pgs;
614 struct vm_physseg *ps;
615
616 if (uvmexp.pagesize == 0)
617 panic("uvm_page_physload: page size not set!");
618
619 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
620 panic("uvm_page_physload: bad free list %d\n", free_list);
621
622 if (start >= end)
623 panic("uvm_page_physload: start >= end");
624
625 /*
626 * do we have room?
627 */
628 if (vm_nphysseg == VM_PHYSSEG_MAX) {
629 printf("uvm_page_physload: unable to load physical memory "
630 "segment\n");
631 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
632 VM_PHYSSEG_MAX, (long long)start, (long long)end);
633 printf("\tincrease VM_PHYSSEG_MAX\n");
634 return;
635 }
636
637 /*
638 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
639 * called yet, so malloc is not available).
640 */
641 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
642 if (vm_physmem[lcv].pgs)
643 break;
644 }
645 preload = (lcv == vm_nphysseg);
646
647 /*
648 * if VM is already running, attempt to malloc() vm_page structures
649 */
650 if (!preload) {
651 #if defined(VM_PHYSSEG_NOADD)
652 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
653 #else
654 /* XXXCDC: need some sort of lockout for this case */
655 paddr_t paddr;
656 npages = end - start; /* # of pages */
657 pgs = malloc(sizeof(struct vm_page) * npages,
658 M_VMPAGE, M_NOWAIT);
659 if (pgs == NULL) {
660 printf("uvm_page_physload: can not malloc vm_page "
661 "structs for segment\n");
662 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
663 return;
664 }
665 /* zero data, init phys_addr and free_list, and free pages */
666 memset(pgs, 0, sizeof(struct vm_page) * npages);
667 for (lcv = 0, paddr = ptoa(start) ;
668 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
669 pgs[lcv].phys_addr = paddr;
670 pgs[lcv].free_list = free_list;
671 if (atop(paddr) >= avail_start &&
672 atop(paddr) <= avail_end)
673 uvm_pagefree(&pgs[lcv]);
674 }
675 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
676 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
677 #endif
678 } else {
679
680 /* gcc complains if these don't get init'd */
681 pgs = NULL;
682 npages = 0;
683
684 }
685
686 /*
687 * now insert us in the proper place in vm_physmem[]
688 */
689
690 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
691
692 /* random: put it at the end (easy!) */
693 ps = &vm_physmem[vm_nphysseg];
694
695 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
696
697 {
698 int x;
699 /* sort by address for binary search */
700 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
701 if (start < vm_physmem[lcv].start)
702 break;
703 ps = &vm_physmem[lcv];
704 /* move back other entries, if necessary ... */
705 for (x = vm_nphysseg ; x > lcv ; x--)
706 /* structure copy */
707 vm_physmem[x] = vm_physmem[x - 1];
708 }
709
710 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
711
712 {
713 int x;
714 /* sort by largest segment first */
715 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
716 if ((end - start) >
717 (vm_physmem[lcv].end - vm_physmem[lcv].start))
718 break;
719 ps = &vm_physmem[lcv];
720 /* move back other entries, if necessary ... */
721 for (x = vm_nphysseg ; x > lcv ; x--)
722 /* structure copy */
723 vm_physmem[x] = vm_physmem[x - 1];
724 }
725
726 #else
727
728 panic("uvm_page_physload: unknown physseg strategy selected!");
729
730 #endif
731
732 ps->start = start;
733 ps->end = end;
734 ps->avail_start = avail_start;
735 ps->avail_end = avail_end;
736 if (preload) {
737 ps->pgs = NULL;
738 } else {
739 ps->pgs = pgs;
740 ps->lastpg = pgs + npages - 1;
741 }
742 ps->free_list = free_list;
743 vm_nphysseg++;
744
745 /*
746 * done!
747 */
748
749 if (!preload)
750 uvm_page_rehash();
751
752 return;
753 }
754
755 /*
756 * uvm_page_rehash: reallocate hash table based on number of free pages.
757 */
758
759 void
760 uvm_page_rehash()
761 {
762 int freepages, lcv, bucketcount, s, oldcount;
763 struct pglist *newbuckets, *oldbuckets;
764 struct vm_page *pg;
765 size_t newsize, oldsize;
766
767 /*
768 * compute number of pages that can go in the free pool
769 */
770
771 freepages = 0;
772 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
773 freepages +=
774 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
775
776 /*
777 * compute number of buckets needed for this number of pages
778 */
779
780 bucketcount = 1;
781 while (bucketcount < freepages)
782 bucketcount = bucketcount * 2;
783
784 /*
785 * compute the size of the current table and new table.
786 */
787
788 oldbuckets = uvm.page_hash;
789 oldcount = uvm.page_nhash;
790 oldsize = round_page(sizeof(struct pglist) * oldcount);
791 newsize = round_page(sizeof(struct pglist) * bucketcount);
792
793 /*
794 * allocate the new buckets
795 */
796
797 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
798 if (newbuckets == NULL) {
799 printf("uvm_page_physrehash: WARNING: could not grow page "
800 "hash table\n");
801 return;
802 }
803 for (lcv = 0 ; lcv < bucketcount ; lcv++)
804 TAILQ_INIT(&newbuckets[lcv]);
805
806 /*
807 * now replace the old buckets with the new ones and rehash everything
808 */
809
810 s = splvm();
811 simple_lock(&uvm.hashlock);
812 uvm.page_hash = newbuckets;
813 uvm.page_nhash = bucketcount;
814 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
815
816 /* ... and rehash */
817 for (lcv = 0 ; lcv < oldcount ; lcv++) {
818 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
819 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
820 TAILQ_INSERT_TAIL(
821 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
822 pg, hashq);
823 }
824 }
825 simple_unlock(&uvm.hashlock);
826 splx(s);
827
828 /*
829 * free old bucket array if is not the boot-time table
830 */
831
832 if (oldbuckets != &uvm_bootbucket)
833 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
834
835 /*
836 * done
837 */
838 return;
839 }
840
841
842 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
843
844 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
845
846 /* call from DDB */
847 void
848 uvm_page_physdump()
849 {
850 int lcv;
851
852 printf("rehash: physical memory config [segs=%d of %d]:\n",
853 vm_nphysseg, VM_PHYSSEG_MAX);
854 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
855 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
856 (long long)vm_physmem[lcv].start,
857 (long long)vm_physmem[lcv].end,
858 (long long)vm_physmem[lcv].avail_start,
859 (long long)vm_physmem[lcv].avail_end);
860 printf("STRATEGY = ");
861 switch (VM_PHYSSEG_STRAT) {
862 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
863 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
864 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
865 default: printf("<<UNKNOWN>>!!!!\n");
866 }
867 printf("number of buckets = %d\n", uvm.page_nhash);
868 }
869 #endif
870
871 /*
872 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
873 */
874
875 static __inline struct vm_page *
876 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
877 unsigned int *trycolorp)
878 {
879 struct pglist *freeq;
880 struct vm_page *pg;
881 int color, first, trycolor = *trycolorp;
882
883 for (color = trycolor, first = 1;
884 color != trycolor || first != 0;
885 color = ((color + 1) & VM_PGCOLOR_MASK), first = 0) {
886 if ((pg = TAILQ_FIRST((freeq =
887 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
888 goto gotit;
889 if ((pg = TAILQ_FIRST((freeq =
890 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
891 goto gotit;
892 }
893
894 return (NULL);
895
896 gotit:
897 TAILQ_REMOVE(freeq, pg, pageq);
898 uvmexp.free--;
899
900 /* update zero'd page count */
901 if (pg->flags & PG_ZERO)
902 uvmexp.zeropages--;
903
904 if (color == trycolor)
905 uvmexp.colorhit++;
906 else {
907 uvmexp.colormiss++;
908 *trycolorp = color;
909 }
910
911 return (pg);
912 }
913
914 /*
915 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
916 *
917 * => return null if no pages free
918 * => wake up pagedaemon if number of free pages drops below low water mark
919 * => if obj != NULL, obj must be locked (to put in hash)
920 * => if anon != NULL, anon must be locked (to put in anon)
921 * => only one of obj or anon can be non-null
922 * => caller must activate/deactivate page if it is not wired.
923 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
924 * => policy decision: it is more important to pull a page off of the
925 * appropriate priority free list than it is to get a zero'd or
926 * unknown contents page. This is because we live with the
927 * consequences of a bad free list decision for the entire
928 * lifetime of the page, e.g. if the page comes from memory that
929 * is slower to access.
930 */
931
932 struct vm_page *
933 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
934 struct uvm_object *obj;
935 voff_t off;
936 int flags;
937 struct vm_anon *anon;
938 int strat, free_list;
939 {
940 int lcv, try1, try2, s, zeroit = 0, color;
941 struct vm_page *pg;
942 boolean_t use_reserve;
943
944 KASSERT(obj == NULL || anon == NULL);
945 KASSERT(off == trunc_page(off));
946
947 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
948 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
949
950 s = uvm_lock_fpageq();
951
952 /*
953 * This implements a global round-robin page coloring
954 * algorithm.
955 *
956 * XXXJRT: Should we make the `nextcolor' per-cpu?
957 * XXXJRT: What about virtually-indexed caches?
958 */
959 color = uvm.page_free_nextcolor;
960
961 /*
962 * check to see if we need to generate some free pages waking
963 * the pagedaemon.
964 */
965
966 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
967 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
968 uvmexp.inactive < uvmexp.inactarg)) {
969 wakeup(&uvm.pagedaemon);
970 }
971
972 /*
973 * fail if any of these conditions is true:
974 * [1] there really are no free pages, or
975 * [2] only kernel "reserved" pages remain and
976 * the page isn't being allocated to a kernel object.
977 * [3] only pagedaemon "reserved" pages remain and
978 * the requestor isn't the pagedaemon.
979 */
980
981 use_reserve = (flags & UVM_PGA_USERESERVE) ||
982 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
983 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
984 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
985 !(use_reserve && curproc == uvm.pagedaemon_proc)))
986 goto fail;
987
988 #if PGFL_NQUEUES != 2
989 #error uvm_pagealloc_strat needs to be updated
990 #endif
991
992 /*
993 * If we want a zero'd page, try the ZEROS queue first, otherwise
994 * we try the UNKNOWN queue first.
995 */
996 if (flags & UVM_PGA_ZERO) {
997 try1 = PGFL_ZEROS;
998 try2 = PGFL_UNKNOWN;
999 } else {
1000 try1 = PGFL_UNKNOWN;
1001 try2 = PGFL_ZEROS;
1002 }
1003
1004 again:
1005 switch (strat) {
1006 case UVM_PGA_STRAT_NORMAL:
1007 /* Check all freelists in descending priority order. */
1008 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1009 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1010 try1, try2, &color);
1011 if (pg != NULL)
1012 goto gotit;
1013 }
1014
1015 /* No pages free! */
1016 goto fail;
1017
1018 case UVM_PGA_STRAT_ONLY:
1019 case UVM_PGA_STRAT_FALLBACK:
1020 /* Attempt to allocate from the specified free list. */
1021 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1022 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1023 try1, try2, &color);
1024 if (pg != NULL)
1025 goto gotit;
1026
1027 /* Fall back, if possible. */
1028 if (strat == UVM_PGA_STRAT_FALLBACK) {
1029 strat = UVM_PGA_STRAT_NORMAL;
1030 goto again;
1031 }
1032
1033 /* No pages free! */
1034 goto fail;
1035
1036 default:
1037 panic("uvm_pagealloc_strat: bad strat %d", strat);
1038 /* NOTREACHED */
1039 }
1040
1041 gotit:
1042 /*
1043 * We now know which color we actually allocated from; set
1044 * the next color accordingly.
1045 */
1046 uvm.page_free_nextcolor = (color + 1) & VM_PGCOLOR_MASK;
1047
1048 /*
1049 * update allocation statistics and remember if we have to
1050 * zero the page
1051 */
1052 if (flags & UVM_PGA_ZERO) {
1053 if (pg->flags & PG_ZERO) {
1054 uvmexp.pga_zerohit++;
1055 zeroit = 0;
1056 } else {
1057 uvmexp.pga_zeromiss++;
1058 zeroit = 1;
1059 }
1060 }
1061
1062 uvm_unlock_fpageq(s); /* unlock free page queue */
1063
1064 pg->offset = off;
1065 pg->uobject = obj;
1066 pg->uanon = anon;
1067 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1068 pg->version++;
1069 if (anon) {
1070 anon->u.an_page = pg;
1071 pg->pqflags = PQ_ANON;
1072 uvmexp.anonpages++;
1073 } else {
1074 if (obj)
1075 uvm_pageinsert(pg);
1076 pg->pqflags = 0;
1077 }
1078 #if defined(UVM_PAGE_TRKOWN)
1079 pg->owner_tag = NULL;
1080 #endif
1081 UVM_PAGE_OWN(pg, "new alloc");
1082
1083 if (flags & UVM_PGA_ZERO) {
1084 /*
1085 * A zero'd page is not clean. If we got a page not already
1086 * zero'd, then we have to zero it ourselves.
1087 */
1088 pg->flags &= ~PG_CLEAN;
1089 if (zeroit)
1090 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1091 }
1092
1093 return(pg);
1094
1095 fail:
1096 uvm_unlock_fpageq(s);
1097 return (NULL);
1098 }
1099
1100 /*
1101 * uvm_pagerealloc: reallocate a page from one object to another
1102 *
1103 * => both objects must be locked
1104 */
1105
1106 void
1107 uvm_pagerealloc(pg, newobj, newoff)
1108 struct vm_page *pg;
1109 struct uvm_object *newobj;
1110 voff_t newoff;
1111 {
1112 /*
1113 * remove it from the old object
1114 */
1115
1116 if (pg->uobject) {
1117 uvm_pageremove(pg);
1118 }
1119
1120 /*
1121 * put it in the new object
1122 */
1123
1124 if (newobj) {
1125 pg->uobject = newobj;
1126 pg->offset = newoff;
1127 pg->version++;
1128 uvm_pageinsert(pg);
1129 }
1130 }
1131
1132
1133 /*
1134 * uvm_pagefree: free page
1135 *
1136 * => erase page's identity (i.e. remove from hash/object)
1137 * => put page on free list
1138 * => caller must lock owning object (either anon or uvm_object)
1139 * => caller must lock page queues
1140 * => assumes all valid mappings of pg are gone
1141 */
1142
1143 void
1144 uvm_pagefree(pg)
1145 struct vm_page *pg;
1146 {
1147 int s;
1148 int saved_loan_count = pg->loan_count;
1149
1150 #ifdef DEBUG
1151 if (pg->uobject == (void *)0xdeadbeef &&
1152 pg->uanon == (void *)0xdeadbeef) {
1153 panic("uvm_pagefree: freeing free page %p\n", pg);
1154 }
1155 #endif
1156
1157 /*
1158 * if the page was an object page (and thus "TABLED"), remove it
1159 * from the object.
1160 */
1161
1162 if (pg->flags & PG_TABLED) {
1163
1164 /*
1165 * if the object page is on loan we are going to drop ownership.
1166 * it is possible that an anon will take over as owner for this
1167 * page later on. the anon will want a !PG_CLEAN page so that
1168 * it knows it needs to allocate swap if it wants to page the
1169 * page out.
1170 */
1171
1172 if (saved_loan_count)
1173 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1174 uvm_pageremove(pg);
1175
1176 /*
1177 * if our page was on loan, then we just lost control over it
1178 * (in fact, if it was loaned to an anon, the anon may have
1179 * already taken over ownership of the page by now and thus
1180 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1181 * return (when the last loan is dropped, then the page can be
1182 * freed by whatever was holding the last loan).
1183 */
1184
1185 if (saved_loan_count)
1186 return;
1187 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1188
1189 /*
1190 * if our page is owned by an anon and is loaned out to the
1191 * kernel then we just want to drop ownership and return.
1192 * the kernel must free the page when all its loans clear ...
1193 * note that the kernel can't change the loan status of our
1194 * page as long as we are holding PQ lock.
1195 */
1196
1197 pg->pqflags &= ~PQ_ANON;
1198 pg->uanon = NULL;
1199 return;
1200 }
1201 KASSERT(saved_loan_count == 0);
1202
1203 /*
1204 * now remove the page from the queues
1205 */
1206
1207 if (pg->pqflags & PQ_ACTIVE) {
1208 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1209 pg->pqflags &= ~PQ_ACTIVE;
1210 uvmexp.active--;
1211 }
1212 if (pg->pqflags & PQ_INACTIVE) {
1213 if (pg->pqflags & PQ_SWAPBACKED)
1214 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1215 else
1216 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1217 pg->pqflags &= ~PQ_INACTIVE;
1218 uvmexp.inactive--;
1219 }
1220
1221 /*
1222 * if the page was wired, unwire it now.
1223 */
1224
1225 if (pg->wire_count) {
1226 pg->wire_count = 0;
1227 uvmexp.wired--;
1228 }
1229 if (pg->uanon) {
1230 uvmexp.anonpages--;
1231 }
1232
1233 /*
1234 * and put on free queue
1235 */
1236
1237 pg->flags &= ~PG_ZERO;
1238
1239 s = uvm_lock_fpageq();
1240 TAILQ_INSERT_TAIL(&uvm.page_free[
1241 uvm_page_lookup_freelist(pg)].pgfl_buckets[
1242 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1243 pg->pqflags = PQ_FREE;
1244 #ifdef DEBUG
1245 pg->uobject = (void *)0xdeadbeef;
1246 pg->offset = 0xdeadbeef;
1247 pg->uanon = (void *)0xdeadbeef;
1248 #endif
1249 uvmexp.free++;
1250
1251 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1252 uvm.page_idle_zero = vm_page_zero_enable;
1253
1254 uvm_unlock_fpageq(s);
1255 }
1256
1257 /*
1258 * uvm_page_unbusy: unbusy an array of pages.
1259 *
1260 * => pages must either all belong to the same object, or all belong to anons.
1261 * => if pages are object-owned, object must be locked.
1262 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1263 */
1264
1265 void
1266 uvm_page_unbusy(pgs, npgs)
1267 struct vm_page **pgs;
1268 int npgs;
1269 {
1270 struct vm_page *pg;
1271 struct uvm_object *uobj;
1272 int i;
1273 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1274
1275 for (i = 0; i < npgs; i++) {
1276 pg = pgs[i];
1277
1278 if (pg == NULL) {
1279 continue;
1280 }
1281 if (pg->flags & PG_WANTED) {
1282 wakeup(pg);
1283 }
1284 if (pg->flags & PG_RELEASED) {
1285 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1286 uobj = pg->uobject;
1287 if (uobj != NULL) {
1288 uobj->pgops->pgo_releasepg(pg, NULL);
1289 } else {
1290 pg->flags &= ~(PG_BUSY);
1291 UVM_PAGE_OWN(pg, NULL);
1292 uvm_anfree(pg->uanon);
1293 }
1294 } else {
1295 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1296 KASSERT(pg->wire_count ||
1297 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1298 pg->flags &= ~(PG_WANTED|PG_BUSY);
1299 UVM_PAGE_OWN(pg, NULL);
1300 }
1301 }
1302 }
1303
1304 #if defined(UVM_PAGE_TRKOWN)
1305 /*
1306 * uvm_page_own: set or release page ownership
1307 *
1308 * => this is a debugging function that keeps track of who sets PG_BUSY
1309 * and where they do it. it can be used to track down problems
1310 * such a process setting "PG_BUSY" and never releasing it.
1311 * => page's object [if any] must be locked
1312 * => if "tag" is NULL then we are releasing page ownership
1313 */
1314 void
1315 uvm_page_own(pg, tag)
1316 struct vm_page *pg;
1317 char *tag;
1318 {
1319 /* gain ownership? */
1320 if (tag) {
1321 if (pg->owner_tag) {
1322 printf("uvm_page_own: page %p already owned "
1323 "by proc %d [%s]\n", pg,
1324 pg->owner, pg->owner_tag);
1325 panic("uvm_page_own");
1326 }
1327 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1328 pg->owner_tag = tag;
1329 return;
1330 }
1331
1332 /* drop ownership */
1333 if (pg->owner_tag == NULL) {
1334 printf("uvm_page_own: dropping ownership of an non-owned "
1335 "page (%p)\n", pg);
1336 panic("uvm_page_own");
1337 }
1338 pg->owner_tag = NULL;
1339 return;
1340 }
1341 #endif
1342
1343 /*
1344 * uvm_pageidlezero: zero free pages while the system is idle.
1345 *
1346 * => try to complete one color bucket at a time, to reduce our impact
1347 * on the CPU cache.
1348 * => we loop until we either reach the target or whichqs indicates that
1349 * there is a process ready to run.
1350 */
1351 void
1352 uvm_pageidlezero()
1353 {
1354 struct vm_page *pg;
1355 struct pgfreelist *pgfl;
1356 int free_list, s, bucket, firstbucket = -1;
1357 static int nextbucket;
1358
1359 s = uvm_lock_fpageq();
1360
1361 for (bucket = nextbucket; nextbucket != firstbucket;
1362 nextbucket = (nextbucket + 1) & VM_PGCOLOR_MASK) {
1363 if (firstbucket == -1)
1364 firstbucket = nextbucket;
1365
1366 if (sched_whichqs != 0) {
1367 uvm_unlock_fpageq(s);
1368 return;
1369 }
1370
1371 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1372 uvm.page_idle_zero = FALSE;
1373 uvm_unlock_fpageq(s);
1374 return;
1375 }
1376
1377 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1378 pgfl = &uvm.page_free[free_list];
1379 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1380 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1381 if (sched_whichqs != 0) {
1382 uvm_unlock_fpageq(s);
1383 return;
1384 }
1385
1386 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1387 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1388 pg, pageq);
1389 uvmexp.free--;
1390 uvm_unlock_fpageq(s);
1391 #ifdef PMAP_PAGEIDLEZERO
1392 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) ==
1393 FALSE) {
1394 /*
1395 * The machine-dependent code detected
1396 * some reason for us to abort zeroing
1397 * pages, probably because there is a
1398 * process now ready to run.
1399 */
1400 s = uvm_lock_fpageq();
1401 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1402 nextbucket].pgfl_queues[
1403 PGFL_UNKNOWN], pg, pageq);
1404 uvmexp.free++;
1405 uvmexp.zeroaborts++;
1406 uvm_unlock_fpageq(s);
1407 return;
1408 }
1409 #else
1410 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1411 #endif /* PMAP_PAGEIDLEZERO */
1412 pg->flags |= PG_ZERO;
1413
1414 s = uvm_lock_fpageq();
1415 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1416 nextbucket].pgfl_queues[PGFL_ZEROS],
1417 pg, pageq);
1418 uvmexp.free++;
1419 uvmexp.zeropages++;
1420 }
1421 }
1422 }
1423
1424 uvm_unlock_fpageq(s);
1425 }
1426