uvm_page.c revision 1.58 1 /* $NetBSD: uvm_page.c,v 1.58 2001/05/01 14:02:56 enami Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81
82 #define UVM_PAGE /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84
85 /*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89 /*
90 * physical memory config is stored in vm_physmem.
91 */
92
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
95
96 /*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101 /*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105 boolean_t vm_page_zero_enable = FALSE;
106
107 /*
108 * local variables
109 */
110
111 /*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes. The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117 static vaddr_t virtual_space_start;
118 static vaddr_t virtual_space_end;
119
120 /*
121 * we use a hash table with only one bucket during bootup. we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126 static struct pglist uvm_bootbucket;
127
128 /*
129 * local prototypes
130 */
131
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134
135 /*
136 * inline functions
137 */
138
139 /*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 * and bumped the version counter
146 */
147
148 __inline static void
149 uvm_pageinsert(pg)
150 struct vm_page *pg;
151 {
152 struct pglist *buck;
153 int s;
154
155 KASSERT((pg->flags & PG_TABLED) == 0);
156 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 s = splvm();
158 simple_lock(&uvm.hashlock);
159 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */
160 simple_unlock(&uvm.hashlock);
161 splx(s);
162
163 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 pg->flags |= PG_TABLED;
165 pg->uobject->uo_npages++;
166 }
167
168 /*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175 static __inline void
176 uvm_pageremove(pg)
177 struct vm_page *pg;
178 {
179 struct pglist *buck;
180 int s;
181
182 KASSERT(pg->flags & PG_TABLED);
183 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 s = splvm();
185 simple_lock(&uvm.hashlock);
186 TAILQ_REMOVE(buck, pg, hashq);
187 simple_unlock(&uvm.hashlock);
188 splx(s);
189
190 if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 uvmexp.vtextpages--;
192 } else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 uvmexp.vnodepages--;
194 }
195
196 /* object should be locked */
197 TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199 pg->flags &= ~PG_TABLED;
200 pg->uobject->uo_npages--;
201 pg->uobject = NULL;
202 pg->version++;
203 }
204
205 /*
206 * uvm_page_init: init the page system. called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 vaddr_t *kvm_startp, *kvm_endp;
214 {
215 vsize_t freepages, pagecount, n;
216 vm_page_t pagearray;
217 int lcv, color, i;
218 paddr_t paddr;
219
220 /*
221 * init the page queues and page queue locks
222 */
223
224 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 for (color = 0; color < VM_PGCOLOR_BUCKETS; color++) {
226 for (i = 0; i < PGFL_NQUEUES; i++) {
227 TAILQ_INIT(&uvm.page_free[lcv].pgfl_buckets[
228 color].pgfl_queues[i]);
229 }
230 }
231 }
232 TAILQ_INIT(&uvm.page_active);
233 TAILQ_INIT(&uvm.page_inactive_swp);
234 TAILQ_INIT(&uvm.page_inactive_obj);
235 simple_lock_init(&uvm.pageqlock);
236 simple_lock_init(&uvm.fpageqlock);
237
238 /*
239 * init the <obj,offset> => <page> hash table. for now
240 * we just have one bucket (the bootstrap bucket). later on we
241 * will allocate new buckets as we dynamically resize the hash table.
242 */
243
244 uvm.page_nhash = 1; /* 1 bucket */
245 uvm.page_hashmask = 0; /* mask for hash function */
246 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
247 TAILQ_INIT(uvm.page_hash); /* init hash table */
248 simple_lock_init(&uvm.hashlock); /* init hash table lock */
249
250 /*
251 * allocate vm_page structures.
252 */
253
254 /*
255 * sanity check:
256 * before calling this function the MD code is expected to register
257 * some free RAM with the uvm_page_physload() function. our job
258 * now is to allocate vm_page structures for this memory.
259 */
260
261 if (vm_nphysseg == 0)
262 panic("uvm_page_bootstrap: no memory pre-allocated");
263
264 /*
265 * first calculate the number of free pages...
266 *
267 * note that we use start/end rather than avail_start/avail_end.
268 * this allows us to allocate extra vm_page structures in case we
269 * want to return some memory to the pool after booting.
270 */
271
272 freepages = 0;
273 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
274 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
275
276 /*
277 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
278 * use. for each page of memory we use we need a vm_page structure.
279 * thus, the total number of pages we can use is the total size of
280 * the memory divided by the PAGE_SIZE plus the size of the vm_page
281 * structure. we add one to freepages as a fudge factor to avoid
282 * truncation errors (since we can only allocate in terms of whole
283 * pages).
284 */
285
286 pagecount = ((freepages + 1) << PAGE_SHIFT) /
287 (PAGE_SIZE + sizeof(struct vm_page));
288 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
289 sizeof(struct vm_page));
290 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
291
292 /*
293 * init the vm_page structures and put them in the correct place.
294 */
295
296 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
297 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
298 if (n > pagecount) {
299 printf("uvm_page_init: lost %ld page(s) in init\n",
300 (long)(n - pagecount));
301 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */
302 /* n = pagecount; */
303 }
304
305 /* set up page array pointers */
306 vm_physmem[lcv].pgs = pagearray;
307 pagearray += n;
308 pagecount -= n;
309 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
310
311 /* init and free vm_pages (we've already zeroed them) */
312 paddr = ptoa(vm_physmem[lcv].start);
313 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
314 vm_physmem[lcv].pgs[i].phys_addr = paddr;
315 #ifdef __HAVE_VM_PAGE_MD
316 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
317 #endif
318 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
319 atop(paddr) <= vm_physmem[lcv].avail_end) {
320 uvmexp.npages++;
321 /* add page to free pool */
322 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
323 }
324 }
325 }
326
327 /*
328 * pass up the values of virtual_space_start and
329 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
330 * layers of the VM.
331 */
332
333 *kvm_startp = round_page(virtual_space_start);
334 *kvm_endp = trunc_page(virtual_space_end);
335
336 /*
337 * init locks for kernel threads
338 */
339
340 simple_lock_init(&uvm.pagedaemon_lock);
341 simple_lock_init(&uvm.aiodoned_lock);
342
343 /*
344 * init various thresholds.
345 * XXXCDC - values may need adjusting
346 */
347
348 uvmexp.reserve_pagedaemon = 1;
349 uvmexp.reserve_kernel = 5;
350 uvmexp.anonminpct = 10;
351 uvmexp.vnodeminpct = 10;
352 uvmexp.vtextminpct = 5;
353 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
354 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
355 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
356
357 /*
358 * determine if we should zero pages in the idle loop.
359 */
360
361 uvm.page_idle_zero = vm_page_zero_enable;
362
363 /*
364 * done!
365 */
366
367 uvm.page_init_done = TRUE;
368 }
369
370 /*
371 * uvm_setpagesize: set the page size
372 *
373 * => sets page_shift and page_mask from uvmexp.pagesize.
374 */
375
376 void
377 uvm_setpagesize()
378 {
379 if (uvmexp.pagesize == 0)
380 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
381 uvmexp.pagemask = uvmexp.pagesize - 1;
382 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
383 panic("uvm_setpagesize: page size not a power of two");
384 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
385 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
386 break;
387 }
388
389 /*
390 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
391 */
392
393 vaddr_t
394 uvm_pageboot_alloc(size)
395 vsize_t size;
396 {
397 static boolean_t initialized = FALSE;
398 vaddr_t addr;
399 #if !defined(PMAP_STEAL_MEMORY)
400 vaddr_t vaddr;
401 paddr_t paddr;
402 #endif
403
404 /*
405 * on first call to this function, initialize ourselves.
406 */
407 if (initialized == FALSE) {
408 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
409
410 /* round it the way we like it */
411 virtual_space_start = round_page(virtual_space_start);
412 virtual_space_end = trunc_page(virtual_space_end);
413
414 initialized = TRUE;
415 }
416
417 /* round to page size */
418 size = round_page(size);
419
420 #if defined(PMAP_STEAL_MEMORY)
421
422 /*
423 * defer bootstrap allocation to MD code (it may want to allocate
424 * from a direct-mapped segment). pmap_steal_memory should adjust
425 * virtual_space_start/virtual_space_end if necessary.
426 */
427
428 addr = pmap_steal_memory(size, &virtual_space_start,
429 &virtual_space_end);
430
431 return(addr);
432
433 #else /* !PMAP_STEAL_MEMORY */
434
435 /*
436 * allocate virtual memory for this request
437 */
438 if (virtual_space_start == virtual_space_end ||
439 (virtual_space_end - virtual_space_start) < size)
440 panic("uvm_pageboot_alloc: out of virtual space");
441
442 addr = virtual_space_start;
443
444 #ifdef PMAP_GROWKERNEL
445 /*
446 * If the kernel pmap can't map the requested space,
447 * then allocate more resources for it.
448 */
449 if (uvm_maxkaddr < (addr + size)) {
450 uvm_maxkaddr = pmap_growkernel(addr + size);
451 if (uvm_maxkaddr < (addr + size))
452 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
453 }
454 #endif
455
456 virtual_space_start += size;
457
458 /*
459 * allocate and mapin physical pages to back new virtual pages
460 */
461
462 for (vaddr = round_page(addr) ; vaddr < addr + size ;
463 vaddr += PAGE_SIZE) {
464
465 if (!uvm_page_physget(&paddr))
466 panic("uvm_pageboot_alloc: out of memory");
467
468 /*
469 * Note this memory is no longer managed, so using
470 * pmap_kenter is safe.
471 */
472 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
473 }
474 pmap_update();
475 return(addr);
476 #endif /* PMAP_STEAL_MEMORY */
477 }
478
479 #if !defined(PMAP_STEAL_MEMORY)
480 /*
481 * uvm_page_physget: "steal" one page from the vm_physmem structure.
482 *
483 * => attempt to allocate it off the end of a segment in which the "avail"
484 * values match the start/end values. if we can't do that, then we
485 * will advance both values (making them equal, and removing some
486 * vm_page structures from the non-avail area).
487 * => return false if out of memory.
488 */
489
490 /* subroutine: try to allocate from memory chunks on the specified freelist */
491 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
492
493 static boolean_t
494 uvm_page_physget_freelist(paddrp, freelist)
495 paddr_t *paddrp;
496 int freelist;
497 {
498 int lcv, x;
499
500 /* pass 1: try allocating from a matching end */
501 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
502 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
503 #else
504 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
505 #endif
506 {
507
508 if (uvm.page_init_done == TRUE)
509 panic("uvm_page_physget: called _after_ bootstrap");
510
511 if (vm_physmem[lcv].free_list != freelist)
512 continue;
513
514 /* try from front */
515 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
516 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
517 *paddrp = ptoa(vm_physmem[lcv].avail_start);
518 vm_physmem[lcv].avail_start++;
519 vm_physmem[lcv].start++;
520 /* nothing left? nuke it */
521 if (vm_physmem[lcv].avail_start ==
522 vm_physmem[lcv].end) {
523 if (vm_nphysseg == 1)
524 panic("vum_page_physget: out of memory!");
525 vm_nphysseg--;
526 for (x = lcv ; x < vm_nphysseg ; x++)
527 /* structure copy */
528 vm_physmem[x] = vm_physmem[x+1];
529 }
530 return (TRUE);
531 }
532
533 /* try from rear */
534 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
535 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
536 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
537 vm_physmem[lcv].avail_end--;
538 vm_physmem[lcv].end--;
539 /* nothing left? nuke it */
540 if (vm_physmem[lcv].avail_end ==
541 vm_physmem[lcv].start) {
542 if (vm_nphysseg == 1)
543 panic("uvm_page_physget: out of memory!");
544 vm_nphysseg--;
545 for (x = lcv ; x < vm_nphysseg ; x++)
546 /* structure copy */
547 vm_physmem[x] = vm_physmem[x+1];
548 }
549 return (TRUE);
550 }
551 }
552
553 /* pass2: forget about matching ends, just allocate something */
554 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
555 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
556 #else
557 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
558 #endif
559 {
560
561 /* any room in this bank? */
562 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
563 continue; /* nope */
564
565 *paddrp = ptoa(vm_physmem[lcv].avail_start);
566 vm_physmem[lcv].avail_start++;
567 /* truncate! */
568 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
569
570 /* nothing left? nuke it */
571 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
572 if (vm_nphysseg == 1)
573 panic("uvm_page_physget: out of memory!");
574 vm_nphysseg--;
575 for (x = lcv ; x < vm_nphysseg ; x++)
576 /* structure copy */
577 vm_physmem[x] = vm_physmem[x+1];
578 }
579 return (TRUE);
580 }
581
582 return (FALSE); /* whoops! */
583 }
584
585 boolean_t
586 uvm_page_physget(paddrp)
587 paddr_t *paddrp;
588 {
589 int i;
590
591 /* try in the order of freelist preference */
592 for (i = 0; i < VM_NFREELIST; i++)
593 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
594 return (TRUE);
595 return (FALSE);
596 }
597 #endif /* PMAP_STEAL_MEMORY */
598
599 /*
600 * uvm_page_physload: load physical memory into VM system
601 *
602 * => all args are PFs
603 * => all pages in start/end get vm_page structures
604 * => areas marked by avail_start/avail_end get added to the free page pool
605 * => we are limited to VM_PHYSSEG_MAX physical memory segments
606 */
607
608 void
609 uvm_page_physload(start, end, avail_start, avail_end, free_list)
610 paddr_t start, end, avail_start, avail_end;
611 int free_list;
612 {
613 int preload, lcv;
614 psize_t npages;
615 struct vm_page *pgs;
616 struct vm_physseg *ps;
617
618 if (uvmexp.pagesize == 0)
619 panic("uvm_page_physload: page size not set!");
620
621 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
622 panic("uvm_page_physload: bad free list %d\n", free_list);
623
624 if (start >= end)
625 panic("uvm_page_physload: start >= end");
626
627 /*
628 * do we have room?
629 */
630 if (vm_nphysseg == VM_PHYSSEG_MAX) {
631 printf("uvm_page_physload: unable to load physical memory "
632 "segment\n");
633 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
634 VM_PHYSSEG_MAX, (long long)start, (long long)end);
635 printf("\tincrease VM_PHYSSEG_MAX\n");
636 return;
637 }
638
639 /*
640 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
641 * called yet, so malloc is not available).
642 */
643 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
644 if (vm_physmem[lcv].pgs)
645 break;
646 }
647 preload = (lcv == vm_nphysseg);
648
649 /*
650 * if VM is already running, attempt to malloc() vm_page structures
651 */
652 if (!preload) {
653 #if defined(VM_PHYSSEG_NOADD)
654 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
655 #else
656 /* XXXCDC: need some sort of lockout for this case */
657 paddr_t paddr;
658 npages = end - start; /* # of pages */
659 pgs = malloc(sizeof(struct vm_page) * npages,
660 M_VMPAGE, M_NOWAIT);
661 if (pgs == NULL) {
662 printf("uvm_page_physload: can not malloc vm_page "
663 "structs for segment\n");
664 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
665 return;
666 }
667 /* zero data, init phys_addr and free_list, and free pages */
668 memset(pgs, 0, sizeof(struct vm_page) * npages);
669 for (lcv = 0, paddr = ptoa(start) ;
670 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
671 pgs[lcv].phys_addr = paddr;
672 pgs[lcv].free_list = free_list;
673 if (atop(paddr) >= avail_start &&
674 atop(paddr) <= avail_end)
675 uvm_pagefree(&pgs[lcv]);
676 }
677 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
678 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
679 #endif
680 } else {
681
682 /* gcc complains if these don't get init'd */
683 pgs = NULL;
684 npages = 0;
685
686 }
687
688 /*
689 * now insert us in the proper place in vm_physmem[]
690 */
691
692 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
693
694 /* random: put it at the end (easy!) */
695 ps = &vm_physmem[vm_nphysseg];
696
697 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
698
699 {
700 int x;
701 /* sort by address for binary search */
702 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
703 if (start < vm_physmem[lcv].start)
704 break;
705 ps = &vm_physmem[lcv];
706 /* move back other entries, if necessary ... */
707 for (x = vm_nphysseg ; x > lcv ; x--)
708 /* structure copy */
709 vm_physmem[x] = vm_physmem[x - 1];
710 }
711
712 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
713
714 {
715 int x;
716 /* sort by largest segment first */
717 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
718 if ((end - start) >
719 (vm_physmem[lcv].end - vm_physmem[lcv].start))
720 break;
721 ps = &vm_physmem[lcv];
722 /* move back other entries, if necessary ... */
723 for (x = vm_nphysseg ; x > lcv ; x--)
724 /* structure copy */
725 vm_physmem[x] = vm_physmem[x - 1];
726 }
727
728 #else
729
730 panic("uvm_page_physload: unknown physseg strategy selected!");
731
732 #endif
733
734 ps->start = start;
735 ps->end = end;
736 ps->avail_start = avail_start;
737 ps->avail_end = avail_end;
738 if (preload) {
739 ps->pgs = NULL;
740 } else {
741 ps->pgs = pgs;
742 ps->lastpg = pgs + npages - 1;
743 }
744 ps->free_list = free_list;
745 vm_nphysseg++;
746
747 /*
748 * done!
749 */
750
751 if (!preload)
752 uvm_page_rehash();
753
754 return;
755 }
756
757 /*
758 * uvm_page_rehash: reallocate hash table based on number of free pages.
759 */
760
761 void
762 uvm_page_rehash()
763 {
764 int freepages, lcv, bucketcount, s, oldcount;
765 struct pglist *newbuckets, *oldbuckets;
766 struct vm_page *pg;
767 size_t newsize, oldsize;
768
769 /*
770 * compute number of pages that can go in the free pool
771 */
772
773 freepages = 0;
774 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
775 freepages +=
776 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
777
778 /*
779 * compute number of buckets needed for this number of pages
780 */
781
782 bucketcount = 1;
783 while (bucketcount < freepages)
784 bucketcount = bucketcount * 2;
785
786 /*
787 * compute the size of the current table and new table.
788 */
789
790 oldbuckets = uvm.page_hash;
791 oldcount = uvm.page_nhash;
792 oldsize = round_page(sizeof(struct pglist) * oldcount);
793 newsize = round_page(sizeof(struct pglist) * bucketcount);
794
795 /*
796 * allocate the new buckets
797 */
798
799 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
800 if (newbuckets == NULL) {
801 printf("uvm_page_physrehash: WARNING: could not grow page "
802 "hash table\n");
803 return;
804 }
805 for (lcv = 0 ; lcv < bucketcount ; lcv++)
806 TAILQ_INIT(&newbuckets[lcv]);
807
808 /*
809 * now replace the old buckets with the new ones and rehash everything
810 */
811
812 s = splvm();
813 simple_lock(&uvm.hashlock);
814 uvm.page_hash = newbuckets;
815 uvm.page_nhash = bucketcount;
816 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
817
818 /* ... and rehash */
819 for (lcv = 0 ; lcv < oldcount ; lcv++) {
820 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
821 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
822 TAILQ_INSERT_TAIL(
823 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
824 pg, hashq);
825 }
826 }
827 simple_unlock(&uvm.hashlock);
828 splx(s);
829
830 /*
831 * free old bucket array if is not the boot-time table
832 */
833
834 if (oldbuckets != &uvm_bootbucket)
835 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
836
837 /*
838 * done
839 */
840 return;
841 }
842
843
844 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
845
846 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
847
848 /* call from DDB */
849 void
850 uvm_page_physdump()
851 {
852 int lcv;
853
854 printf("rehash: physical memory config [segs=%d of %d]:\n",
855 vm_nphysseg, VM_PHYSSEG_MAX);
856 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
857 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
858 (long long)vm_physmem[lcv].start,
859 (long long)vm_physmem[lcv].end,
860 (long long)vm_physmem[lcv].avail_start,
861 (long long)vm_physmem[lcv].avail_end);
862 printf("STRATEGY = ");
863 switch (VM_PHYSSEG_STRAT) {
864 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
865 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
866 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
867 default: printf("<<UNKNOWN>>!!!!\n");
868 }
869 printf("number of buckets = %d\n", uvm.page_nhash);
870 }
871 #endif
872
873 /*
874 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
875 */
876
877 static __inline struct vm_page *
878 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
879 unsigned int *trycolorp)
880 {
881 struct pglist *freeq;
882 struct vm_page *pg;
883 int color, trycolor = *trycolorp;
884
885 color = trycolor;
886 do {
887 if ((pg = TAILQ_FIRST((freeq =
888 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
889 goto gotit;
890 if ((pg = TAILQ_FIRST((freeq =
891 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
892 goto gotit;
893 color = (color + 1) & VM_PGCOLOR_MASK;
894 } while (color != trycolor);
895
896 return (NULL);
897
898 gotit:
899 TAILQ_REMOVE(freeq, pg, pageq);
900 uvmexp.free--;
901
902 /* update zero'd page count */
903 if (pg->flags & PG_ZERO)
904 uvmexp.zeropages--;
905
906 if (color == trycolor)
907 uvmexp.colorhit++;
908 else {
909 uvmexp.colormiss++;
910 *trycolorp = color;
911 }
912
913 return (pg);
914 }
915
916 /*
917 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
918 *
919 * => return null if no pages free
920 * => wake up pagedaemon if number of free pages drops below low water mark
921 * => if obj != NULL, obj must be locked (to put in hash)
922 * => if anon != NULL, anon must be locked (to put in anon)
923 * => only one of obj or anon can be non-null
924 * => caller must activate/deactivate page if it is not wired.
925 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
926 * => policy decision: it is more important to pull a page off of the
927 * appropriate priority free list than it is to get a zero'd or
928 * unknown contents page. This is because we live with the
929 * consequences of a bad free list decision for the entire
930 * lifetime of the page, e.g. if the page comes from memory that
931 * is slower to access.
932 */
933
934 struct vm_page *
935 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
936 struct uvm_object *obj;
937 voff_t off;
938 int flags;
939 struct vm_anon *anon;
940 int strat, free_list;
941 {
942 int lcv, try1, try2, s, zeroit = 0, color;
943 struct vm_page *pg;
944 boolean_t use_reserve;
945
946 KASSERT(obj == NULL || anon == NULL);
947 KASSERT(off == trunc_page(off));
948
949 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
950 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
951
952 s = uvm_lock_fpageq();
953
954 /*
955 * This implements a global round-robin page coloring
956 * algorithm.
957 *
958 * XXXJRT: Should we make the `nextcolor' per-cpu?
959 * XXXJRT: What about virtually-indexed caches?
960 */
961 color = uvm.page_free_nextcolor;
962
963 /*
964 * check to see if we need to generate some free pages waking
965 * the pagedaemon.
966 */
967
968 if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
969 (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
970 uvmexp.inactive < uvmexp.inactarg)) {
971 wakeup(&uvm.pagedaemon);
972 }
973
974 /*
975 * fail if any of these conditions is true:
976 * [1] there really are no free pages, or
977 * [2] only kernel "reserved" pages remain and
978 * the page isn't being allocated to a kernel object.
979 * [3] only pagedaemon "reserved" pages remain and
980 * the requestor isn't the pagedaemon.
981 */
982
983 use_reserve = (flags & UVM_PGA_USERESERVE) ||
984 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
985 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
986 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
987 !(use_reserve && curproc == uvm.pagedaemon_proc)))
988 goto fail;
989
990 #if PGFL_NQUEUES != 2
991 #error uvm_pagealloc_strat needs to be updated
992 #endif
993
994 /*
995 * If we want a zero'd page, try the ZEROS queue first, otherwise
996 * we try the UNKNOWN queue first.
997 */
998 if (flags & UVM_PGA_ZERO) {
999 try1 = PGFL_ZEROS;
1000 try2 = PGFL_UNKNOWN;
1001 } else {
1002 try1 = PGFL_UNKNOWN;
1003 try2 = PGFL_ZEROS;
1004 }
1005
1006 again:
1007 switch (strat) {
1008 case UVM_PGA_STRAT_NORMAL:
1009 /* Check all freelists in descending priority order. */
1010 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1011 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1012 try1, try2, &color);
1013 if (pg != NULL)
1014 goto gotit;
1015 }
1016
1017 /* No pages free! */
1018 goto fail;
1019
1020 case UVM_PGA_STRAT_ONLY:
1021 case UVM_PGA_STRAT_FALLBACK:
1022 /* Attempt to allocate from the specified free list. */
1023 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1024 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1025 try1, try2, &color);
1026 if (pg != NULL)
1027 goto gotit;
1028
1029 /* Fall back, if possible. */
1030 if (strat == UVM_PGA_STRAT_FALLBACK) {
1031 strat = UVM_PGA_STRAT_NORMAL;
1032 goto again;
1033 }
1034
1035 /* No pages free! */
1036 goto fail;
1037
1038 default:
1039 panic("uvm_pagealloc_strat: bad strat %d", strat);
1040 /* NOTREACHED */
1041 }
1042
1043 gotit:
1044 /*
1045 * We now know which color we actually allocated from; set
1046 * the next color accordingly.
1047 */
1048 uvm.page_free_nextcolor = (color + 1) & VM_PGCOLOR_MASK;
1049
1050 /*
1051 * update allocation statistics and remember if we have to
1052 * zero the page
1053 */
1054 if (flags & UVM_PGA_ZERO) {
1055 if (pg->flags & PG_ZERO) {
1056 uvmexp.pga_zerohit++;
1057 zeroit = 0;
1058 } else {
1059 uvmexp.pga_zeromiss++;
1060 zeroit = 1;
1061 }
1062 }
1063
1064 uvm_unlock_fpageq(s); /* unlock free page queue */
1065
1066 pg->offset = off;
1067 pg->uobject = obj;
1068 pg->uanon = anon;
1069 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1070 pg->version++;
1071 if (anon) {
1072 anon->u.an_page = pg;
1073 pg->pqflags = PQ_ANON;
1074 uvmexp.anonpages++;
1075 } else {
1076 if (obj)
1077 uvm_pageinsert(pg);
1078 pg->pqflags = 0;
1079 }
1080 #if defined(UVM_PAGE_TRKOWN)
1081 pg->owner_tag = NULL;
1082 #endif
1083 UVM_PAGE_OWN(pg, "new alloc");
1084
1085 if (flags & UVM_PGA_ZERO) {
1086 /*
1087 * A zero'd page is not clean. If we got a page not already
1088 * zero'd, then we have to zero it ourselves.
1089 */
1090 pg->flags &= ~PG_CLEAN;
1091 if (zeroit)
1092 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1093 }
1094
1095 return(pg);
1096
1097 fail:
1098 uvm_unlock_fpageq(s);
1099 return (NULL);
1100 }
1101
1102 /*
1103 * uvm_pagerealloc: reallocate a page from one object to another
1104 *
1105 * => both objects must be locked
1106 */
1107
1108 void
1109 uvm_pagerealloc(pg, newobj, newoff)
1110 struct vm_page *pg;
1111 struct uvm_object *newobj;
1112 voff_t newoff;
1113 {
1114 /*
1115 * remove it from the old object
1116 */
1117
1118 if (pg->uobject) {
1119 uvm_pageremove(pg);
1120 }
1121
1122 /*
1123 * put it in the new object
1124 */
1125
1126 if (newobj) {
1127 pg->uobject = newobj;
1128 pg->offset = newoff;
1129 pg->version++;
1130 uvm_pageinsert(pg);
1131 }
1132 }
1133
1134
1135 /*
1136 * uvm_pagefree: free page
1137 *
1138 * => erase page's identity (i.e. remove from hash/object)
1139 * => put page on free list
1140 * => caller must lock owning object (either anon or uvm_object)
1141 * => caller must lock page queues
1142 * => assumes all valid mappings of pg are gone
1143 */
1144
1145 void
1146 uvm_pagefree(pg)
1147 struct vm_page *pg;
1148 {
1149 int s;
1150 int saved_loan_count = pg->loan_count;
1151
1152 #ifdef DEBUG
1153 if (pg->uobject == (void *)0xdeadbeef &&
1154 pg->uanon == (void *)0xdeadbeef) {
1155 panic("uvm_pagefree: freeing free page %p\n", pg);
1156 }
1157 #endif
1158
1159 /*
1160 * if the page was an object page (and thus "TABLED"), remove it
1161 * from the object.
1162 */
1163
1164 if (pg->flags & PG_TABLED) {
1165
1166 /*
1167 * if the object page is on loan we are going to drop ownership.
1168 * it is possible that an anon will take over as owner for this
1169 * page later on. the anon will want a !PG_CLEAN page so that
1170 * it knows it needs to allocate swap if it wants to page the
1171 * page out.
1172 */
1173
1174 if (saved_loan_count)
1175 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */
1176 uvm_pageremove(pg);
1177
1178 /*
1179 * if our page was on loan, then we just lost control over it
1180 * (in fact, if it was loaned to an anon, the anon may have
1181 * already taken over ownership of the page by now and thus
1182 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1183 * return (when the last loan is dropped, then the page can be
1184 * freed by whatever was holding the last loan).
1185 */
1186
1187 if (saved_loan_count)
1188 return;
1189 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1190
1191 /*
1192 * if our page is owned by an anon and is loaned out to the
1193 * kernel then we just want to drop ownership and return.
1194 * the kernel must free the page when all its loans clear ...
1195 * note that the kernel can't change the loan status of our
1196 * page as long as we are holding PQ lock.
1197 */
1198
1199 pg->pqflags &= ~PQ_ANON;
1200 pg->uanon = NULL;
1201 return;
1202 }
1203 KASSERT(saved_loan_count == 0);
1204
1205 /*
1206 * now remove the page from the queues
1207 */
1208
1209 if (pg->pqflags & PQ_ACTIVE) {
1210 TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1211 pg->pqflags &= ~PQ_ACTIVE;
1212 uvmexp.active--;
1213 }
1214 if (pg->pqflags & PQ_INACTIVE) {
1215 if (pg->pqflags & PQ_SWAPBACKED)
1216 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1217 else
1218 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1219 pg->pqflags &= ~PQ_INACTIVE;
1220 uvmexp.inactive--;
1221 }
1222
1223 /*
1224 * if the page was wired, unwire it now.
1225 */
1226
1227 if (pg->wire_count) {
1228 pg->wire_count = 0;
1229 uvmexp.wired--;
1230 }
1231 if (pg->uanon) {
1232 uvmexp.anonpages--;
1233 }
1234
1235 /*
1236 * and put on free queue
1237 */
1238
1239 pg->flags &= ~PG_ZERO;
1240
1241 s = uvm_lock_fpageq();
1242 TAILQ_INSERT_TAIL(&uvm.page_free[
1243 uvm_page_lookup_freelist(pg)].pgfl_buckets[
1244 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1245 pg->pqflags = PQ_FREE;
1246 #ifdef DEBUG
1247 pg->uobject = (void *)0xdeadbeef;
1248 pg->offset = 0xdeadbeef;
1249 pg->uanon = (void *)0xdeadbeef;
1250 #endif
1251 uvmexp.free++;
1252
1253 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1254 uvm.page_idle_zero = vm_page_zero_enable;
1255
1256 uvm_unlock_fpageq(s);
1257 }
1258
1259 /*
1260 * uvm_page_unbusy: unbusy an array of pages.
1261 *
1262 * => pages must either all belong to the same object, or all belong to anons.
1263 * => if pages are object-owned, object must be locked.
1264 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1265 */
1266
1267 void
1268 uvm_page_unbusy(pgs, npgs)
1269 struct vm_page **pgs;
1270 int npgs;
1271 {
1272 struct vm_page *pg;
1273 struct uvm_object *uobj;
1274 int i;
1275 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1276
1277 for (i = 0; i < npgs; i++) {
1278 pg = pgs[i];
1279
1280 if (pg == NULL) {
1281 continue;
1282 }
1283 if (pg->flags & PG_WANTED) {
1284 wakeup(pg);
1285 }
1286 if (pg->flags & PG_RELEASED) {
1287 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1288 uobj = pg->uobject;
1289 if (uobj != NULL) {
1290 uobj->pgops->pgo_releasepg(pg, NULL);
1291 } else {
1292 pg->flags &= ~(PG_BUSY);
1293 UVM_PAGE_OWN(pg, NULL);
1294 uvm_anfree(pg->uanon);
1295 }
1296 } else {
1297 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1298 KASSERT(pg->wire_count ||
1299 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1300 pg->flags &= ~(PG_WANTED|PG_BUSY);
1301 UVM_PAGE_OWN(pg, NULL);
1302 }
1303 }
1304 }
1305
1306 #if defined(UVM_PAGE_TRKOWN)
1307 /*
1308 * uvm_page_own: set or release page ownership
1309 *
1310 * => this is a debugging function that keeps track of who sets PG_BUSY
1311 * and where they do it. it can be used to track down problems
1312 * such a process setting "PG_BUSY" and never releasing it.
1313 * => page's object [if any] must be locked
1314 * => if "tag" is NULL then we are releasing page ownership
1315 */
1316 void
1317 uvm_page_own(pg, tag)
1318 struct vm_page *pg;
1319 char *tag;
1320 {
1321 /* gain ownership? */
1322 if (tag) {
1323 if (pg->owner_tag) {
1324 printf("uvm_page_own: page %p already owned "
1325 "by proc %d [%s]\n", pg,
1326 pg->owner, pg->owner_tag);
1327 panic("uvm_page_own");
1328 }
1329 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1330 pg->owner_tag = tag;
1331 return;
1332 }
1333
1334 /* drop ownership */
1335 if (pg->owner_tag == NULL) {
1336 printf("uvm_page_own: dropping ownership of an non-owned "
1337 "page (%p)\n", pg);
1338 panic("uvm_page_own");
1339 }
1340 pg->owner_tag = NULL;
1341 return;
1342 }
1343 #endif
1344
1345 /*
1346 * uvm_pageidlezero: zero free pages while the system is idle.
1347 *
1348 * => try to complete one color bucket at a time, to reduce our impact
1349 * on the CPU cache.
1350 * => we loop until we either reach the target or whichqs indicates that
1351 * there is a process ready to run.
1352 */
1353 void
1354 uvm_pageidlezero()
1355 {
1356 struct vm_page *pg;
1357 struct pgfreelist *pgfl;
1358 int free_list, s, firstbucket;
1359 static int nextbucket;
1360
1361 s = uvm_lock_fpageq();
1362
1363 firstbucket = nextbucket;
1364 do {
1365 if (sched_whichqs != 0) {
1366 uvm_unlock_fpageq(s);
1367 return;
1368 }
1369
1370 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1371 uvm.page_idle_zero = FALSE;
1372 uvm_unlock_fpageq(s);
1373 return;
1374 }
1375
1376 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1377 pgfl = &uvm.page_free[free_list];
1378 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1379 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1380 if (sched_whichqs != 0) {
1381 uvm_unlock_fpageq(s);
1382 return;
1383 }
1384
1385 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1386 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1387 pg, pageq);
1388 uvmexp.free--;
1389 uvm_unlock_fpageq(s);
1390 #ifdef PMAP_PAGEIDLEZERO
1391 if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) ==
1392 FALSE) {
1393 /*
1394 * The machine-dependent code detected
1395 * some reason for us to abort zeroing
1396 * pages, probably because there is a
1397 * process now ready to run.
1398 */
1399 s = uvm_lock_fpageq();
1400 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1401 nextbucket].pgfl_queues[
1402 PGFL_UNKNOWN], pg, pageq);
1403 uvmexp.free++;
1404 uvmexp.zeroaborts++;
1405 uvm_unlock_fpageq(s);
1406 return;
1407 }
1408 #else
1409 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1410 #endif /* PMAP_PAGEIDLEZERO */
1411 pg->flags |= PG_ZERO;
1412
1413 s = uvm_lock_fpageq();
1414 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1415 nextbucket].pgfl_queues[PGFL_ZEROS],
1416 pg, pageq);
1417 uvmexp.free++;
1418 uvmexp.zeropages++;
1419 }
1420 }
1421
1422 nextbucket = (nextbucket + 1) & VM_PGCOLOR_MASK;
1423 } while (nextbucket != firstbucket);
1424
1425 uvm_unlock_fpageq(s);
1426 }
1427