Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.60
      1 /*	$NetBSD: uvm_page.c,v 1.60 2001/05/02 01:22:20 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include "opt_uvmhist.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/malloc.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 #include <sys/vnode.h>
     81 
     82 #define UVM_PAGE                /* pull in uvm_page.h functions */
     83 #include <uvm/uvm.h>
     84 
     85 /*
     86  * global vars... XXXCDC: move to uvm. structure.
     87  */
     88 
     89 /*
     90  * physical memory config is stored in vm_physmem.
     91  */
     92 
     93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     94 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     95 
     96 /*
     97  * Some supported CPUs in a given architecture don't support all
     98  * of the things necessary to do idle page zero'ing efficiently.
     99  * We therefore provide a way to disable it from machdep code here.
    100  */
    101 /*
    102  * XXX disabled until we can find a way to do this without causing
    103  * problems for either cpu caches or DMA latency.
    104  */
    105 boolean_t vm_page_zero_enable = FALSE;
    106 
    107 /*
    108  * local variables
    109  */
    110 
    111 /*
    112  * these variables record the values returned by vm_page_bootstrap,
    113  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    114  * and pmap_startup here also uses them internally.
    115  */
    116 
    117 static vaddr_t      virtual_space_start;
    118 static vaddr_t      virtual_space_end;
    119 
    120 /*
    121  * we use a hash table with only one bucket during bootup.  we will
    122  * later rehash (resize) the hash table once the allocator is ready.
    123  * we static allocate the one bootstrap bucket below...
    124  */
    125 
    126 static struct pglist uvm_bootbucket;
    127 
    128 /*
    129  * we allocate an initial number of page colors in uvm_page_init(),
    130  * and remember them.  We may re-color pages as cache sizes are
    131  * discovered during the autoconfiguration phase.  But we can never
    132  * free the initial set of buckets, since they are allocated using
    133  * uvm_pageboot_alloc().
    134  */
    135 
    136 static boolean_t have_recolored_pages /* = FALSE */;
    137 
    138 /*
    139  * local prototypes
    140  */
    141 
    142 static void uvm_pageinsert __P((struct vm_page *));
    143 static void uvm_pageremove __P((struct vm_page *));
    144 
    145 /*
    146  * inline functions
    147  */
    148 
    149 /*
    150  * uvm_pageinsert: insert a page in the object and the hash table
    151  *
    152  * => caller must lock object
    153  * => caller must lock page queues
    154  * => call should have already set pg's object and offset pointers
    155  *    and bumped the version counter
    156  */
    157 
    158 __inline static void
    159 uvm_pageinsert(pg)
    160 	struct vm_page *pg;
    161 {
    162 	struct pglist *buck;
    163 	int s;
    164 
    165 	KASSERT((pg->flags & PG_TABLED) == 0);
    166 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    167 	s = splvm();
    168 	simple_lock(&uvm.hashlock);
    169 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    170 	simple_unlock(&uvm.hashlock);
    171 	splx(s);
    172 
    173 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    174 	pg->flags |= PG_TABLED;
    175 	pg->uobject->uo_npages++;
    176 }
    177 
    178 /*
    179  * uvm_page_remove: remove page from object and hash
    180  *
    181  * => caller must lock object
    182  * => caller must lock page queues
    183  */
    184 
    185 static __inline void
    186 uvm_pageremove(pg)
    187 	struct vm_page *pg;
    188 {
    189 	struct pglist *buck;
    190 	int s;
    191 
    192 	KASSERT(pg->flags & PG_TABLED);
    193 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    194 	s = splvm();
    195 	simple_lock(&uvm.hashlock);
    196 	TAILQ_REMOVE(buck, pg, hashq);
    197 	simple_unlock(&uvm.hashlock);
    198 	splx(s);
    199 
    200 	if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
    201 		uvmexp.vtextpages--;
    202 	} else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
    203 		uvmexp.vnodepages--;
    204 	}
    205 
    206 	/* object should be locked */
    207 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    208 
    209 	pg->flags &= ~PG_TABLED;
    210 	pg->uobject->uo_npages--;
    211 	pg->uobject = NULL;
    212 	pg->version++;
    213 }
    214 
    215 static void
    216 uvm_page_init_buckets(struct pgfreelist *pgfl)
    217 {
    218 	int color, i;
    219 
    220 	for (color = 0; color < uvmexp.ncolors; color++) {
    221 		for (i = 0; i < PGFL_NQUEUES; i++) {
    222 			TAILQ_INIT(&pgfl->pgfl_buckets[
    223 			    color].pgfl_queues[i]);
    224 		}
    225 	}
    226 }
    227 
    228 /*
    229  * uvm_page_init: init the page system.   called from uvm_init().
    230  *
    231  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    232  */
    233 
    234 void
    235 uvm_page_init(kvm_startp, kvm_endp)
    236 	vaddr_t *kvm_startp, *kvm_endp;
    237 {
    238 	vsize_t freepages, pagecount, bucketcount, n;
    239 	struct pgflbucket *bucketarray;
    240 	vm_page_t pagearray;
    241 	int lcv, i;
    242 	paddr_t paddr;
    243 
    244 	/*
    245 	 * init the page queues and page queue locks, except the free
    246 	 * list; we allocate that later (with the initial vm_page
    247 	 * structures).
    248 	 */
    249 
    250 	TAILQ_INIT(&uvm.page_active);
    251 	TAILQ_INIT(&uvm.page_inactive_swp);
    252 	TAILQ_INIT(&uvm.page_inactive_obj);
    253 	simple_lock_init(&uvm.pageqlock);
    254 	simple_lock_init(&uvm.fpageqlock);
    255 
    256 	/*
    257 	 * init the <obj,offset> => <page> hash table.  for now
    258 	 * we just have one bucket (the bootstrap bucket).  later on we
    259 	 * will allocate new buckets as we dynamically resize the hash table.
    260 	 */
    261 
    262 	uvm.page_nhash = 1;			/* 1 bucket */
    263 	uvm.page_hashmask = 0;			/* mask for hash function */
    264 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    265 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    266 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    267 
    268 	/*
    269 	 * allocate vm_page structures.
    270 	 */
    271 
    272 	/*
    273 	 * sanity check:
    274 	 * before calling this function the MD code is expected to register
    275 	 * some free RAM with the uvm_page_physload() function.   our job
    276 	 * now is to allocate vm_page structures for this memory.
    277 	 */
    278 
    279 	if (vm_nphysseg == 0)
    280 		panic("uvm_page_bootstrap: no memory pre-allocated");
    281 
    282 	/*
    283 	 * first calculate the number of free pages...
    284 	 *
    285 	 * note that we use start/end rather than avail_start/avail_end.
    286 	 * this allows us to allocate extra vm_page structures in case we
    287 	 * want to return some memory to the pool after booting.
    288 	 */
    289 
    290 	freepages = 0;
    291 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    292 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    293 
    294 	/*
    295 	 * Let MD code initialize the number of colors, or default
    296 	 * to 1 color if MD code doesn't care.
    297 	 */
    298 	if (uvmexp.ncolors == 0)
    299 		uvmexp.ncolors = 1;
    300 	uvmexp.colormask = uvmexp.ncolors - 1;
    301 
    302 	/*
    303 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    304 	 * use.   for each page of memory we use we need a vm_page structure.
    305 	 * thus, the total number of pages we can use is the total size of
    306 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    307 	 * structure.   we add one to freepages as a fudge factor to avoid
    308 	 * truncation errors (since we can only allocate in terms of whole
    309 	 * pages).
    310 	 */
    311 
    312 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    313 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    314 	    (PAGE_SIZE + sizeof(struct vm_page));
    315 
    316 	bucketarray = (void *) uvm_pageboot_alloc((bucketcount *
    317 	    sizeof(struct pgflbucket)) + (pagecount *
    318 	    sizeof(struct vm_page)));
    319 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    320 
    321 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    322 		uvm.page_free[lcv].pgfl_buckets =
    323 		    (bucketarray + (lcv * uvmexp.ncolors));
    324 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    325 	}
    326 
    327 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    328 
    329 	/*
    330 	 * init the vm_page structures and put them in the correct place.
    331 	 */
    332 
    333 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    334 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    335 		if (n > pagecount) {
    336 			printf("uvm_page_init: lost %ld page(s) in init\n",
    337 			    (long)(n - pagecount));
    338 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    339 			/* n = pagecount; */
    340 		}
    341 
    342 		/* set up page array pointers */
    343 		vm_physmem[lcv].pgs = pagearray;
    344 		pagearray += n;
    345 		pagecount -= n;
    346 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    347 
    348 		/* init and free vm_pages (we've already zeroed them) */
    349 		paddr = ptoa(vm_physmem[lcv].start);
    350 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    351 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    352 #ifdef __HAVE_VM_PAGE_MD
    353 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    354 #endif
    355 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    356 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    357 				uvmexp.npages++;
    358 				/* add page to free pool */
    359 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    360 			}
    361 		}
    362 	}
    363 
    364 	/*
    365 	 * pass up the values of virtual_space_start and
    366 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    367 	 * layers of the VM.
    368 	 */
    369 
    370 	*kvm_startp = round_page(virtual_space_start);
    371 	*kvm_endp = trunc_page(virtual_space_end);
    372 
    373 	/*
    374 	 * init locks for kernel threads
    375 	 */
    376 
    377 	simple_lock_init(&uvm.pagedaemon_lock);
    378 	simple_lock_init(&uvm.aiodoned_lock);
    379 
    380 	/*
    381 	 * init various thresholds.
    382 	 * XXXCDC - values may need adjusting
    383 	 */
    384 
    385 	uvmexp.reserve_pagedaemon = 1;
    386 	uvmexp.reserve_kernel = 5;
    387 	uvmexp.anonminpct = 10;
    388 	uvmexp.vnodeminpct = 10;
    389 	uvmexp.vtextminpct = 5;
    390 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    391 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
    392 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
    393 
    394 	/*
    395 	 * determine if we should zero pages in the idle loop.
    396 	 */
    397 
    398 	uvm.page_idle_zero = vm_page_zero_enable;
    399 
    400 	/*
    401 	 * done!
    402 	 */
    403 
    404 	uvm.page_init_done = TRUE;
    405 }
    406 
    407 /*
    408  * uvm_setpagesize: set the page size
    409  *
    410  * => sets page_shift and page_mask from uvmexp.pagesize.
    411  */
    412 
    413 void
    414 uvm_setpagesize()
    415 {
    416 	if (uvmexp.pagesize == 0)
    417 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    418 	uvmexp.pagemask = uvmexp.pagesize - 1;
    419 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    420 		panic("uvm_setpagesize: page size not a power of two");
    421 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    422 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    423 			break;
    424 }
    425 
    426 /*
    427  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    428  */
    429 
    430 vaddr_t
    431 uvm_pageboot_alloc(size)
    432 	vsize_t size;
    433 {
    434 	static boolean_t initialized = FALSE;
    435 	vaddr_t addr;
    436 #if !defined(PMAP_STEAL_MEMORY)
    437 	vaddr_t vaddr;
    438 	paddr_t paddr;
    439 #endif
    440 
    441 	/*
    442 	 * on first call to this function, initialize ourselves.
    443 	 */
    444 	if (initialized == FALSE) {
    445 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    446 
    447 		/* round it the way we like it */
    448 		virtual_space_start = round_page(virtual_space_start);
    449 		virtual_space_end = trunc_page(virtual_space_end);
    450 
    451 		initialized = TRUE;
    452 	}
    453 
    454 	/* round to page size */
    455 	size = round_page(size);
    456 
    457 #if defined(PMAP_STEAL_MEMORY)
    458 
    459 	/*
    460 	 * defer bootstrap allocation to MD code (it may want to allocate
    461 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    462 	 * virtual_space_start/virtual_space_end if necessary.
    463 	 */
    464 
    465 	addr = pmap_steal_memory(size, &virtual_space_start,
    466 	    &virtual_space_end);
    467 
    468 	return(addr);
    469 
    470 #else /* !PMAP_STEAL_MEMORY */
    471 
    472 	/*
    473 	 * allocate virtual memory for this request
    474 	 */
    475 	if (virtual_space_start == virtual_space_end ||
    476 	    (virtual_space_end - virtual_space_start) < size)
    477 		panic("uvm_pageboot_alloc: out of virtual space");
    478 
    479 	addr = virtual_space_start;
    480 
    481 #ifdef PMAP_GROWKERNEL
    482 	/*
    483 	 * If the kernel pmap can't map the requested space,
    484 	 * then allocate more resources for it.
    485 	 */
    486 	if (uvm_maxkaddr < (addr + size)) {
    487 		uvm_maxkaddr = pmap_growkernel(addr + size);
    488 		if (uvm_maxkaddr < (addr + size))
    489 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    490 	}
    491 #endif
    492 
    493 	virtual_space_start += size;
    494 
    495 	/*
    496 	 * allocate and mapin physical pages to back new virtual pages
    497 	 */
    498 
    499 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    500 	    vaddr += PAGE_SIZE) {
    501 
    502 		if (!uvm_page_physget(&paddr))
    503 			panic("uvm_pageboot_alloc: out of memory");
    504 
    505 		/*
    506 		 * Note this memory is no longer managed, so using
    507 		 * pmap_kenter is safe.
    508 		 */
    509 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    510 	}
    511 	pmap_update();
    512 	return(addr);
    513 #endif	/* PMAP_STEAL_MEMORY */
    514 }
    515 
    516 #if !defined(PMAP_STEAL_MEMORY)
    517 /*
    518  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    519  *
    520  * => attempt to allocate it off the end of a segment in which the "avail"
    521  *    values match the start/end values.   if we can't do that, then we
    522  *    will advance both values (making them equal, and removing some
    523  *    vm_page structures from the non-avail area).
    524  * => return false if out of memory.
    525  */
    526 
    527 /* subroutine: try to allocate from memory chunks on the specified freelist */
    528 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    529 
    530 static boolean_t
    531 uvm_page_physget_freelist(paddrp, freelist)
    532 	paddr_t *paddrp;
    533 	int freelist;
    534 {
    535 	int lcv, x;
    536 
    537 	/* pass 1: try allocating from a matching end */
    538 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    539 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    540 #else
    541 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    542 #endif
    543 	{
    544 
    545 		if (uvm.page_init_done == TRUE)
    546 			panic("uvm_page_physget: called _after_ bootstrap");
    547 
    548 		if (vm_physmem[lcv].free_list != freelist)
    549 			continue;
    550 
    551 		/* try from front */
    552 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    553 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    554 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    555 			vm_physmem[lcv].avail_start++;
    556 			vm_physmem[lcv].start++;
    557 			/* nothing left?   nuke it */
    558 			if (vm_physmem[lcv].avail_start ==
    559 			    vm_physmem[lcv].end) {
    560 				if (vm_nphysseg == 1)
    561 				    panic("vum_page_physget: out of memory!");
    562 				vm_nphysseg--;
    563 				for (x = lcv ; x < vm_nphysseg ; x++)
    564 					/* structure copy */
    565 					vm_physmem[x] = vm_physmem[x+1];
    566 			}
    567 			return (TRUE);
    568 		}
    569 
    570 		/* try from rear */
    571 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    572 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    573 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    574 			vm_physmem[lcv].avail_end--;
    575 			vm_physmem[lcv].end--;
    576 			/* nothing left?   nuke it */
    577 			if (vm_physmem[lcv].avail_end ==
    578 			    vm_physmem[lcv].start) {
    579 				if (vm_nphysseg == 1)
    580 				    panic("uvm_page_physget: out of memory!");
    581 				vm_nphysseg--;
    582 				for (x = lcv ; x < vm_nphysseg ; x++)
    583 					/* structure copy */
    584 					vm_physmem[x] = vm_physmem[x+1];
    585 			}
    586 			return (TRUE);
    587 		}
    588 	}
    589 
    590 	/* pass2: forget about matching ends, just allocate something */
    591 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    592 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    593 #else
    594 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    595 #endif
    596 	{
    597 
    598 		/* any room in this bank? */
    599 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    600 			continue;  /* nope */
    601 
    602 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    603 		vm_physmem[lcv].avail_start++;
    604 		/* truncate! */
    605 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    606 
    607 		/* nothing left?   nuke it */
    608 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    609 			if (vm_nphysseg == 1)
    610 				panic("uvm_page_physget: out of memory!");
    611 			vm_nphysseg--;
    612 			for (x = lcv ; x < vm_nphysseg ; x++)
    613 				/* structure copy */
    614 				vm_physmem[x] = vm_physmem[x+1];
    615 		}
    616 		return (TRUE);
    617 	}
    618 
    619 	return (FALSE);        /* whoops! */
    620 }
    621 
    622 boolean_t
    623 uvm_page_physget(paddrp)
    624 	paddr_t *paddrp;
    625 {
    626 	int i;
    627 
    628 	/* try in the order of freelist preference */
    629 	for (i = 0; i < VM_NFREELIST; i++)
    630 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    631 			return (TRUE);
    632 	return (FALSE);
    633 }
    634 #endif /* PMAP_STEAL_MEMORY */
    635 
    636 /*
    637  * uvm_page_physload: load physical memory into VM system
    638  *
    639  * => all args are PFs
    640  * => all pages in start/end get vm_page structures
    641  * => areas marked by avail_start/avail_end get added to the free page pool
    642  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    643  */
    644 
    645 void
    646 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    647 	paddr_t start, end, avail_start, avail_end;
    648 	int free_list;
    649 {
    650 	int preload, lcv;
    651 	psize_t npages;
    652 	struct vm_page *pgs;
    653 	struct vm_physseg *ps;
    654 
    655 	if (uvmexp.pagesize == 0)
    656 		panic("uvm_page_physload: page size not set!");
    657 
    658 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    659 		panic("uvm_page_physload: bad free list %d\n", free_list);
    660 
    661 	if (start >= end)
    662 		panic("uvm_page_physload: start >= end");
    663 
    664 	/*
    665 	 * do we have room?
    666 	 */
    667 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    668 		printf("uvm_page_physload: unable to load physical memory "
    669 		    "segment\n");
    670 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    671 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    672 		printf("\tincrease VM_PHYSSEG_MAX\n");
    673 		return;
    674 	}
    675 
    676 	/*
    677 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    678 	 * called yet, so malloc is not available).
    679 	 */
    680 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    681 		if (vm_physmem[lcv].pgs)
    682 			break;
    683 	}
    684 	preload = (lcv == vm_nphysseg);
    685 
    686 	/*
    687 	 * if VM is already running, attempt to malloc() vm_page structures
    688 	 */
    689 	if (!preload) {
    690 #if defined(VM_PHYSSEG_NOADD)
    691 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    692 #else
    693 		/* XXXCDC: need some sort of lockout for this case */
    694 		paddr_t paddr;
    695 		npages = end - start;  /* # of pages */
    696 		pgs = malloc(sizeof(struct vm_page) * npages,
    697 		    M_VMPAGE, M_NOWAIT);
    698 		if (pgs == NULL) {
    699 			printf("uvm_page_physload: can not malloc vm_page "
    700 			    "structs for segment\n");
    701 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    702 			return;
    703 		}
    704 		/* zero data, init phys_addr and free_list, and free pages */
    705 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    706 		for (lcv = 0, paddr = ptoa(start) ;
    707 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    708 			pgs[lcv].phys_addr = paddr;
    709 			pgs[lcv].free_list = free_list;
    710 			if (atop(paddr) >= avail_start &&
    711 			    atop(paddr) <= avail_end)
    712 				uvm_pagefree(&pgs[lcv]);
    713 		}
    714 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    715 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    716 #endif
    717 	} else {
    718 
    719 		/* gcc complains if these don't get init'd */
    720 		pgs = NULL;
    721 		npages = 0;
    722 
    723 	}
    724 
    725 	/*
    726 	 * now insert us in the proper place in vm_physmem[]
    727 	 */
    728 
    729 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    730 
    731 	/* random: put it at the end (easy!) */
    732 	ps = &vm_physmem[vm_nphysseg];
    733 
    734 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    735 
    736 	{
    737 		int x;
    738 		/* sort by address for binary search */
    739 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    740 			if (start < vm_physmem[lcv].start)
    741 				break;
    742 		ps = &vm_physmem[lcv];
    743 		/* move back other entries, if necessary ... */
    744 		for (x = vm_nphysseg ; x > lcv ; x--)
    745 			/* structure copy */
    746 			vm_physmem[x] = vm_physmem[x - 1];
    747 	}
    748 
    749 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    750 
    751 	{
    752 		int x;
    753 		/* sort by largest segment first */
    754 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    755 			if ((end - start) >
    756 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    757 				break;
    758 		ps = &vm_physmem[lcv];
    759 		/* move back other entries, if necessary ... */
    760 		for (x = vm_nphysseg ; x > lcv ; x--)
    761 			/* structure copy */
    762 			vm_physmem[x] = vm_physmem[x - 1];
    763 	}
    764 
    765 #else
    766 
    767 	panic("uvm_page_physload: unknown physseg strategy selected!");
    768 
    769 #endif
    770 
    771 	ps->start = start;
    772 	ps->end = end;
    773 	ps->avail_start = avail_start;
    774 	ps->avail_end = avail_end;
    775 	if (preload) {
    776 		ps->pgs = NULL;
    777 	} else {
    778 		ps->pgs = pgs;
    779 		ps->lastpg = pgs + npages - 1;
    780 	}
    781 	ps->free_list = free_list;
    782 	vm_nphysseg++;
    783 
    784 	/*
    785 	 * done!
    786 	 */
    787 
    788 	if (!preload)
    789 		uvm_page_rehash();
    790 
    791 	return;
    792 }
    793 
    794 /*
    795  * uvm_page_rehash: reallocate hash table based on number of free pages.
    796  */
    797 
    798 void
    799 uvm_page_rehash()
    800 {
    801 	int freepages, lcv, bucketcount, s, oldcount;
    802 	struct pglist *newbuckets, *oldbuckets;
    803 	struct vm_page *pg;
    804 	size_t newsize, oldsize;
    805 
    806 	/*
    807 	 * compute number of pages that can go in the free pool
    808 	 */
    809 
    810 	freepages = 0;
    811 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    812 		freepages +=
    813 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    814 
    815 	/*
    816 	 * compute number of buckets needed for this number of pages
    817 	 */
    818 
    819 	bucketcount = 1;
    820 	while (bucketcount < freepages)
    821 		bucketcount = bucketcount * 2;
    822 
    823 	/*
    824 	 * compute the size of the current table and new table.
    825 	 */
    826 
    827 	oldbuckets = uvm.page_hash;
    828 	oldcount = uvm.page_nhash;
    829 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    830 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    831 
    832 	/*
    833 	 * allocate the new buckets
    834 	 */
    835 
    836 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    837 	if (newbuckets == NULL) {
    838 		printf("uvm_page_physrehash: WARNING: could not grow page "
    839 		    "hash table\n");
    840 		return;
    841 	}
    842 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    843 		TAILQ_INIT(&newbuckets[lcv]);
    844 
    845 	/*
    846 	 * now replace the old buckets with the new ones and rehash everything
    847 	 */
    848 
    849 	s = splvm();
    850 	simple_lock(&uvm.hashlock);
    851 	uvm.page_hash = newbuckets;
    852 	uvm.page_nhash = bucketcount;
    853 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    854 
    855 	/* ... and rehash */
    856 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    857 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    858 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    859 			TAILQ_INSERT_TAIL(
    860 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    861 			  pg, hashq);
    862 		}
    863 	}
    864 	simple_unlock(&uvm.hashlock);
    865 	splx(s);
    866 
    867 	/*
    868 	 * free old bucket array if is not the boot-time table
    869 	 */
    870 
    871 	if (oldbuckets != &uvm_bootbucket)
    872 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    873 
    874 	/*
    875 	 * done
    876 	 */
    877 	return;
    878 }
    879 
    880 /*
    881  * uvm_page_recolor: Recolor the pages if the new bucket count is
    882  * larger than the old one.
    883  */
    884 
    885 void
    886 uvm_page_recolor(int newncolors)
    887 {
    888 	struct pgflbucket *bucketarray, *oldbucketarray;
    889 	struct pgfreelist pgfl;
    890 	vm_page_t pg;
    891 	vsize_t bucketcount;
    892 	int s, lcv, color, i, ocolors;
    893 
    894 	if (newncolors <= uvmexp.ncolors)
    895 		return;
    896 
    897 	bucketcount = newncolors * VM_NFREELIST;
    898 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    899 	    M_VMPAGE, M_NOWAIT);
    900 	if (bucketarray == NULL) {
    901 		printf("WARNING: unable to allocate %ld page color buckets\n",
    902 		    (long) bucketcount);
    903 		return;
    904 	}
    905 
    906 	s = uvm_lock_fpageq();
    907 
    908 	/* Make sure we should still do this. */
    909 	if (newncolors <= uvmexp.ncolors) {
    910 		uvm_unlock_fpageq(s);
    911 		free(bucketarray, M_VMPAGE);
    912 		return;
    913 	}
    914 
    915 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    916 	ocolors = uvmexp.ncolors;
    917 
    918 	uvmexp.ncolors = newncolors;
    919 	uvmexp.colormask = uvmexp.ncolors - 1;
    920 
    921 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    922 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    923 		uvm_page_init_buckets(&pgfl);
    924 		for (color = 0; color < ocolors; color++) {
    925 			for (i = 0; i < PGFL_NQUEUES; i++) {
    926 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    927 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    928 				    != NULL) {
    929 					TAILQ_REMOVE(&uvm.page_free[
    930 					    lcv].pgfl_buckets[
    931 					    color].pgfl_queues[i], pg, pageq);
    932 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    933 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    934 					    i], pg, pageq);
    935 				}
    936 			}
    937 		}
    938 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    939 	}
    940 
    941 	if (have_recolored_pages) {
    942 		uvm_unlock_fpageq(s);
    943 		free(oldbucketarray, M_VMPAGE);
    944 		return;
    945 	}
    946 
    947 	have_recolored_pages = TRUE;
    948 	uvm_unlock_fpageq(s);
    949 }
    950 
    951 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    952 
    953 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    954 
    955 /* call from DDB */
    956 void
    957 uvm_page_physdump()
    958 {
    959 	int lcv;
    960 
    961 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    962 				 vm_nphysseg, VM_PHYSSEG_MAX);
    963 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    964 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
    965 		    (long long)vm_physmem[lcv].start,
    966 		    (long long)vm_physmem[lcv].end,
    967 		    (long long)vm_physmem[lcv].avail_start,
    968 		    (long long)vm_physmem[lcv].avail_end);
    969 	printf("STRATEGY = ");
    970 	switch (VM_PHYSSEG_STRAT) {
    971 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    972 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    973 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    974 	default: printf("<<UNKNOWN>>!!!!\n");
    975 	}
    976 	printf("number of buckets = %d\n", uvm.page_nhash);
    977 }
    978 #endif
    979 
    980 /*
    981  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    982  */
    983 
    984 static __inline struct vm_page *
    985 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    986     unsigned int *trycolorp)
    987 {
    988 	struct pglist *freeq;
    989 	struct vm_page *pg;
    990 	int color, trycolor = *trycolorp;
    991 
    992 	color = trycolor;
    993 	do {
    994 		if ((pg = TAILQ_FIRST((freeq =
    995 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    996 			goto gotit;
    997 		if ((pg = TAILQ_FIRST((freeq =
    998 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    999 			goto gotit;
   1000 		color = (color + 1) & uvmexp.colormask;
   1001 	} while (color != trycolor);
   1002 
   1003 	return (NULL);
   1004 
   1005  gotit:
   1006 	TAILQ_REMOVE(freeq, pg, pageq);
   1007 	uvmexp.free--;
   1008 
   1009 	/* update zero'd page count */
   1010 	if (pg->flags & PG_ZERO)
   1011 		uvmexp.zeropages--;
   1012 
   1013 	if (color == trycolor)
   1014 		uvmexp.colorhit++;
   1015 	else {
   1016 		uvmexp.colormiss++;
   1017 		*trycolorp = color;
   1018 	}
   1019 
   1020 	return (pg);
   1021 }
   1022 
   1023 /*
   1024  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1025  *
   1026  * => return null if no pages free
   1027  * => wake up pagedaemon if number of free pages drops below low water mark
   1028  * => if obj != NULL, obj must be locked (to put in hash)
   1029  * => if anon != NULL, anon must be locked (to put in anon)
   1030  * => only one of obj or anon can be non-null
   1031  * => caller must activate/deactivate page if it is not wired.
   1032  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1033  * => policy decision: it is more important to pull a page off of the
   1034  *	appropriate priority free list than it is to get a zero'd or
   1035  *	unknown contents page.  This is because we live with the
   1036  *	consequences of a bad free list decision for the entire
   1037  *	lifetime of the page, e.g. if the page comes from memory that
   1038  *	is slower to access.
   1039  */
   1040 
   1041 struct vm_page *
   1042 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1043 	struct uvm_object *obj;
   1044 	voff_t off;
   1045 	int flags;
   1046 	struct vm_anon *anon;
   1047 	int strat, free_list;
   1048 {
   1049 	int lcv, try1, try2, s, zeroit = 0, color;
   1050 	struct vm_page *pg;
   1051 	boolean_t use_reserve;
   1052 
   1053 	KASSERT(obj == NULL || anon == NULL);
   1054 	KASSERT(off == trunc_page(off));
   1055 
   1056 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1057 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1058 
   1059 	s = uvm_lock_fpageq();
   1060 
   1061 	/*
   1062 	 * This implements a global round-robin page coloring
   1063 	 * algorithm.
   1064 	 *
   1065 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1066 	 * XXXJRT: What about virtually-indexed caches?
   1067 	 */
   1068 	color = uvm.page_free_nextcolor;
   1069 
   1070 	/*
   1071 	 * check to see if we need to generate some free pages waking
   1072 	 * the pagedaemon.
   1073 	 */
   1074 
   1075 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
   1076 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
   1077 	     uvmexp.inactive < uvmexp.inactarg)) {
   1078 		wakeup(&uvm.pagedaemon);
   1079 	}
   1080 
   1081 	/*
   1082 	 * fail if any of these conditions is true:
   1083 	 * [1]  there really are no free pages, or
   1084 	 * [2]  only kernel "reserved" pages remain and
   1085 	 *        the page isn't being allocated to a kernel object.
   1086 	 * [3]  only pagedaemon "reserved" pages remain and
   1087 	 *        the requestor isn't the pagedaemon.
   1088 	 */
   1089 
   1090 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1091 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1092 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1093 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1094 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1095 		goto fail;
   1096 
   1097 #if PGFL_NQUEUES != 2
   1098 #error uvm_pagealloc_strat needs to be updated
   1099 #endif
   1100 
   1101 	/*
   1102 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1103 	 * we try the UNKNOWN queue first.
   1104 	 */
   1105 	if (flags & UVM_PGA_ZERO) {
   1106 		try1 = PGFL_ZEROS;
   1107 		try2 = PGFL_UNKNOWN;
   1108 	} else {
   1109 		try1 = PGFL_UNKNOWN;
   1110 		try2 = PGFL_ZEROS;
   1111 	}
   1112 
   1113  again:
   1114 	switch (strat) {
   1115 	case UVM_PGA_STRAT_NORMAL:
   1116 		/* Check all freelists in descending priority order. */
   1117 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1118 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1119 			    try1, try2, &color);
   1120 			if (pg != NULL)
   1121 				goto gotit;
   1122 		}
   1123 
   1124 		/* No pages free! */
   1125 		goto fail;
   1126 
   1127 	case UVM_PGA_STRAT_ONLY:
   1128 	case UVM_PGA_STRAT_FALLBACK:
   1129 		/* Attempt to allocate from the specified free list. */
   1130 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1131 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1132 		    try1, try2, &color);
   1133 		if (pg != NULL)
   1134 			goto gotit;
   1135 
   1136 		/* Fall back, if possible. */
   1137 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1138 			strat = UVM_PGA_STRAT_NORMAL;
   1139 			goto again;
   1140 		}
   1141 
   1142 		/* No pages free! */
   1143 		goto fail;
   1144 
   1145 	default:
   1146 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1147 		/* NOTREACHED */
   1148 	}
   1149 
   1150  gotit:
   1151 	/*
   1152 	 * We now know which color we actually allocated from; set
   1153 	 * the next color accordingly.
   1154 	 */
   1155 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1156 
   1157 	/*
   1158 	 * update allocation statistics and remember if we have to
   1159 	 * zero the page
   1160 	 */
   1161 	if (flags & UVM_PGA_ZERO) {
   1162 		if (pg->flags & PG_ZERO) {
   1163 			uvmexp.pga_zerohit++;
   1164 			zeroit = 0;
   1165 		} else {
   1166 			uvmexp.pga_zeromiss++;
   1167 			zeroit = 1;
   1168 		}
   1169 	}
   1170 
   1171 	uvm_unlock_fpageq(s);		/* unlock free page queue */
   1172 
   1173 	pg->offset = off;
   1174 	pg->uobject = obj;
   1175 	pg->uanon = anon;
   1176 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1177 	pg->version++;
   1178 	if (anon) {
   1179 		anon->u.an_page = pg;
   1180 		pg->pqflags = PQ_ANON;
   1181 		uvmexp.anonpages++;
   1182 	} else {
   1183 		if (obj)
   1184 			uvm_pageinsert(pg);
   1185 		pg->pqflags = 0;
   1186 	}
   1187 #if defined(UVM_PAGE_TRKOWN)
   1188 	pg->owner_tag = NULL;
   1189 #endif
   1190 	UVM_PAGE_OWN(pg, "new alloc");
   1191 
   1192 	if (flags & UVM_PGA_ZERO) {
   1193 		/*
   1194 		 * A zero'd page is not clean.  If we got a page not already
   1195 		 * zero'd, then we have to zero it ourselves.
   1196 		 */
   1197 		pg->flags &= ~PG_CLEAN;
   1198 		if (zeroit)
   1199 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1200 	}
   1201 
   1202 	return(pg);
   1203 
   1204  fail:
   1205 	uvm_unlock_fpageq(s);
   1206 	return (NULL);
   1207 }
   1208 
   1209 /*
   1210  * uvm_pagerealloc: reallocate a page from one object to another
   1211  *
   1212  * => both objects must be locked
   1213  */
   1214 
   1215 void
   1216 uvm_pagerealloc(pg, newobj, newoff)
   1217 	struct vm_page *pg;
   1218 	struct uvm_object *newobj;
   1219 	voff_t newoff;
   1220 {
   1221 	/*
   1222 	 * remove it from the old object
   1223 	 */
   1224 
   1225 	if (pg->uobject) {
   1226 		uvm_pageremove(pg);
   1227 	}
   1228 
   1229 	/*
   1230 	 * put it in the new object
   1231 	 */
   1232 
   1233 	if (newobj) {
   1234 		pg->uobject = newobj;
   1235 		pg->offset = newoff;
   1236 		pg->version++;
   1237 		uvm_pageinsert(pg);
   1238 	}
   1239 }
   1240 
   1241 
   1242 /*
   1243  * uvm_pagefree: free page
   1244  *
   1245  * => erase page's identity (i.e. remove from hash/object)
   1246  * => put page on free list
   1247  * => caller must lock owning object (either anon or uvm_object)
   1248  * => caller must lock page queues
   1249  * => assumes all valid mappings of pg are gone
   1250  */
   1251 
   1252 void
   1253 uvm_pagefree(pg)
   1254 	struct vm_page *pg;
   1255 {
   1256 	int s;
   1257 	int saved_loan_count = pg->loan_count;
   1258 
   1259 #ifdef DEBUG
   1260 	if (pg->uobject == (void *)0xdeadbeef &&
   1261 	    pg->uanon == (void *)0xdeadbeef) {
   1262 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1263 	}
   1264 #endif
   1265 
   1266 	/*
   1267 	 * if the page was an object page (and thus "TABLED"), remove it
   1268 	 * from the object.
   1269 	 */
   1270 
   1271 	if (pg->flags & PG_TABLED) {
   1272 
   1273 		/*
   1274 		 * if the object page is on loan we are going to drop ownership.
   1275 		 * it is possible that an anon will take over as owner for this
   1276 		 * page later on.   the anon will want a !PG_CLEAN page so that
   1277 		 * it knows it needs to allocate swap if it wants to page the
   1278 		 * page out.
   1279 		 */
   1280 
   1281 		if (saved_loan_count)
   1282 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
   1283 		uvm_pageremove(pg);
   1284 
   1285 		/*
   1286 		 * if our page was on loan, then we just lost control over it
   1287 		 * (in fact, if it was loaned to an anon, the anon may have
   1288 		 * already taken over ownership of the page by now and thus
   1289 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
   1290 		 * return (when the last loan is dropped, then the page can be
   1291 		 * freed by whatever was holding the last loan).
   1292 		 */
   1293 
   1294 		if (saved_loan_count)
   1295 			return;
   1296 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
   1297 
   1298 		/*
   1299 		 * if our page is owned by an anon and is loaned out to the
   1300 		 * kernel then we just want to drop ownership and return.
   1301 		 * the kernel must free the page when all its loans clear ...
   1302 		 * note that the kernel can't change the loan status of our
   1303 		 * page as long as we are holding PQ lock.
   1304 		 */
   1305 
   1306 		pg->pqflags &= ~PQ_ANON;
   1307 		pg->uanon = NULL;
   1308 		return;
   1309 	}
   1310 	KASSERT(saved_loan_count == 0);
   1311 
   1312 	/*
   1313 	 * now remove the page from the queues
   1314 	 */
   1315 
   1316 	if (pg->pqflags & PQ_ACTIVE) {
   1317 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1318 		pg->pqflags &= ~PQ_ACTIVE;
   1319 		uvmexp.active--;
   1320 	}
   1321 	if (pg->pqflags & PQ_INACTIVE) {
   1322 		if (pg->pqflags & PQ_SWAPBACKED)
   1323 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1324 		else
   1325 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1326 		pg->pqflags &= ~PQ_INACTIVE;
   1327 		uvmexp.inactive--;
   1328 	}
   1329 
   1330 	/*
   1331 	 * if the page was wired, unwire it now.
   1332 	 */
   1333 
   1334 	if (pg->wire_count) {
   1335 		pg->wire_count = 0;
   1336 		uvmexp.wired--;
   1337 	}
   1338 	if (pg->uanon) {
   1339 		uvmexp.anonpages--;
   1340 	}
   1341 
   1342 	/*
   1343 	 * and put on free queue
   1344 	 */
   1345 
   1346 	pg->flags &= ~PG_ZERO;
   1347 
   1348 	s = uvm_lock_fpageq();
   1349 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1350 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1351 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1352 	pg->pqflags = PQ_FREE;
   1353 #ifdef DEBUG
   1354 	pg->uobject = (void *)0xdeadbeef;
   1355 	pg->offset = 0xdeadbeef;
   1356 	pg->uanon = (void *)0xdeadbeef;
   1357 #endif
   1358 	uvmexp.free++;
   1359 
   1360 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1361 		uvm.page_idle_zero = vm_page_zero_enable;
   1362 
   1363 	uvm_unlock_fpageq(s);
   1364 }
   1365 
   1366 /*
   1367  * uvm_page_unbusy: unbusy an array of pages.
   1368  *
   1369  * => pages must either all belong to the same object, or all belong to anons.
   1370  * => if pages are object-owned, object must be locked.
   1371  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
   1372  */
   1373 
   1374 void
   1375 uvm_page_unbusy(pgs, npgs)
   1376 	struct vm_page **pgs;
   1377 	int npgs;
   1378 {
   1379 	struct vm_page *pg;
   1380 	struct uvm_object *uobj;
   1381 	int i;
   1382 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1383 
   1384 	for (i = 0; i < npgs; i++) {
   1385 		pg = pgs[i];
   1386 
   1387 		if (pg == NULL) {
   1388 			continue;
   1389 		}
   1390 		if (pg->flags & PG_WANTED) {
   1391 			wakeup(pg);
   1392 		}
   1393 		if (pg->flags & PG_RELEASED) {
   1394 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1395 			uobj = pg->uobject;
   1396 			if (uobj != NULL) {
   1397 				uobj->pgops->pgo_releasepg(pg, NULL);
   1398 			} else {
   1399 				pg->flags &= ~(PG_BUSY);
   1400 				UVM_PAGE_OWN(pg, NULL);
   1401 				uvm_anfree(pg->uanon);
   1402 			}
   1403 		} else {
   1404 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1405 			KASSERT(pg->wire_count ||
   1406 				(pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
   1407 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1408 			UVM_PAGE_OWN(pg, NULL);
   1409 		}
   1410 	}
   1411 }
   1412 
   1413 #if defined(UVM_PAGE_TRKOWN)
   1414 /*
   1415  * uvm_page_own: set or release page ownership
   1416  *
   1417  * => this is a debugging function that keeps track of who sets PG_BUSY
   1418  *	and where they do it.   it can be used to track down problems
   1419  *	such a process setting "PG_BUSY" and never releasing it.
   1420  * => page's object [if any] must be locked
   1421  * => if "tag" is NULL then we are releasing page ownership
   1422  */
   1423 void
   1424 uvm_page_own(pg, tag)
   1425 	struct vm_page *pg;
   1426 	char *tag;
   1427 {
   1428 	/* gain ownership? */
   1429 	if (tag) {
   1430 		if (pg->owner_tag) {
   1431 			printf("uvm_page_own: page %p already owned "
   1432 			    "by proc %d [%s]\n", pg,
   1433 			     pg->owner, pg->owner_tag);
   1434 			panic("uvm_page_own");
   1435 		}
   1436 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1437 		pg->owner_tag = tag;
   1438 		return;
   1439 	}
   1440 
   1441 	/* drop ownership */
   1442 	if (pg->owner_tag == NULL) {
   1443 		printf("uvm_page_own: dropping ownership of an non-owned "
   1444 		    "page (%p)\n", pg);
   1445 		panic("uvm_page_own");
   1446 	}
   1447 	pg->owner_tag = NULL;
   1448 	return;
   1449 }
   1450 #endif
   1451 
   1452 /*
   1453  * uvm_pageidlezero: zero free pages while the system is idle.
   1454  *
   1455  * => try to complete one color bucket at a time, to reduce our impact
   1456  *	on the CPU cache.
   1457  * => we loop until we either reach the target or whichqs indicates that
   1458  *	there is a process ready to run.
   1459  */
   1460 void
   1461 uvm_pageidlezero()
   1462 {
   1463 	struct vm_page *pg;
   1464 	struct pgfreelist *pgfl;
   1465 	int free_list, s, firstbucket;
   1466 	static int nextbucket;
   1467 
   1468 	s = uvm_lock_fpageq();
   1469 
   1470 	firstbucket = nextbucket;
   1471 	do {
   1472 		if (sched_whichqs != 0) {
   1473 			uvm_unlock_fpageq(s);
   1474 			return;
   1475 		}
   1476 
   1477 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1478 			uvm.page_idle_zero = FALSE;
   1479 			uvm_unlock_fpageq(s);
   1480 			return;
   1481 		}
   1482 
   1483 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1484 			pgfl = &uvm.page_free[free_list];
   1485 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1486 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1487 				if (sched_whichqs != 0) {
   1488 					uvm_unlock_fpageq(s);
   1489 					return;
   1490 				}
   1491 
   1492 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1493 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1494 				    pg, pageq);
   1495 				uvmexp.free--;
   1496 				uvm_unlock_fpageq(s);
   1497 #ifdef PMAP_PAGEIDLEZERO
   1498 				if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) ==
   1499 				    FALSE) {
   1500 					/*
   1501 					 * The machine-dependent code detected
   1502 					 * some reason for us to abort zeroing
   1503 					 * pages, probably because there is a
   1504 					 * process now ready to run.
   1505 					 */
   1506 					s = uvm_lock_fpageq();
   1507 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1508 					    nextbucket].pgfl_queues[
   1509 					    PGFL_UNKNOWN], pg, pageq);
   1510 					uvmexp.free++;
   1511 					uvmexp.zeroaborts++;
   1512 					uvm_unlock_fpageq(s);
   1513 					return;
   1514 				}
   1515 #else
   1516 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1517 #endif /* PMAP_PAGEIDLEZERO */
   1518 				pg->flags |= PG_ZERO;
   1519 
   1520 				s = uvm_lock_fpageq();
   1521 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1522 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1523 				    pg, pageq);
   1524 				uvmexp.free++;
   1525 				uvmexp.zeropages++;
   1526 			}
   1527 		}
   1528 
   1529 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1530 	} while (nextbucket != firstbucket);
   1531 
   1532 	uvm_unlock_fpageq(s);
   1533 }
   1534