uvm_page.c revision 1.70 1 /* $NetBSD: uvm_page.c,v 1.70 2001/11/06 08:07:51 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include "opt_uvmhist.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82
83 #define UVM_PAGE /* pull in uvm_page.h functions */
84 #include <uvm/uvm.h>
85
86 /*
87 * global vars... XXXCDC: move to uvm. structure.
88 */
89
90 /*
91 * physical memory config is stored in vm_physmem.
92 */
93
94 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
95 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
96
97 /*
98 * Some supported CPUs in a given architecture don't support all
99 * of the things necessary to do idle page zero'ing efficiently.
100 * We therefore provide a way to disable it from machdep code here.
101 */
102 /*
103 * XXX disabled until we can find a way to do this without causing
104 * problems for either cpu caches or DMA latency.
105 */
106 boolean_t vm_page_zero_enable = FALSE;
107
108 /*
109 * local variables
110 */
111
112 /*
113 * these variables record the values returned by vm_page_bootstrap,
114 * for debugging purposes. The implementation of uvm_pageboot_alloc
115 * and pmap_startup here also uses them internally.
116 */
117
118 static vaddr_t virtual_space_start;
119 static vaddr_t virtual_space_end;
120
121 /*
122 * we use a hash table with only one bucket during bootup. we will
123 * later rehash (resize) the hash table once the allocator is ready.
124 * we static allocate the one bootstrap bucket below...
125 */
126
127 static struct pglist uvm_bootbucket;
128
129 /*
130 * we allocate an initial number of page colors in uvm_page_init(),
131 * and remember them. We may re-color pages as cache sizes are
132 * discovered during the autoconfiguration phase. But we can never
133 * free the initial set of buckets, since they are allocated using
134 * uvm_pageboot_alloc().
135 */
136
137 static boolean_t have_recolored_pages /* = FALSE */;
138
139 /*
140 * local prototypes
141 */
142
143 static void uvm_pageinsert __P((struct vm_page *));
144 static void uvm_pageremove __P((struct vm_page *));
145
146 /*
147 * inline functions
148 */
149
150 /*
151 * uvm_pageinsert: insert a page in the object and the hash table
152 *
153 * => caller must lock object
154 * => caller must lock page queues
155 * => call should have already set pg's object and offset pointers
156 * and bumped the version counter
157 */
158
159 __inline static void
160 uvm_pageinsert(pg)
161 struct vm_page *pg;
162 {
163 struct pglist *buck;
164 struct uvm_object *uobj = pg->uobject;
165
166 KASSERT((pg->flags & PG_TABLED) == 0);
167 buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
168 simple_lock(&uvm.hashlock);
169 TAILQ_INSERT_TAIL(buck, pg, hashq);
170 simple_unlock(&uvm.hashlock);
171
172 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
173 pg->flags |= PG_TABLED;
174 uobj->uo_npages++;
175 }
176
177 /*
178 * uvm_page_remove: remove page from object and hash
179 *
180 * => caller must lock object
181 * => caller must lock page queues
182 */
183
184 static __inline void
185 uvm_pageremove(pg)
186 struct vm_page *pg;
187 {
188 struct pglist *buck;
189 struct uvm_object *uobj = pg->uobject;
190
191 KASSERT(pg->flags & PG_TABLED);
192 buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
193 simple_lock(&uvm.hashlock);
194 TAILQ_REMOVE(buck, pg, hashq);
195 simple_unlock(&uvm.hashlock);
196
197 if (UVM_OBJ_IS_VTEXT(uobj)) {
198 uvmexp.vtextpages--;
199 } else if (UVM_OBJ_IS_VNODE(uobj)) {
200 uvmexp.vnodepages--;
201 }
202
203 /* object should be locked */
204 uobj->uo_npages--;
205 TAILQ_REMOVE(&uobj->memq, pg, listq);
206 pg->flags &= ~PG_TABLED;
207 pg->uobject = NULL;
208 }
209
210 static void
211 uvm_page_init_buckets(struct pgfreelist *pgfl)
212 {
213 int color, i;
214
215 for (color = 0; color < uvmexp.ncolors; color++) {
216 for (i = 0; i < PGFL_NQUEUES; i++) {
217 TAILQ_INIT(&pgfl->pgfl_buckets[
218 color].pgfl_queues[i]);
219 }
220 }
221 }
222
223 /*
224 * uvm_page_init: init the page system. called from uvm_init().
225 *
226 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
227 */
228
229 void
230 uvm_page_init(kvm_startp, kvm_endp)
231 vaddr_t *kvm_startp, *kvm_endp;
232 {
233 vsize_t freepages, pagecount, bucketcount, n;
234 struct pgflbucket *bucketarray;
235 struct vm_page *pagearray;
236 int lcv, i;
237 paddr_t paddr;
238
239 /*
240 * init the page queues and page queue locks, except the free
241 * list; we allocate that later (with the initial vm_page
242 * structures).
243 */
244
245 TAILQ_INIT(&uvm.page_active);
246 TAILQ_INIT(&uvm.page_inactive);
247 simple_lock_init(&uvm.pageqlock);
248 simple_lock_init(&uvm.fpageqlock);
249
250 /*
251 * init the <obj,offset> => <page> hash table. for now
252 * we just have one bucket (the bootstrap bucket). later on we
253 * will allocate new buckets as we dynamically resize the hash table.
254 */
255
256 uvm.page_nhash = 1; /* 1 bucket */
257 uvm.page_hashmask = 0; /* mask for hash function */
258 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
259 TAILQ_INIT(uvm.page_hash); /* init hash table */
260 simple_lock_init(&uvm.hashlock); /* init hash table lock */
261
262 /*
263 * allocate vm_page structures.
264 */
265
266 /*
267 * sanity check:
268 * before calling this function the MD code is expected to register
269 * some free RAM with the uvm_page_physload() function. our job
270 * now is to allocate vm_page structures for this memory.
271 */
272
273 if (vm_nphysseg == 0)
274 panic("uvm_page_bootstrap: no memory pre-allocated");
275
276 /*
277 * first calculate the number of free pages...
278 *
279 * note that we use start/end rather than avail_start/avail_end.
280 * this allows us to allocate extra vm_page structures in case we
281 * want to return some memory to the pool after booting.
282 */
283
284 freepages = 0;
285 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
286 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
287
288 /*
289 * Let MD code initialize the number of colors, or default
290 * to 1 color if MD code doesn't care.
291 */
292 if (uvmexp.ncolors == 0)
293 uvmexp.ncolors = 1;
294 uvmexp.colormask = uvmexp.ncolors - 1;
295
296 /*
297 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
298 * use. for each page of memory we use we need a vm_page structure.
299 * thus, the total number of pages we can use is the total size of
300 * the memory divided by the PAGE_SIZE plus the size of the vm_page
301 * structure. we add one to freepages as a fudge factor to avoid
302 * truncation errors (since we can only allocate in terms of whole
303 * pages).
304 */
305
306 bucketcount = uvmexp.ncolors * VM_NFREELIST;
307 pagecount = ((freepages + 1) << PAGE_SHIFT) /
308 (PAGE_SIZE + sizeof(struct vm_page));
309
310 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
311 sizeof(struct pgflbucket)) + (pagecount *
312 sizeof(struct vm_page)));
313 pagearray = (struct vm_page *)(bucketarray + bucketcount);
314
315 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
316 uvm.page_free[lcv].pgfl_buckets =
317 (bucketarray + (lcv * uvmexp.ncolors));
318 uvm_page_init_buckets(&uvm.page_free[lcv]);
319 }
320 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
321
322 /*
323 * init the vm_page structures and put them in the correct place.
324 */
325
326 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
327 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
328
329 /* set up page array pointers */
330 vm_physmem[lcv].pgs = pagearray;
331 pagearray += n;
332 pagecount -= n;
333 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
334
335 /* init and free vm_pages (we've already zeroed them) */
336 paddr = ptoa(vm_physmem[lcv].start);
337 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
338 vm_physmem[lcv].pgs[i].phys_addr = paddr;
339 #ifdef __HAVE_VM_PAGE_MD
340 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
341 #endif
342 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
343 atop(paddr) <= vm_physmem[lcv].avail_end) {
344 uvmexp.npages++;
345 /* add page to free pool */
346 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
347 }
348 }
349 }
350
351 /*
352 * pass up the values of virtual_space_start and
353 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
354 * layers of the VM.
355 */
356
357 *kvm_startp = round_page(virtual_space_start);
358 *kvm_endp = trunc_page(virtual_space_end);
359
360 /*
361 * init locks for kernel threads
362 */
363
364 simple_lock_init(&uvm.pagedaemon_lock);
365 simple_lock_init(&uvm.aiodoned_lock);
366
367 /*
368 * init various thresholds.
369 * XXXCDC - values may need adjusting
370 */
371
372 uvmexp.reserve_pagedaemon = 1;
373 uvmexp.reserve_kernel = 5;
374 uvmexp.anonminpct = 10;
375 uvmexp.vnodeminpct = 10;
376 uvmexp.vtextminpct = 5;
377 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
378 uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
379 uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
380
381 /*
382 * determine if we should zero pages in the idle loop.
383 */
384
385 uvm.page_idle_zero = vm_page_zero_enable;
386
387 /*
388 * done!
389 */
390
391 uvm.page_init_done = TRUE;
392 }
393
394 /*
395 * uvm_setpagesize: set the page size
396 *
397 * => sets page_shift and page_mask from uvmexp.pagesize.
398 */
399
400 void
401 uvm_setpagesize()
402 {
403 if (uvmexp.pagesize == 0)
404 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
405 uvmexp.pagemask = uvmexp.pagesize - 1;
406 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
407 panic("uvm_setpagesize: page size not a power of two");
408 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
409 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
410 break;
411 }
412
413 /*
414 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
415 */
416
417 vaddr_t
418 uvm_pageboot_alloc(size)
419 vsize_t size;
420 {
421 static boolean_t initialized = FALSE;
422 vaddr_t addr;
423 #if !defined(PMAP_STEAL_MEMORY)
424 vaddr_t vaddr;
425 paddr_t paddr;
426 #endif
427
428 /*
429 * on first call to this function, initialize ourselves.
430 */
431 if (initialized == FALSE) {
432 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
433
434 /* round it the way we like it */
435 virtual_space_start = round_page(virtual_space_start);
436 virtual_space_end = trunc_page(virtual_space_end);
437
438 initialized = TRUE;
439 }
440
441 /* round to page size */
442 size = round_page(size);
443
444 #if defined(PMAP_STEAL_MEMORY)
445
446 /*
447 * defer bootstrap allocation to MD code (it may want to allocate
448 * from a direct-mapped segment). pmap_steal_memory should adjust
449 * virtual_space_start/virtual_space_end if necessary.
450 */
451
452 addr = pmap_steal_memory(size, &virtual_space_start,
453 &virtual_space_end);
454
455 return(addr);
456
457 #else /* !PMAP_STEAL_MEMORY */
458
459 /*
460 * allocate virtual memory for this request
461 */
462 if (virtual_space_start == virtual_space_end ||
463 (virtual_space_end - virtual_space_start) < size)
464 panic("uvm_pageboot_alloc: out of virtual space");
465
466 addr = virtual_space_start;
467
468 #ifdef PMAP_GROWKERNEL
469 /*
470 * If the kernel pmap can't map the requested space,
471 * then allocate more resources for it.
472 */
473 if (uvm_maxkaddr < (addr + size)) {
474 uvm_maxkaddr = pmap_growkernel(addr + size);
475 if (uvm_maxkaddr < (addr + size))
476 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
477 }
478 #endif
479
480 virtual_space_start += size;
481
482 /*
483 * allocate and mapin physical pages to back new virtual pages
484 */
485
486 for (vaddr = round_page(addr) ; vaddr < addr + size ;
487 vaddr += PAGE_SIZE) {
488
489 if (!uvm_page_physget(&paddr))
490 panic("uvm_pageboot_alloc: out of memory");
491
492 /*
493 * Note this memory is no longer managed, so using
494 * pmap_kenter is safe.
495 */
496 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
497 }
498 pmap_update(pmap_kernel());
499 return(addr);
500 #endif /* PMAP_STEAL_MEMORY */
501 }
502
503 #if !defined(PMAP_STEAL_MEMORY)
504 /*
505 * uvm_page_physget: "steal" one page from the vm_physmem structure.
506 *
507 * => attempt to allocate it off the end of a segment in which the "avail"
508 * values match the start/end values. if we can't do that, then we
509 * will advance both values (making them equal, and removing some
510 * vm_page structures from the non-avail area).
511 * => return false if out of memory.
512 */
513
514 /* subroutine: try to allocate from memory chunks on the specified freelist */
515 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
516
517 static boolean_t
518 uvm_page_physget_freelist(paddrp, freelist)
519 paddr_t *paddrp;
520 int freelist;
521 {
522 int lcv, x;
523
524 /* pass 1: try allocating from a matching end */
525 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
526 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
527 #else
528 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
529 #endif
530 {
531
532 if (uvm.page_init_done == TRUE)
533 panic("uvm_page_physget: called _after_ bootstrap");
534
535 if (vm_physmem[lcv].free_list != freelist)
536 continue;
537
538 /* try from front */
539 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
540 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
541 *paddrp = ptoa(vm_physmem[lcv].avail_start);
542 vm_physmem[lcv].avail_start++;
543 vm_physmem[lcv].start++;
544 /* nothing left? nuke it */
545 if (vm_physmem[lcv].avail_start ==
546 vm_physmem[lcv].end) {
547 if (vm_nphysseg == 1)
548 panic("vum_page_physget: out of memory!");
549 vm_nphysseg--;
550 for (x = lcv ; x < vm_nphysseg ; x++)
551 /* structure copy */
552 vm_physmem[x] = vm_physmem[x+1];
553 }
554 return (TRUE);
555 }
556
557 /* try from rear */
558 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
559 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
560 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
561 vm_physmem[lcv].avail_end--;
562 vm_physmem[lcv].end--;
563 /* nothing left? nuke it */
564 if (vm_physmem[lcv].avail_end ==
565 vm_physmem[lcv].start) {
566 if (vm_nphysseg == 1)
567 panic("uvm_page_physget: out of memory!");
568 vm_nphysseg--;
569 for (x = lcv ; x < vm_nphysseg ; x++)
570 /* structure copy */
571 vm_physmem[x] = vm_physmem[x+1];
572 }
573 return (TRUE);
574 }
575 }
576
577 /* pass2: forget about matching ends, just allocate something */
578 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
579 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
580 #else
581 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
582 #endif
583 {
584
585 /* any room in this bank? */
586 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
587 continue; /* nope */
588
589 *paddrp = ptoa(vm_physmem[lcv].avail_start);
590 vm_physmem[lcv].avail_start++;
591 /* truncate! */
592 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
593
594 /* nothing left? nuke it */
595 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
596 if (vm_nphysseg == 1)
597 panic("uvm_page_physget: out of memory!");
598 vm_nphysseg--;
599 for (x = lcv ; x < vm_nphysseg ; x++)
600 /* structure copy */
601 vm_physmem[x] = vm_physmem[x+1];
602 }
603 return (TRUE);
604 }
605
606 return (FALSE); /* whoops! */
607 }
608
609 boolean_t
610 uvm_page_physget(paddrp)
611 paddr_t *paddrp;
612 {
613 int i;
614
615 /* try in the order of freelist preference */
616 for (i = 0; i < VM_NFREELIST; i++)
617 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
618 return (TRUE);
619 return (FALSE);
620 }
621 #endif /* PMAP_STEAL_MEMORY */
622
623 /*
624 * uvm_page_physload: load physical memory into VM system
625 *
626 * => all args are PFs
627 * => all pages in start/end get vm_page structures
628 * => areas marked by avail_start/avail_end get added to the free page pool
629 * => we are limited to VM_PHYSSEG_MAX physical memory segments
630 */
631
632 void
633 uvm_page_physload(start, end, avail_start, avail_end, free_list)
634 paddr_t start, end, avail_start, avail_end;
635 int free_list;
636 {
637 int preload, lcv;
638 psize_t npages;
639 struct vm_page *pgs;
640 struct vm_physseg *ps;
641
642 if (uvmexp.pagesize == 0)
643 panic("uvm_page_physload: page size not set!");
644 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
645 panic("uvm_page_physload: bad free list %d\n", free_list);
646 if (start >= end)
647 panic("uvm_page_physload: start >= end");
648
649 /*
650 * do we have room?
651 */
652
653 if (vm_nphysseg == VM_PHYSSEG_MAX) {
654 printf("uvm_page_physload: unable to load physical memory "
655 "segment\n");
656 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
657 VM_PHYSSEG_MAX, (long long)start, (long long)end);
658 printf("\tincrease VM_PHYSSEG_MAX\n");
659 return;
660 }
661
662 /*
663 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
664 * called yet, so malloc is not available).
665 */
666
667 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
668 if (vm_physmem[lcv].pgs)
669 break;
670 }
671 preload = (lcv == vm_nphysseg);
672
673 /*
674 * if VM is already running, attempt to malloc() vm_page structures
675 */
676
677 if (!preload) {
678 #if defined(VM_PHYSSEG_NOADD)
679 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
680 #else
681 /* XXXCDC: need some sort of lockout for this case */
682 paddr_t paddr;
683 npages = end - start; /* # of pages */
684 pgs = malloc(sizeof(struct vm_page) * npages,
685 M_VMPAGE, M_NOWAIT);
686 if (pgs == NULL) {
687 printf("uvm_page_physload: can not malloc vm_page "
688 "structs for segment\n");
689 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
690 return;
691 }
692 /* zero data, init phys_addr and free_list, and free pages */
693 memset(pgs, 0, sizeof(struct vm_page) * npages);
694 for (lcv = 0, paddr = ptoa(start) ;
695 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
696 pgs[lcv].phys_addr = paddr;
697 pgs[lcv].free_list = free_list;
698 if (atop(paddr) >= avail_start &&
699 atop(paddr) <= avail_end)
700 uvm_pagefree(&pgs[lcv]);
701 }
702 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
703 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
704 #endif
705 } else {
706 pgs = NULL;
707 npages = 0;
708 }
709
710 /*
711 * now insert us in the proper place in vm_physmem[]
712 */
713
714 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
715 /* random: put it at the end (easy!) */
716 ps = &vm_physmem[vm_nphysseg];
717 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
718 {
719 int x;
720 /* sort by address for binary search */
721 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
722 if (start < vm_physmem[lcv].start)
723 break;
724 ps = &vm_physmem[lcv];
725 /* move back other entries, if necessary ... */
726 for (x = vm_nphysseg ; x > lcv ; x--)
727 /* structure copy */
728 vm_physmem[x] = vm_physmem[x - 1];
729 }
730 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
731 {
732 int x;
733 /* sort by largest segment first */
734 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
735 if ((end - start) >
736 (vm_physmem[lcv].end - vm_physmem[lcv].start))
737 break;
738 ps = &vm_physmem[lcv];
739 /* move back other entries, if necessary ... */
740 for (x = vm_nphysseg ; x > lcv ; x--)
741 /* structure copy */
742 vm_physmem[x] = vm_physmem[x - 1];
743 }
744 #else
745 panic("uvm_page_physload: unknown physseg strategy selected!");
746 #endif
747
748 ps->start = start;
749 ps->end = end;
750 ps->avail_start = avail_start;
751 ps->avail_end = avail_end;
752 if (preload) {
753 ps->pgs = NULL;
754 } else {
755 ps->pgs = pgs;
756 ps->lastpg = pgs + npages - 1;
757 }
758 ps->free_list = free_list;
759 vm_nphysseg++;
760
761 if (!preload)
762 uvm_page_rehash();
763 }
764
765 /*
766 * uvm_page_rehash: reallocate hash table based on number of free pages.
767 */
768
769 void
770 uvm_page_rehash()
771 {
772 int freepages, lcv, bucketcount, oldcount;
773 struct pglist *newbuckets, *oldbuckets;
774 struct vm_page *pg;
775 size_t newsize, oldsize;
776
777 /*
778 * compute number of pages that can go in the free pool
779 */
780
781 freepages = 0;
782 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
783 freepages +=
784 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
785
786 /*
787 * compute number of buckets needed for this number of pages
788 */
789
790 bucketcount = 1;
791 while (bucketcount < freepages)
792 bucketcount = bucketcount * 2;
793
794 /*
795 * compute the size of the current table and new table.
796 */
797
798 oldbuckets = uvm.page_hash;
799 oldcount = uvm.page_nhash;
800 oldsize = round_page(sizeof(struct pglist) * oldcount);
801 newsize = round_page(sizeof(struct pglist) * bucketcount);
802
803 /*
804 * allocate the new buckets
805 */
806
807 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
808 if (newbuckets == NULL) {
809 printf("uvm_page_physrehash: WARNING: could not grow page "
810 "hash table\n");
811 return;
812 }
813 for (lcv = 0 ; lcv < bucketcount ; lcv++)
814 TAILQ_INIT(&newbuckets[lcv]);
815
816 /*
817 * now replace the old buckets with the new ones and rehash everything
818 */
819
820 simple_lock(&uvm.hashlock);
821 uvm.page_hash = newbuckets;
822 uvm.page_nhash = bucketcount;
823 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
824
825 /* ... and rehash */
826 for (lcv = 0 ; lcv < oldcount ; lcv++) {
827 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
828 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
829 TAILQ_INSERT_TAIL(
830 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
831 pg, hashq);
832 }
833 }
834 simple_unlock(&uvm.hashlock);
835
836 /*
837 * free old bucket array if is not the boot-time table
838 */
839
840 if (oldbuckets != &uvm_bootbucket)
841 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
842 }
843
844 /*
845 * uvm_page_recolor: Recolor the pages if the new bucket count is
846 * larger than the old one.
847 */
848
849 void
850 uvm_page_recolor(int newncolors)
851 {
852 struct pgflbucket *bucketarray, *oldbucketarray;
853 struct pgfreelist pgfl;
854 struct vm_page *pg;
855 vsize_t bucketcount;
856 int s, lcv, color, i, ocolors;
857
858 if (newncolors <= uvmexp.ncolors)
859 return;
860
861 bucketcount = newncolors * VM_NFREELIST;
862 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
863 M_VMPAGE, M_NOWAIT);
864 if (bucketarray == NULL) {
865 printf("WARNING: unable to allocate %ld page color buckets\n",
866 (long) bucketcount);
867 return;
868 }
869
870 s = uvm_lock_fpageq();
871
872 /* Make sure we should still do this. */
873 if (newncolors <= uvmexp.ncolors) {
874 uvm_unlock_fpageq(s);
875 free(bucketarray, M_VMPAGE);
876 return;
877 }
878
879 oldbucketarray = uvm.page_free[0].pgfl_buckets;
880 ocolors = uvmexp.ncolors;
881
882 uvmexp.ncolors = newncolors;
883 uvmexp.colormask = uvmexp.ncolors - 1;
884
885 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
886 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
887 uvm_page_init_buckets(&pgfl);
888 for (color = 0; color < ocolors; color++) {
889 for (i = 0; i < PGFL_NQUEUES; i++) {
890 while ((pg = TAILQ_FIRST(&uvm.page_free[
891 lcv].pgfl_buckets[color].pgfl_queues[i]))
892 != NULL) {
893 TAILQ_REMOVE(&uvm.page_free[
894 lcv].pgfl_buckets[
895 color].pgfl_queues[i], pg, pageq);
896 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
897 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
898 i], pg, pageq);
899 }
900 }
901 }
902 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
903 }
904
905 if (have_recolored_pages) {
906 uvm_unlock_fpageq(s);
907 free(oldbucketarray, M_VMPAGE);
908 return;
909 }
910
911 have_recolored_pages = TRUE;
912 uvm_unlock_fpageq(s);
913 }
914
915 /*
916 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
917 */
918
919 static __inline struct vm_page *
920 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
921 int *trycolorp)
922 {
923 struct pglist *freeq;
924 struct vm_page *pg;
925 int color, trycolor = *trycolorp;
926
927 color = trycolor;
928 do {
929 if ((pg = TAILQ_FIRST((freeq =
930 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
931 goto gotit;
932 if ((pg = TAILQ_FIRST((freeq =
933 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
934 goto gotit;
935 color = (color + 1) & uvmexp.colormask;
936 } while (color != trycolor);
937
938 return (NULL);
939
940 gotit:
941 TAILQ_REMOVE(freeq, pg, pageq);
942 uvmexp.free--;
943
944 /* update zero'd page count */
945 if (pg->flags & PG_ZERO)
946 uvmexp.zeropages--;
947
948 if (color == trycolor)
949 uvmexp.colorhit++;
950 else {
951 uvmexp.colormiss++;
952 *trycolorp = color;
953 }
954
955 return (pg);
956 }
957
958 /*
959 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
960 *
961 * => return null if no pages free
962 * => wake up pagedaemon if number of free pages drops below low water mark
963 * => if obj != NULL, obj must be locked (to put in hash)
964 * => if anon != NULL, anon must be locked (to put in anon)
965 * => only one of obj or anon can be non-null
966 * => caller must activate/deactivate page if it is not wired.
967 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
968 * => policy decision: it is more important to pull a page off of the
969 * appropriate priority free list than it is to get a zero'd or
970 * unknown contents page. This is because we live with the
971 * consequences of a bad free list decision for the entire
972 * lifetime of the page, e.g. if the page comes from memory that
973 * is slower to access.
974 */
975
976 struct vm_page *
977 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
978 struct uvm_object *obj;
979 voff_t off;
980 int flags;
981 struct vm_anon *anon;
982 int strat, free_list;
983 {
984 int lcv, try1, try2, s, zeroit = 0, color;
985 struct vm_page *pg;
986 boolean_t use_reserve;
987
988 KASSERT(obj == NULL || anon == NULL);
989 KASSERT(off == trunc_page(off));
990 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
991 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
992
993 s = uvm_lock_fpageq();
994
995 /*
996 * This implements a global round-robin page coloring
997 * algorithm.
998 *
999 * XXXJRT: Should we make the `nextcolor' per-cpu?
1000 * XXXJRT: What about virtually-indexed caches?
1001 */
1002
1003 color = uvm.page_free_nextcolor;
1004
1005 /*
1006 * check to see if we need to generate some free pages waking
1007 * the pagedaemon.
1008 */
1009
1010 UVM_KICK_PDAEMON();
1011
1012 /*
1013 * fail if any of these conditions is true:
1014 * [1] there really are no free pages, or
1015 * [2] only kernel "reserved" pages remain and
1016 * the page isn't being allocated to a kernel object.
1017 * [3] only pagedaemon "reserved" pages remain and
1018 * the requestor isn't the pagedaemon.
1019 */
1020
1021 use_reserve = (flags & UVM_PGA_USERESERVE) ||
1022 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1023 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1024 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1025 !(use_reserve && curproc == uvm.pagedaemon_proc)))
1026 goto fail;
1027
1028 #if PGFL_NQUEUES != 2
1029 #error uvm_pagealloc_strat needs to be updated
1030 #endif
1031
1032 /*
1033 * If we want a zero'd page, try the ZEROS queue first, otherwise
1034 * we try the UNKNOWN queue first.
1035 */
1036 if (flags & UVM_PGA_ZERO) {
1037 try1 = PGFL_ZEROS;
1038 try2 = PGFL_UNKNOWN;
1039 } else {
1040 try1 = PGFL_UNKNOWN;
1041 try2 = PGFL_ZEROS;
1042 }
1043
1044 again:
1045 switch (strat) {
1046 case UVM_PGA_STRAT_NORMAL:
1047 /* Check all freelists in descending priority order. */
1048 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1049 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1050 try1, try2, &color);
1051 if (pg != NULL)
1052 goto gotit;
1053 }
1054
1055 /* No pages free! */
1056 goto fail;
1057
1058 case UVM_PGA_STRAT_ONLY:
1059 case UVM_PGA_STRAT_FALLBACK:
1060 /* Attempt to allocate from the specified free list. */
1061 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1062 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1063 try1, try2, &color);
1064 if (pg != NULL)
1065 goto gotit;
1066
1067 /* Fall back, if possible. */
1068 if (strat == UVM_PGA_STRAT_FALLBACK) {
1069 strat = UVM_PGA_STRAT_NORMAL;
1070 goto again;
1071 }
1072
1073 /* No pages free! */
1074 goto fail;
1075
1076 default:
1077 panic("uvm_pagealloc_strat: bad strat %d", strat);
1078 /* NOTREACHED */
1079 }
1080
1081 gotit:
1082 /*
1083 * We now know which color we actually allocated from; set
1084 * the next color accordingly.
1085 */
1086
1087 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1088
1089 /*
1090 * update allocation statistics and remember if we have to
1091 * zero the page
1092 */
1093
1094 if (flags & UVM_PGA_ZERO) {
1095 if (pg->flags & PG_ZERO) {
1096 uvmexp.pga_zerohit++;
1097 zeroit = 0;
1098 } else {
1099 uvmexp.pga_zeromiss++;
1100 zeroit = 1;
1101 }
1102 }
1103 uvm_unlock_fpageq(s);
1104
1105 pg->offset = off;
1106 pg->uobject = obj;
1107 pg->uanon = anon;
1108 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1109 if (anon) {
1110 anon->u.an_page = pg;
1111 pg->pqflags = PQ_ANON;
1112 uvmexp.anonpages++;
1113 } else {
1114 if (obj) {
1115 uvm_pageinsert(pg);
1116 }
1117 pg->pqflags = 0;
1118 }
1119 #if defined(UVM_PAGE_TRKOWN)
1120 pg->owner_tag = NULL;
1121 #endif
1122 UVM_PAGE_OWN(pg, "new alloc");
1123
1124 if (flags & UVM_PGA_ZERO) {
1125 /*
1126 * A zero'd page is not clean. If we got a page not already
1127 * zero'd, then we have to zero it ourselves.
1128 */
1129 pg->flags &= ~PG_CLEAN;
1130 if (zeroit)
1131 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1132 }
1133
1134 return(pg);
1135
1136 fail:
1137 uvm_unlock_fpageq(s);
1138 return (NULL);
1139 }
1140
1141 /*
1142 * uvm_pagerealloc: reallocate a page from one object to another
1143 *
1144 * => both objects must be locked
1145 */
1146
1147 void
1148 uvm_pagerealloc(pg, newobj, newoff)
1149 struct vm_page *pg;
1150 struct uvm_object *newobj;
1151 voff_t newoff;
1152 {
1153 /*
1154 * remove it from the old object
1155 */
1156
1157 if (pg->uobject) {
1158 uvm_pageremove(pg);
1159 }
1160
1161 /*
1162 * put it in the new object
1163 */
1164
1165 if (newobj) {
1166 pg->uobject = newobj;
1167 pg->offset = newoff;
1168 uvm_pageinsert(pg);
1169 }
1170 }
1171
1172 /*
1173 * uvm_pagefree: free page
1174 *
1175 * => erase page's identity (i.e. remove from hash/object)
1176 * => put page on free list
1177 * => caller must lock owning object (either anon or uvm_object)
1178 * => caller must lock page queues
1179 * => assumes all valid mappings of pg are gone
1180 */
1181
1182 void
1183 uvm_pagefree(pg)
1184 struct vm_page *pg;
1185 {
1186 int s;
1187
1188 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1189 LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1190 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1191 LOCK_ASSERT(pg->uobject == NULL ||
1192 simple_lock_held(&pg->uobject->vmobjlock));
1193 LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1194 simple_lock_held(&pg->uanon->an_lock));
1195
1196 #ifdef DEBUG
1197 if (pg->uobject == (void *)0xdeadbeef &&
1198 pg->uanon == (void *)0xdeadbeef) {
1199 panic("uvm_pagefree: freeing free page %p\n", pg);
1200 }
1201 #endif
1202
1203 /*
1204 * if the page is loaned, resolve the loan instead of freeing.
1205 */
1206
1207 if (pg->loan_count) {
1208 KASSERT(pg->wire_count == 0);
1209
1210 /*
1211 * if the page is owned by an anon then we just want to
1212 * drop anon ownership. the kernel will free the page when
1213 * it is done with it. if the page is owned by an object,
1214 * remove it from the object and mark it dirty for the benefit
1215 * of possible anon owners.
1216 *
1217 * regardless of previous ownership, wakeup any waiters,
1218 * unbusy the page, and we're done.
1219 */
1220
1221 if (pg->pqflags & PQ_ANON) {
1222 pg->pqflags &= ~PQ_ANON;
1223 pg->uanon = NULL;
1224 } else if (pg->flags & PG_TABLED) {
1225 uvm_pageremove(pg);
1226 pg->flags &= ~PG_CLEAN;
1227 }
1228 if (pg->flags & PG_WANTED) {
1229 wakeup(pg);
1230 }
1231 pg->flags &= ~(PG_WANTED|PG_BUSY);
1232 #ifdef UVM_PAGE_TRKOWN
1233 pg->owner_tag = NULL;
1234 #endif
1235 return;
1236 }
1237
1238 /*
1239 * remove page from its object or anon.
1240 * adjust swpgonly if the page is swap-backed.
1241 */
1242
1243 if (pg->flags & PG_TABLED) {
1244 uvm_pageremove(pg);
1245 } else if (pg->pqflags & PQ_ANON) {
1246 pg->uanon->u.an_page = NULL;
1247 }
1248
1249 /*
1250 * now remove the page from the queues.
1251 */
1252
1253 uvm_pagedequeue(pg);
1254
1255 /*
1256 * if the page was wired, unwire it now.
1257 */
1258
1259 if (pg->wire_count) {
1260 pg->wire_count = 0;
1261 uvmexp.wired--;
1262 }
1263 if (pg->pqflags & PQ_ANON) {
1264 uvmexp.anonpages--;
1265 }
1266
1267 /*
1268 * and put on free queue
1269 */
1270
1271 pg->flags &= ~PG_ZERO;
1272
1273 s = uvm_lock_fpageq();
1274 TAILQ_INSERT_TAIL(&uvm.page_free[
1275 uvm_page_lookup_freelist(pg)].pgfl_buckets[
1276 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1277 pg->pqflags = PQ_FREE;
1278 #ifdef DEBUG
1279 pg->uobject = (void *)0xdeadbeef;
1280 pg->offset = 0xdeadbeef;
1281 pg->uanon = (void *)0xdeadbeef;
1282 #endif
1283 uvmexp.free++;
1284
1285 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1286 uvm.page_idle_zero = vm_page_zero_enable;
1287
1288 uvm_unlock_fpageq(s);
1289 }
1290
1291 /*
1292 * uvm_page_unbusy: unbusy an array of pages.
1293 *
1294 * => pages must either all belong to the same object, or all belong to anons.
1295 * => if pages are object-owned, object must be locked.
1296 * => if pages are anon-owned, anons must be locked.
1297 */
1298
1299 void
1300 uvm_page_unbusy(pgs, npgs)
1301 struct vm_page **pgs;
1302 int npgs;
1303 {
1304 struct vm_page *pg;
1305 int i;
1306 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1307
1308 for (i = 0; i < npgs; i++) {
1309 pg = pgs[i];
1310 if (pg == NULL) {
1311 continue;
1312 }
1313 if (pg->flags & PG_WANTED) {
1314 wakeup(pg);
1315 }
1316 if (pg->flags & PG_RELEASED) {
1317 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1318 pg->flags &= ~PG_RELEASED;
1319 uvm_pagefree(pg);
1320 } else {
1321 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1322 pg->flags &= ~(PG_WANTED|PG_BUSY);
1323 UVM_PAGE_OWN(pg, NULL);
1324 }
1325 }
1326 }
1327
1328 #if defined(UVM_PAGE_TRKOWN)
1329 /*
1330 * uvm_page_own: set or release page ownership
1331 *
1332 * => this is a debugging function that keeps track of who sets PG_BUSY
1333 * and where they do it. it can be used to track down problems
1334 * such a process setting "PG_BUSY" and never releasing it.
1335 * => page's object [if any] must be locked
1336 * => if "tag" is NULL then we are releasing page ownership
1337 */
1338 void
1339 uvm_page_own(pg, tag)
1340 struct vm_page *pg;
1341 char *tag;
1342 {
1343 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1344
1345 /* gain ownership? */
1346 if (tag) {
1347 if (pg->owner_tag) {
1348 printf("uvm_page_own: page %p already owned "
1349 "by proc %d [%s]\n", pg,
1350 pg->owner, pg->owner_tag);
1351 panic("uvm_page_own");
1352 }
1353 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1354 pg->owner_tag = tag;
1355 return;
1356 }
1357
1358 /* drop ownership */
1359 if (pg->owner_tag == NULL) {
1360 printf("uvm_page_own: dropping ownership of an non-owned "
1361 "page (%p)\n", pg);
1362 panic("uvm_page_own");
1363 }
1364 pg->owner_tag = NULL;
1365 KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1366 (pg->uanon == NULL && pg->uobject == NULL) ||
1367 pg->uobject == uvm.kernel_object ||
1368 pg->wire_count > 0 ||
1369 (pg->loan_count == 1 && pg->uanon == NULL) ||
1370 pg->loan_count > 1);
1371 return;
1372 }
1373 #endif
1374
1375 /*
1376 * uvm_pageidlezero: zero free pages while the system is idle.
1377 *
1378 * => try to complete one color bucket at a time, to reduce our impact
1379 * on the CPU cache.
1380 * => we loop until we either reach the target or whichqs indicates that
1381 * there is a process ready to run.
1382 */
1383 void
1384 uvm_pageidlezero()
1385 {
1386 struct vm_page *pg;
1387 struct pgfreelist *pgfl;
1388 int free_list, s, firstbucket;
1389 static int nextbucket;
1390
1391 s = uvm_lock_fpageq();
1392 firstbucket = nextbucket;
1393 do {
1394 if (sched_whichqs != 0) {
1395 uvm_unlock_fpageq(s);
1396 return;
1397 }
1398 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1399 uvm.page_idle_zero = FALSE;
1400 uvm_unlock_fpageq(s);
1401 return;
1402 }
1403 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1404 pgfl = &uvm.page_free[free_list];
1405 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1406 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1407 if (sched_whichqs != 0) {
1408 uvm_unlock_fpageq(s);
1409 return;
1410 }
1411
1412 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1413 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1414 pg, pageq);
1415 uvmexp.free--;
1416 uvm_unlock_fpageq(s);
1417 #ifdef PMAP_PAGEIDLEZERO
1418 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1419
1420 /*
1421 * The machine-dependent code detected
1422 * some reason for us to abort zeroing
1423 * pages, probably because there is a
1424 * process now ready to run.
1425 */
1426
1427 s = uvm_lock_fpageq();
1428 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1429 nextbucket].pgfl_queues[
1430 PGFL_UNKNOWN], pg, pageq);
1431 uvmexp.free++;
1432 uvmexp.zeroaborts++;
1433 uvm_unlock_fpageq(s);
1434 return;
1435 }
1436 #else
1437 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1438 #endif /* PMAP_PAGEIDLEZERO */
1439 pg->flags |= PG_ZERO;
1440
1441 s = uvm_lock_fpageq();
1442 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1443 nextbucket].pgfl_queues[PGFL_ZEROS],
1444 pg, pageq);
1445 uvmexp.free++;
1446 uvmexp.zeropages++;
1447 }
1448 }
1449 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1450 } while (nextbucket != firstbucket);
1451 uvm_unlock_fpageq(s);
1452 }
1453