Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.70
      1 /*	$NetBSD: uvm_page.c,v 1.70 2001/11/06 08:07:51 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include "opt_uvmhist.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/malloc.h>
     78 #include <sys/sched.h>
     79 #include <sys/kernel.h>
     80 #include <sys/vnode.h>
     81 #include <sys/proc.h>
     82 
     83 #define UVM_PAGE                /* pull in uvm_page.h functions */
     84 #include <uvm/uvm.h>
     85 
     86 /*
     87  * global vars... XXXCDC: move to uvm. structure.
     88  */
     89 
     90 /*
     91  * physical memory config is stored in vm_physmem.
     92  */
     93 
     94 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     95 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     96 
     97 /*
     98  * Some supported CPUs in a given architecture don't support all
     99  * of the things necessary to do idle page zero'ing efficiently.
    100  * We therefore provide a way to disable it from machdep code here.
    101  */
    102 /*
    103  * XXX disabled until we can find a way to do this without causing
    104  * problems for either cpu caches or DMA latency.
    105  */
    106 boolean_t vm_page_zero_enable = FALSE;
    107 
    108 /*
    109  * local variables
    110  */
    111 
    112 /*
    113  * these variables record the values returned by vm_page_bootstrap,
    114  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    115  * and pmap_startup here also uses them internally.
    116  */
    117 
    118 static vaddr_t      virtual_space_start;
    119 static vaddr_t      virtual_space_end;
    120 
    121 /*
    122  * we use a hash table with only one bucket during bootup.  we will
    123  * later rehash (resize) the hash table once the allocator is ready.
    124  * we static allocate the one bootstrap bucket below...
    125  */
    126 
    127 static struct pglist uvm_bootbucket;
    128 
    129 /*
    130  * we allocate an initial number of page colors in uvm_page_init(),
    131  * and remember them.  We may re-color pages as cache sizes are
    132  * discovered during the autoconfiguration phase.  But we can never
    133  * free the initial set of buckets, since they are allocated using
    134  * uvm_pageboot_alloc().
    135  */
    136 
    137 static boolean_t have_recolored_pages /* = FALSE */;
    138 
    139 /*
    140  * local prototypes
    141  */
    142 
    143 static void uvm_pageinsert __P((struct vm_page *));
    144 static void uvm_pageremove __P((struct vm_page *));
    145 
    146 /*
    147  * inline functions
    148  */
    149 
    150 /*
    151  * uvm_pageinsert: insert a page in the object and the hash table
    152  *
    153  * => caller must lock object
    154  * => caller must lock page queues
    155  * => call should have already set pg's object and offset pointers
    156  *    and bumped the version counter
    157  */
    158 
    159 __inline static void
    160 uvm_pageinsert(pg)
    161 	struct vm_page *pg;
    162 {
    163 	struct pglist *buck;
    164 	struct uvm_object *uobj = pg->uobject;
    165 
    166 	KASSERT((pg->flags & PG_TABLED) == 0);
    167 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    168 	simple_lock(&uvm.hashlock);
    169 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    170 	simple_unlock(&uvm.hashlock);
    171 
    172 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    173 	pg->flags |= PG_TABLED;
    174 	uobj->uo_npages++;
    175 }
    176 
    177 /*
    178  * uvm_page_remove: remove page from object and hash
    179  *
    180  * => caller must lock object
    181  * => caller must lock page queues
    182  */
    183 
    184 static __inline void
    185 uvm_pageremove(pg)
    186 	struct vm_page *pg;
    187 {
    188 	struct pglist *buck;
    189 	struct uvm_object *uobj = pg->uobject;
    190 
    191 	KASSERT(pg->flags & PG_TABLED);
    192 	buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
    193 	simple_lock(&uvm.hashlock);
    194 	TAILQ_REMOVE(buck, pg, hashq);
    195 	simple_unlock(&uvm.hashlock);
    196 
    197 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    198 		uvmexp.vtextpages--;
    199 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    200 		uvmexp.vnodepages--;
    201 	}
    202 
    203 	/* object should be locked */
    204 	uobj->uo_npages--;
    205 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    206 	pg->flags &= ~PG_TABLED;
    207 	pg->uobject = NULL;
    208 }
    209 
    210 static void
    211 uvm_page_init_buckets(struct pgfreelist *pgfl)
    212 {
    213 	int color, i;
    214 
    215 	for (color = 0; color < uvmexp.ncolors; color++) {
    216 		for (i = 0; i < PGFL_NQUEUES; i++) {
    217 			TAILQ_INIT(&pgfl->pgfl_buckets[
    218 			    color].pgfl_queues[i]);
    219 		}
    220 	}
    221 }
    222 
    223 /*
    224  * uvm_page_init: init the page system.   called from uvm_init().
    225  *
    226  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    227  */
    228 
    229 void
    230 uvm_page_init(kvm_startp, kvm_endp)
    231 	vaddr_t *kvm_startp, *kvm_endp;
    232 {
    233 	vsize_t freepages, pagecount, bucketcount, n;
    234 	struct pgflbucket *bucketarray;
    235 	struct vm_page *pagearray;
    236 	int lcv, i;
    237 	paddr_t paddr;
    238 
    239 	/*
    240 	 * init the page queues and page queue locks, except the free
    241 	 * list; we allocate that later (with the initial vm_page
    242 	 * structures).
    243 	 */
    244 
    245 	TAILQ_INIT(&uvm.page_active);
    246 	TAILQ_INIT(&uvm.page_inactive);
    247 	simple_lock_init(&uvm.pageqlock);
    248 	simple_lock_init(&uvm.fpageqlock);
    249 
    250 	/*
    251 	 * init the <obj,offset> => <page> hash table.  for now
    252 	 * we just have one bucket (the bootstrap bucket).  later on we
    253 	 * will allocate new buckets as we dynamically resize the hash table.
    254 	 */
    255 
    256 	uvm.page_nhash = 1;			/* 1 bucket */
    257 	uvm.page_hashmask = 0;			/* mask for hash function */
    258 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    259 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    260 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    261 
    262 	/*
    263 	 * allocate vm_page structures.
    264 	 */
    265 
    266 	/*
    267 	 * sanity check:
    268 	 * before calling this function the MD code is expected to register
    269 	 * some free RAM with the uvm_page_physload() function.   our job
    270 	 * now is to allocate vm_page structures for this memory.
    271 	 */
    272 
    273 	if (vm_nphysseg == 0)
    274 		panic("uvm_page_bootstrap: no memory pre-allocated");
    275 
    276 	/*
    277 	 * first calculate the number of free pages...
    278 	 *
    279 	 * note that we use start/end rather than avail_start/avail_end.
    280 	 * this allows us to allocate extra vm_page structures in case we
    281 	 * want to return some memory to the pool after booting.
    282 	 */
    283 
    284 	freepages = 0;
    285 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    286 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    287 
    288 	/*
    289 	 * Let MD code initialize the number of colors, or default
    290 	 * to 1 color if MD code doesn't care.
    291 	 */
    292 	if (uvmexp.ncolors == 0)
    293 		uvmexp.ncolors = 1;
    294 	uvmexp.colormask = uvmexp.ncolors - 1;
    295 
    296 	/*
    297 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    298 	 * use.   for each page of memory we use we need a vm_page structure.
    299 	 * thus, the total number of pages we can use is the total size of
    300 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    301 	 * structure.   we add one to freepages as a fudge factor to avoid
    302 	 * truncation errors (since we can only allocate in terms of whole
    303 	 * pages).
    304 	 */
    305 
    306 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    307 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    308 	    (PAGE_SIZE + sizeof(struct vm_page));
    309 
    310 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    311 	    sizeof(struct pgflbucket)) + (pagecount *
    312 	    sizeof(struct vm_page)));
    313 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    314 
    315 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    316 		uvm.page_free[lcv].pgfl_buckets =
    317 		    (bucketarray + (lcv * uvmexp.ncolors));
    318 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    319 	}
    320 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    321 
    322 	/*
    323 	 * init the vm_page structures and put them in the correct place.
    324 	 */
    325 
    326 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    327 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    328 
    329 		/* set up page array pointers */
    330 		vm_physmem[lcv].pgs = pagearray;
    331 		pagearray += n;
    332 		pagecount -= n;
    333 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    334 
    335 		/* init and free vm_pages (we've already zeroed them) */
    336 		paddr = ptoa(vm_physmem[lcv].start);
    337 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    338 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    339 #ifdef __HAVE_VM_PAGE_MD
    340 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    341 #endif
    342 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    343 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    344 				uvmexp.npages++;
    345 				/* add page to free pool */
    346 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    347 			}
    348 		}
    349 	}
    350 
    351 	/*
    352 	 * pass up the values of virtual_space_start and
    353 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    354 	 * layers of the VM.
    355 	 */
    356 
    357 	*kvm_startp = round_page(virtual_space_start);
    358 	*kvm_endp = trunc_page(virtual_space_end);
    359 
    360 	/*
    361 	 * init locks for kernel threads
    362 	 */
    363 
    364 	simple_lock_init(&uvm.pagedaemon_lock);
    365 	simple_lock_init(&uvm.aiodoned_lock);
    366 
    367 	/*
    368 	 * init various thresholds.
    369 	 * XXXCDC - values may need adjusting
    370 	 */
    371 
    372 	uvmexp.reserve_pagedaemon = 1;
    373 	uvmexp.reserve_kernel = 5;
    374 	uvmexp.anonminpct = 10;
    375 	uvmexp.vnodeminpct = 10;
    376 	uvmexp.vtextminpct = 5;
    377 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    378 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
    379 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
    380 
    381 	/*
    382 	 * determine if we should zero pages in the idle loop.
    383 	 */
    384 
    385 	uvm.page_idle_zero = vm_page_zero_enable;
    386 
    387 	/*
    388 	 * done!
    389 	 */
    390 
    391 	uvm.page_init_done = TRUE;
    392 }
    393 
    394 /*
    395  * uvm_setpagesize: set the page size
    396  *
    397  * => sets page_shift and page_mask from uvmexp.pagesize.
    398  */
    399 
    400 void
    401 uvm_setpagesize()
    402 {
    403 	if (uvmexp.pagesize == 0)
    404 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    405 	uvmexp.pagemask = uvmexp.pagesize - 1;
    406 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    407 		panic("uvm_setpagesize: page size not a power of two");
    408 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    409 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    410 			break;
    411 }
    412 
    413 /*
    414  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    415  */
    416 
    417 vaddr_t
    418 uvm_pageboot_alloc(size)
    419 	vsize_t size;
    420 {
    421 	static boolean_t initialized = FALSE;
    422 	vaddr_t addr;
    423 #if !defined(PMAP_STEAL_MEMORY)
    424 	vaddr_t vaddr;
    425 	paddr_t paddr;
    426 #endif
    427 
    428 	/*
    429 	 * on first call to this function, initialize ourselves.
    430 	 */
    431 	if (initialized == FALSE) {
    432 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    433 
    434 		/* round it the way we like it */
    435 		virtual_space_start = round_page(virtual_space_start);
    436 		virtual_space_end = trunc_page(virtual_space_end);
    437 
    438 		initialized = TRUE;
    439 	}
    440 
    441 	/* round to page size */
    442 	size = round_page(size);
    443 
    444 #if defined(PMAP_STEAL_MEMORY)
    445 
    446 	/*
    447 	 * defer bootstrap allocation to MD code (it may want to allocate
    448 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    449 	 * virtual_space_start/virtual_space_end if necessary.
    450 	 */
    451 
    452 	addr = pmap_steal_memory(size, &virtual_space_start,
    453 	    &virtual_space_end);
    454 
    455 	return(addr);
    456 
    457 #else /* !PMAP_STEAL_MEMORY */
    458 
    459 	/*
    460 	 * allocate virtual memory for this request
    461 	 */
    462 	if (virtual_space_start == virtual_space_end ||
    463 	    (virtual_space_end - virtual_space_start) < size)
    464 		panic("uvm_pageboot_alloc: out of virtual space");
    465 
    466 	addr = virtual_space_start;
    467 
    468 #ifdef PMAP_GROWKERNEL
    469 	/*
    470 	 * If the kernel pmap can't map the requested space,
    471 	 * then allocate more resources for it.
    472 	 */
    473 	if (uvm_maxkaddr < (addr + size)) {
    474 		uvm_maxkaddr = pmap_growkernel(addr + size);
    475 		if (uvm_maxkaddr < (addr + size))
    476 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    477 	}
    478 #endif
    479 
    480 	virtual_space_start += size;
    481 
    482 	/*
    483 	 * allocate and mapin physical pages to back new virtual pages
    484 	 */
    485 
    486 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    487 	    vaddr += PAGE_SIZE) {
    488 
    489 		if (!uvm_page_physget(&paddr))
    490 			panic("uvm_pageboot_alloc: out of memory");
    491 
    492 		/*
    493 		 * Note this memory is no longer managed, so using
    494 		 * pmap_kenter is safe.
    495 		 */
    496 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    497 	}
    498 	pmap_update(pmap_kernel());
    499 	return(addr);
    500 #endif	/* PMAP_STEAL_MEMORY */
    501 }
    502 
    503 #if !defined(PMAP_STEAL_MEMORY)
    504 /*
    505  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    506  *
    507  * => attempt to allocate it off the end of a segment in which the "avail"
    508  *    values match the start/end values.   if we can't do that, then we
    509  *    will advance both values (making them equal, and removing some
    510  *    vm_page structures from the non-avail area).
    511  * => return false if out of memory.
    512  */
    513 
    514 /* subroutine: try to allocate from memory chunks on the specified freelist */
    515 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    516 
    517 static boolean_t
    518 uvm_page_physget_freelist(paddrp, freelist)
    519 	paddr_t *paddrp;
    520 	int freelist;
    521 {
    522 	int lcv, x;
    523 
    524 	/* pass 1: try allocating from a matching end */
    525 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    526 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    527 #else
    528 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    529 #endif
    530 	{
    531 
    532 		if (uvm.page_init_done == TRUE)
    533 			panic("uvm_page_physget: called _after_ bootstrap");
    534 
    535 		if (vm_physmem[lcv].free_list != freelist)
    536 			continue;
    537 
    538 		/* try from front */
    539 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    540 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    541 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    542 			vm_physmem[lcv].avail_start++;
    543 			vm_physmem[lcv].start++;
    544 			/* nothing left?   nuke it */
    545 			if (vm_physmem[lcv].avail_start ==
    546 			    vm_physmem[lcv].end) {
    547 				if (vm_nphysseg == 1)
    548 				    panic("vum_page_physget: out of memory!");
    549 				vm_nphysseg--;
    550 				for (x = lcv ; x < vm_nphysseg ; x++)
    551 					/* structure copy */
    552 					vm_physmem[x] = vm_physmem[x+1];
    553 			}
    554 			return (TRUE);
    555 		}
    556 
    557 		/* try from rear */
    558 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    559 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    560 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    561 			vm_physmem[lcv].avail_end--;
    562 			vm_physmem[lcv].end--;
    563 			/* nothing left?   nuke it */
    564 			if (vm_physmem[lcv].avail_end ==
    565 			    vm_physmem[lcv].start) {
    566 				if (vm_nphysseg == 1)
    567 				    panic("uvm_page_physget: out of memory!");
    568 				vm_nphysseg--;
    569 				for (x = lcv ; x < vm_nphysseg ; x++)
    570 					/* structure copy */
    571 					vm_physmem[x] = vm_physmem[x+1];
    572 			}
    573 			return (TRUE);
    574 		}
    575 	}
    576 
    577 	/* pass2: forget about matching ends, just allocate something */
    578 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    579 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    580 #else
    581 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    582 #endif
    583 	{
    584 
    585 		/* any room in this bank? */
    586 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    587 			continue;  /* nope */
    588 
    589 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    590 		vm_physmem[lcv].avail_start++;
    591 		/* truncate! */
    592 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    593 
    594 		/* nothing left?   nuke it */
    595 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    596 			if (vm_nphysseg == 1)
    597 				panic("uvm_page_physget: out of memory!");
    598 			vm_nphysseg--;
    599 			for (x = lcv ; x < vm_nphysseg ; x++)
    600 				/* structure copy */
    601 				vm_physmem[x] = vm_physmem[x+1];
    602 		}
    603 		return (TRUE);
    604 	}
    605 
    606 	return (FALSE);        /* whoops! */
    607 }
    608 
    609 boolean_t
    610 uvm_page_physget(paddrp)
    611 	paddr_t *paddrp;
    612 {
    613 	int i;
    614 
    615 	/* try in the order of freelist preference */
    616 	for (i = 0; i < VM_NFREELIST; i++)
    617 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    618 			return (TRUE);
    619 	return (FALSE);
    620 }
    621 #endif /* PMAP_STEAL_MEMORY */
    622 
    623 /*
    624  * uvm_page_physload: load physical memory into VM system
    625  *
    626  * => all args are PFs
    627  * => all pages in start/end get vm_page structures
    628  * => areas marked by avail_start/avail_end get added to the free page pool
    629  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    630  */
    631 
    632 void
    633 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    634 	paddr_t start, end, avail_start, avail_end;
    635 	int free_list;
    636 {
    637 	int preload, lcv;
    638 	psize_t npages;
    639 	struct vm_page *pgs;
    640 	struct vm_physseg *ps;
    641 
    642 	if (uvmexp.pagesize == 0)
    643 		panic("uvm_page_physload: page size not set!");
    644 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    645 		panic("uvm_page_physload: bad free list %d\n", free_list);
    646 	if (start >= end)
    647 		panic("uvm_page_physload: start >= end");
    648 
    649 	/*
    650 	 * do we have room?
    651 	 */
    652 
    653 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    654 		printf("uvm_page_physload: unable to load physical memory "
    655 		    "segment\n");
    656 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    657 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    658 		printf("\tincrease VM_PHYSSEG_MAX\n");
    659 		return;
    660 	}
    661 
    662 	/*
    663 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    664 	 * called yet, so malloc is not available).
    665 	 */
    666 
    667 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    668 		if (vm_physmem[lcv].pgs)
    669 			break;
    670 	}
    671 	preload = (lcv == vm_nphysseg);
    672 
    673 	/*
    674 	 * if VM is already running, attempt to malloc() vm_page structures
    675 	 */
    676 
    677 	if (!preload) {
    678 #if defined(VM_PHYSSEG_NOADD)
    679 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    680 #else
    681 		/* XXXCDC: need some sort of lockout for this case */
    682 		paddr_t paddr;
    683 		npages = end - start;  /* # of pages */
    684 		pgs = malloc(sizeof(struct vm_page) * npages,
    685 		    M_VMPAGE, M_NOWAIT);
    686 		if (pgs == NULL) {
    687 			printf("uvm_page_physload: can not malloc vm_page "
    688 			    "structs for segment\n");
    689 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    690 			return;
    691 		}
    692 		/* zero data, init phys_addr and free_list, and free pages */
    693 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    694 		for (lcv = 0, paddr = ptoa(start) ;
    695 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    696 			pgs[lcv].phys_addr = paddr;
    697 			pgs[lcv].free_list = free_list;
    698 			if (atop(paddr) >= avail_start &&
    699 			    atop(paddr) <= avail_end)
    700 				uvm_pagefree(&pgs[lcv]);
    701 		}
    702 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    703 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    704 #endif
    705 	} else {
    706 		pgs = NULL;
    707 		npages = 0;
    708 	}
    709 
    710 	/*
    711 	 * now insert us in the proper place in vm_physmem[]
    712 	 */
    713 
    714 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    715 	/* random: put it at the end (easy!) */
    716 	ps = &vm_physmem[vm_nphysseg];
    717 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    718 	{
    719 		int x;
    720 		/* sort by address for binary search */
    721 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    722 			if (start < vm_physmem[lcv].start)
    723 				break;
    724 		ps = &vm_physmem[lcv];
    725 		/* move back other entries, if necessary ... */
    726 		for (x = vm_nphysseg ; x > lcv ; x--)
    727 			/* structure copy */
    728 			vm_physmem[x] = vm_physmem[x - 1];
    729 	}
    730 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    731 	{
    732 		int x;
    733 		/* sort by largest segment first */
    734 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    735 			if ((end - start) >
    736 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    737 				break;
    738 		ps = &vm_physmem[lcv];
    739 		/* move back other entries, if necessary ... */
    740 		for (x = vm_nphysseg ; x > lcv ; x--)
    741 			/* structure copy */
    742 			vm_physmem[x] = vm_physmem[x - 1];
    743 	}
    744 #else
    745 	panic("uvm_page_physload: unknown physseg strategy selected!");
    746 #endif
    747 
    748 	ps->start = start;
    749 	ps->end = end;
    750 	ps->avail_start = avail_start;
    751 	ps->avail_end = avail_end;
    752 	if (preload) {
    753 		ps->pgs = NULL;
    754 	} else {
    755 		ps->pgs = pgs;
    756 		ps->lastpg = pgs + npages - 1;
    757 	}
    758 	ps->free_list = free_list;
    759 	vm_nphysseg++;
    760 
    761 	if (!preload)
    762 		uvm_page_rehash();
    763 }
    764 
    765 /*
    766  * uvm_page_rehash: reallocate hash table based on number of free pages.
    767  */
    768 
    769 void
    770 uvm_page_rehash()
    771 {
    772 	int freepages, lcv, bucketcount, oldcount;
    773 	struct pglist *newbuckets, *oldbuckets;
    774 	struct vm_page *pg;
    775 	size_t newsize, oldsize;
    776 
    777 	/*
    778 	 * compute number of pages that can go in the free pool
    779 	 */
    780 
    781 	freepages = 0;
    782 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    783 		freepages +=
    784 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    785 
    786 	/*
    787 	 * compute number of buckets needed for this number of pages
    788 	 */
    789 
    790 	bucketcount = 1;
    791 	while (bucketcount < freepages)
    792 		bucketcount = bucketcount * 2;
    793 
    794 	/*
    795 	 * compute the size of the current table and new table.
    796 	 */
    797 
    798 	oldbuckets = uvm.page_hash;
    799 	oldcount = uvm.page_nhash;
    800 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    801 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    802 
    803 	/*
    804 	 * allocate the new buckets
    805 	 */
    806 
    807 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    808 	if (newbuckets == NULL) {
    809 		printf("uvm_page_physrehash: WARNING: could not grow page "
    810 		    "hash table\n");
    811 		return;
    812 	}
    813 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    814 		TAILQ_INIT(&newbuckets[lcv]);
    815 
    816 	/*
    817 	 * now replace the old buckets with the new ones and rehash everything
    818 	 */
    819 
    820 	simple_lock(&uvm.hashlock);
    821 	uvm.page_hash = newbuckets;
    822 	uvm.page_nhash = bucketcount;
    823 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    824 
    825 	/* ... and rehash */
    826 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    827 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    828 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    829 			TAILQ_INSERT_TAIL(
    830 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    831 			  pg, hashq);
    832 		}
    833 	}
    834 	simple_unlock(&uvm.hashlock);
    835 
    836 	/*
    837 	 * free old bucket array if is not the boot-time table
    838 	 */
    839 
    840 	if (oldbuckets != &uvm_bootbucket)
    841 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    842 }
    843 
    844 /*
    845  * uvm_page_recolor: Recolor the pages if the new bucket count is
    846  * larger than the old one.
    847  */
    848 
    849 void
    850 uvm_page_recolor(int newncolors)
    851 {
    852 	struct pgflbucket *bucketarray, *oldbucketarray;
    853 	struct pgfreelist pgfl;
    854 	struct vm_page *pg;
    855 	vsize_t bucketcount;
    856 	int s, lcv, color, i, ocolors;
    857 
    858 	if (newncolors <= uvmexp.ncolors)
    859 		return;
    860 
    861 	bucketcount = newncolors * VM_NFREELIST;
    862 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    863 	    M_VMPAGE, M_NOWAIT);
    864 	if (bucketarray == NULL) {
    865 		printf("WARNING: unable to allocate %ld page color buckets\n",
    866 		    (long) bucketcount);
    867 		return;
    868 	}
    869 
    870 	s = uvm_lock_fpageq();
    871 
    872 	/* Make sure we should still do this. */
    873 	if (newncolors <= uvmexp.ncolors) {
    874 		uvm_unlock_fpageq(s);
    875 		free(bucketarray, M_VMPAGE);
    876 		return;
    877 	}
    878 
    879 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    880 	ocolors = uvmexp.ncolors;
    881 
    882 	uvmexp.ncolors = newncolors;
    883 	uvmexp.colormask = uvmexp.ncolors - 1;
    884 
    885 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    886 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    887 		uvm_page_init_buckets(&pgfl);
    888 		for (color = 0; color < ocolors; color++) {
    889 			for (i = 0; i < PGFL_NQUEUES; i++) {
    890 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    891 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    892 				    != NULL) {
    893 					TAILQ_REMOVE(&uvm.page_free[
    894 					    lcv].pgfl_buckets[
    895 					    color].pgfl_queues[i], pg, pageq);
    896 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    897 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    898 					    i], pg, pageq);
    899 				}
    900 			}
    901 		}
    902 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    903 	}
    904 
    905 	if (have_recolored_pages) {
    906 		uvm_unlock_fpageq(s);
    907 		free(oldbucketarray, M_VMPAGE);
    908 		return;
    909 	}
    910 
    911 	have_recolored_pages = TRUE;
    912 	uvm_unlock_fpageq(s);
    913 }
    914 
    915 /*
    916  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    917  */
    918 
    919 static __inline struct vm_page *
    920 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    921     int *trycolorp)
    922 {
    923 	struct pglist *freeq;
    924 	struct vm_page *pg;
    925 	int color, trycolor = *trycolorp;
    926 
    927 	color = trycolor;
    928 	do {
    929 		if ((pg = TAILQ_FIRST((freeq =
    930 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    931 			goto gotit;
    932 		if ((pg = TAILQ_FIRST((freeq =
    933 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    934 			goto gotit;
    935 		color = (color + 1) & uvmexp.colormask;
    936 	} while (color != trycolor);
    937 
    938 	return (NULL);
    939 
    940  gotit:
    941 	TAILQ_REMOVE(freeq, pg, pageq);
    942 	uvmexp.free--;
    943 
    944 	/* update zero'd page count */
    945 	if (pg->flags & PG_ZERO)
    946 		uvmexp.zeropages--;
    947 
    948 	if (color == trycolor)
    949 		uvmexp.colorhit++;
    950 	else {
    951 		uvmexp.colormiss++;
    952 		*trycolorp = color;
    953 	}
    954 
    955 	return (pg);
    956 }
    957 
    958 /*
    959  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    960  *
    961  * => return null if no pages free
    962  * => wake up pagedaemon if number of free pages drops below low water mark
    963  * => if obj != NULL, obj must be locked (to put in hash)
    964  * => if anon != NULL, anon must be locked (to put in anon)
    965  * => only one of obj or anon can be non-null
    966  * => caller must activate/deactivate page if it is not wired.
    967  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    968  * => policy decision: it is more important to pull a page off of the
    969  *	appropriate priority free list than it is to get a zero'd or
    970  *	unknown contents page.  This is because we live with the
    971  *	consequences of a bad free list decision for the entire
    972  *	lifetime of the page, e.g. if the page comes from memory that
    973  *	is slower to access.
    974  */
    975 
    976 struct vm_page *
    977 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    978 	struct uvm_object *obj;
    979 	voff_t off;
    980 	int flags;
    981 	struct vm_anon *anon;
    982 	int strat, free_list;
    983 {
    984 	int lcv, try1, try2, s, zeroit = 0, color;
    985 	struct vm_page *pg;
    986 	boolean_t use_reserve;
    987 
    988 	KASSERT(obj == NULL || anon == NULL);
    989 	KASSERT(off == trunc_page(off));
    990 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
    991 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
    992 
    993 	s = uvm_lock_fpageq();
    994 
    995 	/*
    996 	 * This implements a global round-robin page coloring
    997 	 * algorithm.
    998 	 *
    999 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1000 	 * XXXJRT: What about virtually-indexed caches?
   1001 	 */
   1002 
   1003 	color = uvm.page_free_nextcolor;
   1004 
   1005 	/*
   1006 	 * check to see if we need to generate some free pages waking
   1007 	 * the pagedaemon.
   1008 	 */
   1009 
   1010 	UVM_KICK_PDAEMON();
   1011 
   1012 	/*
   1013 	 * fail if any of these conditions is true:
   1014 	 * [1]  there really are no free pages, or
   1015 	 * [2]  only kernel "reserved" pages remain and
   1016 	 *        the page isn't being allocated to a kernel object.
   1017 	 * [3]  only pagedaemon "reserved" pages remain and
   1018 	 *        the requestor isn't the pagedaemon.
   1019 	 */
   1020 
   1021 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1022 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1023 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1024 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1025 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1026 		goto fail;
   1027 
   1028 #if PGFL_NQUEUES != 2
   1029 #error uvm_pagealloc_strat needs to be updated
   1030 #endif
   1031 
   1032 	/*
   1033 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1034 	 * we try the UNKNOWN queue first.
   1035 	 */
   1036 	if (flags & UVM_PGA_ZERO) {
   1037 		try1 = PGFL_ZEROS;
   1038 		try2 = PGFL_UNKNOWN;
   1039 	} else {
   1040 		try1 = PGFL_UNKNOWN;
   1041 		try2 = PGFL_ZEROS;
   1042 	}
   1043 
   1044  again:
   1045 	switch (strat) {
   1046 	case UVM_PGA_STRAT_NORMAL:
   1047 		/* Check all freelists in descending priority order. */
   1048 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1049 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1050 			    try1, try2, &color);
   1051 			if (pg != NULL)
   1052 				goto gotit;
   1053 		}
   1054 
   1055 		/* No pages free! */
   1056 		goto fail;
   1057 
   1058 	case UVM_PGA_STRAT_ONLY:
   1059 	case UVM_PGA_STRAT_FALLBACK:
   1060 		/* Attempt to allocate from the specified free list. */
   1061 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1062 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1063 		    try1, try2, &color);
   1064 		if (pg != NULL)
   1065 			goto gotit;
   1066 
   1067 		/* Fall back, if possible. */
   1068 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1069 			strat = UVM_PGA_STRAT_NORMAL;
   1070 			goto again;
   1071 		}
   1072 
   1073 		/* No pages free! */
   1074 		goto fail;
   1075 
   1076 	default:
   1077 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1078 		/* NOTREACHED */
   1079 	}
   1080 
   1081  gotit:
   1082 	/*
   1083 	 * We now know which color we actually allocated from; set
   1084 	 * the next color accordingly.
   1085 	 */
   1086 
   1087 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1088 
   1089 	/*
   1090 	 * update allocation statistics and remember if we have to
   1091 	 * zero the page
   1092 	 */
   1093 
   1094 	if (flags & UVM_PGA_ZERO) {
   1095 		if (pg->flags & PG_ZERO) {
   1096 			uvmexp.pga_zerohit++;
   1097 			zeroit = 0;
   1098 		} else {
   1099 			uvmexp.pga_zeromiss++;
   1100 			zeroit = 1;
   1101 		}
   1102 	}
   1103 	uvm_unlock_fpageq(s);
   1104 
   1105 	pg->offset = off;
   1106 	pg->uobject = obj;
   1107 	pg->uanon = anon;
   1108 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1109 	if (anon) {
   1110 		anon->u.an_page = pg;
   1111 		pg->pqflags = PQ_ANON;
   1112 		uvmexp.anonpages++;
   1113 	} else {
   1114 		if (obj) {
   1115 			uvm_pageinsert(pg);
   1116 		}
   1117 		pg->pqflags = 0;
   1118 	}
   1119 #if defined(UVM_PAGE_TRKOWN)
   1120 	pg->owner_tag = NULL;
   1121 #endif
   1122 	UVM_PAGE_OWN(pg, "new alloc");
   1123 
   1124 	if (flags & UVM_PGA_ZERO) {
   1125 		/*
   1126 		 * A zero'd page is not clean.  If we got a page not already
   1127 		 * zero'd, then we have to zero it ourselves.
   1128 		 */
   1129 		pg->flags &= ~PG_CLEAN;
   1130 		if (zeroit)
   1131 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1132 	}
   1133 
   1134 	return(pg);
   1135 
   1136  fail:
   1137 	uvm_unlock_fpageq(s);
   1138 	return (NULL);
   1139 }
   1140 
   1141 /*
   1142  * uvm_pagerealloc: reallocate a page from one object to another
   1143  *
   1144  * => both objects must be locked
   1145  */
   1146 
   1147 void
   1148 uvm_pagerealloc(pg, newobj, newoff)
   1149 	struct vm_page *pg;
   1150 	struct uvm_object *newobj;
   1151 	voff_t newoff;
   1152 {
   1153 	/*
   1154 	 * remove it from the old object
   1155 	 */
   1156 
   1157 	if (pg->uobject) {
   1158 		uvm_pageremove(pg);
   1159 	}
   1160 
   1161 	/*
   1162 	 * put it in the new object
   1163 	 */
   1164 
   1165 	if (newobj) {
   1166 		pg->uobject = newobj;
   1167 		pg->offset = newoff;
   1168 		uvm_pageinsert(pg);
   1169 	}
   1170 }
   1171 
   1172 /*
   1173  * uvm_pagefree: free page
   1174  *
   1175  * => erase page's identity (i.e. remove from hash/object)
   1176  * => put page on free list
   1177  * => caller must lock owning object (either anon or uvm_object)
   1178  * => caller must lock page queues
   1179  * => assumes all valid mappings of pg are gone
   1180  */
   1181 
   1182 void
   1183 uvm_pagefree(pg)
   1184 	struct vm_page *pg;
   1185 {
   1186 	int s;
   1187 
   1188 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1189 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1190 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1191 	LOCK_ASSERT(pg->uobject == NULL ||
   1192 		    simple_lock_held(&pg->uobject->vmobjlock));
   1193 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1194 		    simple_lock_held(&pg->uanon->an_lock));
   1195 
   1196 #ifdef DEBUG
   1197 	if (pg->uobject == (void *)0xdeadbeef &&
   1198 	    pg->uanon == (void *)0xdeadbeef) {
   1199 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1200 	}
   1201 #endif
   1202 
   1203 	/*
   1204 	 * if the page is loaned, resolve the loan instead of freeing.
   1205 	 */
   1206 
   1207 	if (pg->loan_count) {
   1208 		KASSERT(pg->wire_count == 0);
   1209 
   1210 		/*
   1211 		 * if the page is owned by an anon then we just want to
   1212 		 * drop anon ownership.  the kernel will free the page when
   1213 		 * it is done with it.  if the page is owned by an object,
   1214 		 * remove it from the object and mark it dirty for the benefit
   1215 		 * of possible anon owners.
   1216 		 *
   1217 		 * regardless of previous ownership, wakeup any waiters,
   1218 		 * unbusy the page, and we're done.
   1219 		 */
   1220 
   1221 		if (pg->pqflags & PQ_ANON) {
   1222 			pg->pqflags &= ~PQ_ANON;
   1223 			pg->uanon = NULL;
   1224 		} else if (pg->flags & PG_TABLED) {
   1225 			uvm_pageremove(pg);
   1226 			pg->flags &= ~PG_CLEAN;
   1227 		}
   1228 		if (pg->flags & PG_WANTED) {
   1229 			wakeup(pg);
   1230 		}
   1231 		pg->flags &= ~(PG_WANTED|PG_BUSY);
   1232 #ifdef UVM_PAGE_TRKOWN
   1233 		pg->owner_tag = NULL;
   1234 #endif
   1235 		return;
   1236 	}
   1237 
   1238 	/*
   1239 	 * remove page from its object or anon.
   1240 	 * adjust swpgonly if the page is swap-backed.
   1241 	 */
   1242 
   1243 	if (pg->flags & PG_TABLED) {
   1244 		uvm_pageremove(pg);
   1245 	} else if (pg->pqflags & PQ_ANON) {
   1246 		pg->uanon->u.an_page = NULL;
   1247 	}
   1248 
   1249 	/*
   1250 	 * now remove the page from the queues.
   1251 	 */
   1252 
   1253 	uvm_pagedequeue(pg);
   1254 
   1255 	/*
   1256 	 * if the page was wired, unwire it now.
   1257 	 */
   1258 
   1259 	if (pg->wire_count) {
   1260 		pg->wire_count = 0;
   1261 		uvmexp.wired--;
   1262 	}
   1263 	if (pg->pqflags & PQ_ANON) {
   1264 		uvmexp.anonpages--;
   1265 	}
   1266 
   1267 	/*
   1268 	 * and put on free queue
   1269 	 */
   1270 
   1271 	pg->flags &= ~PG_ZERO;
   1272 
   1273 	s = uvm_lock_fpageq();
   1274 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1275 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1276 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1277 	pg->pqflags = PQ_FREE;
   1278 #ifdef DEBUG
   1279 	pg->uobject = (void *)0xdeadbeef;
   1280 	pg->offset = 0xdeadbeef;
   1281 	pg->uanon = (void *)0xdeadbeef;
   1282 #endif
   1283 	uvmexp.free++;
   1284 
   1285 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1286 		uvm.page_idle_zero = vm_page_zero_enable;
   1287 
   1288 	uvm_unlock_fpageq(s);
   1289 }
   1290 
   1291 /*
   1292  * uvm_page_unbusy: unbusy an array of pages.
   1293  *
   1294  * => pages must either all belong to the same object, or all belong to anons.
   1295  * => if pages are object-owned, object must be locked.
   1296  * => if pages are anon-owned, anons must be locked.
   1297  */
   1298 
   1299 void
   1300 uvm_page_unbusy(pgs, npgs)
   1301 	struct vm_page **pgs;
   1302 	int npgs;
   1303 {
   1304 	struct vm_page *pg;
   1305 	int i;
   1306 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1307 
   1308 	for (i = 0; i < npgs; i++) {
   1309 		pg = pgs[i];
   1310 		if (pg == NULL) {
   1311 			continue;
   1312 		}
   1313 		if (pg->flags & PG_WANTED) {
   1314 			wakeup(pg);
   1315 		}
   1316 		if (pg->flags & PG_RELEASED) {
   1317 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1318 			pg->flags &= ~PG_RELEASED;
   1319 			uvm_pagefree(pg);
   1320 		} else {
   1321 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1322 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1323 			UVM_PAGE_OWN(pg, NULL);
   1324 		}
   1325 	}
   1326 }
   1327 
   1328 #if defined(UVM_PAGE_TRKOWN)
   1329 /*
   1330  * uvm_page_own: set or release page ownership
   1331  *
   1332  * => this is a debugging function that keeps track of who sets PG_BUSY
   1333  *	and where they do it.   it can be used to track down problems
   1334  *	such a process setting "PG_BUSY" and never releasing it.
   1335  * => page's object [if any] must be locked
   1336  * => if "tag" is NULL then we are releasing page ownership
   1337  */
   1338 void
   1339 uvm_page_own(pg, tag)
   1340 	struct vm_page *pg;
   1341 	char *tag;
   1342 {
   1343 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1344 
   1345 	/* gain ownership? */
   1346 	if (tag) {
   1347 		if (pg->owner_tag) {
   1348 			printf("uvm_page_own: page %p already owned "
   1349 			    "by proc %d [%s]\n", pg,
   1350 			     pg->owner, pg->owner_tag);
   1351 			panic("uvm_page_own");
   1352 		}
   1353 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1354 		pg->owner_tag = tag;
   1355 		return;
   1356 	}
   1357 
   1358 	/* drop ownership */
   1359 	if (pg->owner_tag == NULL) {
   1360 		printf("uvm_page_own: dropping ownership of an non-owned "
   1361 		    "page (%p)\n", pg);
   1362 		panic("uvm_page_own");
   1363 	}
   1364 	pg->owner_tag = NULL;
   1365 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1366 		(pg->uanon == NULL && pg->uobject == NULL) ||
   1367 		pg->uobject == uvm.kernel_object ||
   1368 		pg->wire_count > 0 ||
   1369 		(pg->loan_count == 1 && pg->uanon == NULL) ||
   1370 		pg->loan_count > 1);
   1371 	return;
   1372 }
   1373 #endif
   1374 
   1375 /*
   1376  * uvm_pageidlezero: zero free pages while the system is idle.
   1377  *
   1378  * => try to complete one color bucket at a time, to reduce our impact
   1379  *	on the CPU cache.
   1380  * => we loop until we either reach the target or whichqs indicates that
   1381  *	there is a process ready to run.
   1382  */
   1383 void
   1384 uvm_pageidlezero()
   1385 {
   1386 	struct vm_page *pg;
   1387 	struct pgfreelist *pgfl;
   1388 	int free_list, s, firstbucket;
   1389 	static int nextbucket;
   1390 
   1391 	s = uvm_lock_fpageq();
   1392 	firstbucket = nextbucket;
   1393 	do {
   1394 		if (sched_whichqs != 0) {
   1395 			uvm_unlock_fpageq(s);
   1396 			return;
   1397 		}
   1398 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1399 			uvm.page_idle_zero = FALSE;
   1400 			uvm_unlock_fpageq(s);
   1401 			return;
   1402 		}
   1403 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1404 			pgfl = &uvm.page_free[free_list];
   1405 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1406 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1407 				if (sched_whichqs != 0) {
   1408 					uvm_unlock_fpageq(s);
   1409 					return;
   1410 				}
   1411 
   1412 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1413 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1414 				    pg, pageq);
   1415 				uvmexp.free--;
   1416 				uvm_unlock_fpageq(s);
   1417 #ifdef PMAP_PAGEIDLEZERO
   1418 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1419 
   1420 					/*
   1421 					 * The machine-dependent code detected
   1422 					 * some reason for us to abort zeroing
   1423 					 * pages, probably because there is a
   1424 					 * process now ready to run.
   1425 					 */
   1426 
   1427 					s = uvm_lock_fpageq();
   1428 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1429 					    nextbucket].pgfl_queues[
   1430 					    PGFL_UNKNOWN], pg, pageq);
   1431 					uvmexp.free++;
   1432 					uvmexp.zeroaborts++;
   1433 					uvm_unlock_fpageq(s);
   1434 					return;
   1435 				}
   1436 #else
   1437 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1438 #endif /* PMAP_PAGEIDLEZERO */
   1439 				pg->flags |= PG_ZERO;
   1440 
   1441 				s = uvm_lock_fpageq();
   1442 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1443 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1444 				    pg, pageq);
   1445 				uvmexp.free++;
   1446 				uvmexp.zeropages++;
   1447 			}
   1448 		}
   1449 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1450 	} while (nextbucket != firstbucket);
   1451 	uvm_unlock_fpageq(s);
   1452 }
   1453