Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.75
      1 /*	$NetBSD: uvm_page.c,v 1.75 2002/05/15 00:19:12 enami Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.75 2002/05/15 00:19:12 enami Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either cpu caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 /*
    143  * local prototypes
    144  */
    145 
    146 static void uvm_pageinsert __P((struct vm_page *));
    147 static void uvm_pageremove __P((struct vm_page *));
    148 
    149 /*
    150  * inline functions
    151  */
    152 
    153 /*
    154  * uvm_pageinsert: insert a page in the object and the hash table
    155  *
    156  * => caller must lock object
    157  * => caller must lock page queues
    158  * => call should have already set pg's object and offset pointers
    159  *    and bumped the version counter
    160  */
    161 
    162 __inline static void
    163 uvm_pageinsert(pg)
    164 	struct vm_page *pg;
    165 {
    166 	struct pglist *buck;
    167 	struct uvm_object *uobj = pg->uobject;
    168 
    169 	KASSERT((pg->flags & PG_TABLED) == 0);
    170 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    171 	simple_lock(&uvm.hashlock);
    172 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    173 	simple_unlock(&uvm.hashlock);
    174 
    175 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    176 	pg->flags |= PG_TABLED;
    177 	uobj->uo_npages++;
    178 }
    179 
    180 /*
    181  * uvm_page_remove: remove page from object and hash
    182  *
    183  * => caller must lock object
    184  * => caller must lock page queues
    185  */
    186 
    187 static __inline void
    188 uvm_pageremove(pg)
    189 	struct vm_page *pg;
    190 {
    191 	struct pglist *buck;
    192 	struct uvm_object *uobj = pg->uobject;
    193 
    194 	KASSERT(pg->flags & PG_TABLED);
    195 	buck = &uvm.page_hash[uvm_pagehash(uobj ,pg->offset)];
    196 	simple_lock(&uvm.hashlock);
    197 	TAILQ_REMOVE(buck, pg, hashq);
    198 	simple_unlock(&uvm.hashlock);
    199 
    200 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    201 		uvmexp.execpages--;
    202 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    203 		uvmexp.filepages--;
    204 	}
    205 
    206 	/* object should be locked */
    207 	uobj->uo_npages--;
    208 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    209 	pg->flags &= ~PG_TABLED;
    210 	pg->uobject = NULL;
    211 }
    212 
    213 static void
    214 uvm_page_init_buckets(struct pgfreelist *pgfl)
    215 {
    216 	int color, i;
    217 
    218 	for (color = 0; color < uvmexp.ncolors; color++) {
    219 		for (i = 0; i < PGFL_NQUEUES; i++) {
    220 			TAILQ_INIT(&pgfl->pgfl_buckets[
    221 			    color].pgfl_queues[i]);
    222 		}
    223 	}
    224 }
    225 
    226 /*
    227  * uvm_page_init: init the page system.   called from uvm_init().
    228  *
    229  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    230  */
    231 
    232 void
    233 uvm_page_init(kvm_startp, kvm_endp)
    234 	vaddr_t *kvm_startp, *kvm_endp;
    235 {
    236 	vsize_t freepages, pagecount, bucketcount, n;
    237 	struct pgflbucket *bucketarray;
    238 	struct vm_page *pagearray;
    239 	int lcv, i;
    240 	paddr_t paddr;
    241 
    242 	/*
    243 	 * init the page queues and page queue locks, except the free
    244 	 * list; we allocate that later (with the initial vm_page
    245 	 * structures).
    246 	 */
    247 
    248 	TAILQ_INIT(&uvm.page_active);
    249 	TAILQ_INIT(&uvm.page_inactive);
    250 	simple_lock_init(&uvm.pageqlock);
    251 	simple_lock_init(&uvm.fpageqlock);
    252 
    253 	/*
    254 	 * init the <obj,offset> => <page> hash table.  for now
    255 	 * we just have one bucket (the bootstrap bucket).  later on we
    256 	 * will allocate new buckets as we dynamically resize the hash table.
    257 	 */
    258 
    259 	uvm.page_nhash = 1;			/* 1 bucket */
    260 	uvm.page_hashmask = 0;			/* mask for hash function */
    261 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    262 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    263 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    264 
    265 	/*
    266 	 * allocate vm_page structures.
    267 	 */
    268 
    269 	/*
    270 	 * sanity check:
    271 	 * before calling this function the MD code is expected to register
    272 	 * some free RAM with the uvm_page_physload() function.   our job
    273 	 * now is to allocate vm_page structures for this memory.
    274 	 */
    275 
    276 	if (vm_nphysseg == 0)
    277 		panic("uvm_page_bootstrap: no memory pre-allocated");
    278 
    279 	/*
    280 	 * first calculate the number of free pages...
    281 	 *
    282 	 * note that we use start/end rather than avail_start/avail_end.
    283 	 * this allows us to allocate extra vm_page structures in case we
    284 	 * want to return some memory to the pool after booting.
    285 	 */
    286 
    287 	freepages = 0;
    288 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    289 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    290 
    291 	/*
    292 	 * Let MD code initialize the number of colors, or default
    293 	 * to 1 color if MD code doesn't care.
    294 	 */
    295 	if (uvmexp.ncolors == 0)
    296 		uvmexp.ncolors = 1;
    297 	uvmexp.colormask = uvmexp.ncolors - 1;
    298 
    299 	/*
    300 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    301 	 * use.   for each page of memory we use we need a vm_page structure.
    302 	 * thus, the total number of pages we can use is the total size of
    303 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    304 	 * structure.   we add one to freepages as a fudge factor to avoid
    305 	 * truncation errors (since we can only allocate in terms of whole
    306 	 * pages).
    307 	 */
    308 
    309 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    310 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    311 	    (PAGE_SIZE + sizeof(struct vm_page));
    312 
    313 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    314 	    sizeof(struct pgflbucket)) + (pagecount *
    315 	    sizeof(struct vm_page)));
    316 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    317 
    318 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    319 		uvm.page_free[lcv].pgfl_buckets =
    320 		    (bucketarray + (lcv * uvmexp.ncolors));
    321 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    322 	}
    323 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    324 
    325 	/*
    326 	 * init the vm_page structures and put them in the correct place.
    327 	 */
    328 
    329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    330 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    331 
    332 		/* set up page array pointers */
    333 		vm_physmem[lcv].pgs = pagearray;
    334 		pagearray += n;
    335 		pagecount -= n;
    336 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    337 
    338 		/* init and free vm_pages (we've already zeroed them) */
    339 		paddr = ptoa(vm_physmem[lcv].start);
    340 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    341 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    342 #ifdef __HAVE_VM_PAGE_MD
    343 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    344 #endif
    345 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    346 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    347 				uvmexp.npages++;
    348 				/* add page to free pool */
    349 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    350 			}
    351 		}
    352 	}
    353 
    354 	/*
    355 	 * pass up the values of virtual_space_start and
    356 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    357 	 * layers of the VM.
    358 	 */
    359 
    360 	*kvm_startp = round_page(virtual_space_start);
    361 	*kvm_endp = trunc_page(virtual_space_end);
    362 
    363 	/*
    364 	 * init locks for kernel threads
    365 	 */
    366 
    367 	simple_lock_init(&uvm.pagedaemon_lock);
    368 	simple_lock_init(&uvm.aiodoned_lock);
    369 
    370 	/*
    371 	 * init various thresholds.
    372 	 */
    373 
    374 	uvmexp.reserve_pagedaemon = 1;
    375 	uvmexp.reserve_kernel = 5;
    376 	uvmexp.anonminpct = 10;
    377 	uvmexp.fileminpct = 10;
    378 	uvmexp.execminpct = 5;
    379 	uvmexp.anonmaxpct = 80;
    380 	uvmexp.filemaxpct = 50;
    381 	uvmexp.execmaxpct = 30;
    382 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    383 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    384 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    385 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    386 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    387 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    388 
    389 	/*
    390 	 * determine if we should zero pages in the idle loop.
    391 	 */
    392 
    393 	uvm.page_idle_zero = vm_page_zero_enable;
    394 
    395 	/*
    396 	 * done!
    397 	 */
    398 
    399 	uvm.page_init_done = TRUE;
    400 }
    401 
    402 /*
    403  * uvm_setpagesize: set the page size
    404  *
    405  * => sets page_shift and page_mask from uvmexp.pagesize.
    406  */
    407 
    408 void
    409 uvm_setpagesize()
    410 {
    411 	if (uvmexp.pagesize == 0)
    412 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    413 	uvmexp.pagemask = uvmexp.pagesize - 1;
    414 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    415 		panic("uvm_setpagesize: page size not a power of two");
    416 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    417 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    418 			break;
    419 }
    420 
    421 /*
    422  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    423  */
    424 
    425 vaddr_t
    426 uvm_pageboot_alloc(size)
    427 	vsize_t size;
    428 {
    429 	static boolean_t initialized = FALSE;
    430 	vaddr_t addr;
    431 #if !defined(PMAP_STEAL_MEMORY)
    432 	vaddr_t vaddr;
    433 	paddr_t paddr;
    434 #endif
    435 
    436 	/*
    437 	 * on first call to this function, initialize ourselves.
    438 	 */
    439 	if (initialized == FALSE) {
    440 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    441 
    442 		/* round it the way we like it */
    443 		virtual_space_start = round_page(virtual_space_start);
    444 		virtual_space_end = trunc_page(virtual_space_end);
    445 
    446 		initialized = TRUE;
    447 	}
    448 
    449 	/* round to page size */
    450 	size = round_page(size);
    451 
    452 #if defined(PMAP_STEAL_MEMORY)
    453 
    454 	/*
    455 	 * defer bootstrap allocation to MD code (it may want to allocate
    456 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    457 	 * virtual_space_start/virtual_space_end if necessary.
    458 	 */
    459 
    460 	addr = pmap_steal_memory(size, &virtual_space_start,
    461 	    &virtual_space_end);
    462 
    463 	return(addr);
    464 
    465 #else /* !PMAP_STEAL_MEMORY */
    466 
    467 	/*
    468 	 * allocate virtual memory for this request
    469 	 */
    470 	if (virtual_space_start == virtual_space_end ||
    471 	    (virtual_space_end - virtual_space_start) < size)
    472 		panic("uvm_pageboot_alloc: out of virtual space");
    473 
    474 	addr = virtual_space_start;
    475 
    476 #ifdef PMAP_GROWKERNEL
    477 	/*
    478 	 * If the kernel pmap can't map the requested space,
    479 	 * then allocate more resources for it.
    480 	 */
    481 	if (uvm_maxkaddr < (addr + size)) {
    482 		uvm_maxkaddr = pmap_growkernel(addr + size);
    483 		if (uvm_maxkaddr < (addr + size))
    484 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    485 	}
    486 #endif
    487 
    488 	virtual_space_start += size;
    489 
    490 	/*
    491 	 * allocate and mapin physical pages to back new virtual pages
    492 	 */
    493 
    494 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    495 	    vaddr += PAGE_SIZE) {
    496 
    497 		if (!uvm_page_physget(&paddr))
    498 			panic("uvm_pageboot_alloc: out of memory");
    499 
    500 		/*
    501 		 * Note this memory is no longer managed, so using
    502 		 * pmap_kenter is safe.
    503 		 */
    504 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    505 	}
    506 	pmap_update(pmap_kernel());
    507 	return(addr);
    508 #endif	/* PMAP_STEAL_MEMORY */
    509 }
    510 
    511 #if !defined(PMAP_STEAL_MEMORY)
    512 /*
    513  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    514  *
    515  * => attempt to allocate it off the end of a segment in which the "avail"
    516  *    values match the start/end values.   if we can't do that, then we
    517  *    will advance both values (making them equal, and removing some
    518  *    vm_page structures from the non-avail area).
    519  * => return false if out of memory.
    520  */
    521 
    522 /* subroutine: try to allocate from memory chunks on the specified freelist */
    523 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    524 
    525 static boolean_t
    526 uvm_page_physget_freelist(paddrp, freelist)
    527 	paddr_t *paddrp;
    528 	int freelist;
    529 {
    530 	int lcv, x;
    531 
    532 	/* pass 1: try allocating from a matching end */
    533 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    534 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    535 #else
    536 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    537 #endif
    538 	{
    539 
    540 		if (uvm.page_init_done == TRUE)
    541 			panic("uvm_page_physget: called _after_ bootstrap");
    542 
    543 		if (vm_physmem[lcv].free_list != freelist)
    544 			continue;
    545 
    546 		/* try from front */
    547 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    548 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    549 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    550 			vm_physmem[lcv].avail_start++;
    551 			vm_physmem[lcv].start++;
    552 			/* nothing left?   nuke it */
    553 			if (vm_physmem[lcv].avail_start ==
    554 			    vm_physmem[lcv].end) {
    555 				if (vm_nphysseg == 1)
    556 				    panic("vum_page_physget: out of memory!");
    557 				vm_nphysseg--;
    558 				for (x = lcv ; x < vm_nphysseg ; x++)
    559 					/* structure copy */
    560 					vm_physmem[x] = vm_physmem[x+1];
    561 			}
    562 			return (TRUE);
    563 		}
    564 
    565 		/* try from rear */
    566 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    567 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    568 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    569 			vm_physmem[lcv].avail_end--;
    570 			vm_physmem[lcv].end--;
    571 			/* nothing left?   nuke it */
    572 			if (vm_physmem[lcv].avail_end ==
    573 			    vm_physmem[lcv].start) {
    574 				if (vm_nphysseg == 1)
    575 				    panic("uvm_page_physget: out of memory!");
    576 				vm_nphysseg--;
    577 				for (x = lcv ; x < vm_nphysseg ; x++)
    578 					/* structure copy */
    579 					vm_physmem[x] = vm_physmem[x+1];
    580 			}
    581 			return (TRUE);
    582 		}
    583 	}
    584 
    585 	/* pass2: forget about matching ends, just allocate something */
    586 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    587 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    588 #else
    589 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    590 #endif
    591 	{
    592 
    593 		/* any room in this bank? */
    594 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    595 			continue;  /* nope */
    596 
    597 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    598 		vm_physmem[lcv].avail_start++;
    599 		/* truncate! */
    600 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    601 
    602 		/* nothing left?   nuke it */
    603 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    604 			if (vm_nphysseg == 1)
    605 				panic("uvm_page_physget: out of memory!");
    606 			vm_nphysseg--;
    607 			for (x = lcv ; x < vm_nphysseg ; x++)
    608 				/* structure copy */
    609 				vm_physmem[x] = vm_physmem[x+1];
    610 		}
    611 		return (TRUE);
    612 	}
    613 
    614 	return (FALSE);        /* whoops! */
    615 }
    616 
    617 boolean_t
    618 uvm_page_physget(paddrp)
    619 	paddr_t *paddrp;
    620 {
    621 	int i;
    622 
    623 	/* try in the order of freelist preference */
    624 	for (i = 0; i < VM_NFREELIST; i++)
    625 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    626 			return (TRUE);
    627 	return (FALSE);
    628 }
    629 #endif /* PMAP_STEAL_MEMORY */
    630 
    631 /*
    632  * uvm_page_physload: load physical memory into VM system
    633  *
    634  * => all args are PFs
    635  * => all pages in start/end get vm_page structures
    636  * => areas marked by avail_start/avail_end get added to the free page pool
    637  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    638  */
    639 
    640 void
    641 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    642 	paddr_t start, end, avail_start, avail_end;
    643 	int free_list;
    644 {
    645 	int preload, lcv;
    646 	psize_t npages;
    647 	struct vm_page *pgs;
    648 	struct vm_physseg *ps;
    649 
    650 	if (uvmexp.pagesize == 0)
    651 		panic("uvm_page_physload: page size not set!");
    652 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    653 		panic("uvm_page_physload: bad free list %d\n", free_list);
    654 	if (start >= end)
    655 		panic("uvm_page_physload: start >= end");
    656 
    657 	/*
    658 	 * do we have room?
    659 	 */
    660 
    661 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    662 		printf("uvm_page_physload: unable to load physical memory "
    663 		    "segment\n");
    664 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    665 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    666 		printf("\tincrease VM_PHYSSEG_MAX\n");
    667 		return;
    668 	}
    669 
    670 	/*
    671 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    672 	 * called yet, so malloc is not available).
    673 	 */
    674 
    675 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    676 		if (vm_physmem[lcv].pgs)
    677 			break;
    678 	}
    679 	preload = (lcv == vm_nphysseg);
    680 
    681 	/*
    682 	 * if VM is already running, attempt to malloc() vm_page structures
    683 	 */
    684 
    685 	if (!preload) {
    686 #if defined(VM_PHYSSEG_NOADD)
    687 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    688 #else
    689 		/* XXXCDC: need some sort of lockout for this case */
    690 		paddr_t paddr;
    691 		npages = end - start;  /* # of pages */
    692 		pgs = malloc(sizeof(struct vm_page) * npages,
    693 		    M_VMPAGE, M_NOWAIT);
    694 		if (pgs == NULL) {
    695 			printf("uvm_page_physload: can not malloc vm_page "
    696 			    "structs for segment\n");
    697 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    698 			return;
    699 		}
    700 		/* zero data, init phys_addr and free_list, and free pages */
    701 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    702 		for (lcv = 0, paddr = ptoa(start) ;
    703 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    704 			pgs[lcv].phys_addr = paddr;
    705 			pgs[lcv].free_list = free_list;
    706 			if (atop(paddr) >= avail_start &&
    707 			    atop(paddr) <= avail_end)
    708 				uvm_pagefree(&pgs[lcv]);
    709 		}
    710 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    711 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    712 #endif
    713 	} else {
    714 		pgs = NULL;
    715 		npages = 0;
    716 	}
    717 
    718 	/*
    719 	 * now insert us in the proper place in vm_physmem[]
    720 	 */
    721 
    722 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    723 	/* random: put it at the end (easy!) */
    724 	ps = &vm_physmem[vm_nphysseg];
    725 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    726 	{
    727 		int x;
    728 		/* sort by address for binary search */
    729 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    730 			if (start < vm_physmem[lcv].start)
    731 				break;
    732 		ps = &vm_physmem[lcv];
    733 		/* move back other entries, if necessary ... */
    734 		for (x = vm_nphysseg ; x > lcv ; x--)
    735 			/* structure copy */
    736 			vm_physmem[x] = vm_physmem[x - 1];
    737 	}
    738 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    739 	{
    740 		int x;
    741 		/* sort by largest segment first */
    742 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    743 			if ((end - start) >
    744 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    745 				break;
    746 		ps = &vm_physmem[lcv];
    747 		/* move back other entries, if necessary ... */
    748 		for (x = vm_nphysseg ; x > lcv ; x--)
    749 			/* structure copy */
    750 			vm_physmem[x] = vm_physmem[x - 1];
    751 	}
    752 #else
    753 	panic("uvm_page_physload: unknown physseg strategy selected!");
    754 #endif
    755 
    756 	ps->start = start;
    757 	ps->end = end;
    758 	ps->avail_start = avail_start;
    759 	ps->avail_end = avail_end;
    760 	if (preload) {
    761 		ps->pgs = NULL;
    762 	} else {
    763 		ps->pgs = pgs;
    764 		ps->lastpg = pgs + npages - 1;
    765 	}
    766 	ps->free_list = free_list;
    767 	vm_nphysseg++;
    768 
    769 	if (!preload)
    770 		uvm_page_rehash();
    771 }
    772 
    773 /*
    774  * uvm_page_rehash: reallocate hash table based on number of free pages.
    775  */
    776 
    777 void
    778 uvm_page_rehash()
    779 {
    780 	int freepages, lcv, bucketcount, oldcount;
    781 	struct pglist *newbuckets, *oldbuckets;
    782 	struct vm_page *pg;
    783 	size_t newsize, oldsize;
    784 
    785 	/*
    786 	 * compute number of pages that can go in the free pool
    787 	 */
    788 
    789 	freepages = 0;
    790 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    791 		freepages +=
    792 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    793 
    794 	/*
    795 	 * compute number of buckets needed for this number of pages
    796 	 */
    797 
    798 	bucketcount = 1;
    799 	while (bucketcount < freepages)
    800 		bucketcount = bucketcount * 2;
    801 
    802 	/*
    803 	 * compute the size of the current table and new table.
    804 	 */
    805 
    806 	oldbuckets = uvm.page_hash;
    807 	oldcount = uvm.page_nhash;
    808 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    809 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    810 
    811 	/*
    812 	 * allocate the new buckets
    813 	 */
    814 
    815 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    816 	if (newbuckets == NULL) {
    817 		printf("uvm_page_physrehash: WARNING: could not grow page "
    818 		    "hash table\n");
    819 		return;
    820 	}
    821 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    822 		TAILQ_INIT(&newbuckets[lcv]);
    823 
    824 	/*
    825 	 * now replace the old buckets with the new ones and rehash everything
    826 	 */
    827 
    828 	simple_lock(&uvm.hashlock);
    829 	uvm.page_hash = newbuckets;
    830 	uvm.page_nhash = bucketcount;
    831 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    832 
    833 	/* ... and rehash */
    834 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    835 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    836 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    837 			TAILQ_INSERT_TAIL(
    838 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    839 			  pg, hashq);
    840 		}
    841 	}
    842 	simple_unlock(&uvm.hashlock);
    843 
    844 	/*
    845 	 * free old bucket array if is not the boot-time table
    846 	 */
    847 
    848 	if (oldbuckets != &uvm_bootbucket)
    849 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    850 }
    851 
    852 /*
    853  * uvm_page_recolor: Recolor the pages if the new bucket count is
    854  * larger than the old one.
    855  */
    856 
    857 void
    858 uvm_page_recolor(int newncolors)
    859 {
    860 	struct pgflbucket *bucketarray, *oldbucketarray;
    861 	struct pgfreelist pgfl;
    862 	struct vm_page *pg;
    863 	vsize_t bucketcount;
    864 	int s, lcv, color, i, ocolors;
    865 
    866 	if (newncolors <= uvmexp.ncolors)
    867 		return;
    868 
    869 	bucketcount = newncolors * VM_NFREELIST;
    870 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    871 	    M_VMPAGE, M_NOWAIT);
    872 	if (bucketarray == NULL) {
    873 		printf("WARNING: unable to allocate %ld page color buckets\n",
    874 		    (long) bucketcount);
    875 		return;
    876 	}
    877 
    878 	s = uvm_lock_fpageq();
    879 
    880 	/* Make sure we should still do this. */
    881 	if (newncolors <= uvmexp.ncolors) {
    882 		uvm_unlock_fpageq(s);
    883 		free(bucketarray, M_VMPAGE);
    884 		return;
    885 	}
    886 
    887 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    888 	ocolors = uvmexp.ncolors;
    889 
    890 	uvmexp.ncolors = newncolors;
    891 	uvmexp.colormask = uvmexp.ncolors - 1;
    892 
    893 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    894 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    895 		uvm_page_init_buckets(&pgfl);
    896 		for (color = 0; color < ocolors; color++) {
    897 			for (i = 0; i < PGFL_NQUEUES; i++) {
    898 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    899 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    900 				    != NULL) {
    901 					TAILQ_REMOVE(&uvm.page_free[
    902 					    lcv].pgfl_buckets[
    903 					    color].pgfl_queues[i], pg, pageq);
    904 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    905 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    906 					    i], pg, pageq);
    907 				}
    908 			}
    909 		}
    910 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    911 	}
    912 
    913 	if (have_recolored_pages) {
    914 		uvm_unlock_fpageq(s);
    915 		free(oldbucketarray, M_VMPAGE);
    916 		return;
    917 	}
    918 
    919 	have_recolored_pages = TRUE;
    920 	uvm_unlock_fpageq(s);
    921 }
    922 
    923 /*
    924  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    925  */
    926 
    927 static __inline struct vm_page *
    928 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    929     int *trycolorp)
    930 {
    931 	struct pglist *freeq;
    932 	struct vm_page *pg;
    933 	int color, trycolor = *trycolorp;
    934 
    935 	color = trycolor;
    936 	do {
    937 		if ((pg = TAILQ_FIRST((freeq =
    938 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    939 			goto gotit;
    940 		if ((pg = TAILQ_FIRST((freeq =
    941 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    942 			goto gotit;
    943 		color = (color + 1) & uvmexp.colormask;
    944 	} while (color != trycolor);
    945 
    946 	return (NULL);
    947 
    948  gotit:
    949 	TAILQ_REMOVE(freeq, pg, pageq);
    950 	uvmexp.free--;
    951 
    952 	/* update zero'd page count */
    953 	if (pg->flags & PG_ZERO)
    954 		uvmexp.zeropages--;
    955 
    956 	if (color == trycolor)
    957 		uvmexp.colorhit++;
    958 	else {
    959 		uvmexp.colormiss++;
    960 		*trycolorp = color;
    961 	}
    962 
    963 	return (pg);
    964 }
    965 
    966 /*
    967  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    968  *
    969  * => return null if no pages free
    970  * => wake up pagedaemon if number of free pages drops below low water mark
    971  * => if obj != NULL, obj must be locked (to put in hash)
    972  * => if anon != NULL, anon must be locked (to put in anon)
    973  * => only one of obj or anon can be non-null
    974  * => caller must activate/deactivate page if it is not wired.
    975  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    976  * => policy decision: it is more important to pull a page off of the
    977  *	appropriate priority free list than it is to get a zero'd or
    978  *	unknown contents page.  This is because we live with the
    979  *	consequences of a bad free list decision for the entire
    980  *	lifetime of the page, e.g. if the page comes from memory that
    981  *	is slower to access.
    982  */
    983 
    984 struct vm_page *
    985 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
    986 	struct uvm_object *obj;
    987 	voff_t off;
    988 	int flags;
    989 	struct vm_anon *anon;
    990 	int strat, free_list;
    991 {
    992 	int lcv, try1, try2, s, zeroit = 0, color;
    993 	struct vm_page *pg;
    994 	boolean_t use_reserve;
    995 
    996 	KASSERT(obj == NULL || anon == NULL);
    997 	KASSERT(off == trunc_page(off));
    998 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
    999 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1000 
   1001 	s = uvm_lock_fpageq();
   1002 
   1003 	/*
   1004 	 * This implements a global round-robin page coloring
   1005 	 * algorithm.
   1006 	 *
   1007 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1008 	 * XXXJRT: What about virtually-indexed caches?
   1009 	 */
   1010 
   1011 	color = uvm.page_free_nextcolor;
   1012 
   1013 	/*
   1014 	 * check to see if we need to generate some free pages waking
   1015 	 * the pagedaemon.
   1016 	 */
   1017 
   1018 	UVM_KICK_PDAEMON();
   1019 
   1020 	/*
   1021 	 * fail if any of these conditions is true:
   1022 	 * [1]  there really are no free pages, or
   1023 	 * [2]  only kernel "reserved" pages remain and
   1024 	 *        the page isn't being allocated to a kernel object.
   1025 	 * [3]  only pagedaemon "reserved" pages remain and
   1026 	 *        the requestor isn't the pagedaemon.
   1027 	 */
   1028 
   1029 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1030 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1031 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1032 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1033 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1034 		goto fail;
   1035 
   1036 #if PGFL_NQUEUES != 2
   1037 #error uvm_pagealloc_strat needs to be updated
   1038 #endif
   1039 
   1040 	/*
   1041 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1042 	 * we try the UNKNOWN queue first.
   1043 	 */
   1044 	if (flags & UVM_PGA_ZERO) {
   1045 		try1 = PGFL_ZEROS;
   1046 		try2 = PGFL_UNKNOWN;
   1047 	} else {
   1048 		try1 = PGFL_UNKNOWN;
   1049 		try2 = PGFL_ZEROS;
   1050 	}
   1051 
   1052  again:
   1053 	switch (strat) {
   1054 	case UVM_PGA_STRAT_NORMAL:
   1055 		/* Check all freelists in descending priority order. */
   1056 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1057 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1058 			    try1, try2, &color);
   1059 			if (pg != NULL)
   1060 				goto gotit;
   1061 		}
   1062 
   1063 		/* No pages free! */
   1064 		goto fail;
   1065 
   1066 	case UVM_PGA_STRAT_ONLY:
   1067 	case UVM_PGA_STRAT_FALLBACK:
   1068 		/* Attempt to allocate from the specified free list. */
   1069 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1070 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1071 		    try1, try2, &color);
   1072 		if (pg != NULL)
   1073 			goto gotit;
   1074 
   1075 		/* Fall back, if possible. */
   1076 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1077 			strat = UVM_PGA_STRAT_NORMAL;
   1078 			goto again;
   1079 		}
   1080 
   1081 		/* No pages free! */
   1082 		goto fail;
   1083 
   1084 	default:
   1085 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1086 		/* NOTREACHED */
   1087 	}
   1088 
   1089  gotit:
   1090 	/*
   1091 	 * We now know which color we actually allocated from; set
   1092 	 * the next color accordingly.
   1093 	 */
   1094 
   1095 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1096 
   1097 	/*
   1098 	 * update allocation statistics and remember if we have to
   1099 	 * zero the page
   1100 	 */
   1101 
   1102 	if (flags & UVM_PGA_ZERO) {
   1103 		if (pg->flags & PG_ZERO) {
   1104 			uvmexp.pga_zerohit++;
   1105 			zeroit = 0;
   1106 		} else {
   1107 			uvmexp.pga_zeromiss++;
   1108 			zeroit = 1;
   1109 		}
   1110 	}
   1111 	uvm_unlock_fpageq(s);
   1112 
   1113 	pg->offset = off;
   1114 	pg->uobject = obj;
   1115 	pg->uanon = anon;
   1116 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1117 	if (anon) {
   1118 		anon->u.an_page = pg;
   1119 		pg->pqflags = PQ_ANON;
   1120 		uvmexp.anonpages++;
   1121 	} else {
   1122 		if (obj) {
   1123 			uvm_pageinsert(pg);
   1124 		}
   1125 		pg->pqflags = 0;
   1126 	}
   1127 #if defined(UVM_PAGE_TRKOWN)
   1128 	pg->owner_tag = NULL;
   1129 #endif
   1130 	UVM_PAGE_OWN(pg, "new alloc");
   1131 
   1132 	if (flags & UVM_PGA_ZERO) {
   1133 		/*
   1134 		 * A zero'd page is not clean.  If we got a page not already
   1135 		 * zero'd, then we have to zero it ourselves.
   1136 		 */
   1137 		pg->flags &= ~PG_CLEAN;
   1138 		if (zeroit)
   1139 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1140 	}
   1141 
   1142 	return(pg);
   1143 
   1144  fail:
   1145 	uvm_unlock_fpageq(s);
   1146 	return (NULL);
   1147 }
   1148 
   1149 /*
   1150  * uvm_pagerealloc: reallocate a page from one object to another
   1151  *
   1152  * => both objects must be locked
   1153  */
   1154 
   1155 void
   1156 uvm_pagerealloc(pg, newobj, newoff)
   1157 	struct vm_page *pg;
   1158 	struct uvm_object *newobj;
   1159 	voff_t newoff;
   1160 {
   1161 	/*
   1162 	 * remove it from the old object
   1163 	 */
   1164 
   1165 	if (pg->uobject) {
   1166 		uvm_pageremove(pg);
   1167 	}
   1168 
   1169 	/*
   1170 	 * put it in the new object
   1171 	 */
   1172 
   1173 	if (newobj) {
   1174 		pg->uobject = newobj;
   1175 		pg->offset = newoff;
   1176 		uvm_pageinsert(pg);
   1177 	}
   1178 }
   1179 
   1180 /*
   1181  * uvm_pagefree: free page
   1182  *
   1183  * => erase page's identity (i.e. remove from hash/object)
   1184  * => put page on free list
   1185  * => caller must lock owning object (either anon or uvm_object)
   1186  * => caller must lock page queues
   1187  * => assumes all valid mappings of pg are gone
   1188  */
   1189 
   1190 void
   1191 uvm_pagefree(pg)
   1192 	struct vm_page *pg;
   1193 {
   1194 	int s;
   1195 
   1196 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1197 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1198 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1199 	LOCK_ASSERT(pg->uobject == NULL ||
   1200 		    simple_lock_held(&pg->uobject->vmobjlock));
   1201 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1202 		    simple_lock_held(&pg->uanon->an_lock));
   1203 
   1204 #ifdef DEBUG
   1205 	if (pg->uobject == (void *)0xdeadbeef &&
   1206 	    pg->uanon == (void *)0xdeadbeef) {
   1207 		panic("uvm_pagefree: freeing free page %p\n", pg);
   1208 	}
   1209 #endif
   1210 
   1211 	/*
   1212 	 * if the page is loaned, resolve the loan instead of freeing.
   1213 	 */
   1214 
   1215 	if (pg->loan_count) {
   1216 		KASSERT(pg->wire_count == 0);
   1217 
   1218 		/*
   1219 		 * if the page is owned by an anon then we just want to
   1220 		 * drop anon ownership.  the kernel will free the page when
   1221 		 * it is done with it.  if the page is owned by an object,
   1222 		 * remove it from the object and mark it dirty for the benefit
   1223 		 * of possible anon owners.
   1224 		 *
   1225 		 * regardless of previous ownership, wakeup any waiters,
   1226 		 * unbusy the page, and we're done.
   1227 		 */
   1228 
   1229 		if (pg->uobject != NULL) {
   1230 			uvm_pageremove(pg);
   1231 			pg->flags &= ~PG_CLEAN;
   1232 		} else if (pg->uanon != NULL) {
   1233 			if ((pg->pqflags & PQ_ANON) == 0) {
   1234 				pg->loan_count--;
   1235 			} else {
   1236 				pg->pqflags &= ~PQ_ANON;
   1237 			}
   1238 			pg->uanon = NULL;
   1239 		}
   1240 		if (pg->flags & PG_WANTED) {
   1241 			wakeup(pg);
   1242 		}
   1243 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED);
   1244 #ifdef UVM_PAGE_TRKOWN
   1245 		pg->owner_tag = NULL;
   1246 #endif
   1247 		if (pg->loan_count) {
   1248 			uvm_pagedequeue(pg);
   1249 			return;
   1250 		}
   1251 	}
   1252 
   1253 	/*
   1254 	 * remove page from its object or anon.
   1255 	 */
   1256 
   1257 	if (pg->uobject != NULL) {
   1258 		uvm_pageremove(pg);
   1259 	} else if (pg->uanon != NULL) {
   1260 		pg->uanon->u.an_page = NULL;
   1261 		uvmexp.anonpages--;
   1262 	}
   1263 
   1264 	/*
   1265 	 * now remove the page from the queues.
   1266 	 */
   1267 
   1268 	uvm_pagedequeue(pg);
   1269 
   1270 	/*
   1271 	 * if the page was wired, unwire it now.
   1272 	 */
   1273 
   1274 	if (pg->wire_count) {
   1275 		pg->wire_count = 0;
   1276 		uvmexp.wired--;
   1277 	}
   1278 
   1279 	/*
   1280 	 * and put on free queue
   1281 	 */
   1282 
   1283 	pg->flags &= ~PG_ZERO;
   1284 
   1285 	s = uvm_lock_fpageq();
   1286 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1287 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1288 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1289 	pg->pqflags = PQ_FREE;
   1290 #ifdef DEBUG
   1291 	pg->uobject = (void *)0xdeadbeef;
   1292 	pg->offset = 0xdeadbeef;
   1293 	pg->uanon = (void *)0xdeadbeef;
   1294 #endif
   1295 	uvmexp.free++;
   1296 
   1297 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1298 		uvm.page_idle_zero = vm_page_zero_enable;
   1299 
   1300 	uvm_unlock_fpageq(s);
   1301 }
   1302 
   1303 /*
   1304  * uvm_page_unbusy: unbusy an array of pages.
   1305  *
   1306  * => pages must either all belong to the same object, or all belong to anons.
   1307  * => if pages are object-owned, object must be locked.
   1308  * => if pages are anon-owned, anons must be locked.
   1309  */
   1310 
   1311 void
   1312 uvm_page_unbusy(pgs, npgs)
   1313 	struct vm_page **pgs;
   1314 	int npgs;
   1315 {
   1316 	struct vm_page *pg;
   1317 	int i;
   1318 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1319 
   1320 	for (i = 0; i < npgs; i++) {
   1321 		pg = pgs[i];
   1322 		if (pg == NULL) {
   1323 			continue;
   1324 		}
   1325 		if (pg->flags & PG_WANTED) {
   1326 			wakeup(pg);
   1327 		}
   1328 		if (pg->flags & PG_RELEASED) {
   1329 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1330 			pg->flags &= ~PG_RELEASED;
   1331 			uvm_pagefree(pg);
   1332 		} else {
   1333 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1334 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1335 			UVM_PAGE_OWN(pg, NULL);
   1336 		}
   1337 	}
   1338 }
   1339 
   1340 #if defined(UVM_PAGE_TRKOWN)
   1341 /*
   1342  * uvm_page_own: set or release page ownership
   1343  *
   1344  * => this is a debugging function that keeps track of who sets PG_BUSY
   1345  *	and where they do it.   it can be used to track down problems
   1346  *	such a process setting "PG_BUSY" and never releasing it.
   1347  * => page's object [if any] must be locked
   1348  * => if "tag" is NULL then we are releasing page ownership
   1349  */
   1350 void
   1351 uvm_page_own(pg, tag)
   1352 	struct vm_page *pg;
   1353 	char *tag;
   1354 {
   1355 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1356 
   1357 	/* gain ownership? */
   1358 	if (tag) {
   1359 		if (pg->owner_tag) {
   1360 			printf("uvm_page_own: page %p already owned "
   1361 			    "by proc %d [%s]\n", pg,
   1362 			    pg->owner, pg->owner_tag);
   1363 			panic("uvm_page_own");
   1364 		}
   1365 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1366 		pg->owner_tag = tag;
   1367 		return;
   1368 	}
   1369 
   1370 	/* drop ownership */
   1371 	if (pg->owner_tag == NULL) {
   1372 		printf("uvm_page_own: dropping ownership of an non-owned "
   1373 		    "page (%p)\n", pg);
   1374 		panic("uvm_page_own");
   1375 	}
   1376 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1377 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1378 	    pg->uobject == uvm.kernel_object ||
   1379 	    pg->wire_count > 0 ||
   1380 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1381 	    pg->loan_count > 1);
   1382 	pg->owner_tag = NULL;
   1383 }
   1384 #endif
   1385 
   1386 /*
   1387  * uvm_pageidlezero: zero free pages while the system is idle.
   1388  *
   1389  * => try to complete one color bucket at a time, to reduce our impact
   1390  *	on the CPU cache.
   1391  * => we loop until we either reach the target or whichqs indicates that
   1392  *	there is a process ready to run.
   1393  */
   1394 void
   1395 uvm_pageidlezero()
   1396 {
   1397 	struct vm_page *pg;
   1398 	struct pgfreelist *pgfl;
   1399 	int free_list, s, firstbucket;
   1400 	static int nextbucket;
   1401 
   1402 	s = uvm_lock_fpageq();
   1403 	firstbucket = nextbucket;
   1404 	do {
   1405 		if (sched_whichqs != 0) {
   1406 			uvm_unlock_fpageq(s);
   1407 			return;
   1408 		}
   1409 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1410 			uvm.page_idle_zero = FALSE;
   1411 			uvm_unlock_fpageq(s);
   1412 			return;
   1413 		}
   1414 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1415 			pgfl = &uvm.page_free[free_list];
   1416 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1417 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1418 				if (sched_whichqs != 0) {
   1419 					uvm_unlock_fpageq(s);
   1420 					return;
   1421 				}
   1422 
   1423 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1424 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1425 				    pg, pageq);
   1426 				uvmexp.free--;
   1427 				uvm_unlock_fpageq(s);
   1428 #ifdef PMAP_PAGEIDLEZERO
   1429 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1430 
   1431 					/*
   1432 					 * The machine-dependent code detected
   1433 					 * some reason for us to abort zeroing
   1434 					 * pages, probably because there is a
   1435 					 * process now ready to run.
   1436 					 */
   1437 
   1438 					s = uvm_lock_fpageq();
   1439 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1440 					    nextbucket].pgfl_queues[
   1441 					    PGFL_UNKNOWN], pg, pageq);
   1442 					uvmexp.free++;
   1443 					uvmexp.zeroaborts++;
   1444 					uvm_unlock_fpageq(s);
   1445 					return;
   1446 				}
   1447 #else
   1448 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1449 #endif /* PMAP_PAGEIDLEZERO */
   1450 				pg->flags |= PG_ZERO;
   1451 
   1452 				s = uvm_lock_fpageq();
   1453 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1454 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1455 				    pg, pageq);
   1456 				uvmexp.free++;
   1457 				uvmexp.zeropages++;
   1458 			}
   1459 		}
   1460 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1461 	} while (nextbucket != firstbucket);
   1462 	uvm_unlock_fpageq(s);
   1463 }
   1464