Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.84
      1 /*	$NetBSD: uvm_page.c,v 1.84 2003/02/17 23:48:24 perseant Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.84 2003/02/17 23:48:24 perseant Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either cpu caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 /*
    145  * local prototypes
    146  */
    147 
    148 static void uvm_pageinsert __P((struct vm_page *));
    149 static void uvm_pageremove __P((struct vm_page *));
    150 
    151 /*
    152  * inline functions
    153  */
    154 
    155 /*
    156  * uvm_pageinsert: insert a page in the object and the hash table
    157  *
    158  * => caller must lock object
    159  * => caller must lock page queues
    160  * => call should have already set pg's object and offset pointers
    161  *    and bumped the version counter
    162  */
    163 
    164 __inline static void
    165 uvm_pageinsert(pg)
    166 	struct vm_page *pg;
    167 {
    168 	struct pglist *buck;
    169 	struct uvm_object *uobj = pg->uobject;
    170 
    171 	KASSERT((pg->flags & PG_TABLED) == 0);
    172 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    173 	simple_lock(&uvm.hashlock);
    174 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    175 	simple_unlock(&uvm.hashlock);
    176 
    177 	if (UVM_OBJ_IS_AOBJ(uobj)) {
    178 		uvmexp.anonpages++;
    179 	}
    180 
    181 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    182 	pg->flags |= PG_TABLED;
    183 	uobj->uo_npages++;
    184 }
    185 
    186 /*
    187  * uvm_page_remove: remove page from object and hash
    188  *
    189  * => caller must lock object
    190  * => caller must lock page queues
    191  */
    192 
    193 static __inline void
    194 uvm_pageremove(pg)
    195 	struct vm_page *pg;
    196 {
    197 	struct pglist *buck;
    198 	struct uvm_object *uobj = pg->uobject;
    199 
    200 	KASSERT(pg->flags & PG_TABLED);
    201 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    202 	simple_lock(&uvm.hashlock);
    203 	TAILQ_REMOVE(buck, pg, hashq);
    204 	simple_unlock(&uvm.hashlock);
    205 
    206 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    207 		uvmexp.execpages--;
    208 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    209 		uvmexp.filepages--;
    210 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    211 		uvmexp.anonpages--;
    212 	}
    213 
    214 	/* object should be locked */
    215 	uobj->uo_npages--;
    216 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    217 	pg->flags &= ~PG_TABLED;
    218 	pg->uobject = NULL;
    219 }
    220 
    221 static void
    222 uvm_page_init_buckets(struct pgfreelist *pgfl)
    223 {
    224 	int color, i;
    225 
    226 	for (color = 0; color < uvmexp.ncolors; color++) {
    227 		for (i = 0; i < PGFL_NQUEUES; i++) {
    228 			TAILQ_INIT(&pgfl->pgfl_buckets[
    229 			    color].pgfl_queues[i]);
    230 		}
    231 	}
    232 }
    233 
    234 /*
    235  * uvm_page_init: init the page system.   called from uvm_init().
    236  *
    237  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    238  */
    239 
    240 void
    241 uvm_page_init(kvm_startp, kvm_endp)
    242 	vaddr_t *kvm_startp, *kvm_endp;
    243 {
    244 	vsize_t freepages, pagecount, bucketcount, n;
    245 	struct pgflbucket *bucketarray;
    246 	struct vm_page *pagearray;
    247 	int lcv;
    248 	u_int i;
    249 	paddr_t paddr;
    250 
    251 	/*
    252 	 * init the page queues and page queue locks, except the free
    253 	 * list; we allocate that later (with the initial vm_page
    254 	 * structures).
    255 	 */
    256 
    257 	TAILQ_INIT(&uvm.page_active);
    258 	TAILQ_INIT(&uvm.page_inactive);
    259 	simple_lock_init(&uvm.pageqlock);
    260 	simple_lock_init(&uvm.fpageqlock);
    261 
    262 	/*
    263 	 * init the <obj,offset> => <page> hash table.  for now
    264 	 * we just have one bucket (the bootstrap bucket).  later on we
    265 	 * will allocate new buckets as we dynamically resize the hash table.
    266 	 */
    267 
    268 	uvm.page_nhash = 1;			/* 1 bucket */
    269 	uvm.page_hashmask = 0;			/* mask for hash function */
    270 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    271 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    272 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    273 
    274 	/*
    275 	 * allocate vm_page structures.
    276 	 */
    277 
    278 	/*
    279 	 * sanity check:
    280 	 * before calling this function the MD code is expected to register
    281 	 * some free RAM with the uvm_page_physload() function.   our job
    282 	 * now is to allocate vm_page structures for this memory.
    283 	 */
    284 
    285 	if (vm_nphysseg == 0)
    286 		panic("uvm_page_bootstrap: no memory pre-allocated");
    287 
    288 	/*
    289 	 * first calculate the number of free pages...
    290 	 *
    291 	 * note that we use start/end rather than avail_start/avail_end.
    292 	 * this allows us to allocate extra vm_page structures in case we
    293 	 * want to return some memory to the pool after booting.
    294 	 */
    295 
    296 	freepages = 0;
    297 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    298 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    299 
    300 	/*
    301 	 * Let MD code initialize the number of colors, or default
    302 	 * to 1 color if MD code doesn't care.
    303 	 */
    304 	if (uvmexp.ncolors == 0)
    305 		uvmexp.ncolors = 1;
    306 	uvmexp.colormask = uvmexp.ncolors - 1;
    307 
    308 	/*
    309 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    310 	 * use.   for each page of memory we use we need a vm_page structure.
    311 	 * thus, the total number of pages we can use is the total size of
    312 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    313 	 * structure.   we add one to freepages as a fudge factor to avoid
    314 	 * truncation errors (since we can only allocate in terms of whole
    315 	 * pages).
    316 	 */
    317 
    318 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    319 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    320 	    (PAGE_SIZE + sizeof(struct vm_page));
    321 
    322 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    323 	    sizeof(struct pgflbucket)) + (pagecount *
    324 	    sizeof(struct vm_page)));
    325 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    326 
    327 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    328 		uvm.page_free[lcv].pgfl_buckets =
    329 		    (bucketarray + (lcv * uvmexp.ncolors));
    330 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    331 	}
    332 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    333 
    334 	/*
    335 	 * init the vm_page structures and put them in the correct place.
    336 	 */
    337 
    338 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    339 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    340 
    341 		/* set up page array pointers */
    342 		vm_physmem[lcv].pgs = pagearray;
    343 		pagearray += n;
    344 		pagecount -= n;
    345 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    346 
    347 		/* init and free vm_pages (we've already zeroed them) */
    348 		paddr = ptoa(vm_physmem[lcv].start);
    349 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    350 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    351 #ifdef __HAVE_VM_PAGE_MD
    352 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    353 #endif
    354 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    355 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    356 				uvmexp.npages++;
    357 				/* add page to free pool */
    358 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    359 			}
    360 		}
    361 	}
    362 
    363 	/*
    364 	 * pass up the values of virtual_space_start and
    365 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    366 	 * layers of the VM.
    367 	 */
    368 
    369 	*kvm_startp = round_page(virtual_space_start);
    370 	*kvm_endp = trunc_page(virtual_space_end);
    371 
    372 	/*
    373 	 * init locks for kernel threads
    374 	 */
    375 
    376 	simple_lock_init(&uvm.pagedaemon_lock);
    377 	simple_lock_init(&uvm.aiodoned_lock);
    378 
    379 	/*
    380 	 * init various thresholds.
    381 	 */
    382 
    383 	uvmexp.reserve_pagedaemon = 1;
    384 	uvmexp.reserve_kernel = 5;
    385 	uvmexp.anonminpct = 10;
    386 	uvmexp.fileminpct = 10;
    387 	uvmexp.execminpct = 5;
    388 	uvmexp.anonmaxpct = 80;
    389 	uvmexp.filemaxpct = 50;
    390 	uvmexp.execmaxpct = 30;
    391 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    392 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    393 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    394 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    395 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    396 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    397 
    398 	/*
    399 	 * determine if we should zero pages in the idle loop.
    400 	 */
    401 
    402 	uvm.page_idle_zero = vm_page_zero_enable;
    403 
    404 	/*
    405 	 * done!
    406 	 */
    407 
    408 	uvm.page_init_done = TRUE;
    409 }
    410 
    411 /*
    412  * uvm_setpagesize: set the page size
    413  *
    414  * => sets page_shift and page_mask from uvmexp.pagesize.
    415  */
    416 
    417 void
    418 uvm_setpagesize()
    419 {
    420 	if (uvmexp.pagesize == 0)
    421 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    422 	uvmexp.pagemask = uvmexp.pagesize - 1;
    423 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    424 		panic("uvm_setpagesize: page size not a power of two");
    425 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    426 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    427 			break;
    428 }
    429 
    430 /*
    431  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    432  */
    433 
    434 vaddr_t
    435 uvm_pageboot_alloc(size)
    436 	vsize_t size;
    437 {
    438 	static boolean_t initialized = FALSE;
    439 	vaddr_t addr;
    440 #if !defined(PMAP_STEAL_MEMORY)
    441 	vaddr_t vaddr;
    442 	paddr_t paddr;
    443 #endif
    444 
    445 	/*
    446 	 * on first call to this function, initialize ourselves.
    447 	 */
    448 	if (initialized == FALSE) {
    449 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    450 
    451 		/* round it the way we like it */
    452 		virtual_space_start = round_page(virtual_space_start);
    453 		virtual_space_end = trunc_page(virtual_space_end);
    454 
    455 		initialized = TRUE;
    456 	}
    457 
    458 	/* round to page size */
    459 	size = round_page(size);
    460 
    461 #if defined(PMAP_STEAL_MEMORY)
    462 
    463 	/*
    464 	 * defer bootstrap allocation to MD code (it may want to allocate
    465 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    466 	 * virtual_space_start/virtual_space_end if necessary.
    467 	 */
    468 
    469 	addr = pmap_steal_memory(size, &virtual_space_start,
    470 	    &virtual_space_end);
    471 
    472 	return(addr);
    473 
    474 #else /* !PMAP_STEAL_MEMORY */
    475 
    476 	/*
    477 	 * allocate virtual memory for this request
    478 	 */
    479 	if (virtual_space_start == virtual_space_end ||
    480 	    (virtual_space_end - virtual_space_start) < size)
    481 		panic("uvm_pageboot_alloc: out of virtual space");
    482 
    483 	addr = virtual_space_start;
    484 
    485 #ifdef PMAP_GROWKERNEL
    486 	/*
    487 	 * If the kernel pmap can't map the requested space,
    488 	 * then allocate more resources for it.
    489 	 */
    490 	if (uvm_maxkaddr < (addr + size)) {
    491 		uvm_maxkaddr = pmap_growkernel(addr + size);
    492 		if (uvm_maxkaddr < (addr + size))
    493 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    494 	}
    495 #endif
    496 
    497 	virtual_space_start += size;
    498 
    499 	/*
    500 	 * allocate and mapin physical pages to back new virtual pages
    501 	 */
    502 
    503 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    504 	    vaddr += PAGE_SIZE) {
    505 
    506 		if (!uvm_page_physget(&paddr))
    507 			panic("uvm_pageboot_alloc: out of memory");
    508 
    509 		/*
    510 		 * Note this memory is no longer managed, so using
    511 		 * pmap_kenter is safe.
    512 		 */
    513 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    514 	}
    515 	pmap_update(pmap_kernel());
    516 	return(addr);
    517 #endif	/* PMAP_STEAL_MEMORY */
    518 }
    519 
    520 #if !defined(PMAP_STEAL_MEMORY)
    521 /*
    522  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    523  *
    524  * => attempt to allocate it off the end of a segment in which the "avail"
    525  *    values match the start/end values.   if we can't do that, then we
    526  *    will advance both values (making them equal, and removing some
    527  *    vm_page structures from the non-avail area).
    528  * => return false if out of memory.
    529  */
    530 
    531 /* subroutine: try to allocate from memory chunks on the specified freelist */
    532 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    533 
    534 static boolean_t
    535 uvm_page_physget_freelist(paddrp, freelist)
    536 	paddr_t *paddrp;
    537 	int freelist;
    538 {
    539 	int lcv, x;
    540 
    541 	/* pass 1: try allocating from a matching end */
    542 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    543 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    544 #else
    545 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    546 #endif
    547 	{
    548 
    549 		if (uvm.page_init_done == TRUE)
    550 			panic("uvm_page_physget: called _after_ bootstrap");
    551 
    552 		if (vm_physmem[lcv].free_list != freelist)
    553 			continue;
    554 
    555 		/* try from front */
    556 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    557 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    558 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    559 			vm_physmem[lcv].avail_start++;
    560 			vm_physmem[lcv].start++;
    561 			/* nothing left?   nuke it */
    562 			if (vm_physmem[lcv].avail_start ==
    563 			    vm_physmem[lcv].end) {
    564 				if (vm_nphysseg == 1)
    565 				    panic("vum_page_physget: out of memory!");
    566 				vm_nphysseg--;
    567 				for (x = lcv ; x < vm_nphysseg ; x++)
    568 					/* structure copy */
    569 					vm_physmem[x] = vm_physmem[x+1];
    570 			}
    571 			return (TRUE);
    572 		}
    573 
    574 		/* try from rear */
    575 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    576 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    577 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    578 			vm_physmem[lcv].avail_end--;
    579 			vm_physmem[lcv].end--;
    580 			/* nothing left?   nuke it */
    581 			if (vm_physmem[lcv].avail_end ==
    582 			    vm_physmem[lcv].start) {
    583 				if (vm_nphysseg == 1)
    584 				    panic("uvm_page_physget: out of memory!");
    585 				vm_nphysseg--;
    586 				for (x = lcv ; x < vm_nphysseg ; x++)
    587 					/* structure copy */
    588 					vm_physmem[x] = vm_physmem[x+1];
    589 			}
    590 			return (TRUE);
    591 		}
    592 	}
    593 
    594 	/* pass2: forget about matching ends, just allocate something */
    595 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    596 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    597 #else
    598 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    599 #endif
    600 	{
    601 
    602 		/* any room in this bank? */
    603 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    604 			continue;  /* nope */
    605 
    606 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    607 		vm_physmem[lcv].avail_start++;
    608 		/* truncate! */
    609 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    610 
    611 		/* nothing left?   nuke it */
    612 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    613 			if (vm_nphysseg == 1)
    614 				panic("uvm_page_physget: out of memory!");
    615 			vm_nphysseg--;
    616 			for (x = lcv ; x < vm_nphysseg ; x++)
    617 				/* structure copy */
    618 				vm_physmem[x] = vm_physmem[x+1];
    619 		}
    620 		return (TRUE);
    621 	}
    622 
    623 	return (FALSE);        /* whoops! */
    624 }
    625 
    626 boolean_t
    627 uvm_page_physget(paddrp)
    628 	paddr_t *paddrp;
    629 {
    630 	int i;
    631 
    632 	/* try in the order of freelist preference */
    633 	for (i = 0; i < VM_NFREELIST; i++)
    634 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    635 			return (TRUE);
    636 	return (FALSE);
    637 }
    638 #endif /* PMAP_STEAL_MEMORY */
    639 
    640 /*
    641  * uvm_page_physload: load physical memory into VM system
    642  *
    643  * => all args are PFs
    644  * => all pages in start/end get vm_page structures
    645  * => areas marked by avail_start/avail_end get added to the free page pool
    646  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    647  */
    648 
    649 void
    650 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    651 	paddr_t start, end, avail_start, avail_end;
    652 	int free_list;
    653 {
    654 	int preload, lcv;
    655 	psize_t npages;
    656 	struct vm_page *pgs;
    657 	struct vm_physseg *ps;
    658 
    659 	if (uvmexp.pagesize == 0)
    660 		panic("uvm_page_physload: page size not set!");
    661 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    662 		panic("uvm_page_physload: bad free list %d", free_list);
    663 	if (start >= end)
    664 		panic("uvm_page_physload: start >= end");
    665 
    666 	/*
    667 	 * do we have room?
    668 	 */
    669 
    670 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    671 		printf("uvm_page_physload: unable to load physical memory "
    672 		    "segment\n");
    673 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    674 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    675 		printf("\tincrease VM_PHYSSEG_MAX\n");
    676 		return;
    677 	}
    678 
    679 	/*
    680 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    681 	 * called yet, so malloc is not available).
    682 	 */
    683 
    684 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    685 		if (vm_physmem[lcv].pgs)
    686 			break;
    687 	}
    688 	preload = (lcv == vm_nphysseg);
    689 
    690 	/*
    691 	 * if VM is already running, attempt to malloc() vm_page structures
    692 	 */
    693 
    694 	if (!preload) {
    695 #if defined(VM_PHYSSEG_NOADD)
    696 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    697 #else
    698 		/* XXXCDC: need some sort of lockout for this case */
    699 		paddr_t paddr;
    700 		npages = end - start;  /* # of pages */
    701 		pgs = malloc(sizeof(struct vm_page) * npages,
    702 		    M_VMPAGE, M_NOWAIT);
    703 		if (pgs == NULL) {
    704 			printf("uvm_page_physload: can not malloc vm_page "
    705 			    "structs for segment\n");
    706 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    707 			return;
    708 		}
    709 		/* zero data, init phys_addr and free_list, and free pages */
    710 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    711 		for (lcv = 0, paddr = ptoa(start) ;
    712 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    713 			pgs[lcv].phys_addr = paddr;
    714 			pgs[lcv].free_list = free_list;
    715 			if (atop(paddr) >= avail_start &&
    716 			    atop(paddr) <= avail_end)
    717 				uvm_pagefree(&pgs[lcv]);
    718 		}
    719 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    720 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    721 #endif
    722 	} else {
    723 		pgs = NULL;
    724 		npages = 0;
    725 	}
    726 
    727 	/*
    728 	 * now insert us in the proper place in vm_physmem[]
    729 	 */
    730 
    731 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    732 	/* random: put it at the end (easy!) */
    733 	ps = &vm_physmem[vm_nphysseg];
    734 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    735 	{
    736 		int x;
    737 		/* sort by address for binary search */
    738 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    739 			if (start < vm_physmem[lcv].start)
    740 				break;
    741 		ps = &vm_physmem[lcv];
    742 		/* move back other entries, if necessary ... */
    743 		for (x = vm_nphysseg ; x > lcv ; x--)
    744 			/* structure copy */
    745 			vm_physmem[x] = vm_physmem[x - 1];
    746 	}
    747 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    748 	{
    749 		int x;
    750 		/* sort by largest segment first */
    751 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    752 			if ((end - start) >
    753 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    754 				break;
    755 		ps = &vm_physmem[lcv];
    756 		/* move back other entries, if necessary ... */
    757 		for (x = vm_nphysseg ; x > lcv ; x--)
    758 			/* structure copy */
    759 			vm_physmem[x] = vm_physmem[x - 1];
    760 	}
    761 #else
    762 	panic("uvm_page_physload: unknown physseg strategy selected!");
    763 #endif
    764 
    765 	ps->start = start;
    766 	ps->end = end;
    767 	ps->avail_start = avail_start;
    768 	ps->avail_end = avail_end;
    769 	if (preload) {
    770 		ps->pgs = NULL;
    771 	} else {
    772 		ps->pgs = pgs;
    773 		ps->lastpg = pgs + npages - 1;
    774 	}
    775 	ps->free_list = free_list;
    776 	vm_nphysseg++;
    777 
    778 	if (!preload)
    779 		uvm_page_rehash();
    780 }
    781 
    782 /*
    783  * uvm_page_rehash: reallocate hash table based on number of free pages.
    784  */
    785 
    786 void
    787 uvm_page_rehash()
    788 {
    789 	int freepages, lcv, bucketcount, oldcount;
    790 	struct pglist *newbuckets, *oldbuckets;
    791 	struct vm_page *pg;
    792 	size_t newsize, oldsize;
    793 
    794 	/*
    795 	 * compute number of pages that can go in the free pool
    796 	 */
    797 
    798 	freepages = 0;
    799 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    800 		freepages +=
    801 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    802 
    803 	/*
    804 	 * compute number of buckets needed for this number of pages
    805 	 */
    806 
    807 	bucketcount = 1;
    808 	while (bucketcount < freepages)
    809 		bucketcount = bucketcount * 2;
    810 
    811 	/*
    812 	 * compute the size of the current table and new table.
    813 	 */
    814 
    815 	oldbuckets = uvm.page_hash;
    816 	oldcount = uvm.page_nhash;
    817 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    818 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    819 
    820 	/*
    821 	 * allocate the new buckets
    822 	 */
    823 
    824 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    825 	if (newbuckets == NULL) {
    826 		printf("uvm_page_physrehash: WARNING: could not grow page "
    827 		    "hash table\n");
    828 		return;
    829 	}
    830 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    831 		TAILQ_INIT(&newbuckets[lcv]);
    832 
    833 	/*
    834 	 * now replace the old buckets with the new ones and rehash everything
    835 	 */
    836 
    837 	simple_lock(&uvm.hashlock);
    838 	uvm.page_hash = newbuckets;
    839 	uvm.page_nhash = bucketcount;
    840 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    841 
    842 	/* ... and rehash */
    843 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    844 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    845 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    846 			TAILQ_INSERT_TAIL(
    847 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    848 			  pg, hashq);
    849 		}
    850 	}
    851 	simple_unlock(&uvm.hashlock);
    852 
    853 	/*
    854 	 * free old bucket array if is not the boot-time table
    855 	 */
    856 
    857 	if (oldbuckets != &uvm_bootbucket)
    858 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    859 }
    860 
    861 /*
    862  * uvm_page_recolor: Recolor the pages if the new bucket count is
    863  * larger than the old one.
    864  */
    865 
    866 void
    867 uvm_page_recolor(int newncolors)
    868 {
    869 	struct pgflbucket *bucketarray, *oldbucketarray;
    870 	struct pgfreelist pgfl;
    871 	struct vm_page *pg;
    872 	vsize_t bucketcount;
    873 	int s, lcv, color, i, ocolors;
    874 
    875 	if (newncolors <= uvmexp.ncolors)
    876 		return;
    877 
    878 	if (uvm.page_init_done == FALSE) {
    879 		uvmexp.ncolors = newncolors;
    880 		return;
    881 	}
    882 
    883 	bucketcount = newncolors * VM_NFREELIST;
    884 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    885 	    M_VMPAGE, M_NOWAIT);
    886 	if (bucketarray == NULL) {
    887 		printf("WARNING: unable to allocate %ld page color buckets\n",
    888 		    (long) bucketcount);
    889 		return;
    890 	}
    891 
    892 	s = uvm_lock_fpageq();
    893 
    894 	/* Make sure we should still do this. */
    895 	if (newncolors <= uvmexp.ncolors) {
    896 		uvm_unlock_fpageq(s);
    897 		free(bucketarray, M_VMPAGE);
    898 		return;
    899 	}
    900 
    901 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    902 	ocolors = uvmexp.ncolors;
    903 
    904 	uvmexp.ncolors = newncolors;
    905 	uvmexp.colormask = uvmexp.ncolors - 1;
    906 
    907 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    908 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    909 		uvm_page_init_buckets(&pgfl);
    910 		for (color = 0; color < ocolors; color++) {
    911 			for (i = 0; i < PGFL_NQUEUES; i++) {
    912 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    913 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    914 				    != NULL) {
    915 					TAILQ_REMOVE(&uvm.page_free[
    916 					    lcv].pgfl_buckets[
    917 					    color].pgfl_queues[i], pg, pageq);
    918 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    919 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    920 					    i], pg, pageq);
    921 				}
    922 			}
    923 		}
    924 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    925 	}
    926 
    927 	if (have_recolored_pages) {
    928 		uvm_unlock_fpageq(s);
    929 		free(oldbucketarray, M_VMPAGE);
    930 		return;
    931 	}
    932 
    933 	have_recolored_pages = TRUE;
    934 	uvm_unlock_fpageq(s);
    935 }
    936 
    937 /*
    938  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    939  */
    940 
    941 static __inline struct vm_page *
    942 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    943     int *trycolorp)
    944 {
    945 	struct pglist *freeq;
    946 	struct vm_page *pg;
    947 	int color, trycolor = *trycolorp;
    948 
    949 	color = trycolor;
    950 	do {
    951 		if ((pg = TAILQ_FIRST((freeq =
    952 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    953 			goto gotit;
    954 		if ((pg = TAILQ_FIRST((freeq =
    955 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    956 			goto gotit;
    957 		color = (color + 1) & uvmexp.colormask;
    958 	} while (color != trycolor);
    959 
    960 	return (NULL);
    961 
    962  gotit:
    963 	TAILQ_REMOVE(freeq, pg, pageq);
    964 	uvmexp.free--;
    965 
    966 	/* update zero'd page count */
    967 	if (pg->flags & PG_ZERO)
    968 		uvmexp.zeropages--;
    969 
    970 	if (color == trycolor)
    971 		uvmexp.colorhit++;
    972 	else {
    973 		uvmexp.colormiss++;
    974 		*trycolorp = color;
    975 	}
    976 
    977 	return (pg);
    978 }
    979 
    980 /*
    981  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    982  *
    983  * => return null if no pages free
    984  * => wake up pagedaemon if number of free pages drops below low water mark
    985  * => if obj != NULL, obj must be locked (to put in hash)
    986  * => if anon != NULL, anon must be locked (to put in anon)
    987  * => only one of obj or anon can be non-null
    988  * => caller must activate/deactivate page if it is not wired.
    989  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
    990  * => policy decision: it is more important to pull a page off of the
    991  *	appropriate priority free list than it is to get a zero'd or
    992  *	unknown contents page.  This is because we live with the
    993  *	consequences of a bad free list decision for the entire
    994  *	lifetime of the page, e.g. if the page comes from memory that
    995  *	is slower to access.
    996  */
    997 
    998 struct vm_page *
    999 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1000 	struct uvm_object *obj;
   1001 	voff_t off;
   1002 	int flags;
   1003 	struct vm_anon *anon;
   1004 	int strat, free_list;
   1005 {
   1006 	int lcv, try1, try2, s, zeroit = 0, color;
   1007 	struct vm_page *pg;
   1008 	boolean_t use_reserve;
   1009 
   1010 	KASSERT(obj == NULL || anon == NULL);
   1011 	KASSERT(off == trunc_page(off));
   1012 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1013 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1014 
   1015 	s = uvm_lock_fpageq();
   1016 
   1017 	/*
   1018 	 * This implements a global round-robin page coloring
   1019 	 * algorithm.
   1020 	 *
   1021 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1022 	 * XXXJRT: What about virtually-indexed caches?
   1023 	 */
   1024 
   1025 	color = uvm.page_free_nextcolor;
   1026 
   1027 	/*
   1028 	 * check to see if we need to generate some free pages waking
   1029 	 * the pagedaemon.
   1030 	 */
   1031 
   1032 	UVM_KICK_PDAEMON();
   1033 
   1034 	/*
   1035 	 * fail if any of these conditions is true:
   1036 	 * [1]  there really are no free pages, or
   1037 	 * [2]  only kernel "reserved" pages remain and
   1038 	 *        the page isn't being allocated to a kernel object.
   1039 	 * [3]  only pagedaemon "reserved" pages remain and
   1040 	 *        the requestor isn't the pagedaemon.
   1041 	 */
   1042 
   1043 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1044 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1045 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1046 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1047 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1048 		goto fail;
   1049 
   1050 #if PGFL_NQUEUES != 2
   1051 #error uvm_pagealloc_strat needs to be updated
   1052 #endif
   1053 
   1054 	/*
   1055 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1056 	 * we try the UNKNOWN queue first.
   1057 	 */
   1058 	if (flags & UVM_PGA_ZERO) {
   1059 		try1 = PGFL_ZEROS;
   1060 		try2 = PGFL_UNKNOWN;
   1061 	} else {
   1062 		try1 = PGFL_UNKNOWN;
   1063 		try2 = PGFL_ZEROS;
   1064 	}
   1065 
   1066  again:
   1067 	switch (strat) {
   1068 	case UVM_PGA_STRAT_NORMAL:
   1069 		/* Check all freelists in descending priority order. */
   1070 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1071 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1072 			    try1, try2, &color);
   1073 			if (pg != NULL)
   1074 				goto gotit;
   1075 		}
   1076 
   1077 		/* No pages free! */
   1078 		goto fail;
   1079 
   1080 	case UVM_PGA_STRAT_ONLY:
   1081 	case UVM_PGA_STRAT_FALLBACK:
   1082 		/* Attempt to allocate from the specified free list. */
   1083 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1084 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1085 		    try1, try2, &color);
   1086 		if (pg != NULL)
   1087 			goto gotit;
   1088 
   1089 		/* Fall back, if possible. */
   1090 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1091 			strat = UVM_PGA_STRAT_NORMAL;
   1092 			goto again;
   1093 		}
   1094 
   1095 		/* No pages free! */
   1096 		goto fail;
   1097 
   1098 	default:
   1099 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1100 		/* NOTREACHED */
   1101 	}
   1102 
   1103  gotit:
   1104 	/*
   1105 	 * We now know which color we actually allocated from; set
   1106 	 * the next color accordingly.
   1107 	 */
   1108 
   1109 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1110 
   1111 	/*
   1112 	 * update allocation statistics and remember if we have to
   1113 	 * zero the page
   1114 	 */
   1115 
   1116 	if (flags & UVM_PGA_ZERO) {
   1117 		if (pg->flags & PG_ZERO) {
   1118 			uvmexp.pga_zerohit++;
   1119 			zeroit = 0;
   1120 		} else {
   1121 			uvmexp.pga_zeromiss++;
   1122 			zeroit = 1;
   1123 		}
   1124 	}
   1125 	uvm_unlock_fpageq(s);
   1126 
   1127 	pg->offset = off;
   1128 	pg->uobject = obj;
   1129 	pg->uanon = anon;
   1130 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1131 	if (anon) {
   1132 		anon->u.an_page = pg;
   1133 		pg->pqflags = PQ_ANON;
   1134 		uvmexp.anonpages++;
   1135 	} else {
   1136 		if (obj) {
   1137 			uvm_pageinsert(pg);
   1138 		}
   1139 		pg->pqflags = 0;
   1140 	}
   1141 #if defined(UVM_PAGE_TRKOWN)
   1142 	pg->owner_tag = NULL;
   1143 #endif
   1144 	UVM_PAGE_OWN(pg, "new alloc");
   1145 
   1146 	if (flags & UVM_PGA_ZERO) {
   1147 		/*
   1148 		 * A zero'd page is not clean.  If we got a page not already
   1149 		 * zero'd, then we have to zero it ourselves.
   1150 		 */
   1151 		pg->flags &= ~PG_CLEAN;
   1152 		if (zeroit)
   1153 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1154 	}
   1155 
   1156 	return(pg);
   1157 
   1158  fail:
   1159 	uvm_unlock_fpageq(s);
   1160 	return (NULL);
   1161 }
   1162 
   1163 /*
   1164  * uvm_pagerealloc: reallocate a page from one object to another
   1165  *
   1166  * => both objects must be locked
   1167  */
   1168 
   1169 void
   1170 uvm_pagerealloc(pg, newobj, newoff)
   1171 	struct vm_page *pg;
   1172 	struct uvm_object *newobj;
   1173 	voff_t newoff;
   1174 {
   1175 	/*
   1176 	 * remove it from the old object
   1177 	 */
   1178 
   1179 	if (pg->uobject) {
   1180 		uvm_pageremove(pg);
   1181 	}
   1182 
   1183 	/*
   1184 	 * put it in the new object
   1185 	 */
   1186 
   1187 	if (newobj) {
   1188 		pg->uobject = newobj;
   1189 		pg->offset = newoff;
   1190 		uvm_pageinsert(pg);
   1191 	}
   1192 }
   1193 
   1194 /*
   1195  * uvm_pagefree: free page
   1196  *
   1197  * => erase page's identity (i.e. remove from hash/object)
   1198  * => put page on free list
   1199  * => caller must lock owning object (either anon or uvm_object)
   1200  * => caller must lock page queues
   1201  * => assumes all valid mappings of pg are gone
   1202  */
   1203 
   1204 void
   1205 uvm_pagefree(pg)
   1206 	struct vm_page *pg;
   1207 {
   1208 	int s;
   1209 
   1210 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1211 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1212 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1213 	LOCK_ASSERT(pg->uobject == NULL ||
   1214 		    simple_lock_held(&pg->uobject->vmobjlock));
   1215 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1216 		    simple_lock_held(&pg->uanon->an_lock));
   1217 
   1218 #ifdef DEBUG
   1219 	if (pg->uobject == (void *)0xdeadbeef &&
   1220 	    pg->uanon == (void *)0xdeadbeef) {
   1221 		panic("uvm_pagefree: freeing free page %p", pg);
   1222 	}
   1223 #endif
   1224 
   1225 	/*
   1226 	 * if the page is loaned, resolve the loan instead of freeing.
   1227 	 */
   1228 
   1229 	if (pg->loan_count) {
   1230 		KASSERT(pg->wire_count == 0);
   1231 
   1232 		/*
   1233 		 * if the page is owned by an anon then we just want to
   1234 		 * drop anon ownership.  the kernel will free the page when
   1235 		 * it is done with it.  if the page is owned by an object,
   1236 		 * remove it from the object and mark it dirty for the benefit
   1237 		 * of possible anon owners.
   1238 		 *
   1239 		 * regardless of previous ownership, wakeup any waiters,
   1240 		 * unbusy the page, and we're done.
   1241 		 */
   1242 
   1243 		if (pg->uobject != NULL) {
   1244 			uvm_pageremove(pg);
   1245 			pg->flags &= ~PG_CLEAN;
   1246 		} else if (pg->uanon != NULL) {
   1247 			if ((pg->pqflags & PQ_ANON) == 0) {
   1248 				pg->loan_count--;
   1249 			} else {
   1250 				pg->pqflags &= ~PQ_ANON;
   1251 			}
   1252 			pg->uanon = NULL;
   1253 		}
   1254 		if (pg->flags & PG_WANTED) {
   1255 			wakeup(pg);
   1256 		}
   1257 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1258 #ifdef UVM_PAGE_TRKOWN
   1259 		pg->owner_tag = NULL;
   1260 #endif
   1261 		if (pg->loan_count) {
   1262 			uvm_pagedequeue(pg);
   1263 			return;
   1264 		}
   1265 	}
   1266 
   1267 	/*
   1268 	 * remove page from its object or anon.
   1269 	 */
   1270 
   1271 	if (pg->uobject != NULL) {
   1272 		uvm_pageremove(pg);
   1273 	} else if (pg->uanon != NULL) {
   1274 		pg->uanon->u.an_page = NULL;
   1275 		uvmexp.anonpages--;
   1276 	}
   1277 
   1278 	/*
   1279 	 * now remove the page from the queues.
   1280 	 */
   1281 
   1282 	uvm_pagedequeue(pg);
   1283 
   1284 	/*
   1285 	 * if the page was wired, unwire it now.
   1286 	 */
   1287 
   1288 	if (pg->wire_count) {
   1289 		pg->wire_count = 0;
   1290 		uvmexp.wired--;
   1291 	}
   1292 
   1293 	/*
   1294 	 * and put on free queue
   1295 	 */
   1296 
   1297 	pg->flags &= ~PG_ZERO;
   1298 
   1299 	s = uvm_lock_fpageq();
   1300 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1301 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1302 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1303 	pg->pqflags = PQ_FREE;
   1304 #ifdef DEBUG
   1305 	pg->uobject = (void *)0xdeadbeef;
   1306 	pg->offset = 0xdeadbeef;
   1307 	pg->uanon = (void *)0xdeadbeef;
   1308 #endif
   1309 	uvmexp.free++;
   1310 
   1311 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1312 		uvm.page_idle_zero = vm_page_zero_enable;
   1313 
   1314 	uvm_unlock_fpageq(s);
   1315 }
   1316 
   1317 /*
   1318  * uvm_page_unbusy: unbusy an array of pages.
   1319  *
   1320  * => pages must either all belong to the same object, or all belong to anons.
   1321  * => if pages are object-owned, object must be locked.
   1322  * => if pages are anon-owned, anons must be locked.
   1323  * => caller must lock page queues if pages may be released.
   1324  */
   1325 
   1326 void
   1327 uvm_page_unbusy(pgs, npgs)
   1328 	struct vm_page **pgs;
   1329 	int npgs;
   1330 {
   1331 	struct vm_page *pg;
   1332 	int i;
   1333 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1334 
   1335 	for (i = 0; i < npgs; i++) {
   1336 		pg = pgs[i];
   1337 		if (pg == NULL || pg == PGO_DONTCARE) {
   1338 			continue;
   1339 		}
   1340 		if (pg->flags & PG_WANTED) {
   1341 			wakeup(pg);
   1342 		}
   1343 		if (pg->flags & PG_RELEASED) {
   1344 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1345 			pg->flags &= ~PG_RELEASED;
   1346 			uvm_pagefree(pg);
   1347 		} else {
   1348 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1349 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1350 			UVM_PAGE_OWN(pg, NULL);
   1351 		}
   1352 	}
   1353 }
   1354 
   1355 #if defined(UVM_PAGE_TRKOWN)
   1356 /*
   1357  * uvm_page_own: set or release page ownership
   1358  *
   1359  * => this is a debugging function that keeps track of who sets PG_BUSY
   1360  *	and where they do it.   it can be used to track down problems
   1361  *	such a process setting "PG_BUSY" and never releasing it.
   1362  * => page's object [if any] must be locked
   1363  * => if "tag" is NULL then we are releasing page ownership
   1364  */
   1365 void
   1366 uvm_page_own(pg, tag)
   1367 	struct vm_page *pg;
   1368 	char *tag;
   1369 {
   1370 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1371 
   1372 	/* gain ownership? */
   1373 	if (tag) {
   1374 		if (pg->owner_tag) {
   1375 			printf("uvm_page_own: page %p already owned "
   1376 			    "by proc %d [%s]\n", pg,
   1377 			    pg->owner, pg->owner_tag);
   1378 			panic("uvm_page_own");
   1379 		}
   1380 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1381 		pg->owner_tag = tag;
   1382 		return;
   1383 	}
   1384 
   1385 	/* drop ownership */
   1386 	if (pg->owner_tag == NULL) {
   1387 		printf("uvm_page_own: dropping ownership of an non-owned "
   1388 		    "page (%p)\n", pg);
   1389 		panic("uvm_page_own");
   1390 	}
   1391 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1392 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1393 	    pg->uobject == uvm.kernel_object ||
   1394 	    pg->wire_count > 0 ||
   1395 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1396 	    pg->loan_count > 1);
   1397 	pg->owner_tag = NULL;
   1398 }
   1399 #endif
   1400 
   1401 /*
   1402  * uvm_pageidlezero: zero free pages while the system is idle.
   1403  *
   1404  * => try to complete one color bucket at a time, to reduce our impact
   1405  *	on the CPU cache.
   1406  * => we loop until we either reach the target or whichqs indicates that
   1407  *	there is a process ready to run.
   1408  */
   1409 void
   1410 uvm_pageidlezero()
   1411 {
   1412 	struct vm_page *pg;
   1413 	struct pgfreelist *pgfl;
   1414 	int free_list, s, firstbucket;
   1415 	static int nextbucket;
   1416 
   1417 	s = uvm_lock_fpageq();
   1418 	firstbucket = nextbucket;
   1419 	do {
   1420 		if (sched_whichqs != 0) {
   1421 			uvm_unlock_fpageq(s);
   1422 			return;
   1423 		}
   1424 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1425 			uvm.page_idle_zero = FALSE;
   1426 			uvm_unlock_fpageq(s);
   1427 			return;
   1428 		}
   1429 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1430 			pgfl = &uvm.page_free[free_list];
   1431 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1432 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1433 				if (sched_whichqs != 0) {
   1434 					uvm_unlock_fpageq(s);
   1435 					return;
   1436 				}
   1437 
   1438 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1439 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1440 				    pg, pageq);
   1441 				uvmexp.free--;
   1442 				uvm_unlock_fpageq(s);
   1443 #ifdef PMAP_PAGEIDLEZERO
   1444 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1445 
   1446 					/*
   1447 					 * The machine-dependent code detected
   1448 					 * some reason for us to abort zeroing
   1449 					 * pages, probably because there is a
   1450 					 * process now ready to run.
   1451 					 */
   1452 
   1453 					s = uvm_lock_fpageq();
   1454 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1455 					    nextbucket].pgfl_queues[
   1456 					    PGFL_UNKNOWN], pg, pageq);
   1457 					uvmexp.free++;
   1458 					uvmexp.zeroaborts++;
   1459 					uvm_unlock_fpageq(s);
   1460 					return;
   1461 				}
   1462 #else
   1463 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1464 #endif /* PMAP_PAGEIDLEZERO */
   1465 				pg->flags |= PG_ZERO;
   1466 
   1467 				s = uvm_lock_fpageq();
   1468 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1469 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1470 				    pg, pageq);
   1471 				uvmexp.free++;
   1472 				uvmexp.zeropages++;
   1473 			}
   1474 		}
   1475 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1476 	} while (nextbucket != firstbucket);
   1477 	uvm_unlock_fpageq(s);
   1478 }
   1479