uvm_page.c revision 1.84 1 /* $NetBSD: uvm_page.c,v 1.84 2003/02/17 23:48:24 perseant Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.84 2003/02/17 23:48:24 perseant Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/malloc.h>
81 #include <sys/sched.h>
82 #include <sys/kernel.h>
83 #include <sys/vnode.h>
84 #include <sys/proc.h>
85
86 #define UVM_PAGE /* pull in uvm_page.h functions */
87 #include <uvm/uvm.h>
88
89 /*
90 * global vars... XXXCDC: move to uvm. structure.
91 */
92
93 /*
94 * physical memory config is stored in vm_physmem.
95 */
96
97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99
100 /*
101 * Some supported CPUs in a given architecture don't support all
102 * of the things necessary to do idle page zero'ing efficiently.
103 * We therefore provide a way to disable it from machdep code here.
104 */
105 /*
106 * XXX disabled until we can find a way to do this without causing
107 * problems for either cpu caches or DMA latency.
108 */
109 boolean_t vm_page_zero_enable = FALSE;
110
111 /*
112 * local variables
113 */
114
115 /*
116 * these variables record the values returned by vm_page_bootstrap,
117 * for debugging purposes. The implementation of uvm_pageboot_alloc
118 * and pmap_startup here also uses them internally.
119 */
120
121 static vaddr_t virtual_space_start;
122 static vaddr_t virtual_space_end;
123
124 /*
125 * we use a hash table with only one bucket during bootup. we will
126 * later rehash (resize) the hash table once the allocator is ready.
127 * we static allocate the one bootstrap bucket below...
128 */
129
130 static struct pglist uvm_bootbucket;
131
132 /*
133 * we allocate an initial number of page colors in uvm_page_init(),
134 * and remember them. We may re-color pages as cache sizes are
135 * discovered during the autoconfiguration phase. But we can never
136 * free the initial set of buckets, since they are allocated using
137 * uvm_pageboot_alloc().
138 */
139
140 static boolean_t have_recolored_pages /* = FALSE */;
141
142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
143
144 /*
145 * local prototypes
146 */
147
148 static void uvm_pageinsert __P((struct vm_page *));
149 static void uvm_pageremove __P((struct vm_page *));
150
151 /*
152 * inline functions
153 */
154
155 /*
156 * uvm_pageinsert: insert a page in the object and the hash table
157 *
158 * => caller must lock object
159 * => caller must lock page queues
160 * => call should have already set pg's object and offset pointers
161 * and bumped the version counter
162 */
163
164 __inline static void
165 uvm_pageinsert(pg)
166 struct vm_page *pg;
167 {
168 struct pglist *buck;
169 struct uvm_object *uobj = pg->uobject;
170
171 KASSERT((pg->flags & PG_TABLED) == 0);
172 buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
173 simple_lock(&uvm.hashlock);
174 TAILQ_INSERT_TAIL(buck, pg, hashq);
175 simple_unlock(&uvm.hashlock);
176
177 if (UVM_OBJ_IS_AOBJ(uobj)) {
178 uvmexp.anonpages++;
179 }
180
181 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
182 pg->flags |= PG_TABLED;
183 uobj->uo_npages++;
184 }
185
186 /*
187 * uvm_page_remove: remove page from object and hash
188 *
189 * => caller must lock object
190 * => caller must lock page queues
191 */
192
193 static __inline void
194 uvm_pageremove(pg)
195 struct vm_page *pg;
196 {
197 struct pglist *buck;
198 struct uvm_object *uobj = pg->uobject;
199
200 KASSERT(pg->flags & PG_TABLED);
201 buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
202 simple_lock(&uvm.hashlock);
203 TAILQ_REMOVE(buck, pg, hashq);
204 simple_unlock(&uvm.hashlock);
205
206 if (UVM_OBJ_IS_VTEXT(uobj)) {
207 uvmexp.execpages--;
208 } else if (UVM_OBJ_IS_VNODE(uobj)) {
209 uvmexp.filepages--;
210 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
211 uvmexp.anonpages--;
212 }
213
214 /* object should be locked */
215 uobj->uo_npages--;
216 TAILQ_REMOVE(&uobj->memq, pg, listq);
217 pg->flags &= ~PG_TABLED;
218 pg->uobject = NULL;
219 }
220
221 static void
222 uvm_page_init_buckets(struct pgfreelist *pgfl)
223 {
224 int color, i;
225
226 for (color = 0; color < uvmexp.ncolors; color++) {
227 for (i = 0; i < PGFL_NQUEUES; i++) {
228 TAILQ_INIT(&pgfl->pgfl_buckets[
229 color].pgfl_queues[i]);
230 }
231 }
232 }
233
234 /*
235 * uvm_page_init: init the page system. called from uvm_init().
236 *
237 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
238 */
239
240 void
241 uvm_page_init(kvm_startp, kvm_endp)
242 vaddr_t *kvm_startp, *kvm_endp;
243 {
244 vsize_t freepages, pagecount, bucketcount, n;
245 struct pgflbucket *bucketarray;
246 struct vm_page *pagearray;
247 int lcv;
248 u_int i;
249 paddr_t paddr;
250
251 /*
252 * init the page queues and page queue locks, except the free
253 * list; we allocate that later (with the initial vm_page
254 * structures).
255 */
256
257 TAILQ_INIT(&uvm.page_active);
258 TAILQ_INIT(&uvm.page_inactive);
259 simple_lock_init(&uvm.pageqlock);
260 simple_lock_init(&uvm.fpageqlock);
261
262 /*
263 * init the <obj,offset> => <page> hash table. for now
264 * we just have one bucket (the bootstrap bucket). later on we
265 * will allocate new buckets as we dynamically resize the hash table.
266 */
267
268 uvm.page_nhash = 1; /* 1 bucket */
269 uvm.page_hashmask = 0; /* mask for hash function */
270 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
271 TAILQ_INIT(uvm.page_hash); /* init hash table */
272 simple_lock_init(&uvm.hashlock); /* init hash table lock */
273
274 /*
275 * allocate vm_page structures.
276 */
277
278 /*
279 * sanity check:
280 * before calling this function the MD code is expected to register
281 * some free RAM with the uvm_page_physload() function. our job
282 * now is to allocate vm_page structures for this memory.
283 */
284
285 if (vm_nphysseg == 0)
286 panic("uvm_page_bootstrap: no memory pre-allocated");
287
288 /*
289 * first calculate the number of free pages...
290 *
291 * note that we use start/end rather than avail_start/avail_end.
292 * this allows us to allocate extra vm_page structures in case we
293 * want to return some memory to the pool after booting.
294 */
295
296 freepages = 0;
297 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
298 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
299
300 /*
301 * Let MD code initialize the number of colors, or default
302 * to 1 color if MD code doesn't care.
303 */
304 if (uvmexp.ncolors == 0)
305 uvmexp.ncolors = 1;
306 uvmexp.colormask = uvmexp.ncolors - 1;
307
308 /*
309 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
310 * use. for each page of memory we use we need a vm_page structure.
311 * thus, the total number of pages we can use is the total size of
312 * the memory divided by the PAGE_SIZE plus the size of the vm_page
313 * structure. we add one to freepages as a fudge factor to avoid
314 * truncation errors (since we can only allocate in terms of whole
315 * pages).
316 */
317
318 bucketcount = uvmexp.ncolors * VM_NFREELIST;
319 pagecount = ((freepages + 1) << PAGE_SHIFT) /
320 (PAGE_SIZE + sizeof(struct vm_page));
321
322 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
323 sizeof(struct pgflbucket)) + (pagecount *
324 sizeof(struct vm_page)));
325 pagearray = (struct vm_page *)(bucketarray + bucketcount);
326
327 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
328 uvm.page_free[lcv].pgfl_buckets =
329 (bucketarray + (lcv * uvmexp.ncolors));
330 uvm_page_init_buckets(&uvm.page_free[lcv]);
331 }
332 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
333
334 /*
335 * init the vm_page structures and put them in the correct place.
336 */
337
338 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
339 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
340
341 /* set up page array pointers */
342 vm_physmem[lcv].pgs = pagearray;
343 pagearray += n;
344 pagecount -= n;
345 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
346
347 /* init and free vm_pages (we've already zeroed them) */
348 paddr = ptoa(vm_physmem[lcv].start);
349 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
350 vm_physmem[lcv].pgs[i].phys_addr = paddr;
351 #ifdef __HAVE_VM_PAGE_MD
352 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
353 #endif
354 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
355 atop(paddr) <= vm_physmem[lcv].avail_end) {
356 uvmexp.npages++;
357 /* add page to free pool */
358 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
359 }
360 }
361 }
362
363 /*
364 * pass up the values of virtual_space_start and
365 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
366 * layers of the VM.
367 */
368
369 *kvm_startp = round_page(virtual_space_start);
370 *kvm_endp = trunc_page(virtual_space_end);
371
372 /*
373 * init locks for kernel threads
374 */
375
376 simple_lock_init(&uvm.pagedaemon_lock);
377 simple_lock_init(&uvm.aiodoned_lock);
378
379 /*
380 * init various thresholds.
381 */
382
383 uvmexp.reserve_pagedaemon = 1;
384 uvmexp.reserve_kernel = 5;
385 uvmexp.anonminpct = 10;
386 uvmexp.fileminpct = 10;
387 uvmexp.execminpct = 5;
388 uvmexp.anonmaxpct = 80;
389 uvmexp.filemaxpct = 50;
390 uvmexp.execmaxpct = 30;
391 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
392 uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
393 uvmexp.execmin = uvmexp.execminpct * 256 / 100;
394 uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
395 uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
396 uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
397
398 /*
399 * determine if we should zero pages in the idle loop.
400 */
401
402 uvm.page_idle_zero = vm_page_zero_enable;
403
404 /*
405 * done!
406 */
407
408 uvm.page_init_done = TRUE;
409 }
410
411 /*
412 * uvm_setpagesize: set the page size
413 *
414 * => sets page_shift and page_mask from uvmexp.pagesize.
415 */
416
417 void
418 uvm_setpagesize()
419 {
420 if (uvmexp.pagesize == 0)
421 uvmexp.pagesize = DEFAULT_PAGE_SIZE;
422 uvmexp.pagemask = uvmexp.pagesize - 1;
423 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
424 panic("uvm_setpagesize: page size not a power of two");
425 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
426 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
427 break;
428 }
429
430 /*
431 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
432 */
433
434 vaddr_t
435 uvm_pageboot_alloc(size)
436 vsize_t size;
437 {
438 static boolean_t initialized = FALSE;
439 vaddr_t addr;
440 #if !defined(PMAP_STEAL_MEMORY)
441 vaddr_t vaddr;
442 paddr_t paddr;
443 #endif
444
445 /*
446 * on first call to this function, initialize ourselves.
447 */
448 if (initialized == FALSE) {
449 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
450
451 /* round it the way we like it */
452 virtual_space_start = round_page(virtual_space_start);
453 virtual_space_end = trunc_page(virtual_space_end);
454
455 initialized = TRUE;
456 }
457
458 /* round to page size */
459 size = round_page(size);
460
461 #if defined(PMAP_STEAL_MEMORY)
462
463 /*
464 * defer bootstrap allocation to MD code (it may want to allocate
465 * from a direct-mapped segment). pmap_steal_memory should adjust
466 * virtual_space_start/virtual_space_end if necessary.
467 */
468
469 addr = pmap_steal_memory(size, &virtual_space_start,
470 &virtual_space_end);
471
472 return(addr);
473
474 #else /* !PMAP_STEAL_MEMORY */
475
476 /*
477 * allocate virtual memory for this request
478 */
479 if (virtual_space_start == virtual_space_end ||
480 (virtual_space_end - virtual_space_start) < size)
481 panic("uvm_pageboot_alloc: out of virtual space");
482
483 addr = virtual_space_start;
484
485 #ifdef PMAP_GROWKERNEL
486 /*
487 * If the kernel pmap can't map the requested space,
488 * then allocate more resources for it.
489 */
490 if (uvm_maxkaddr < (addr + size)) {
491 uvm_maxkaddr = pmap_growkernel(addr + size);
492 if (uvm_maxkaddr < (addr + size))
493 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
494 }
495 #endif
496
497 virtual_space_start += size;
498
499 /*
500 * allocate and mapin physical pages to back new virtual pages
501 */
502
503 for (vaddr = round_page(addr) ; vaddr < addr + size ;
504 vaddr += PAGE_SIZE) {
505
506 if (!uvm_page_physget(&paddr))
507 panic("uvm_pageboot_alloc: out of memory");
508
509 /*
510 * Note this memory is no longer managed, so using
511 * pmap_kenter is safe.
512 */
513 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
514 }
515 pmap_update(pmap_kernel());
516 return(addr);
517 #endif /* PMAP_STEAL_MEMORY */
518 }
519
520 #if !defined(PMAP_STEAL_MEMORY)
521 /*
522 * uvm_page_physget: "steal" one page from the vm_physmem structure.
523 *
524 * => attempt to allocate it off the end of a segment in which the "avail"
525 * values match the start/end values. if we can't do that, then we
526 * will advance both values (making them equal, and removing some
527 * vm_page structures from the non-avail area).
528 * => return false if out of memory.
529 */
530
531 /* subroutine: try to allocate from memory chunks on the specified freelist */
532 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
533
534 static boolean_t
535 uvm_page_physget_freelist(paddrp, freelist)
536 paddr_t *paddrp;
537 int freelist;
538 {
539 int lcv, x;
540
541 /* pass 1: try allocating from a matching end */
542 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
543 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
544 #else
545 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
546 #endif
547 {
548
549 if (uvm.page_init_done == TRUE)
550 panic("uvm_page_physget: called _after_ bootstrap");
551
552 if (vm_physmem[lcv].free_list != freelist)
553 continue;
554
555 /* try from front */
556 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
557 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
558 *paddrp = ptoa(vm_physmem[lcv].avail_start);
559 vm_physmem[lcv].avail_start++;
560 vm_physmem[lcv].start++;
561 /* nothing left? nuke it */
562 if (vm_physmem[lcv].avail_start ==
563 vm_physmem[lcv].end) {
564 if (vm_nphysseg == 1)
565 panic("vum_page_physget: out of memory!");
566 vm_nphysseg--;
567 for (x = lcv ; x < vm_nphysseg ; x++)
568 /* structure copy */
569 vm_physmem[x] = vm_physmem[x+1];
570 }
571 return (TRUE);
572 }
573
574 /* try from rear */
575 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
576 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
577 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
578 vm_physmem[lcv].avail_end--;
579 vm_physmem[lcv].end--;
580 /* nothing left? nuke it */
581 if (vm_physmem[lcv].avail_end ==
582 vm_physmem[lcv].start) {
583 if (vm_nphysseg == 1)
584 panic("uvm_page_physget: out of memory!");
585 vm_nphysseg--;
586 for (x = lcv ; x < vm_nphysseg ; x++)
587 /* structure copy */
588 vm_physmem[x] = vm_physmem[x+1];
589 }
590 return (TRUE);
591 }
592 }
593
594 /* pass2: forget about matching ends, just allocate something */
595 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
596 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
597 #else
598 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
599 #endif
600 {
601
602 /* any room in this bank? */
603 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
604 continue; /* nope */
605
606 *paddrp = ptoa(vm_physmem[lcv].avail_start);
607 vm_physmem[lcv].avail_start++;
608 /* truncate! */
609 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
610
611 /* nothing left? nuke it */
612 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
613 if (vm_nphysseg == 1)
614 panic("uvm_page_physget: out of memory!");
615 vm_nphysseg--;
616 for (x = lcv ; x < vm_nphysseg ; x++)
617 /* structure copy */
618 vm_physmem[x] = vm_physmem[x+1];
619 }
620 return (TRUE);
621 }
622
623 return (FALSE); /* whoops! */
624 }
625
626 boolean_t
627 uvm_page_physget(paddrp)
628 paddr_t *paddrp;
629 {
630 int i;
631
632 /* try in the order of freelist preference */
633 for (i = 0; i < VM_NFREELIST; i++)
634 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
635 return (TRUE);
636 return (FALSE);
637 }
638 #endif /* PMAP_STEAL_MEMORY */
639
640 /*
641 * uvm_page_physload: load physical memory into VM system
642 *
643 * => all args are PFs
644 * => all pages in start/end get vm_page structures
645 * => areas marked by avail_start/avail_end get added to the free page pool
646 * => we are limited to VM_PHYSSEG_MAX physical memory segments
647 */
648
649 void
650 uvm_page_physload(start, end, avail_start, avail_end, free_list)
651 paddr_t start, end, avail_start, avail_end;
652 int free_list;
653 {
654 int preload, lcv;
655 psize_t npages;
656 struct vm_page *pgs;
657 struct vm_physseg *ps;
658
659 if (uvmexp.pagesize == 0)
660 panic("uvm_page_physload: page size not set!");
661 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
662 panic("uvm_page_physload: bad free list %d", free_list);
663 if (start >= end)
664 panic("uvm_page_physload: start >= end");
665
666 /*
667 * do we have room?
668 */
669
670 if (vm_nphysseg == VM_PHYSSEG_MAX) {
671 printf("uvm_page_physload: unable to load physical memory "
672 "segment\n");
673 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
674 VM_PHYSSEG_MAX, (long long)start, (long long)end);
675 printf("\tincrease VM_PHYSSEG_MAX\n");
676 return;
677 }
678
679 /*
680 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
681 * called yet, so malloc is not available).
682 */
683
684 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
685 if (vm_physmem[lcv].pgs)
686 break;
687 }
688 preload = (lcv == vm_nphysseg);
689
690 /*
691 * if VM is already running, attempt to malloc() vm_page structures
692 */
693
694 if (!preload) {
695 #if defined(VM_PHYSSEG_NOADD)
696 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
697 #else
698 /* XXXCDC: need some sort of lockout for this case */
699 paddr_t paddr;
700 npages = end - start; /* # of pages */
701 pgs = malloc(sizeof(struct vm_page) * npages,
702 M_VMPAGE, M_NOWAIT);
703 if (pgs == NULL) {
704 printf("uvm_page_physload: can not malloc vm_page "
705 "structs for segment\n");
706 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
707 return;
708 }
709 /* zero data, init phys_addr and free_list, and free pages */
710 memset(pgs, 0, sizeof(struct vm_page) * npages);
711 for (lcv = 0, paddr = ptoa(start) ;
712 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
713 pgs[lcv].phys_addr = paddr;
714 pgs[lcv].free_list = free_list;
715 if (atop(paddr) >= avail_start &&
716 atop(paddr) <= avail_end)
717 uvm_pagefree(&pgs[lcv]);
718 }
719 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
720 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
721 #endif
722 } else {
723 pgs = NULL;
724 npages = 0;
725 }
726
727 /*
728 * now insert us in the proper place in vm_physmem[]
729 */
730
731 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
732 /* random: put it at the end (easy!) */
733 ps = &vm_physmem[vm_nphysseg];
734 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
735 {
736 int x;
737 /* sort by address for binary search */
738 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
739 if (start < vm_physmem[lcv].start)
740 break;
741 ps = &vm_physmem[lcv];
742 /* move back other entries, if necessary ... */
743 for (x = vm_nphysseg ; x > lcv ; x--)
744 /* structure copy */
745 vm_physmem[x] = vm_physmem[x - 1];
746 }
747 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
748 {
749 int x;
750 /* sort by largest segment first */
751 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
752 if ((end - start) >
753 (vm_physmem[lcv].end - vm_physmem[lcv].start))
754 break;
755 ps = &vm_physmem[lcv];
756 /* move back other entries, if necessary ... */
757 for (x = vm_nphysseg ; x > lcv ; x--)
758 /* structure copy */
759 vm_physmem[x] = vm_physmem[x - 1];
760 }
761 #else
762 panic("uvm_page_physload: unknown physseg strategy selected!");
763 #endif
764
765 ps->start = start;
766 ps->end = end;
767 ps->avail_start = avail_start;
768 ps->avail_end = avail_end;
769 if (preload) {
770 ps->pgs = NULL;
771 } else {
772 ps->pgs = pgs;
773 ps->lastpg = pgs + npages - 1;
774 }
775 ps->free_list = free_list;
776 vm_nphysseg++;
777
778 if (!preload)
779 uvm_page_rehash();
780 }
781
782 /*
783 * uvm_page_rehash: reallocate hash table based on number of free pages.
784 */
785
786 void
787 uvm_page_rehash()
788 {
789 int freepages, lcv, bucketcount, oldcount;
790 struct pglist *newbuckets, *oldbuckets;
791 struct vm_page *pg;
792 size_t newsize, oldsize;
793
794 /*
795 * compute number of pages that can go in the free pool
796 */
797
798 freepages = 0;
799 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
800 freepages +=
801 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
802
803 /*
804 * compute number of buckets needed for this number of pages
805 */
806
807 bucketcount = 1;
808 while (bucketcount < freepages)
809 bucketcount = bucketcount * 2;
810
811 /*
812 * compute the size of the current table and new table.
813 */
814
815 oldbuckets = uvm.page_hash;
816 oldcount = uvm.page_nhash;
817 oldsize = round_page(sizeof(struct pglist) * oldcount);
818 newsize = round_page(sizeof(struct pglist) * bucketcount);
819
820 /*
821 * allocate the new buckets
822 */
823
824 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
825 if (newbuckets == NULL) {
826 printf("uvm_page_physrehash: WARNING: could not grow page "
827 "hash table\n");
828 return;
829 }
830 for (lcv = 0 ; lcv < bucketcount ; lcv++)
831 TAILQ_INIT(&newbuckets[lcv]);
832
833 /*
834 * now replace the old buckets with the new ones and rehash everything
835 */
836
837 simple_lock(&uvm.hashlock);
838 uvm.page_hash = newbuckets;
839 uvm.page_nhash = bucketcount;
840 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
841
842 /* ... and rehash */
843 for (lcv = 0 ; lcv < oldcount ; lcv++) {
844 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
845 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
846 TAILQ_INSERT_TAIL(
847 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
848 pg, hashq);
849 }
850 }
851 simple_unlock(&uvm.hashlock);
852
853 /*
854 * free old bucket array if is not the boot-time table
855 */
856
857 if (oldbuckets != &uvm_bootbucket)
858 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
859 }
860
861 /*
862 * uvm_page_recolor: Recolor the pages if the new bucket count is
863 * larger than the old one.
864 */
865
866 void
867 uvm_page_recolor(int newncolors)
868 {
869 struct pgflbucket *bucketarray, *oldbucketarray;
870 struct pgfreelist pgfl;
871 struct vm_page *pg;
872 vsize_t bucketcount;
873 int s, lcv, color, i, ocolors;
874
875 if (newncolors <= uvmexp.ncolors)
876 return;
877
878 if (uvm.page_init_done == FALSE) {
879 uvmexp.ncolors = newncolors;
880 return;
881 }
882
883 bucketcount = newncolors * VM_NFREELIST;
884 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
885 M_VMPAGE, M_NOWAIT);
886 if (bucketarray == NULL) {
887 printf("WARNING: unable to allocate %ld page color buckets\n",
888 (long) bucketcount);
889 return;
890 }
891
892 s = uvm_lock_fpageq();
893
894 /* Make sure we should still do this. */
895 if (newncolors <= uvmexp.ncolors) {
896 uvm_unlock_fpageq(s);
897 free(bucketarray, M_VMPAGE);
898 return;
899 }
900
901 oldbucketarray = uvm.page_free[0].pgfl_buckets;
902 ocolors = uvmexp.ncolors;
903
904 uvmexp.ncolors = newncolors;
905 uvmexp.colormask = uvmexp.ncolors - 1;
906
907 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
908 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
909 uvm_page_init_buckets(&pgfl);
910 for (color = 0; color < ocolors; color++) {
911 for (i = 0; i < PGFL_NQUEUES; i++) {
912 while ((pg = TAILQ_FIRST(&uvm.page_free[
913 lcv].pgfl_buckets[color].pgfl_queues[i]))
914 != NULL) {
915 TAILQ_REMOVE(&uvm.page_free[
916 lcv].pgfl_buckets[
917 color].pgfl_queues[i], pg, pageq);
918 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
919 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
920 i], pg, pageq);
921 }
922 }
923 }
924 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
925 }
926
927 if (have_recolored_pages) {
928 uvm_unlock_fpageq(s);
929 free(oldbucketarray, M_VMPAGE);
930 return;
931 }
932
933 have_recolored_pages = TRUE;
934 uvm_unlock_fpageq(s);
935 }
936
937 /*
938 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
939 */
940
941 static __inline struct vm_page *
942 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
943 int *trycolorp)
944 {
945 struct pglist *freeq;
946 struct vm_page *pg;
947 int color, trycolor = *trycolorp;
948
949 color = trycolor;
950 do {
951 if ((pg = TAILQ_FIRST((freeq =
952 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
953 goto gotit;
954 if ((pg = TAILQ_FIRST((freeq =
955 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
956 goto gotit;
957 color = (color + 1) & uvmexp.colormask;
958 } while (color != trycolor);
959
960 return (NULL);
961
962 gotit:
963 TAILQ_REMOVE(freeq, pg, pageq);
964 uvmexp.free--;
965
966 /* update zero'd page count */
967 if (pg->flags & PG_ZERO)
968 uvmexp.zeropages--;
969
970 if (color == trycolor)
971 uvmexp.colorhit++;
972 else {
973 uvmexp.colormiss++;
974 *trycolorp = color;
975 }
976
977 return (pg);
978 }
979
980 /*
981 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
982 *
983 * => return null if no pages free
984 * => wake up pagedaemon if number of free pages drops below low water mark
985 * => if obj != NULL, obj must be locked (to put in hash)
986 * => if anon != NULL, anon must be locked (to put in anon)
987 * => only one of obj or anon can be non-null
988 * => caller must activate/deactivate page if it is not wired.
989 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
990 * => policy decision: it is more important to pull a page off of the
991 * appropriate priority free list than it is to get a zero'd or
992 * unknown contents page. This is because we live with the
993 * consequences of a bad free list decision for the entire
994 * lifetime of the page, e.g. if the page comes from memory that
995 * is slower to access.
996 */
997
998 struct vm_page *
999 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
1000 struct uvm_object *obj;
1001 voff_t off;
1002 int flags;
1003 struct vm_anon *anon;
1004 int strat, free_list;
1005 {
1006 int lcv, try1, try2, s, zeroit = 0, color;
1007 struct vm_page *pg;
1008 boolean_t use_reserve;
1009
1010 KASSERT(obj == NULL || anon == NULL);
1011 KASSERT(off == trunc_page(off));
1012 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1013 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1014
1015 s = uvm_lock_fpageq();
1016
1017 /*
1018 * This implements a global round-robin page coloring
1019 * algorithm.
1020 *
1021 * XXXJRT: Should we make the `nextcolor' per-cpu?
1022 * XXXJRT: What about virtually-indexed caches?
1023 */
1024
1025 color = uvm.page_free_nextcolor;
1026
1027 /*
1028 * check to see if we need to generate some free pages waking
1029 * the pagedaemon.
1030 */
1031
1032 UVM_KICK_PDAEMON();
1033
1034 /*
1035 * fail if any of these conditions is true:
1036 * [1] there really are no free pages, or
1037 * [2] only kernel "reserved" pages remain and
1038 * the page isn't being allocated to a kernel object.
1039 * [3] only pagedaemon "reserved" pages remain and
1040 * the requestor isn't the pagedaemon.
1041 */
1042
1043 use_reserve = (flags & UVM_PGA_USERESERVE) ||
1044 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1045 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1046 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1047 !(use_reserve && curproc == uvm.pagedaemon_proc)))
1048 goto fail;
1049
1050 #if PGFL_NQUEUES != 2
1051 #error uvm_pagealloc_strat needs to be updated
1052 #endif
1053
1054 /*
1055 * If we want a zero'd page, try the ZEROS queue first, otherwise
1056 * we try the UNKNOWN queue first.
1057 */
1058 if (flags & UVM_PGA_ZERO) {
1059 try1 = PGFL_ZEROS;
1060 try2 = PGFL_UNKNOWN;
1061 } else {
1062 try1 = PGFL_UNKNOWN;
1063 try2 = PGFL_ZEROS;
1064 }
1065
1066 again:
1067 switch (strat) {
1068 case UVM_PGA_STRAT_NORMAL:
1069 /* Check all freelists in descending priority order. */
1070 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1071 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1072 try1, try2, &color);
1073 if (pg != NULL)
1074 goto gotit;
1075 }
1076
1077 /* No pages free! */
1078 goto fail;
1079
1080 case UVM_PGA_STRAT_ONLY:
1081 case UVM_PGA_STRAT_FALLBACK:
1082 /* Attempt to allocate from the specified free list. */
1083 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1084 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1085 try1, try2, &color);
1086 if (pg != NULL)
1087 goto gotit;
1088
1089 /* Fall back, if possible. */
1090 if (strat == UVM_PGA_STRAT_FALLBACK) {
1091 strat = UVM_PGA_STRAT_NORMAL;
1092 goto again;
1093 }
1094
1095 /* No pages free! */
1096 goto fail;
1097
1098 default:
1099 panic("uvm_pagealloc_strat: bad strat %d", strat);
1100 /* NOTREACHED */
1101 }
1102
1103 gotit:
1104 /*
1105 * We now know which color we actually allocated from; set
1106 * the next color accordingly.
1107 */
1108
1109 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1110
1111 /*
1112 * update allocation statistics and remember if we have to
1113 * zero the page
1114 */
1115
1116 if (flags & UVM_PGA_ZERO) {
1117 if (pg->flags & PG_ZERO) {
1118 uvmexp.pga_zerohit++;
1119 zeroit = 0;
1120 } else {
1121 uvmexp.pga_zeromiss++;
1122 zeroit = 1;
1123 }
1124 }
1125 uvm_unlock_fpageq(s);
1126
1127 pg->offset = off;
1128 pg->uobject = obj;
1129 pg->uanon = anon;
1130 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1131 if (anon) {
1132 anon->u.an_page = pg;
1133 pg->pqflags = PQ_ANON;
1134 uvmexp.anonpages++;
1135 } else {
1136 if (obj) {
1137 uvm_pageinsert(pg);
1138 }
1139 pg->pqflags = 0;
1140 }
1141 #if defined(UVM_PAGE_TRKOWN)
1142 pg->owner_tag = NULL;
1143 #endif
1144 UVM_PAGE_OWN(pg, "new alloc");
1145
1146 if (flags & UVM_PGA_ZERO) {
1147 /*
1148 * A zero'd page is not clean. If we got a page not already
1149 * zero'd, then we have to zero it ourselves.
1150 */
1151 pg->flags &= ~PG_CLEAN;
1152 if (zeroit)
1153 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1154 }
1155
1156 return(pg);
1157
1158 fail:
1159 uvm_unlock_fpageq(s);
1160 return (NULL);
1161 }
1162
1163 /*
1164 * uvm_pagerealloc: reallocate a page from one object to another
1165 *
1166 * => both objects must be locked
1167 */
1168
1169 void
1170 uvm_pagerealloc(pg, newobj, newoff)
1171 struct vm_page *pg;
1172 struct uvm_object *newobj;
1173 voff_t newoff;
1174 {
1175 /*
1176 * remove it from the old object
1177 */
1178
1179 if (pg->uobject) {
1180 uvm_pageremove(pg);
1181 }
1182
1183 /*
1184 * put it in the new object
1185 */
1186
1187 if (newobj) {
1188 pg->uobject = newobj;
1189 pg->offset = newoff;
1190 uvm_pageinsert(pg);
1191 }
1192 }
1193
1194 /*
1195 * uvm_pagefree: free page
1196 *
1197 * => erase page's identity (i.e. remove from hash/object)
1198 * => put page on free list
1199 * => caller must lock owning object (either anon or uvm_object)
1200 * => caller must lock page queues
1201 * => assumes all valid mappings of pg are gone
1202 */
1203
1204 void
1205 uvm_pagefree(pg)
1206 struct vm_page *pg;
1207 {
1208 int s;
1209
1210 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1211 LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1212 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1213 LOCK_ASSERT(pg->uobject == NULL ||
1214 simple_lock_held(&pg->uobject->vmobjlock));
1215 LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1216 simple_lock_held(&pg->uanon->an_lock));
1217
1218 #ifdef DEBUG
1219 if (pg->uobject == (void *)0xdeadbeef &&
1220 pg->uanon == (void *)0xdeadbeef) {
1221 panic("uvm_pagefree: freeing free page %p", pg);
1222 }
1223 #endif
1224
1225 /*
1226 * if the page is loaned, resolve the loan instead of freeing.
1227 */
1228
1229 if (pg->loan_count) {
1230 KASSERT(pg->wire_count == 0);
1231
1232 /*
1233 * if the page is owned by an anon then we just want to
1234 * drop anon ownership. the kernel will free the page when
1235 * it is done with it. if the page is owned by an object,
1236 * remove it from the object and mark it dirty for the benefit
1237 * of possible anon owners.
1238 *
1239 * regardless of previous ownership, wakeup any waiters,
1240 * unbusy the page, and we're done.
1241 */
1242
1243 if (pg->uobject != NULL) {
1244 uvm_pageremove(pg);
1245 pg->flags &= ~PG_CLEAN;
1246 } else if (pg->uanon != NULL) {
1247 if ((pg->pqflags & PQ_ANON) == 0) {
1248 pg->loan_count--;
1249 } else {
1250 pg->pqflags &= ~PQ_ANON;
1251 }
1252 pg->uanon = NULL;
1253 }
1254 if (pg->flags & PG_WANTED) {
1255 wakeup(pg);
1256 }
1257 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1258 #ifdef UVM_PAGE_TRKOWN
1259 pg->owner_tag = NULL;
1260 #endif
1261 if (pg->loan_count) {
1262 uvm_pagedequeue(pg);
1263 return;
1264 }
1265 }
1266
1267 /*
1268 * remove page from its object or anon.
1269 */
1270
1271 if (pg->uobject != NULL) {
1272 uvm_pageremove(pg);
1273 } else if (pg->uanon != NULL) {
1274 pg->uanon->u.an_page = NULL;
1275 uvmexp.anonpages--;
1276 }
1277
1278 /*
1279 * now remove the page from the queues.
1280 */
1281
1282 uvm_pagedequeue(pg);
1283
1284 /*
1285 * if the page was wired, unwire it now.
1286 */
1287
1288 if (pg->wire_count) {
1289 pg->wire_count = 0;
1290 uvmexp.wired--;
1291 }
1292
1293 /*
1294 * and put on free queue
1295 */
1296
1297 pg->flags &= ~PG_ZERO;
1298
1299 s = uvm_lock_fpageq();
1300 TAILQ_INSERT_TAIL(&uvm.page_free[
1301 uvm_page_lookup_freelist(pg)].pgfl_buckets[
1302 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1303 pg->pqflags = PQ_FREE;
1304 #ifdef DEBUG
1305 pg->uobject = (void *)0xdeadbeef;
1306 pg->offset = 0xdeadbeef;
1307 pg->uanon = (void *)0xdeadbeef;
1308 #endif
1309 uvmexp.free++;
1310
1311 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1312 uvm.page_idle_zero = vm_page_zero_enable;
1313
1314 uvm_unlock_fpageq(s);
1315 }
1316
1317 /*
1318 * uvm_page_unbusy: unbusy an array of pages.
1319 *
1320 * => pages must either all belong to the same object, or all belong to anons.
1321 * => if pages are object-owned, object must be locked.
1322 * => if pages are anon-owned, anons must be locked.
1323 * => caller must lock page queues if pages may be released.
1324 */
1325
1326 void
1327 uvm_page_unbusy(pgs, npgs)
1328 struct vm_page **pgs;
1329 int npgs;
1330 {
1331 struct vm_page *pg;
1332 int i;
1333 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1334
1335 for (i = 0; i < npgs; i++) {
1336 pg = pgs[i];
1337 if (pg == NULL || pg == PGO_DONTCARE) {
1338 continue;
1339 }
1340 if (pg->flags & PG_WANTED) {
1341 wakeup(pg);
1342 }
1343 if (pg->flags & PG_RELEASED) {
1344 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1345 pg->flags &= ~PG_RELEASED;
1346 uvm_pagefree(pg);
1347 } else {
1348 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1349 pg->flags &= ~(PG_WANTED|PG_BUSY);
1350 UVM_PAGE_OWN(pg, NULL);
1351 }
1352 }
1353 }
1354
1355 #if defined(UVM_PAGE_TRKOWN)
1356 /*
1357 * uvm_page_own: set or release page ownership
1358 *
1359 * => this is a debugging function that keeps track of who sets PG_BUSY
1360 * and where they do it. it can be used to track down problems
1361 * such a process setting "PG_BUSY" and never releasing it.
1362 * => page's object [if any] must be locked
1363 * => if "tag" is NULL then we are releasing page ownership
1364 */
1365 void
1366 uvm_page_own(pg, tag)
1367 struct vm_page *pg;
1368 char *tag;
1369 {
1370 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1371
1372 /* gain ownership? */
1373 if (tag) {
1374 if (pg->owner_tag) {
1375 printf("uvm_page_own: page %p already owned "
1376 "by proc %d [%s]\n", pg,
1377 pg->owner, pg->owner_tag);
1378 panic("uvm_page_own");
1379 }
1380 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1381 pg->owner_tag = tag;
1382 return;
1383 }
1384
1385 /* drop ownership */
1386 if (pg->owner_tag == NULL) {
1387 printf("uvm_page_own: dropping ownership of an non-owned "
1388 "page (%p)\n", pg);
1389 panic("uvm_page_own");
1390 }
1391 KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1392 (pg->uanon == NULL && pg->uobject == NULL) ||
1393 pg->uobject == uvm.kernel_object ||
1394 pg->wire_count > 0 ||
1395 (pg->loan_count == 1 && pg->uanon == NULL) ||
1396 pg->loan_count > 1);
1397 pg->owner_tag = NULL;
1398 }
1399 #endif
1400
1401 /*
1402 * uvm_pageidlezero: zero free pages while the system is idle.
1403 *
1404 * => try to complete one color bucket at a time, to reduce our impact
1405 * on the CPU cache.
1406 * => we loop until we either reach the target or whichqs indicates that
1407 * there is a process ready to run.
1408 */
1409 void
1410 uvm_pageidlezero()
1411 {
1412 struct vm_page *pg;
1413 struct pgfreelist *pgfl;
1414 int free_list, s, firstbucket;
1415 static int nextbucket;
1416
1417 s = uvm_lock_fpageq();
1418 firstbucket = nextbucket;
1419 do {
1420 if (sched_whichqs != 0) {
1421 uvm_unlock_fpageq(s);
1422 return;
1423 }
1424 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1425 uvm.page_idle_zero = FALSE;
1426 uvm_unlock_fpageq(s);
1427 return;
1428 }
1429 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1430 pgfl = &uvm.page_free[free_list];
1431 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1432 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1433 if (sched_whichqs != 0) {
1434 uvm_unlock_fpageq(s);
1435 return;
1436 }
1437
1438 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1439 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1440 pg, pageq);
1441 uvmexp.free--;
1442 uvm_unlock_fpageq(s);
1443 #ifdef PMAP_PAGEIDLEZERO
1444 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1445
1446 /*
1447 * The machine-dependent code detected
1448 * some reason for us to abort zeroing
1449 * pages, probably because there is a
1450 * process now ready to run.
1451 */
1452
1453 s = uvm_lock_fpageq();
1454 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1455 nextbucket].pgfl_queues[
1456 PGFL_UNKNOWN], pg, pageq);
1457 uvmexp.free++;
1458 uvmexp.zeroaborts++;
1459 uvm_unlock_fpageq(s);
1460 return;
1461 }
1462 #else
1463 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1464 #endif /* PMAP_PAGEIDLEZERO */
1465 pg->flags |= PG_ZERO;
1466
1467 s = uvm_lock_fpageq();
1468 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1469 nextbucket].pgfl_queues[PGFL_ZEROS],
1470 pg, pageq);
1471 uvmexp.free++;
1472 uvmexp.zeropages++;
1473 }
1474 }
1475 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1476 } while (nextbucket != firstbucket);
1477 uvm_unlock_fpageq(s);
1478 }
1479