Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.88
      1 /*	$NetBSD: uvm_page.c,v 1.88 2003/05/10 21:10:23 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.88 2003/05/10 21:10:23 thorpej Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either cpu caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 /*
    145  * local prototypes
    146  */
    147 
    148 static void uvm_pageinsert __P((struct vm_page *));
    149 static void uvm_pageremove __P((struct vm_page *));
    150 
    151 /*
    152  * inline functions
    153  */
    154 
    155 /*
    156  * uvm_pageinsert: insert a page in the object and the hash table
    157  *
    158  * => caller must lock object
    159  * => caller must lock page queues
    160  * => call should have already set pg's object and offset pointers
    161  *    and bumped the version counter
    162  */
    163 
    164 __inline static void
    165 uvm_pageinsert(pg)
    166 	struct vm_page *pg;
    167 {
    168 	struct pglist *buck;
    169 	struct uvm_object *uobj = pg->uobject;
    170 
    171 	KASSERT((pg->flags & PG_TABLED) == 0);
    172 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    173 	simple_lock(&uvm.hashlock);
    174 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    175 	simple_unlock(&uvm.hashlock);
    176 
    177 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    178 		uvmexp.execpages++;
    179 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    180 		uvmexp.filepages++;
    181 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    182 		uvmexp.anonpages++;
    183 	}
    184 
    185 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    186 	pg->flags |= PG_TABLED;
    187 	uobj->uo_npages++;
    188 }
    189 
    190 /*
    191  * uvm_page_remove: remove page from object and hash
    192  *
    193  * => caller must lock object
    194  * => caller must lock page queues
    195  */
    196 
    197 static __inline void
    198 uvm_pageremove(pg)
    199 	struct vm_page *pg;
    200 {
    201 	struct pglist *buck;
    202 	struct uvm_object *uobj = pg->uobject;
    203 
    204 	KASSERT(pg->flags & PG_TABLED);
    205 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    206 	simple_lock(&uvm.hashlock);
    207 	TAILQ_REMOVE(buck, pg, hashq);
    208 	simple_unlock(&uvm.hashlock);
    209 
    210 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    211 		uvmexp.execpages--;
    212 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    213 		uvmexp.filepages--;
    214 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    215 		uvmexp.anonpages--;
    216 	}
    217 
    218 	/* object should be locked */
    219 	uobj->uo_npages--;
    220 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    221 	pg->flags &= ~PG_TABLED;
    222 	pg->uobject = NULL;
    223 }
    224 
    225 static void
    226 uvm_page_init_buckets(struct pgfreelist *pgfl)
    227 {
    228 	int color, i;
    229 
    230 	for (color = 0; color < uvmexp.ncolors; color++) {
    231 		for (i = 0; i < PGFL_NQUEUES; i++) {
    232 			TAILQ_INIT(&pgfl->pgfl_buckets[
    233 			    color].pgfl_queues[i]);
    234 		}
    235 	}
    236 }
    237 
    238 /*
    239  * uvm_page_init: init the page system.   called from uvm_init().
    240  *
    241  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    242  */
    243 
    244 void
    245 uvm_page_init(kvm_startp, kvm_endp)
    246 	vaddr_t *kvm_startp, *kvm_endp;
    247 {
    248 	vsize_t freepages, pagecount, bucketcount, n;
    249 	struct pgflbucket *bucketarray;
    250 	struct vm_page *pagearray;
    251 	int lcv;
    252 	u_int i;
    253 	paddr_t paddr;
    254 
    255 	/*
    256 	 * init the page queues and page queue locks, except the free
    257 	 * list; we allocate that later (with the initial vm_page
    258 	 * structures).
    259 	 */
    260 
    261 	TAILQ_INIT(&uvm.page_active);
    262 	TAILQ_INIT(&uvm.page_inactive);
    263 	simple_lock_init(&uvm.pageqlock);
    264 	simple_lock_init(&uvm.fpageqlock);
    265 
    266 	/*
    267 	 * init the <obj,offset> => <page> hash table.  for now
    268 	 * we just have one bucket (the bootstrap bucket).  later on we
    269 	 * will allocate new buckets as we dynamically resize the hash table.
    270 	 */
    271 
    272 	uvm.page_nhash = 1;			/* 1 bucket */
    273 	uvm.page_hashmask = 0;			/* mask for hash function */
    274 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    275 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    276 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    277 
    278 	/*
    279 	 * allocate vm_page structures.
    280 	 */
    281 
    282 	/*
    283 	 * sanity check:
    284 	 * before calling this function the MD code is expected to register
    285 	 * some free RAM with the uvm_page_physload() function.   our job
    286 	 * now is to allocate vm_page structures for this memory.
    287 	 */
    288 
    289 	if (vm_nphysseg == 0)
    290 		panic("uvm_page_bootstrap: no memory pre-allocated");
    291 
    292 	/*
    293 	 * first calculate the number of free pages...
    294 	 *
    295 	 * note that we use start/end rather than avail_start/avail_end.
    296 	 * this allows us to allocate extra vm_page structures in case we
    297 	 * want to return some memory to the pool after booting.
    298 	 */
    299 
    300 	freepages = 0;
    301 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    302 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    303 
    304 	/*
    305 	 * Let MD code initialize the number of colors, or default
    306 	 * to 1 color if MD code doesn't care.
    307 	 */
    308 	if (uvmexp.ncolors == 0)
    309 		uvmexp.ncolors = 1;
    310 	uvmexp.colormask = uvmexp.ncolors - 1;
    311 
    312 	/*
    313 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    314 	 * use.   for each page of memory we use we need a vm_page structure.
    315 	 * thus, the total number of pages we can use is the total size of
    316 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    317 	 * structure.   we add one to freepages as a fudge factor to avoid
    318 	 * truncation errors (since we can only allocate in terms of whole
    319 	 * pages).
    320 	 */
    321 
    322 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    323 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    324 	    (PAGE_SIZE + sizeof(struct vm_page));
    325 
    326 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    327 	    sizeof(struct pgflbucket)) + (pagecount *
    328 	    sizeof(struct vm_page)));
    329 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    330 
    331 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    332 		uvm.page_free[lcv].pgfl_buckets =
    333 		    (bucketarray + (lcv * uvmexp.ncolors));
    334 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    335 	}
    336 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    337 
    338 	/*
    339 	 * init the vm_page structures and put them in the correct place.
    340 	 */
    341 
    342 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    343 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    344 
    345 		/* set up page array pointers */
    346 		vm_physmem[lcv].pgs = pagearray;
    347 		pagearray += n;
    348 		pagecount -= n;
    349 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    350 
    351 		/* init and free vm_pages (we've already zeroed them) */
    352 		paddr = ptoa(vm_physmem[lcv].start);
    353 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    354 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    355 #ifdef __HAVE_VM_PAGE_MD
    356 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    357 #endif
    358 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    359 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    360 				uvmexp.npages++;
    361 				/* add page to free pool */
    362 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    363 			}
    364 		}
    365 	}
    366 
    367 	/*
    368 	 * pass up the values of virtual_space_start and
    369 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    370 	 * layers of the VM.
    371 	 */
    372 
    373 	*kvm_startp = round_page(virtual_space_start);
    374 	*kvm_endp = trunc_page(virtual_space_end);
    375 
    376 	/*
    377 	 * init locks for kernel threads
    378 	 */
    379 
    380 	simple_lock_init(&uvm.pagedaemon_lock);
    381 	simple_lock_init(&uvm.aiodoned_lock);
    382 
    383 	/*
    384 	 * init various thresholds.
    385 	 */
    386 
    387 	uvmexp.reserve_pagedaemon = 1;
    388 	uvmexp.reserve_kernel = 5;
    389 	uvmexp.anonminpct = 10;
    390 	uvmexp.fileminpct = 10;
    391 	uvmexp.execminpct = 5;
    392 	uvmexp.anonmaxpct = 80;
    393 	uvmexp.filemaxpct = 50;
    394 	uvmexp.execmaxpct = 30;
    395 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    396 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    397 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    398 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    399 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    400 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    401 
    402 	/*
    403 	 * determine if we should zero pages in the idle loop.
    404 	 */
    405 
    406 	uvm.page_idle_zero = vm_page_zero_enable;
    407 
    408 	/*
    409 	 * done!
    410 	 */
    411 
    412 	uvm.page_init_done = TRUE;
    413 }
    414 
    415 /*
    416  * uvm_setpagesize: set the page size
    417  *
    418  * => sets page_shift and page_mask from uvmexp.pagesize.
    419  */
    420 
    421 void
    422 uvm_setpagesize()
    423 {
    424 
    425 	/*
    426 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    427 	 * to be a constant (indicated by being a non-zero value).
    428 	 */
    429 	if (uvmexp.pagesize == 0) {
    430 		if (PAGE_SIZE == 0)
    431 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    432 		uvmexp.pagesize = PAGE_SIZE;
    433 	}
    434 	uvmexp.pagemask = uvmexp.pagesize - 1;
    435 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    436 		panic("uvm_setpagesize: page size not a power of two");
    437 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    438 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    439 			break;
    440 }
    441 
    442 /*
    443  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    444  */
    445 
    446 vaddr_t
    447 uvm_pageboot_alloc(size)
    448 	vsize_t size;
    449 {
    450 	static boolean_t initialized = FALSE;
    451 	vaddr_t addr;
    452 #if !defined(PMAP_STEAL_MEMORY)
    453 	vaddr_t vaddr;
    454 	paddr_t paddr;
    455 #endif
    456 
    457 	/*
    458 	 * on first call to this function, initialize ourselves.
    459 	 */
    460 	if (initialized == FALSE) {
    461 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    462 
    463 		/* round it the way we like it */
    464 		virtual_space_start = round_page(virtual_space_start);
    465 		virtual_space_end = trunc_page(virtual_space_end);
    466 
    467 		initialized = TRUE;
    468 	}
    469 
    470 	/* round to page size */
    471 	size = round_page(size);
    472 
    473 #if defined(PMAP_STEAL_MEMORY)
    474 
    475 	/*
    476 	 * defer bootstrap allocation to MD code (it may want to allocate
    477 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    478 	 * virtual_space_start/virtual_space_end if necessary.
    479 	 */
    480 
    481 	addr = pmap_steal_memory(size, &virtual_space_start,
    482 	    &virtual_space_end);
    483 
    484 	return(addr);
    485 
    486 #else /* !PMAP_STEAL_MEMORY */
    487 
    488 	/*
    489 	 * allocate virtual memory for this request
    490 	 */
    491 	if (virtual_space_start == virtual_space_end ||
    492 	    (virtual_space_end - virtual_space_start) < size)
    493 		panic("uvm_pageboot_alloc: out of virtual space");
    494 
    495 	addr = virtual_space_start;
    496 
    497 #ifdef PMAP_GROWKERNEL
    498 	/*
    499 	 * If the kernel pmap can't map the requested space,
    500 	 * then allocate more resources for it.
    501 	 */
    502 	if (uvm_maxkaddr < (addr + size)) {
    503 		uvm_maxkaddr = pmap_growkernel(addr + size);
    504 		if (uvm_maxkaddr < (addr + size))
    505 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    506 	}
    507 #endif
    508 
    509 	virtual_space_start += size;
    510 
    511 	/*
    512 	 * allocate and mapin physical pages to back new virtual pages
    513 	 */
    514 
    515 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    516 	    vaddr += PAGE_SIZE) {
    517 
    518 		if (!uvm_page_physget(&paddr))
    519 			panic("uvm_pageboot_alloc: out of memory");
    520 
    521 		/*
    522 		 * Note this memory is no longer managed, so using
    523 		 * pmap_kenter is safe.
    524 		 */
    525 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    526 	}
    527 	pmap_update(pmap_kernel());
    528 	return(addr);
    529 #endif	/* PMAP_STEAL_MEMORY */
    530 }
    531 
    532 #if !defined(PMAP_STEAL_MEMORY)
    533 /*
    534  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    535  *
    536  * => attempt to allocate it off the end of a segment in which the "avail"
    537  *    values match the start/end values.   if we can't do that, then we
    538  *    will advance both values (making them equal, and removing some
    539  *    vm_page structures from the non-avail area).
    540  * => return false if out of memory.
    541  */
    542 
    543 /* subroutine: try to allocate from memory chunks on the specified freelist */
    544 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    545 
    546 static boolean_t
    547 uvm_page_physget_freelist(paddrp, freelist)
    548 	paddr_t *paddrp;
    549 	int freelist;
    550 {
    551 	int lcv, x;
    552 
    553 	/* pass 1: try allocating from a matching end */
    554 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    555 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    556 #else
    557 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    558 #endif
    559 	{
    560 
    561 		if (uvm.page_init_done == TRUE)
    562 			panic("uvm_page_physget: called _after_ bootstrap");
    563 
    564 		if (vm_physmem[lcv].free_list != freelist)
    565 			continue;
    566 
    567 		/* try from front */
    568 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    569 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    570 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    571 			vm_physmem[lcv].avail_start++;
    572 			vm_physmem[lcv].start++;
    573 			/* nothing left?   nuke it */
    574 			if (vm_physmem[lcv].avail_start ==
    575 			    vm_physmem[lcv].end) {
    576 				if (vm_nphysseg == 1)
    577 				    panic("vum_page_physget: out of memory!");
    578 				vm_nphysseg--;
    579 				for (x = lcv ; x < vm_nphysseg ; x++)
    580 					/* structure copy */
    581 					vm_physmem[x] = vm_physmem[x+1];
    582 			}
    583 			return (TRUE);
    584 		}
    585 
    586 		/* try from rear */
    587 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    588 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    589 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    590 			vm_physmem[lcv].avail_end--;
    591 			vm_physmem[lcv].end--;
    592 			/* nothing left?   nuke it */
    593 			if (vm_physmem[lcv].avail_end ==
    594 			    vm_physmem[lcv].start) {
    595 				if (vm_nphysseg == 1)
    596 				    panic("uvm_page_physget: out of memory!");
    597 				vm_nphysseg--;
    598 				for (x = lcv ; x < vm_nphysseg ; x++)
    599 					/* structure copy */
    600 					vm_physmem[x] = vm_physmem[x+1];
    601 			}
    602 			return (TRUE);
    603 		}
    604 	}
    605 
    606 	/* pass2: forget about matching ends, just allocate something */
    607 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    608 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    609 #else
    610 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    611 #endif
    612 	{
    613 
    614 		/* any room in this bank? */
    615 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    616 			continue;  /* nope */
    617 
    618 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    619 		vm_physmem[lcv].avail_start++;
    620 		/* truncate! */
    621 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    622 
    623 		/* nothing left?   nuke it */
    624 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    625 			if (vm_nphysseg == 1)
    626 				panic("uvm_page_physget: out of memory!");
    627 			vm_nphysseg--;
    628 			for (x = lcv ; x < vm_nphysseg ; x++)
    629 				/* structure copy */
    630 				vm_physmem[x] = vm_physmem[x+1];
    631 		}
    632 		return (TRUE);
    633 	}
    634 
    635 	return (FALSE);        /* whoops! */
    636 }
    637 
    638 boolean_t
    639 uvm_page_physget(paddrp)
    640 	paddr_t *paddrp;
    641 {
    642 	int i;
    643 
    644 	/* try in the order of freelist preference */
    645 	for (i = 0; i < VM_NFREELIST; i++)
    646 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    647 			return (TRUE);
    648 	return (FALSE);
    649 }
    650 #endif /* PMAP_STEAL_MEMORY */
    651 
    652 /*
    653  * uvm_page_physload: load physical memory into VM system
    654  *
    655  * => all args are PFs
    656  * => all pages in start/end get vm_page structures
    657  * => areas marked by avail_start/avail_end get added to the free page pool
    658  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    659  */
    660 
    661 void
    662 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    663 	paddr_t start, end, avail_start, avail_end;
    664 	int free_list;
    665 {
    666 	int preload, lcv;
    667 	psize_t npages;
    668 	struct vm_page *pgs;
    669 	struct vm_physseg *ps;
    670 
    671 	if (uvmexp.pagesize == 0)
    672 		panic("uvm_page_physload: page size not set!");
    673 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    674 		panic("uvm_page_physload: bad free list %d", free_list);
    675 	if (start >= end)
    676 		panic("uvm_page_physload: start >= end");
    677 
    678 	/*
    679 	 * do we have room?
    680 	 */
    681 
    682 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    683 		printf("uvm_page_physload: unable to load physical memory "
    684 		    "segment\n");
    685 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    686 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    687 		printf("\tincrease VM_PHYSSEG_MAX\n");
    688 		return;
    689 	}
    690 
    691 	/*
    692 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    693 	 * called yet, so malloc is not available).
    694 	 */
    695 
    696 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    697 		if (vm_physmem[lcv].pgs)
    698 			break;
    699 	}
    700 	preload = (lcv == vm_nphysseg);
    701 
    702 	/*
    703 	 * if VM is already running, attempt to malloc() vm_page structures
    704 	 */
    705 
    706 	if (!preload) {
    707 #if defined(VM_PHYSSEG_NOADD)
    708 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    709 #else
    710 		/* XXXCDC: need some sort of lockout for this case */
    711 		paddr_t paddr;
    712 		npages = end - start;  /* # of pages */
    713 		pgs = malloc(sizeof(struct vm_page) * npages,
    714 		    M_VMPAGE, M_NOWAIT);
    715 		if (pgs == NULL) {
    716 			printf("uvm_page_physload: can not malloc vm_page "
    717 			    "structs for segment\n");
    718 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    719 			return;
    720 		}
    721 		/* zero data, init phys_addr and free_list, and free pages */
    722 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    723 		for (lcv = 0, paddr = ptoa(start) ;
    724 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    725 			pgs[lcv].phys_addr = paddr;
    726 			pgs[lcv].free_list = free_list;
    727 			if (atop(paddr) >= avail_start &&
    728 			    atop(paddr) <= avail_end)
    729 				uvm_pagefree(&pgs[lcv]);
    730 		}
    731 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    732 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    733 #endif
    734 	} else {
    735 		pgs = NULL;
    736 		npages = 0;
    737 	}
    738 
    739 	/*
    740 	 * now insert us in the proper place in vm_physmem[]
    741 	 */
    742 
    743 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    744 	/* random: put it at the end (easy!) */
    745 	ps = &vm_physmem[vm_nphysseg];
    746 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    747 	{
    748 		int x;
    749 		/* sort by address for binary search */
    750 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    751 			if (start < vm_physmem[lcv].start)
    752 				break;
    753 		ps = &vm_physmem[lcv];
    754 		/* move back other entries, if necessary ... */
    755 		for (x = vm_nphysseg ; x > lcv ; x--)
    756 			/* structure copy */
    757 			vm_physmem[x] = vm_physmem[x - 1];
    758 	}
    759 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    760 	{
    761 		int x;
    762 		/* sort by largest segment first */
    763 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    764 			if ((end - start) >
    765 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    766 				break;
    767 		ps = &vm_physmem[lcv];
    768 		/* move back other entries, if necessary ... */
    769 		for (x = vm_nphysseg ; x > lcv ; x--)
    770 			/* structure copy */
    771 			vm_physmem[x] = vm_physmem[x - 1];
    772 	}
    773 #else
    774 	panic("uvm_page_physload: unknown physseg strategy selected!");
    775 #endif
    776 
    777 	ps->start = start;
    778 	ps->end = end;
    779 	ps->avail_start = avail_start;
    780 	ps->avail_end = avail_end;
    781 	if (preload) {
    782 		ps->pgs = NULL;
    783 	} else {
    784 		ps->pgs = pgs;
    785 		ps->lastpg = pgs + npages - 1;
    786 	}
    787 	ps->free_list = free_list;
    788 	vm_nphysseg++;
    789 
    790 	if (!preload)
    791 		uvm_page_rehash();
    792 }
    793 
    794 /*
    795  * uvm_page_rehash: reallocate hash table based on number of free pages.
    796  */
    797 
    798 void
    799 uvm_page_rehash()
    800 {
    801 	int freepages, lcv, bucketcount, oldcount;
    802 	struct pglist *newbuckets, *oldbuckets;
    803 	struct vm_page *pg;
    804 	size_t newsize, oldsize;
    805 
    806 	/*
    807 	 * compute number of pages that can go in the free pool
    808 	 */
    809 
    810 	freepages = 0;
    811 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    812 		freepages +=
    813 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    814 
    815 	/*
    816 	 * compute number of buckets needed for this number of pages
    817 	 */
    818 
    819 	bucketcount = 1;
    820 	while (bucketcount < freepages)
    821 		bucketcount = bucketcount * 2;
    822 
    823 	/*
    824 	 * compute the size of the current table and new table.
    825 	 */
    826 
    827 	oldbuckets = uvm.page_hash;
    828 	oldcount = uvm.page_nhash;
    829 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    830 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    831 
    832 	/*
    833 	 * allocate the new buckets
    834 	 */
    835 
    836 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    837 	if (newbuckets == NULL) {
    838 		printf("uvm_page_physrehash: WARNING: could not grow page "
    839 		    "hash table\n");
    840 		return;
    841 	}
    842 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    843 		TAILQ_INIT(&newbuckets[lcv]);
    844 
    845 	/*
    846 	 * now replace the old buckets with the new ones and rehash everything
    847 	 */
    848 
    849 	simple_lock(&uvm.hashlock);
    850 	uvm.page_hash = newbuckets;
    851 	uvm.page_nhash = bucketcount;
    852 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    853 
    854 	/* ... and rehash */
    855 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    856 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    857 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    858 			TAILQ_INSERT_TAIL(
    859 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    860 			  pg, hashq);
    861 		}
    862 	}
    863 	simple_unlock(&uvm.hashlock);
    864 
    865 	/*
    866 	 * free old bucket array if is not the boot-time table
    867 	 */
    868 
    869 	if (oldbuckets != &uvm_bootbucket)
    870 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    871 }
    872 
    873 /*
    874  * uvm_page_recolor: Recolor the pages if the new bucket count is
    875  * larger than the old one.
    876  */
    877 
    878 void
    879 uvm_page_recolor(int newncolors)
    880 {
    881 	struct pgflbucket *bucketarray, *oldbucketarray;
    882 	struct pgfreelist pgfl;
    883 	struct vm_page *pg;
    884 	vsize_t bucketcount;
    885 	int s, lcv, color, i, ocolors;
    886 
    887 	if (newncolors <= uvmexp.ncolors)
    888 		return;
    889 
    890 	if (uvm.page_init_done == FALSE) {
    891 		uvmexp.ncolors = newncolors;
    892 		return;
    893 	}
    894 
    895 	bucketcount = newncolors * VM_NFREELIST;
    896 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    897 	    M_VMPAGE, M_NOWAIT);
    898 	if (bucketarray == NULL) {
    899 		printf("WARNING: unable to allocate %ld page color buckets\n",
    900 		    (long) bucketcount);
    901 		return;
    902 	}
    903 
    904 	s = uvm_lock_fpageq();
    905 
    906 	/* Make sure we should still do this. */
    907 	if (newncolors <= uvmexp.ncolors) {
    908 		uvm_unlock_fpageq(s);
    909 		free(bucketarray, M_VMPAGE);
    910 		return;
    911 	}
    912 
    913 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    914 	ocolors = uvmexp.ncolors;
    915 
    916 	uvmexp.ncolors = newncolors;
    917 	uvmexp.colormask = uvmexp.ncolors - 1;
    918 
    919 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    920 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    921 		uvm_page_init_buckets(&pgfl);
    922 		for (color = 0; color < ocolors; color++) {
    923 			for (i = 0; i < PGFL_NQUEUES; i++) {
    924 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    925 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    926 				    != NULL) {
    927 					TAILQ_REMOVE(&uvm.page_free[
    928 					    lcv].pgfl_buckets[
    929 					    color].pgfl_queues[i], pg, pageq);
    930 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    931 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    932 					    i], pg, pageq);
    933 				}
    934 			}
    935 		}
    936 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    937 	}
    938 
    939 	if (have_recolored_pages) {
    940 		uvm_unlock_fpageq(s);
    941 		free(oldbucketarray, M_VMPAGE);
    942 		return;
    943 	}
    944 
    945 	have_recolored_pages = TRUE;
    946 	uvm_unlock_fpageq(s);
    947 }
    948 
    949 /*
    950  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    951  */
    952 
    953 static __inline struct vm_page *
    954 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    955     int *trycolorp)
    956 {
    957 	struct pglist *freeq;
    958 	struct vm_page *pg;
    959 	int color, trycolor = *trycolorp;
    960 
    961 	color = trycolor;
    962 	do {
    963 		if ((pg = TAILQ_FIRST((freeq =
    964 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    965 			goto gotit;
    966 		if ((pg = TAILQ_FIRST((freeq =
    967 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    968 			goto gotit;
    969 		color = (color + 1) & uvmexp.colormask;
    970 	} while (color != trycolor);
    971 
    972 	return (NULL);
    973 
    974  gotit:
    975 	TAILQ_REMOVE(freeq, pg, pageq);
    976 	uvmexp.free--;
    977 
    978 	/* update zero'd page count */
    979 	if (pg->flags & PG_ZERO)
    980 		uvmexp.zeropages--;
    981 
    982 	if (color == trycolor)
    983 		uvmexp.colorhit++;
    984 	else {
    985 		uvmexp.colormiss++;
    986 		*trycolorp = color;
    987 	}
    988 
    989 	return (pg);
    990 }
    991 
    992 /*
    993  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
    994  *
    995  * => return null if no pages free
    996  * => wake up pagedaemon if number of free pages drops below low water mark
    997  * => if obj != NULL, obj must be locked (to put in hash)
    998  * => if anon != NULL, anon must be locked (to put in anon)
    999  * => only one of obj or anon can be non-null
   1000  * => caller must activate/deactivate page if it is not wired.
   1001  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1002  * => policy decision: it is more important to pull a page off of the
   1003  *	appropriate priority free list than it is to get a zero'd or
   1004  *	unknown contents page.  This is because we live with the
   1005  *	consequences of a bad free list decision for the entire
   1006  *	lifetime of the page, e.g. if the page comes from memory that
   1007  *	is slower to access.
   1008  */
   1009 
   1010 struct vm_page *
   1011 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1012 	struct uvm_object *obj;
   1013 	voff_t off;
   1014 	int flags;
   1015 	struct vm_anon *anon;
   1016 	int strat, free_list;
   1017 {
   1018 	int lcv, try1, try2, s, zeroit = 0, color;
   1019 	struct vm_page *pg;
   1020 	boolean_t use_reserve;
   1021 
   1022 	KASSERT(obj == NULL || anon == NULL);
   1023 	KASSERT(off == trunc_page(off));
   1024 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1025 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1026 
   1027 	s = uvm_lock_fpageq();
   1028 
   1029 	/*
   1030 	 * This implements a global round-robin page coloring
   1031 	 * algorithm.
   1032 	 *
   1033 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1034 	 * XXXJRT: What about virtually-indexed caches?
   1035 	 */
   1036 
   1037 	color = uvm.page_free_nextcolor;
   1038 
   1039 	/*
   1040 	 * check to see if we need to generate some free pages waking
   1041 	 * the pagedaemon.
   1042 	 */
   1043 
   1044 	UVM_KICK_PDAEMON();
   1045 
   1046 	/*
   1047 	 * fail if any of these conditions is true:
   1048 	 * [1]  there really are no free pages, or
   1049 	 * [2]  only kernel "reserved" pages remain and
   1050 	 *        the page isn't being allocated to a kernel object.
   1051 	 * [3]  only pagedaemon "reserved" pages remain and
   1052 	 *        the requestor isn't the pagedaemon.
   1053 	 */
   1054 
   1055 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1056 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1057 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1058 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1059 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1060 		goto fail;
   1061 
   1062 #if PGFL_NQUEUES != 2
   1063 #error uvm_pagealloc_strat needs to be updated
   1064 #endif
   1065 
   1066 	/*
   1067 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1068 	 * we try the UNKNOWN queue first.
   1069 	 */
   1070 	if (flags & UVM_PGA_ZERO) {
   1071 		try1 = PGFL_ZEROS;
   1072 		try2 = PGFL_UNKNOWN;
   1073 	} else {
   1074 		try1 = PGFL_UNKNOWN;
   1075 		try2 = PGFL_ZEROS;
   1076 	}
   1077 
   1078  again:
   1079 	switch (strat) {
   1080 	case UVM_PGA_STRAT_NORMAL:
   1081 		/* Check all freelists in descending priority order. */
   1082 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1083 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1084 			    try1, try2, &color);
   1085 			if (pg != NULL)
   1086 				goto gotit;
   1087 		}
   1088 
   1089 		/* No pages free! */
   1090 		goto fail;
   1091 
   1092 	case UVM_PGA_STRAT_ONLY:
   1093 	case UVM_PGA_STRAT_FALLBACK:
   1094 		/* Attempt to allocate from the specified free list. */
   1095 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1096 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1097 		    try1, try2, &color);
   1098 		if (pg != NULL)
   1099 			goto gotit;
   1100 
   1101 		/* Fall back, if possible. */
   1102 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1103 			strat = UVM_PGA_STRAT_NORMAL;
   1104 			goto again;
   1105 		}
   1106 
   1107 		/* No pages free! */
   1108 		goto fail;
   1109 
   1110 	default:
   1111 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1112 		/* NOTREACHED */
   1113 	}
   1114 
   1115  gotit:
   1116 	/*
   1117 	 * We now know which color we actually allocated from; set
   1118 	 * the next color accordingly.
   1119 	 */
   1120 
   1121 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1122 
   1123 	/*
   1124 	 * update allocation statistics and remember if we have to
   1125 	 * zero the page
   1126 	 */
   1127 
   1128 	if (flags & UVM_PGA_ZERO) {
   1129 		if (pg->flags & PG_ZERO) {
   1130 			uvmexp.pga_zerohit++;
   1131 			zeroit = 0;
   1132 		} else {
   1133 			uvmexp.pga_zeromiss++;
   1134 			zeroit = 1;
   1135 		}
   1136 	}
   1137 	uvm_unlock_fpageq(s);
   1138 
   1139 	pg->offset = off;
   1140 	pg->uobject = obj;
   1141 	pg->uanon = anon;
   1142 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1143 	if (anon) {
   1144 		anon->u.an_page = pg;
   1145 		pg->pqflags = PQ_ANON;
   1146 		uvmexp.anonpages++;
   1147 	} else {
   1148 		if (obj) {
   1149 			uvm_pageinsert(pg);
   1150 		}
   1151 		pg->pqflags = 0;
   1152 	}
   1153 #if defined(UVM_PAGE_TRKOWN)
   1154 	pg->owner_tag = NULL;
   1155 #endif
   1156 	UVM_PAGE_OWN(pg, "new alloc");
   1157 
   1158 	if (flags & UVM_PGA_ZERO) {
   1159 		/*
   1160 		 * A zero'd page is not clean.  If we got a page not already
   1161 		 * zero'd, then we have to zero it ourselves.
   1162 		 */
   1163 		pg->flags &= ~PG_CLEAN;
   1164 		if (zeroit)
   1165 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1166 	}
   1167 
   1168 	return(pg);
   1169 
   1170  fail:
   1171 	uvm_unlock_fpageq(s);
   1172 	return (NULL);
   1173 }
   1174 
   1175 /*
   1176  * uvm_pagerealloc: reallocate a page from one object to another
   1177  *
   1178  * => both objects must be locked
   1179  */
   1180 
   1181 void
   1182 uvm_pagerealloc(pg, newobj, newoff)
   1183 	struct vm_page *pg;
   1184 	struct uvm_object *newobj;
   1185 	voff_t newoff;
   1186 {
   1187 	/*
   1188 	 * remove it from the old object
   1189 	 */
   1190 
   1191 	if (pg->uobject) {
   1192 		uvm_pageremove(pg);
   1193 	}
   1194 
   1195 	/*
   1196 	 * put it in the new object
   1197 	 */
   1198 
   1199 	if (newobj) {
   1200 		pg->uobject = newobj;
   1201 		pg->offset = newoff;
   1202 		uvm_pageinsert(pg);
   1203 	}
   1204 }
   1205 
   1206 /*
   1207  * uvm_pagefree: free page
   1208  *
   1209  * => erase page's identity (i.e. remove from hash/object)
   1210  * => put page on free list
   1211  * => caller must lock owning object (either anon or uvm_object)
   1212  * => caller must lock page queues
   1213  * => assumes all valid mappings of pg are gone
   1214  */
   1215 
   1216 void
   1217 uvm_pagefree(pg)
   1218 	struct vm_page *pg;
   1219 {
   1220 	int s;
   1221 
   1222 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1223 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1224 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1225 	LOCK_ASSERT(pg->uobject == NULL ||
   1226 		    simple_lock_held(&pg->uobject->vmobjlock));
   1227 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1228 		    simple_lock_held(&pg->uanon->an_lock));
   1229 
   1230 #ifdef DEBUG
   1231 	if (pg->uobject == (void *)0xdeadbeef &&
   1232 	    pg->uanon == (void *)0xdeadbeef) {
   1233 		panic("uvm_pagefree: freeing free page %p", pg);
   1234 	}
   1235 #endif
   1236 
   1237 	/*
   1238 	 * if the page is loaned, resolve the loan instead of freeing.
   1239 	 */
   1240 
   1241 	if (pg->loan_count) {
   1242 		KASSERT(pg->wire_count == 0);
   1243 
   1244 		/*
   1245 		 * if the page is owned by an anon then we just want to
   1246 		 * drop anon ownership.  the kernel will free the page when
   1247 		 * it is done with it.  if the page is owned by an object,
   1248 		 * remove it from the object and mark it dirty for the benefit
   1249 		 * of possible anon owners.
   1250 		 *
   1251 		 * regardless of previous ownership, wakeup any waiters,
   1252 		 * unbusy the page, and we're done.
   1253 		 */
   1254 
   1255 		if (pg->uobject != NULL) {
   1256 			uvm_pageremove(pg);
   1257 			pg->flags &= ~PG_CLEAN;
   1258 		} else if (pg->uanon != NULL) {
   1259 			if ((pg->pqflags & PQ_ANON) == 0) {
   1260 				pg->loan_count--;
   1261 			} else {
   1262 				pg->pqflags &= ~PQ_ANON;
   1263 			}
   1264 			pg->uanon = NULL;
   1265 		}
   1266 		if (pg->flags & PG_WANTED) {
   1267 			wakeup(pg);
   1268 		}
   1269 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1270 #ifdef UVM_PAGE_TRKOWN
   1271 		pg->owner_tag = NULL;
   1272 #endif
   1273 		if (pg->loan_count) {
   1274 			uvm_pagedequeue(pg);
   1275 			return;
   1276 		}
   1277 	}
   1278 
   1279 	/*
   1280 	 * remove page from its object or anon.
   1281 	 */
   1282 
   1283 	if (pg->uobject != NULL) {
   1284 		uvm_pageremove(pg);
   1285 	} else if (pg->uanon != NULL) {
   1286 		pg->uanon->u.an_page = NULL;
   1287 		uvmexp.anonpages--;
   1288 	}
   1289 
   1290 	/*
   1291 	 * now remove the page from the queues.
   1292 	 */
   1293 
   1294 	uvm_pagedequeue(pg);
   1295 
   1296 	/*
   1297 	 * if the page was wired, unwire it now.
   1298 	 */
   1299 
   1300 	if (pg->wire_count) {
   1301 		pg->wire_count = 0;
   1302 		uvmexp.wired--;
   1303 	}
   1304 
   1305 	/*
   1306 	 * and put on free queue
   1307 	 */
   1308 
   1309 	pg->flags &= ~PG_ZERO;
   1310 
   1311 	s = uvm_lock_fpageq();
   1312 	TAILQ_INSERT_TAIL(&uvm.page_free[
   1313 	    uvm_page_lookup_freelist(pg)].pgfl_buckets[
   1314 	    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
   1315 	pg->pqflags = PQ_FREE;
   1316 #ifdef DEBUG
   1317 	pg->uobject = (void *)0xdeadbeef;
   1318 	pg->offset = 0xdeadbeef;
   1319 	pg->uanon = (void *)0xdeadbeef;
   1320 #endif
   1321 	uvmexp.free++;
   1322 
   1323 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1324 		uvm.page_idle_zero = vm_page_zero_enable;
   1325 
   1326 	uvm_unlock_fpageq(s);
   1327 }
   1328 
   1329 /*
   1330  * uvm_page_unbusy: unbusy an array of pages.
   1331  *
   1332  * => pages must either all belong to the same object, or all belong to anons.
   1333  * => if pages are object-owned, object must be locked.
   1334  * => if pages are anon-owned, anons must be locked.
   1335  * => caller must lock page queues if pages may be released.
   1336  */
   1337 
   1338 void
   1339 uvm_page_unbusy(pgs, npgs)
   1340 	struct vm_page **pgs;
   1341 	int npgs;
   1342 {
   1343 	struct vm_page *pg;
   1344 	int i;
   1345 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1346 
   1347 	for (i = 0; i < npgs; i++) {
   1348 		pg = pgs[i];
   1349 		if (pg == NULL || pg == PGO_DONTCARE) {
   1350 			continue;
   1351 		}
   1352 		if (pg->flags & PG_WANTED) {
   1353 			wakeup(pg);
   1354 		}
   1355 		if (pg->flags & PG_RELEASED) {
   1356 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1357 			pg->flags &= ~PG_RELEASED;
   1358 			uvm_pagefree(pg);
   1359 		} else {
   1360 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1361 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1362 			UVM_PAGE_OWN(pg, NULL);
   1363 		}
   1364 	}
   1365 }
   1366 
   1367 #if defined(UVM_PAGE_TRKOWN)
   1368 /*
   1369  * uvm_page_own: set or release page ownership
   1370  *
   1371  * => this is a debugging function that keeps track of who sets PG_BUSY
   1372  *	and where they do it.   it can be used to track down problems
   1373  *	such a process setting "PG_BUSY" and never releasing it.
   1374  * => page's object [if any] must be locked
   1375  * => if "tag" is NULL then we are releasing page ownership
   1376  */
   1377 void
   1378 uvm_page_own(pg, tag)
   1379 	struct vm_page *pg;
   1380 	char *tag;
   1381 {
   1382 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1383 
   1384 	/* gain ownership? */
   1385 	if (tag) {
   1386 		if (pg->owner_tag) {
   1387 			printf("uvm_page_own: page %p already owned "
   1388 			    "by proc %d [%s]\n", pg,
   1389 			    pg->owner, pg->owner_tag);
   1390 			panic("uvm_page_own");
   1391 		}
   1392 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1393 		pg->owner_tag = tag;
   1394 		return;
   1395 	}
   1396 
   1397 	/* drop ownership */
   1398 	if (pg->owner_tag == NULL) {
   1399 		printf("uvm_page_own: dropping ownership of an non-owned "
   1400 		    "page (%p)\n", pg);
   1401 		panic("uvm_page_own");
   1402 	}
   1403 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1404 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1405 	    pg->uobject == uvm.kernel_object ||
   1406 	    pg->wire_count > 0 ||
   1407 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1408 	    pg->loan_count > 1);
   1409 	pg->owner_tag = NULL;
   1410 }
   1411 #endif
   1412 
   1413 /*
   1414  * uvm_pageidlezero: zero free pages while the system is idle.
   1415  *
   1416  * => try to complete one color bucket at a time, to reduce our impact
   1417  *	on the CPU cache.
   1418  * => we loop until we either reach the target or whichqs indicates that
   1419  *	there is a process ready to run.
   1420  */
   1421 void
   1422 uvm_pageidlezero()
   1423 {
   1424 	struct vm_page *pg;
   1425 	struct pgfreelist *pgfl;
   1426 	int free_list, s, firstbucket;
   1427 	static int nextbucket;
   1428 
   1429 	s = uvm_lock_fpageq();
   1430 	firstbucket = nextbucket;
   1431 	do {
   1432 		if (sched_whichqs != 0) {
   1433 			uvm_unlock_fpageq(s);
   1434 			return;
   1435 		}
   1436 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1437 			uvm.page_idle_zero = FALSE;
   1438 			uvm_unlock_fpageq(s);
   1439 			return;
   1440 		}
   1441 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1442 			pgfl = &uvm.page_free[free_list];
   1443 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1444 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1445 				if (sched_whichqs != 0) {
   1446 					uvm_unlock_fpageq(s);
   1447 					return;
   1448 				}
   1449 
   1450 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1451 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1452 				    pg, pageq);
   1453 				uvmexp.free--;
   1454 				uvm_unlock_fpageq(s);
   1455 #ifdef PMAP_PAGEIDLEZERO
   1456 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1457 
   1458 					/*
   1459 					 * The machine-dependent code detected
   1460 					 * some reason for us to abort zeroing
   1461 					 * pages, probably because there is a
   1462 					 * process now ready to run.
   1463 					 */
   1464 
   1465 					s = uvm_lock_fpageq();
   1466 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1467 					    nextbucket].pgfl_queues[
   1468 					    PGFL_UNKNOWN], pg, pageq);
   1469 					uvmexp.free++;
   1470 					uvmexp.zeroaborts++;
   1471 					uvm_unlock_fpageq(s);
   1472 					return;
   1473 				}
   1474 #else
   1475 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1476 #endif /* PMAP_PAGEIDLEZERO */
   1477 				pg->flags |= PG_ZERO;
   1478 
   1479 				s = uvm_lock_fpageq();
   1480 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1481 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1482 				    pg, pageq);
   1483 				uvmexp.free++;
   1484 				uvmexp.zeropages++;
   1485 			}
   1486 		}
   1487 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1488 	} while (nextbucket != firstbucket);
   1489 	uvm_unlock_fpageq(s);
   1490 }
   1491