uvm_page.c revision 1.88 1 /* $NetBSD: uvm_page.c,v 1.88 2003/05/10 21:10:23 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_page.c: page ops.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.88 2003/05/10 21:10:23 thorpej Exp $");
75
76 #include "opt_uvmhist.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/malloc.h>
81 #include <sys/sched.h>
82 #include <sys/kernel.h>
83 #include <sys/vnode.h>
84 #include <sys/proc.h>
85
86 #define UVM_PAGE /* pull in uvm_page.h functions */
87 #include <uvm/uvm.h>
88
89 /*
90 * global vars... XXXCDC: move to uvm. structure.
91 */
92
93 /*
94 * physical memory config is stored in vm_physmem.
95 */
96
97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99
100 /*
101 * Some supported CPUs in a given architecture don't support all
102 * of the things necessary to do idle page zero'ing efficiently.
103 * We therefore provide a way to disable it from machdep code here.
104 */
105 /*
106 * XXX disabled until we can find a way to do this without causing
107 * problems for either cpu caches or DMA latency.
108 */
109 boolean_t vm_page_zero_enable = FALSE;
110
111 /*
112 * local variables
113 */
114
115 /*
116 * these variables record the values returned by vm_page_bootstrap,
117 * for debugging purposes. The implementation of uvm_pageboot_alloc
118 * and pmap_startup here also uses them internally.
119 */
120
121 static vaddr_t virtual_space_start;
122 static vaddr_t virtual_space_end;
123
124 /*
125 * we use a hash table with only one bucket during bootup. we will
126 * later rehash (resize) the hash table once the allocator is ready.
127 * we static allocate the one bootstrap bucket below...
128 */
129
130 static struct pglist uvm_bootbucket;
131
132 /*
133 * we allocate an initial number of page colors in uvm_page_init(),
134 * and remember them. We may re-color pages as cache sizes are
135 * discovered during the autoconfiguration phase. But we can never
136 * free the initial set of buckets, since they are allocated using
137 * uvm_pageboot_alloc().
138 */
139
140 static boolean_t have_recolored_pages /* = FALSE */;
141
142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
143
144 /*
145 * local prototypes
146 */
147
148 static void uvm_pageinsert __P((struct vm_page *));
149 static void uvm_pageremove __P((struct vm_page *));
150
151 /*
152 * inline functions
153 */
154
155 /*
156 * uvm_pageinsert: insert a page in the object and the hash table
157 *
158 * => caller must lock object
159 * => caller must lock page queues
160 * => call should have already set pg's object and offset pointers
161 * and bumped the version counter
162 */
163
164 __inline static void
165 uvm_pageinsert(pg)
166 struct vm_page *pg;
167 {
168 struct pglist *buck;
169 struct uvm_object *uobj = pg->uobject;
170
171 KASSERT((pg->flags & PG_TABLED) == 0);
172 buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
173 simple_lock(&uvm.hashlock);
174 TAILQ_INSERT_TAIL(buck, pg, hashq);
175 simple_unlock(&uvm.hashlock);
176
177 if (UVM_OBJ_IS_VTEXT(uobj)) {
178 uvmexp.execpages++;
179 } else if (UVM_OBJ_IS_VNODE(uobj)) {
180 uvmexp.filepages++;
181 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
182 uvmexp.anonpages++;
183 }
184
185 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
186 pg->flags |= PG_TABLED;
187 uobj->uo_npages++;
188 }
189
190 /*
191 * uvm_page_remove: remove page from object and hash
192 *
193 * => caller must lock object
194 * => caller must lock page queues
195 */
196
197 static __inline void
198 uvm_pageremove(pg)
199 struct vm_page *pg;
200 {
201 struct pglist *buck;
202 struct uvm_object *uobj = pg->uobject;
203
204 KASSERT(pg->flags & PG_TABLED);
205 buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
206 simple_lock(&uvm.hashlock);
207 TAILQ_REMOVE(buck, pg, hashq);
208 simple_unlock(&uvm.hashlock);
209
210 if (UVM_OBJ_IS_VTEXT(uobj)) {
211 uvmexp.execpages--;
212 } else if (UVM_OBJ_IS_VNODE(uobj)) {
213 uvmexp.filepages--;
214 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
215 uvmexp.anonpages--;
216 }
217
218 /* object should be locked */
219 uobj->uo_npages--;
220 TAILQ_REMOVE(&uobj->memq, pg, listq);
221 pg->flags &= ~PG_TABLED;
222 pg->uobject = NULL;
223 }
224
225 static void
226 uvm_page_init_buckets(struct pgfreelist *pgfl)
227 {
228 int color, i;
229
230 for (color = 0; color < uvmexp.ncolors; color++) {
231 for (i = 0; i < PGFL_NQUEUES; i++) {
232 TAILQ_INIT(&pgfl->pgfl_buckets[
233 color].pgfl_queues[i]);
234 }
235 }
236 }
237
238 /*
239 * uvm_page_init: init the page system. called from uvm_init().
240 *
241 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
242 */
243
244 void
245 uvm_page_init(kvm_startp, kvm_endp)
246 vaddr_t *kvm_startp, *kvm_endp;
247 {
248 vsize_t freepages, pagecount, bucketcount, n;
249 struct pgflbucket *bucketarray;
250 struct vm_page *pagearray;
251 int lcv;
252 u_int i;
253 paddr_t paddr;
254
255 /*
256 * init the page queues and page queue locks, except the free
257 * list; we allocate that later (with the initial vm_page
258 * structures).
259 */
260
261 TAILQ_INIT(&uvm.page_active);
262 TAILQ_INIT(&uvm.page_inactive);
263 simple_lock_init(&uvm.pageqlock);
264 simple_lock_init(&uvm.fpageqlock);
265
266 /*
267 * init the <obj,offset> => <page> hash table. for now
268 * we just have one bucket (the bootstrap bucket). later on we
269 * will allocate new buckets as we dynamically resize the hash table.
270 */
271
272 uvm.page_nhash = 1; /* 1 bucket */
273 uvm.page_hashmask = 0; /* mask for hash function */
274 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */
275 TAILQ_INIT(uvm.page_hash); /* init hash table */
276 simple_lock_init(&uvm.hashlock); /* init hash table lock */
277
278 /*
279 * allocate vm_page structures.
280 */
281
282 /*
283 * sanity check:
284 * before calling this function the MD code is expected to register
285 * some free RAM with the uvm_page_physload() function. our job
286 * now is to allocate vm_page structures for this memory.
287 */
288
289 if (vm_nphysseg == 0)
290 panic("uvm_page_bootstrap: no memory pre-allocated");
291
292 /*
293 * first calculate the number of free pages...
294 *
295 * note that we use start/end rather than avail_start/avail_end.
296 * this allows us to allocate extra vm_page structures in case we
297 * want to return some memory to the pool after booting.
298 */
299
300 freepages = 0;
301 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
302 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
303
304 /*
305 * Let MD code initialize the number of colors, or default
306 * to 1 color if MD code doesn't care.
307 */
308 if (uvmexp.ncolors == 0)
309 uvmexp.ncolors = 1;
310 uvmexp.colormask = uvmexp.ncolors - 1;
311
312 /*
313 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
314 * use. for each page of memory we use we need a vm_page structure.
315 * thus, the total number of pages we can use is the total size of
316 * the memory divided by the PAGE_SIZE plus the size of the vm_page
317 * structure. we add one to freepages as a fudge factor to avoid
318 * truncation errors (since we can only allocate in terms of whole
319 * pages).
320 */
321
322 bucketcount = uvmexp.ncolors * VM_NFREELIST;
323 pagecount = ((freepages + 1) << PAGE_SHIFT) /
324 (PAGE_SIZE + sizeof(struct vm_page));
325
326 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
327 sizeof(struct pgflbucket)) + (pagecount *
328 sizeof(struct vm_page)));
329 pagearray = (struct vm_page *)(bucketarray + bucketcount);
330
331 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
332 uvm.page_free[lcv].pgfl_buckets =
333 (bucketarray + (lcv * uvmexp.ncolors));
334 uvm_page_init_buckets(&uvm.page_free[lcv]);
335 }
336 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
337
338 /*
339 * init the vm_page structures and put them in the correct place.
340 */
341
342 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
343 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
344
345 /* set up page array pointers */
346 vm_physmem[lcv].pgs = pagearray;
347 pagearray += n;
348 pagecount -= n;
349 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
350
351 /* init and free vm_pages (we've already zeroed them) */
352 paddr = ptoa(vm_physmem[lcv].start);
353 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
354 vm_physmem[lcv].pgs[i].phys_addr = paddr;
355 #ifdef __HAVE_VM_PAGE_MD
356 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
357 #endif
358 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
359 atop(paddr) <= vm_physmem[lcv].avail_end) {
360 uvmexp.npages++;
361 /* add page to free pool */
362 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
363 }
364 }
365 }
366
367 /*
368 * pass up the values of virtual_space_start and
369 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
370 * layers of the VM.
371 */
372
373 *kvm_startp = round_page(virtual_space_start);
374 *kvm_endp = trunc_page(virtual_space_end);
375
376 /*
377 * init locks for kernel threads
378 */
379
380 simple_lock_init(&uvm.pagedaemon_lock);
381 simple_lock_init(&uvm.aiodoned_lock);
382
383 /*
384 * init various thresholds.
385 */
386
387 uvmexp.reserve_pagedaemon = 1;
388 uvmexp.reserve_kernel = 5;
389 uvmexp.anonminpct = 10;
390 uvmexp.fileminpct = 10;
391 uvmexp.execminpct = 5;
392 uvmexp.anonmaxpct = 80;
393 uvmexp.filemaxpct = 50;
394 uvmexp.execmaxpct = 30;
395 uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
396 uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
397 uvmexp.execmin = uvmexp.execminpct * 256 / 100;
398 uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
399 uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
400 uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
401
402 /*
403 * determine if we should zero pages in the idle loop.
404 */
405
406 uvm.page_idle_zero = vm_page_zero_enable;
407
408 /*
409 * done!
410 */
411
412 uvm.page_init_done = TRUE;
413 }
414
415 /*
416 * uvm_setpagesize: set the page size
417 *
418 * => sets page_shift and page_mask from uvmexp.pagesize.
419 */
420
421 void
422 uvm_setpagesize()
423 {
424
425 /*
426 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
427 * to be a constant (indicated by being a non-zero value).
428 */
429 if (uvmexp.pagesize == 0) {
430 if (PAGE_SIZE == 0)
431 panic("uvm_setpagesize: uvmexp.pagesize not set");
432 uvmexp.pagesize = PAGE_SIZE;
433 }
434 uvmexp.pagemask = uvmexp.pagesize - 1;
435 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
436 panic("uvm_setpagesize: page size not a power of two");
437 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
438 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
439 break;
440 }
441
442 /*
443 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
444 */
445
446 vaddr_t
447 uvm_pageboot_alloc(size)
448 vsize_t size;
449 {
450 static boolean_t initialized = FALSE;
451 vaddr_t addr;
452 #if !defined(PMAP_STEAL_MEMORY)
453 vaddr_t vaddr;
454 paddr_t paddr;
455 #endif
456
457 /*
458 * on first call to this function, initialize ourselves.
459 */
460 if (initialized == FALSE) {
461 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
462
463 /* round it the way we like it */
464 virtual_space_start = round_page(virtual_space_start);
465 virtual_space_end = trunc_page(virtual_space_end);
466
467 initialized = TRUE;
468 }
469
470 /* round to page size */
471 size = round_page(size);
472
473 #if defined(PMAP_STEAL_MEMORY)
474
475 /*
476 * defer bootstrap allocation to MD code (it may want to allocate
477 * from a direct-mapped segment). pmap_steal_memory should adjust
478 * virtual_space_start/virtual_space_end if necessary.
479 */
480
481 addr = pmap_steal_memory(size, &virtual_space_start,
482 &virtual_space_end);
483
484 return(addr);
485
486 #else /* !PMAP_STEAL_MEMORY */
487
488 /*
489 * allocate virtual memory for this request
490 */
491 if (virtual_space_start == virtual_space_end ||
492 (virtual_space_end - virtual_space_start) < size)
493 panic("uvm_pageboot_alloc: out of virtual space");
494
495 addr = virtual_space_start;
496
497 #ifdef PMAP_GROWKERNEL
498 /*
499 * If the kernel pmap can't map the requested space,
500 * then allocate more resources for it.
501 */
502 if (uvm_maxkaddr < (addr + size)) {
503 uvm_maxkaddr = pmap_growkernel(addr + size);
504 if (uvm_maxkaddr < (addr + size))
505 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
506 }
507 #endif
508
509 virtual_space_start += size;
510
511 /*
512 * allocate and mapin physical pages to back new virtual pages
513 */
514
515 for (vaddr = round_page(addr) ; vaddr < addr + size ;
516 vaddr += PAGE_SIZE) {
517
518 if (!uvm_page_physget(&paddr))
519 panic("uvm_pageboot_alloc: out of memory");
520
521 /*
522 * Note this memory is no longer managed, so using
523 * pmap_kenter is safe.
524 */
525 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
526 }
527 pmap_update(pmap_kernel());
528 return(addr);
529 #endif /* PMAP_STEAL_MEMORY */
530 }
531
532 #if !defined(PMAP_STEAL_MEMORY)
533 /*
534 * uvm_page_physget: "steal" one page from the vm_physmem structure.
535 *
536 * => attempt to allocate it off the end of a segment in which the "avail"
537 * values match the start/end values. if we can't do that, then we
538 * will advance both values (making them equal, and removing some
539 * vm_page structures from the non-avail area).
540 * => return false if out of memory.
541 */
542
543 /* subroutine: try to allocate from memory chunks on the specified freelist */
544 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
545
546 static boolean_t
547 uvm_page_physget_freelist(paddrp, freelist)
548 paddr_t *paddrp;
549 int freelist;
550 {
551 int lcv, x;
552
553 /* pass 1: try allocating from a matching end */
554 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
555 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
556 #else
557 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
558 #endif
559 {
560
561 if (uvm.page_init_done == TRUE)
562 panic("uvm_page_physget: called _after_ bootstrap");
563
564 if (vm_physmem[lcv].free_list != freelist)
565 continue;
566
567 /* try from front */
568 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
569 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
570 *paddrp = ptoa(vm_physmem[lcv].avail_start);
571 vm_physmem[lcv].avail_start++;
572 vm_physmem[lcv].start++;
573 /* nothing left? nuke it */
574 if (vm_physmem[lcv].avail_start ==
575 vm_physmem[lcv].end) {
576 if (vm_nphysseg == 1)
577 panic("vum_page_physget: out of memory!");
578 vm_nphysseg--;
579 for (x = lcv ; x < vm_nphysseg ; x++)
580 /* structure copy */
581 vm_physmem[x] = vm_physmem[x+1];
582 }
583 return (TRUE);
584 }
585
586 /* try from rear */
587 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
588 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
589 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
590 vm_physmem[lcv].avail_end--;
591 vm_physmem[lcv].end--;
592 /* nothing left? nuke it */
593 if (vm_physmem[lcv].avail_end ==
594 vm_physmem[lcv].start) {
595 if (vm_nphysseg == 1)
596 panic("uvm_page_physget: out of memory!");
597 vm_nphysseg--;
598 for (x = lcv ; x < vm_nphysseg ; x++)
599 /* structure copy */
600 vm_physmem[x] = vm_physmem[x+1];
601 }
602 return (TRUE);
603 }
604 }
605
606 /* pass2: forget about matching ends, just allocate something */
607 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
608 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
609 #else
610 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
611 #endif
612 {
613
614 /* any room in this bank? */
615 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
616 continue; /* nope */
617
618 *paddrp = ptoa(vm_physmem[lcv].avail_start);
619 vm_physmem[lcv].avail_start++;
620 /* truncate! */
621 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
622
623 /* nothing left? nuke it */
624 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
625 if (vm_nphysseg == 1)
626 panic("uvm_page_physget: out of memory!");
627 vm_nphysseg--;
628 for (x = lcv ; x < vm_nphysseg ; x++)
629 /* structure copy */
630 vm_physmem[x] = vm_physmem[x+1];
631 }
632 return (TRUE);
633 }
634
635 return (FALSE); /* whoops! */
636 }
637
638 boolean_t
639 uvm_page_physget(paddrp)
640 paddr_t *paddrp;
641 {
642 int i;
643
644 /* try in the order of freelist preference */
645 for (i = 0; i < VM_NFREELIST; i++)
646 if (uvm_page_physget_freelist(paddrp, i) == TRUE)
647 return (TRUE);
648 return (FALSE);
649 }
650 #endif /* PMAP_STEAL_MEMORY */
651
652 /*
653 * uvm_page_physload: load physical memory into VM system
654 *
655 * => all args are PFs
656 * => all pages in start/end get vm_page structures
657 * => areas marked by avail_start/avail_end get added to the free page pool
658 * => we are limited to VM_PHYSSEG_MAX physical memory segments
659 */
660
661 void
662 uvm_page_physload(start, end, avail_start, avail_end, free_list)
663 paddr_t start, end, avail_start, avail_end;
664 int free_list;
665 {
666 int preload, lcv;
667 psize_t npages;
668 struct vm_page *pgs;
669 struct vm_physseg *ps;
670
671 if (uvmexp.pagesize == 0)
672 panic("uvm_page_physload: page size not set!");
673 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
674 panic("uvm_page_physload: bad free list %d", free_list);
675 if (start >= end)
676 panic("uvm_page_physload: start >= end");
677
678 /*
679 * do we have room?
680 */
681
682 if (vm_nphysseg == VM_PHYSSEG_MAX) {
683 printf("uvm_page_physload: unable to load physical memory "
684 "segment\n");
685 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
686 VM_PHYSSEG_MAX, (long long)start, (long long)end);
687 printf("\tincrease VM_PHYSSEG_MAX\n");
688 return;
689 }
690
691 /*
692 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
693 * called yet, so malloc is not available).
694 */
695
696 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
697 if (vm_physmem[lcv].pgs)
698 break;
699 }
700 preload = (lcv == vm_nphysseg);
701
702 /*
703 * if VM is already running, attempt to malloc() vm_page structures
704 */
705
706 if (!preload) {
707 #if defined(VM_PHYSSEG_NOADD)
708 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
709 #else
710 /* XXXCDC: need some sort of lockout for this case */
711 paddr_t paddr;
712 npages = end - start; /* # of pages */
713 pgs = malloc(sizeof(struct vm_page) * npages,
714 M_VMPAGE, M_NOWAIT);
715 if (pgs == NULL) {
716 printf("uvm_page_physload: can not malloc vm_page "
717 "structs for segment\n");
718 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
719 return;
720 }
721 /* zero data, init phys_addr and free_list, and free pages */
722 memset(pgs, 0, sizeof(struct vm_page) * npages);
723 for (lcv = 0, paddr = ptoa(start) ;
724 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
725 pgs[lcv].phys_addr = paddr;
726 pgs[lcv].free_list = free_list;
727 if (atop(paddr) >= avail_start &&
728 atop(paddr) <= avail_end)
729 uvm_pagefree(&pgs[lcv]);
730 }
731 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
732 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
733 #endif
734 } else {
735 pgs = NULL;
736 npages = 0;
737 }
738
739 /*
740 * now insert us in the proper place in vm_physmem[]
741 */
742
743 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
744 /* random: put it at the end (easy!) */
745 ps = &vm_physmem[vm_nphysseg];
746 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
747 {
748 int x;
749 /* sort by address for binary search */
750 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
751 if (start < vm_physmem[lcv].start)
752 break;
753 ps = &vm_physmem[lcv];
754 /* move back other entries, if necessary ... */
755 for (x = vm_nphysseg ; x > lcv ; x--)
756 /* structure copy */
757 vm_physmem[x] = vm_physmem[x - 1];
758 }
759 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
760 {
761 int x;
762 /* sort by largest segment first */
763 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
764 if ((end - start) >
765 (vm_physmem[lcv].end - vm_physmem[lcv].start))
766 break;
767 ps = &vm_physmem[lcv];
768 /* move back other entries, if necessary ... */
769 for (x = vm_nphysseg ; x > lcv ; x--)
770 /* structure copy */
771 vm_physmem[x] = vm_physmem[x - 1];
772 }
773 #else
774 panic("uvm_page_physload: unknown physseg strategy selected!");
775 #endif
776
777 ps->start = start;
778 ps->end = end;
779 ps->avail_start = avail_start;
780 ps->avail_end = avail_end;
781 if (preload) {
782 ps->pgs = NULL;
783 } else {
784 ps->pgs = pgs;
785 ps->lastpg = pgs + npages - 1;
786 }
787 ps->free_list = free_list;
788 vm_nphysseg++;
789
790 if (!preload)
791 uvm_page_rehash();
792 }
793
794 /*
795 * uvm_page_rehash: reallocate hash table based on number of free pages.
796 */
797
798 void
799 uvm_page_rehash()
800 {
801 int freepages, lcv, bucketcount, oldcount;
802 struct pglist *newbuckets, *oldbuckets;
803 struct vm_page *pg;
804 size_t newsize, oldsize;
805
806 /*
807 * compute number of pages that can go in the free pool
808 */
809
810 freepages = 0;
811 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
812 freepages +=
813 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
814
815 /*
816 * compute number of buckets needed for this number of pages
817 */
818
819 bucketcount = 1;
820 while (bucketcount < freepages)
821 bucketcount = bucketcount * 2;
822
823 /*
824 * compute the size of the current table and new table.
825 */
826
827 oldbuckets = uvm.page_hash;
828 oldcount = uvm.page_nhash;
829 oldsize = round_page(sizeof(struct pglist) * oldcount);
830 newsize = round_page(sizeof(struct pglist) * bucketcount);
831
832 /*
833 * allocate the new buckets
834 */
835
836 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
837 if (newbuckets == NULL) {
838 printf("uvm_page_physrehash: WARNING: could not grow page "
839 "hash table\n");
840 return;
841 }
842 for (lcv = 0 ; lcv < bucketcount ; lcv++)
843 TAILQ_INIT(&newbuckets[lcv]);
844
845 /*
846 * now replace the old buckets with the new ones and rehash everything
847 */
848
849 simple_lock(&uvm.hashlock);
850 uvm.page_hash = newbuckets;
851 uvm.page_nhash = bucketcount;
852 uvm.page_hashmask = bucketcount - 1; /* power of 2 */
853
854 /* ... and rehash */
855 for (lcv = 0 ; lcv < oldcount ; lcv++) {
856 while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
857 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
858 TAILQ_INSERT_TAIL(
859 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
860 pg, hashq);
861 }
862 }
863 simple_unlock(&uvm.hashlock);
864
865 /*
866 * free old bucket array if is not the boot-time table
867 */
868
869 if (oldbuckets != &uvm_bootbucket)
870 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
871 }
872
873 /*
874 * uvm_page_recolor: Recolor the pages if the new bucket count is
875 * larger than the old one.
876 */
877
878 void
879 uvm_page_recolor(int newncolors)
880 {
881 struct pgflbucket *bucketarray, *oldbucketarray;
882 struct pgfreelist pgfl;
883 struct vm_page *pg;
884 vsize_t bucketcount;
885 int s, lcv, color, i, ocolors;
886
887 if (newncolors <= uvmexp.ncolors)
888 return;
889
890 if (uvm.page_init_done == FALSE) {
891 uvmexp.ncolors = newncolors;
892 return;
893 }
894
895 bucketcount = newncolors * VM_NFREELIST;
896 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
897 M_VMPAGE, M_NOWAIT);
898 if (bucketarray == NULL) {
899 printf("WARNING: unable to allocate %ld page color buckets\n",
900 (long) bucketcount);
901 return;
902 }
903
904 s = uvm_lock_fpageq();
905
906 /* Make sure we should still do this. */
907 if (newncolors <= uvmexp.ncolors) {
908 uvm_unlock_fpageq(s);
909 free(bucketarray, M_VMPAGE);
910 return;
911 }
912
913 oldbucketarray = uvm.page_free[0].pgfl_buckets;
914 ocolors = uvmexp.ncolors;
915
916 uvmexp.ncolors = newncolors;
917 uvmexp.colormask = uvmexp.ncolors - 1;
918
919 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
920 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
921 uvm_page_init_buckets(&pgfl);
922 for (color = 0; color < ocolors; color++) {
923 for (i = 0; i < PGFL_NQUEUES; i++) {
924 while ((pg = TAILQ_FIRST(&uvm.page_free[
925 lcv].pgfl_buckets[color].pgfl_queues[i]))
926 != NULL) {
927 TAILQ_REMOVE(&uvm.page_free[
928 lcv].pgfl_buckets[
929 color].pgfl_queues[i], pg, pageq);
930 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
931 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
932 i], pg, pageq);
933 }
934 }
935 }
936 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
937 }
938
939 if (have_recolored_pages) {
940 uvm_unlock_fpageq(s);
941 free(oldbucketarray, M_VMPAGE);
942 return;
943 }
944
945 have_recolored_pages = TRUE;
946 uvm_unlock_fpageq(s);
947 }
948
949 /*
950 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
951 */
952
953 static __inline struct vm_page *
954 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
955 int *trycolorp)
956 {
957 struct pglist *freeq;
958 struct vm_page *pg;
959 int color, trycolor = *trycolorp;
960
961 color = trycolor;
962 do {
963 if ((pg = TAILQ_FIRST((freeq =
964 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
965 goto gotit;
966 if ((pg = TAILQ_FIRST((freeq =
967 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
968 goto gotit;
969 color = (color + 1) & uvmexp.colormask;
970 } while (color != trycolor);
971
972 return (NULL);
973
974 gotit:
975 TAILQ_REMOVE(freeq, pg, pageq);
976 uvmexp.free--;
977
978 /* update zero'd page count */
979 if (pg->flags & PG_ZERO)
980 uvmexp.zeropages--;
981
982 if (color == trycolor)
983 uvmexp.colorhit++;
984 else {
985 uvmexp.colormiss++;
986 *trycolorp = color;
987 }
988
989 return (pg);
990 }
991
992 /*
993 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
994 *
995 * => return null if no pages free
996 * => wake up pagedaemon if number of free pages drops below low water mark
997 * => if obj != NULL, obj must be locked (to put in hash)
998 * => if anon != NULL, anon must be locked (to put in anon)
999 * => only one of obj or anon can be non-null
1000 * => caller must activate/deactivate page if it is not wired.
1001 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1002 * => policy decision: it is more important to pull a page off of the
1003 * appropriate priority free list than it is to get a zero'd or
1004 * unknown contents page. This is because we live with the
1005 * consequences of a bad free list decision for the entire
1006 * lifetime of the page, e.g. if the page comes from memory that
1007 * is slower to access.
1008 */
1009
1010 struct vm_page *
1011 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
1012 struct uvm_object *obj;
1013 voff_t off;
1014 int flags;
1015 struct vm_anon *anon;
1016 int strat, free_list;
1017 {
1018 int lcv, try1, try2, s, zeroit = 0, color;
1019 struct vm_page *pg;
1020 boolean_t use_reserve;
1021
1022 KASSERT(obj == NULL || anon == NULL);
1023 KASSERT(off == trunc_page(off));
1024 LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1025 LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1026
1027 s = uvm_lock_fpageq();
1028
1029 /*
1030 * This implements a global round-robin page coloring
1031 * algorithm.
1032 *
1033 * XXXJRT: Should we make the `nextcolor' per-cpu?
1034 * XXXJRT: What about virtually-indexed caches?
1035 */
1036
1037 color = uvm.page_free_nextcolor;
1038
1039 /*
1040 * check to see if we need to generate some free pages waking
1041 * the pagedaemon.
1042 */
1043
1044 UVM_KICK_PDAEMON();
1045
1046 /*
1047 * fail if any of these conditions is true:
1048 * [1] there really are no free pages, or
1049 * [2] only kernel "reserved" pages remain and
1050 * the page isn't being allocated to a kernel object.
1051 * [3] only pagedaemon "reserved" pages remain and
1052 * the requestor isn't the pagedaemon.
1053 */
1054
1055 use_reserve = (flags & UVM_PGA_USERESERVE) ||
1056 (obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1057 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1058 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1059 !(use_reserve && curproc == uvm.pagedaemon_proc)))
1060 goto fail;
1061
1062 #if PGFL_NQUEUES != 2
1063 #error uvm_pagealloc_strat needs to be updated
1064 #endif
1065
1066 /*
1067 * If we want a zero'd page, try the ZEROS queue first, otherwise
1068 * we try the UNKNOWN queue first.
1069 */
1070 if (flags & UVM_PGA_ZERO) {
1071 try1 = PGFL_ZEROS;
1072 try2 = PGFL_UNKNOWN;
1073 } else {
1074 try1 = PGFL_UNKNOWN;
1075 try2 = PGFL_ZEROS;
1076 }
1077
1078 again:
1079 switch (strat) {
1080 case UVM_PGA_STRAT_NORMAL:
1081 /* Check all freelists in descending priority order. */
1082 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1083 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1084 try1, try2, &color);
1085 if (pg != NULL)
1086 goto gotit;
1087 }
1088
1089 /* No pages free! */
1090 goto fail;
1091
1092 case UVM_PGA_STRAT_ONLY:
1093 case UVM_PGA_STRAT_FALLBACK:
1094 /* Attempt to allocate from the specified free list. */
1095 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1096 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1097 try1, try2, &color);
1098 if (pg != NULL)
1099 goto gotit;
1100
1101 /* Fall back, if possible. */
1102 if (strat == UVM_PGA_STRAT_FALLBACK) {
1103 strat = UVM_PGA_STRAT_NORMAL;
1104 goto again;
1105 }
1106
1107 /* No pages free! */
1108 goto fail;
1109
1110 default:
1111 panic("uvm_pagealloc_strat: bad strat %d", strat);
1112 /* NOTREACHED */
1113 }
1114
1115 gotit:
1116 /*
1117 * We now know which color we actually allocated from; set
1118 * the next color accordingly.
1119 */
1120
1121 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1122
1123 /*
1124 * update allocation statistics and remember if we have to
1125 * zero the page
1126 */
1127
1128 if (flags & UVM_PGA_ZERO) {
1129 if (pg->flags & PG_ZERO) {
1130 uvmexp.pga_zerohit++;
1131 zeroit = 0;
1132 } else {
1133 uvmexp.pga_zeromiss++;
1134 zeroit = 1;
1135 }
1136 }
1137 uvm_unlock_fpageq(s);
1138
1139 pg->offset = off;
1140 pg->uobject = obj;
1141 pg->uanon = anon;
1142 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1143 if (anon) {
1144 anon->u.an_page = pg;
1145 pg->pqflags = PQ_ANON;
1146 uvmexp.anonpages++;
1147 } else {
1148 if (obj) {
1149 uvm_pageinsert(pg);
1150 }
1151 pg->pqflags = 0;
1152 }
1153 #if defined(UVM_PAGE_TRKOWN)
1154 pg->owner_tag = NULL;
1155 #endif
1156 UVM_PAGE_OWN(pg, "new alloc");
1157
1158 if (flags & UVM_PGA_ZERO) {
1159 /*
1160 * A zero'd page is not clean. If we got a page not already
1161 * zero'd, then we have to zero it ourselves.
1162 */
1163 pg->flags &= ~PG_CLEAN;
1164 if (zeroit)
1165 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1166 }
1167
1168 return(pg);
1169
1170 fail:
1171 uvm_unlock_fpageq(s);
1172 return (NULL);
1173 }
1174
1175 /*
1176 * uvm_pagerealloc: reallocate a page from one object to another
1177 *
1178 * => both objects must be locked
1179 */
1180
1181 void
1182 uvm_pagerealloc(pg, newobj, newoff)
1183 struct vm_page *pg;
1184 struct uvm_object *newobj;
1185 voff_t newoff;
1186 {
1187 /*
1188 * remove it from the old object
1189 */
1190
1191 if (pg->uobject) {
1192 uvm_pageremove(pg);
1193 }
1194
1195 /*
1196 * put it in the new object
1197 */
1198
1199 if (newobj) {
1200 pg->uobject = newobj;
1201 pg->offset = newoff;
1202 uvm_pageinsert(pg);
1203 }
1204 }
1205
1206 /*
1207 * uvm_pagefree: free page
1208 *
1209 * => erase page's identity (i.e. remove from hash/object)
1210 * => put page on free list
1211 * => caller must lock owning object (either anon or uvm_object)
1212 * => caller must lock page queues
1213 * => assumes all valid mappings of pg are gone
1214 */
1215
1216 void
1217 uvm_pagefree(pg)
1218 struct vm_page *pg;
1219 {
1220 int s;
1221
1222 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1223 LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1224 (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1225 LOCK_ASSERT(pg->uobject == NULL ||
1226 simple_lock_held(&pg->uobject->vmobjlock));
1227 LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1228 simple_lock_held(&pg->uanon->an_lock));
1229
1230 #ifdef DEBUG
1231 if (pg->uobject == (void *)0xdeadbeef &&
1232 pg->uanon == (void *)0xdeadbeef) {
1233 panic("uvm_pagefree: freeing free page %p", pg);
1234 }
1235 #endif
1236
1237 /*
1238 * if the page is loaned, resolve the loan instead of freeing.
1239 */
1240
1241 if (pg->loan_count) {
1242 KASSERT(pg->wire_count == 0);
1243
1244 /*
1245 * if the page is owned by an anon then we just want to
1246 * drop anon ownership. the kernel will free the page when
1247 * it is done with it. if the page is owned by an object,
1248 * remove it from the object and mark it dirty for the benefit
1249 * of possible anon owners.
1250 *
1251 * regardless of previous ownership, wakeup any waiters,
1252 * unbusy the page, and we're done.
1253 */
1254
1255 if (pg->uobject != NULL) {
1256 uvm_pageremove(pg);
1257 pg->flags &= ~PG_CLEAN;
1258 } else if (pg->uanon != NULL) {
1259 if ((pg->pqflags & PQ_ANON) == 0) {
1260 pg->loan_count--;
1261 } else {
1262 pg->pqflags &= ~PQ_ANON;
1263 }
1264 pg->uanon = NULL;
1265 }
1266 if (pg->flags & PG_WANTED) {
1267 wakeup(pg);
1268 }
1269 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1270 #ifdef UVM_PAGE_TRKOWN
1271 pg->owner_tag = NULL;
1272 #endif
1273 if (pg->loan_count) {
1274 uvm_pagedequeue(pg);
1275 return;
1276 }
1277 }
1278
1279 /*
1280 * remove page from its object or anon.
1281 */
1282
1283 if (pg->uobject != NULL) {
1284 uvm_pageremove(pg);
1285 } else if (pg->uanon != NULL) {
1286 pg->uanon->u.an_page = NULL;
1287 uvmexp.anonpages--;
1288 }
1289
1290 /*
1291 * now remove the page from the queues.
1292 */
1293
1294 uvm_pagedequeue(pg);
1295
1296 /*
1297 * if the page was wired, unwire it now.
1298 */
1299
1300 if (pg->wire_count) {
1301 pg->wire_count = 0;
1302 uvmexp.wired--;
1303 }
1304
1305 /*
1306 * and put on free queue
1307 */
1308
1309 pg->flags &= ~PG_ZERO;
1310
1311 s = uvm_lock_fpageq();
1312 TAILQ_INSERT_TAIL(&uvm.page_free[
1313 uvm_page_lookup_freelist(pg)].pgfl_buckets[
1314 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1315 pg->pqflags = PQ_FREE;
1316 #ifdef DEBUG
1317 pg->uobject = (void *)0xdeadbeef;
1318 pg->offset = 0xdeadbeef;
1319 pg->uanon = (void *)0xdeadbeef;
1320 #endif
1321 uvmexp.free++;
1322
1323 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1324 uvm.page_idle_zero = vm_page_zero_enable;
1325
1326 uvm_unlock_fpageq(s);
1327 }
1328
1329 /*
1330 * uvm_page_unbusy: unbusy an array of pages.
1331 *
1332 * => pages must either all belong to the same object, or all belong to anons.
1333 * => if pages are object-owned, object must be locked.
1334 * => if pages are anon-owned, anons must be locked.
1335 * => caller must lock page queues if pages may be released.
1336 */
1337
1338 void
1339 uvm_page_unbusy(pgs, npgs)
1340 struct vm_page **pgs;
1341 int npgs;
1342 {
1343 struct vm_page *pg;
1344 int i;
1345 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1346
1347 for (i = 0; i < npgs; i++) {
1348 pg = pgs[i];
1349 if (pg == NULL || pg == PGO_DONTCARE) {
1350 continue;
1351 }
1352 if (pg->flags & PG_WANTED) {
1353 wakeup(pg);
1354 }
1355 if (pg->flags & PG_RELEASED) {
1356 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1357 pg->flags &= ~PG_RELEASED;
1358 uvm_pagefree(pg);
1359 } else {
1360 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1361 pg->flags &= ~(PG_WANTED|PG_BUSY);
1362 UVM_PAGE_OWN(pg, NULL);
1363 }
1364 }
1365 }
1366
1367 #if defined(UVM_PAGE_TRKOWN)
1368 /*
1369 * uvm_page_own: set or release page ownership
1370 *
1371 * => this is a debugging function that keeps track of who sets PG_BUSY
1372 * and where they do it. it can be used to track down problems
1373 * such a process setting "PG_BUSY" and never releasing it.
1374 * => page's object [if any] must be locked
1375 * => if "tag" is NULL then we are releasing page ownership
1376 */
1377 void
1378 uvm_page_own(pg, tag)
1379 struct vm_page *pg;
1380 char *tag;
1381 {
1382 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1383
1384 /* gain ownership? */
1385 if (tag) {
1386 if (pg->owner_tag) {
1387 printf("uvm_page_own: page %p already owned "
1388 "by proc %d [%s]\n", pg,
1389 pg->owner, pg->owner_tag);
1390 panic("uvm_page_own");
1391 }
1392 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1393 pg->owner_tag = tag;
1394 return;
1395 }
1396
1397 /* drop ownership */
1398 if (pg->owner_tag == NULL) {
1399 printf("uvm_page_own: dropping ownership of an non-owned "
1400 "page (%p)\n", pg);
1401 panic("uvm_page_own");
1402 }
1403 KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1404 (pg->uanon == NULL && pg->uobject == NULL) ||
1405 pg->uobject == uvm.kernel_object ||
1406 pg->wire_count > 0 ||
1407 (pg->loan_count == 1 && pg->uanon == NULL) ||
1408 pg->loan_count > 1);
1409 pg->owner_tag = NULL;
1410 }
1411 #endif
1412
1413 /*
1414 * uvm_pageidlezero: zero free pages while the system is idle.
1415 *
1416 * => try to complete one color bucket at a time, to reduce our impact
1417 * on the CPU cache.
1418 * => we loop until we either reach the target or whichqs indicates that
1419 * there is a process ready to run.
1420 */
1421 void
1422 uvm_pageidlezero()
1423 {
1424 struct vm_page *pg;
1425 struct pgfreelist *pgfl;
1426 int free_list, s, firstbucket;
1427 static int nextbucket;
1428
1429 s = uvm_lock_fpageq();
1430 firstbucket = nextbucket;
1431 do {
1432 if (sched_whichqs != 0) {
1433 uvm_unlock_fpageq(s);
1434 return;
1435 }
1436 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1437 uvm.page_idle_zero = FALSE;
1438 uvm_unlock_fpageq(s);
1439 return;
1440 }
1441 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1442 pgfl = &uvm.page_free[free_list];
1443 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1444 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1445 if (sched_whichqs != 0) {
1446 uvm_unlock_fpageq(s);
1447 return;
1448 }
1449
1450 TAILQ_REMOVE(&pgfl->pgfl_buckets[
1451 nextbucket].pgfl_queues[PGFL_UNKNOWN],
1452 pg, pageq);
1453 uvmexp.free--;
1454 uvm_unlock_fpageq(s);
1455 #ifdef PMAP_PAGEIDLEZERO
1456 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1457
1458 /*
1459 * The machine-dependent code detected
1460 * some reason for us to abort zeroing
1461 * pages, probably because there is a
1462 * process now ready to run.
1463 */
1464
1465 s = uvm_lock_fpageq();
1466 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1467 nextbucket].pgfl_queues[
1468 PGFL_UNKNOWN], pg, pageq);
1469 uvmexp.free++;
1470 uvmexp.zeroaborts++;
1471 uvm_unlock_fpageq(s);
1472 return;
1473 }
1474 #else
1475 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1476 #endif /* PMAP_PAGEIDLEZERO */
1477 pg->flags |= PG_ZERO;
1478
1479 s = uvm_lock_fpageq();
1480 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1481 nextbucket].pgfl_queues[PGFL_ZEROS],
1482 pg, pageq);
1483 uvmexp.free++;
1484 uvmexp.zeropages++;
1485 }
1486 }
1487 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1488 } while (nextbucket != firstbucket);
1489 uvm_unlock_fpageq(s);
1490 }
1491