Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.9
      1 /*	$NetBSD: uvm_page.c,v 1.9 1998/04/16 03:54:35 thorpej Exp $	*/
      2 
      3 /*
      4  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  */
      7 /*
      8  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  *
     11  * All rights reserved.
     12  *
     13  * This code is derived from software contributed to Berkeley by
     14  * The Mach Operating System project at Carnegie-Mellon University.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by Charles D. Cranor,
     27  *      Washington University, the University of California, Berkeley and
     28  *      its contributors.
     29  * 4. Neither the name of the University nor the names of its contributors
     30  *    may be used to endorse or promote products derived from this software
     31  *    without specific prior written permission.
     32  *
     33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  * SUCH DAMAGE.
     44  *
     45  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     46  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     47  *
     48  *
     49  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  * All rights reserved.
     51  *
     52  * Permission to use, copy, modify and distribute this software and
     53  * its documentation is hereby granted, provided that both the copyright
     54  * notice and this permission notice appear in all copies of the
     55  * software, derivative works or modified versions, and any portions
     56  * thereof, and that both notices appear in supporting documentation.
     57  *
     58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  *
     62  * Carnegie Mellon requests users of this software to return to
     63  *
     64  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  *  School of Computer Science
     66  *  Carnegie Mellon University
     67  *  Pittsburgh PA 15213-3890
     68  *
     69  * any improvements or extensions that they make and grant Carnegie the
     70  * rights to redistribute these changes.
     71  */
     72 
     73 /*
     74  * uvm_page.c: page ops.
     75  */
     76 
     77 #include "opt_pmap_new.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mount.h>
     83 #include <sys/proc.h>
     84 
     85 #include <vm/vm.h>
     86 #include <vm/vm_page.h>
     87 #include <vm/vm_kern.h>
     88 
     89 #include <sys/syscallargs.h>
     90 
     91 #define UVM_PAGE                /* pull in uvm_page.h functions */
     92 #include <uvm/uvm.h>
     93 
     94 /*
     95  * global vars... XXXCDC: move to uvm. structure.
     96  */
     97 
     98 /*
     99  * physical memory config is stored in vm_physmem.
    100  */
    101 
    102 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
    103 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
    104 
    105 /*
    106  * local variables
    107  */
    108 
    109 /*
    110  * these variables record the values returned by vm_page_bootstrap,
    111  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    112  * and pmap_startup here also uses them internally.
    113  */
    114 
    115 static vm_offset_t      virtual_space_start;
    116 static vm_offset_t      virtual_space_end;
    117 
    118 /*
    119  * we use a hash table with only one bucket during bootup.  we will
    120  * later rehash (resize) the hash table once malloc() is ready.
    121  * we static allocate the bootstrap bucket below...
    122  */
    123 
    124 static struct pglist uvm_bootbucket;
    125 
    126 /*
    127  * local prototypes
    128  */
    129 
    130 static void uvm_pageinsert __P((struct vm_page *));
    131 #if !defined(PMAP_STEAL_MEMORY)
    132 static boolean_t uvm_page_physget __P((vm_offset_t *));
    133 #endif
    134 
    135 
    136 /*
    137  * inline functions
    138  */
    139 
    140 /*
    141  * uvm_pageinsert: insert a page in the object and the hash table
    142  *
    143  * => caller must lock object
    144  * => caller must lock page queues
    145  * => call should have already set pg's object and offset pointers
    146  *    and bumped the version counter
    147  */
    148 
    149 __inline static void
    150 uvm_pageinsert(pg)
    151 	struct vm_page *pg;
    152 {
    153 	struct pglist *buck;
    154 	int s;
    155 
    156 #ifdef DIAGNOSTIC
    157 	if (pg->flags & PG_TABLED)
    158 		panic("uvm_pageinsert: already inserted");
    159 #endif
    160 
    161 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    162 	s = splimp();
    163 	simple_lock(&uvm.hashlock);
    164 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
    165 	simple_unlock(&uvm.hashlock);
    166 	splx(s);
    167 
    168 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
    169 	pg->flags |= PG_TABLED;
    170 	pg->uobject->uo_npages++;
    171 
    172 }
    173 
    174 /*
    175  * uvm_page_remove: remove page from object and hash
    176  *
    177  * => caller must lock object
    178  * => caller must lock page queues
    179  */
    180 
    181 void __inline
    182 uvm_pageremove(pg)
    183 	struct vm_page *pg;
    184 {
    185 	struct pglist *buck;
    186 	int s;
    187 
    188 #ifdef DIAGNOSTIC
    189 	if ((pg->flags & (PG_FAULTING)) != 0)
    190 		panic("uvm_pageremove: page is faulting");
    191 #endif
    192 
    193 	if ((pg->flags & PG_TABLED) == 0)
    194 		return;				/* XXX: log */
    195 
    196 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
    197 	s = splimp();
    198 	simple_lock(&uvm.hashlock);
    199 	TAILQ_REMOVE(buck, pg, hashq);
    200 	simple_unlock(&uvm.hashlock);
    201 	splx(s);
    202 
    203 	/* object should be locked */
    204 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
    205 
    206 	pg->flags &= ~PG_TABLED;
    207 	pg->uobject->uo_npages--;
    208 	pg->uobject = NULL;
    209 	pg->version++;
    210 
    211 }
    212 
    213 /*
    214  * uvm_page_init: init the page system.   called from uvm_init().
    215  *
    216  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    217  */
    218 
    219 void
    220 uvm_page_init(kvm_startp, kvm_endp)
    221 	vm_offset_t *kvm_startp, *kvm_endp;
    222 {
    223 	int freepages, pagecount;
    224 	vm_page_t pagearray;
    225 	int lcv, n, i;
    226 	vm_offset_t paddr;
    227 
    228 
    229 	/*
    230 	 * step 1: init the page queues and page queue locks
    231 	 */
    232 
    233 	TAILQ_INIT(&uvm.page_free);
    234 	TAILQ_INIT(&uvm.page_active);
    235 	TAILQ_INIT(&uvm.page_inactive_swp);
    236 	TAILQ_INIT(&uvm.page_inactive_obj);
    237 	simple_lock_init(&uvm.pageqlock);
    238 	simple_lock_init(&uvm.fpageqlock);
    239 
    240 	/*
    241 	 * step 2: init the <obj,offset> => <page> hash table. for now
    242 	 * we just have one bucket (the bootstrap bucket).   later on we
    243 	 * will malloc() new buckets as we dynamically resize the hash table.
    244 	 */
    245 
    246 	uvm.page_nhash = 1;			/* 1 bucket */
    247 	uvm.page_hashmask = 0;		/* mask for hash function */
    248 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    249 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    250 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    251 
    252 	/*
    253 	 * step 3: allocate vm_page structures.
    254 	 */
    255 
    256 	/*
    257 	 * sanity check:
    258 	 * before calling this function the MD code is expected to register
    259 	 * some free RAM with the uvm_page_physload() function.   our job
    260 	 * now is to allocate vm_page structures for this memory.
    261 	 */
    262 
    263 	if (vm_nphysseg == 0)
    264 		panic("vm_page_bootstrap: no memory pre-allocated");
    265 
    266 	/*
    267 	 * first calculate the number of free pages...
    268 	 *
    269 	 * note that we use start/end rather than avail_start/avail_end.
    270 	 * this allows us to allocate extra vm_page structures in case we
    271 	 * want to return some memory to the pool after booting.
    272 	 */
    273 
    274 	freepages = 0;
    275 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    276 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    277 
    278 	/*
    279 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    280 	 * use.   for each page of memory we use we need a vm_page structure.
    281 	 * thus, the total number of pages we can use is the total size of
    282 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    283 	 * structure.   we add one to freepages as a fudge factor to avoid
    284 	 * truncation errors (since we can only allocate in terms of whole
    285 	 * pages).
    286 	 */
    287 
    288 	pagecount = (PAGE_SIZE * (freepages + 1)) /
    289 	    (PAGE_SIZE + sizeof(struct vm_page));
    290 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
    291 	    sizeof(struct vm_page));
    292 	bzero(pagearray, pagecount * sizeof(struct vm_page));
    293 
    294 	/*
    295 	 * step 4: init the vm_page structures and put them in the correct
    296 	 * place...
    297 	 */
    298 
    299 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    300 
    301 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    302 		if (n > pagecount) {
    303 			printf("uvm_page_init: lost %d page(s) in init\n",
    304 			    n - pagecount);
    305 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
    306 			/* n = pagecount; */
    307 		}
    308 		/* set up page array pointers */
    309 		vm_physmem[lcv].pgs = pagearray;
    310 		pagearray += n;
    311 		pagecount -= n;
    312 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    313 
    314 		/* init and free vm_pages (we've already bzero'd them) */
    315 		paddr = ptoa(vm_physmem[lcv].start);
    316 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    317 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    318 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    319 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    320 				uvmexp.npages++;
    321 				/* add page to free pool */
    322 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    323 			}
    324 		}
    325 	}
    326 	/*
    327 	 * step 5: pass up the values of virtual_space_start and
    328 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    329 	 * layers of the VM.
    330 	 */
    331 
    332 	*kvm_startp = round_page(virtual_space_start);
    333 	*kvm_endp = trunc_page(virtual_space_end);
    334 
    335 	/*
    336 	 * step 6: init pagedaemon lock
    337 	 */
    338 
    339 	simple_lock_init(&uvm.pagedaemon_lock);
    340 
    341 	/*
    342 	 * step 7: init reserve thresholds
    343 	 * XXXCDC - values may need adjusting
    344 	 */
    345 	uvmexp.reserve_pagedaemon = 1;
    346 	uvmexp.reserve_kernel = 5;
    347 
    348 	/*
    349 	 * done!
    350 	 */
    351 
    352 }
    353 
    354 /*
    355  * uvm_setpagesize: set the page size
    356  *
    357  * => sets page_shift and page_mask from uvmexp.pagesize.
    358  * => XXXCDC: move global vars.
    359  */
    360 
    361 void
    362 uvm_setpagesize()
    363 {
    364 	if (uvmexp.pagesize == 0)
    365 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
    366 	uvmexp.pagemask = uvmexp.pagesize - 1;
    367 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    368 		panic("uvm_setpagesize: page size not a power of two");
    369 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    370 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    371 			break;
    372 }
    373 
    374 /*
    375  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    376  */
    377 
    378 vm_offset_t
    379 uvm_pageboot_alloc(size)
    380 	vm_size_t size;
    381 {
    382 #if defined(PMAP_STEAL_MEMORY)
    383 	vm_offset_t addr;
    384 
    385 	/*
    386 	 * defer bootstrap allocation to MD code (it may want to allocate
    387 	 * from a direct-mapped segment).  pmap_steal_memory should round
    388 	 * off virtual_space_start/virtual_space_end.
    389 	 */
    390 
    391 	addr = pmap_steal_memory(size, &virtual_space_start,
    392 	    &virtual_space_end);
    393 
    394 	return(addr);
    395 
    396 #else /* !PMAP_STEAL_MEMORY */
    397 
    398 	vm_offset_t addr, vaddr, paddr;
    399 
    400 	/* round to page size */
    401 	size = round_page(size);
    402 
    403 	/*
    404 	 * on first call to this function init ourselves.   we detect this
    405 	 * by checking virtual_space_start/end which are in the zero'd BSS area.
    406 	 */
    407 
    408 	if (virtual_space_start == virtual_space_end) {
    409 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    410 
    411 		/* round it the way we like it */
    412 		virtual_space_start = round_page(virtual_space_start);
    413 		virtual_space_end = trunc_page(virtual_space_end);
    414 	}
    415 
    416 	/*
    417 	 * allocate virtual memory for this request
    418 	 */
    419 
    420 	addr = virtual_space_start;
    421 	virtual_space_start += size;
    422 
    423 	/*
    424 	 * allocate and mapin physical pages to back new virtual pages
    425 	 */
    426 
    427 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    428 	    vaddr += PAGE_SIZE) {
    429 
    430 		if (!uvm_page_physget(&paddr))
    431 			panic("uvm_pageboot_alloc: out of memory");
    432 
    433 		/* XXX: should be wired, but some pmaps don't like that ... */
    434 #if defined(PMAP_NEW)
    435 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    436 #else
    437 		pmap_enter(pmap_kernel(), vaddr, paddr,
    438 		    VM_PROT_READ|VM_PROT_WRITE, FALSE);
    439 #endif
    440 
    441 	}
    442 
    443 	return(addr);
    444 #endif	/* PMAP_STEAL_MEMORY */
    445 }
    446 
    447 #if !defined(PMAP_STEAL_MEMORY)
    448 /*
    449  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    450  *
    451  * => attempt to allocate it off the end of a segment in which the "avail"
    452  *    values match the start/end values.   if we can't do that, then we
    453  *    will advance both values (making them equal, and removing some
    454  *    vm_page structures from the non-avail area).
    455  * => return false if out of memory.
    456  */
    457 
    458 static boolean_t
    459 uvm_page_physget(paddrp)
    460 	vm_offset_t *paddrp;
    461 {
    462 	int lcv, x;
    463 
    464 	/* pass 1: try allocating from a matching end */
    465 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    466 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    467 #else
    468 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    469 #endif
    470 	{
    471 
    472 		if (vm_physmem[lcv].pgs)
    473 			panic("vm_page_physget: called _after_ bootstrap");
    474 
    475 		/* try from front */
    476 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    477 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    478 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    479 			vm_physmem[lcv].avail_start++;
    480 			vm_physmem[lcv].start++;
    481 			/* nothing left?   nuke it */
    482 			if (vm_physmem[lcv].avail_start ==
    483 			    vm_physmem[lcv].end) {
    484 				if (vm_nphysseg == 1)
    485 				    panic("vm_page_physget: out of memory!");
    486 				vm_nphysseg--;
    487 				for (x = lcv ; x < vm_nphysseg ; x++)
    488 					/* structure copy */
    489 					vm_physmem[x] = vm_physmem[x+1];
    490 			}
    491 			return (TRUE);
    492 		}
    493 
    494 		/* try from rear */
    495 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    496 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    497 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    498 			vm_physmem[lcv].avail_end--;
    499 			vm_physmem[lcv].end--;
    500 			/* nothing left?   nuke it */
    501 			if (vm_physmem[lcv].avail_end ==
    502 			    vm_physmem[lcv].start) {
    503 				if (vm_nphysseg == 1)
    504 				    panic("vm_page_physget: out of memory!");
    505 				vm_nphysseg--;
    506 				for (x = lcv ; x < vm_nphysseg ; x++)
    507 					/* structure copy */
    508 					vm_physmem[x] = vm_physmem[x+1];
    509 			}
    510 			return (TRUE);
    511 		}
    512 	}
    513 
    514 	/* pass2: forget about matching ends, just allocate something */
    515 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    516 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    517 #else
    518 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    519 #endif
    520 	{
    521 
    522 		/* any room in this bank? */
    523 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    524 			continue;  /* nope */
    525 
    526 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    527 		vm_physmem[lcv].avail_start++;
    528 		/* truncate! */
    529 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    530 
    531 		/* nothing left?   nuke it */
    532 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    533 			if (vm_nphysseg == 1)
    534 				panic("vm_page_physget: out of memory!");
    535 			vm_nphysseg--;
    536 			for (x = lcv ; x < vm_nphysseg ; x++)
    537 				/* structure copy */
    538 				vm_physmem[x] = vm_physmem[x+1];
    539 		}
    540 		return (TRUE);
    541 	}
    542 
    543 	return (FALSE);        /* whoops! */
    544 }
    545 #endif /* PMAP_STEAL_MEMORY */
    546 
    547 /*
    548  * uvm_page_physload: load physical memory into VM system
    549  *
    550  * => all args are PFs
    551  * => all pages in start/end get vm_page structures
    552  * => areas marked by avail_start/avail_end get added to the free page pool
    553  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    554  */
    555 
    556 void
    557 uvm_page_physload(start, end, avail_start, avail_end)
    558 	vm_offset_t start, end, avail_start, avail_end;
    559 {
    560 	int preload, lcv, npages;
    561 	struct vm_page *pgs;
    562 	struct vm_physseg *ps;
    563 
    564 	if (uvmexp.pagesize == 0)
    565 		panic("vm_page_physload: page size not set!");
    566 
    567 	/*
    568 	 * do we have room?
    569 	 */
    570 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    571 		printf("vm_page_physload: unable to load physical memory "
    572 		    "segment\n");
    573 		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
    574 		    VM_PHYSSEG_MAX, start, end);
    575 		return;
    576 	}
    577 
    578 	/*
    579 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    580 	 * called yet, so malloc is not available).
    581 	 */
    582 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    583 		if (vm_physmem[lcv].pgs)
    584 			break;
    585 	}
    586 	preload = (lcv == vm_nphysseg);
    587 
    588 	/*
    589 	 * if VM is already running, attempt to malloc() vm_page structures
    590 	 */
    591 	if (!preload) {
    592 #if defined(VM_PHYSSEG_NOADD)
    593 		panic("vm_page_physload: tried to add RAM after vm_mem_init");
    594 #else
    595 		/* XXXCDC: need some sort of lockout for this case */
    596 		vm_offset_t paddr;
    597 		npages = end - start;  /* # of pages */
    598 		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
    599 					 M_VMPAGE, M_NOWAIT);
    600 		if (pgs == NULL) {
    601 			printf("vm_page_physload: can not malloc vm_page "
    602 			    "structs for segment\n");
    603 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    604 			return;
    605 		}
    606 		/* zero data, init phys_addr, and free pages */
    607 		bzero(pgs, sizeof(struct vm_page) * npages);
    608 		for (lcv = 0, paddr = ptoa(start) ;
    609 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    610 			pgs[lcv].phys_addr = paddr;
    611 			if (atop(paddr) >= avail_start &&
    612 			    atop(paddr) <= avail_end)
    613 				uvm_pagefree(&pgs[lcv]);
    614 		}
    615 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    616 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    617 #endif
    618 	} else {
    619 
    620 		/* gcc complains if these don't get init'd */
    621 		pgs = NULL;
    622 		npages = 0;
    623 
    624 	}
    625 
    626 	/*
    627 	 * now insert us in the proper place in vm_physmem[]
    628 	 */
    629 
    630 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    631 
    632 	/* random: put it at the end (easy!) */
    633 	ps = &vm_physmem[vm_nphysseg];
    634 
    635 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    636 
    637 	{
    638 		int x;
    639 		/* sort by address for binary search */
    640 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    641 			if (start < vm_physmem[lcv].start)
    642 				break;
    643 		ps = &vm_physmem[lcv];
    644 		/* move back other entries, if necessary ... */
    645 		for (x = vm_nphysseg ; x > lcv ; x--)
    646 			/* structure copy */
    647 			vm_physmem[x] = vm_physmem[x - 1];
    648 	}
    649 
    650 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    651 
    652 	{
    653 		int x;
    654 		/* sort by largest segment first */
    655 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    656 			if ((end - start) >
    657 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    658 				break;
    659 		ps = &vm_physmem[lcv];
    660 		/* move back other entries, if necessary ... */
    661 		for (x = vm_nphysseg ; x > lcv ; x--)
    662 			/* structure copy */
    663 			vm_physmem[x] = vm_physmem[x - 1];
    664 	}
    665 
    666 #else
    667 
    668 	panic("vm_page_physload: unknown physseg strategy selected!");
    669 
    670 #endif
    671 
    672 	ps->start = start;
    673 	ps->end = end;
    674 	ps->avail_start = avail_start;
    675 	ps->avail_end = avail_end;
    676 	if (preload) {
    677 		ps->pgs = NULL;
    678 	} else {
    679 		ps->pgs = pgs;
    680 		ps->lastpg = pgs + npages - 1;
    681 	}
    682 	vm_nphysseg++;
    683 
    684 	/*
    685 	 * done!
    686 	 */
    687 
    688 	if (!preload)
    689 		uvm_page_rehash();
    690 
    691 	return;
    692 }
    693 
    694 /*
    695  * uvm_page_rehash: reallocate hash table based on number of free pages.
    696  */
    697 
    698 void
    699 uvm_page_rehash()
    700 {
    701 	int freepages, lcv, bucketcount, s, oldcount;
    702 	struct pglist *newbuckets, *oldbuckets;
    703 	struct vm_page *pg;
    704 
    705 	/*
    706 	 * compute number of pages that can go in the free pool
    707 	 */
    708 
    709 	freepages = 0;
    710 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    711 		freepages +=
    712 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    713 
    714 	/*
    715 	 * compute number of buckets needed for this number of pages
    716 	 */
    717 
    718 	bucketcount = 1;
    719 	while (bucketcount < freepages)
    720 		bucketcount = bucketcount * 2;
    721 
    722 	/*
    723 	 * malloc new buckets
    724 	 */
    725 
    726 	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
    727 					 M_VMPBUCKET, M_NOWAIT);
    728 	if (newbuckets == NULL) {
    729 		printf("vm_page_physrehash: WARNING: could not grow page "
    730 		    "hash table\n");
    731 		return;
    732 	}
    733 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    734 		TAILQ_INIT(&newbuckets[lcv]);
    735 
    736 	/*
    737 	 * now replace the old buckets with the new ones and rehash everything
    738 	 */
    739 
    740 	s = splimp();
    741 	simple_lock(&uvm.hashlock);
    742 	/* swap old for new ... */
    743 	oldbuckets = uvm.page_hash;
    744 	oldcount = uvm.page_nhash;
    745 	uvm.page_hash = newbuckets;
    746 	uvm.page_nhash = bucketcount;
    747 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    748 
    749 	/* ... and rehash */
    750 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    751 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    752 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    753 			TAILQ_INSERT_TAIL(
    754 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    755 			  pg, hashq);
    756 		}
    757 	}
    758 	simple_unlock(&uvm.hashlock);
    759 	splx(s);
    760 
    761 	/*
    762 	 * free old bucket array if we malloc'd it previously
    763 	 */
    764 
    765 	if (oldbuckets != &uvm_bootbucket)
    766 		FREE(oldbuckets, M_VMPBUCKET);
    767 
    768 	/*
    769 	 * done
    770 	 */
    771 	return;
    772 }
    773 
    774 
    775 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
    776 
    777 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
    778 
    779 /* call from DDB */
    780 void
    781 uvm_page_physdump()
    782 {
    783 	int lcv;
    784 
    785 	printf("rehash: physical memory config [segs=%d of %d]:\n",
    786 				 vm_nphysseg, VM_PHYSSEG_MAX);
    787 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    788 		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
    789 		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
    790 		    vm_physmem[lcv].avail_end);
    791 	printf("STRATEGY = ");
    792 	switch (VM_PHYSSEG_STRAT) {
    793 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
    794 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
    795 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
    796 	default: printf("<<UNKNOWN>>!!!!\n");
    797 	}
    798 	printf("number of buckets = %d\n", uvm.page_nhash);
    799 }
    800 #endif
    801 
    802 /*
    803  * uvm_pagealloc: allocate vm_page.
    804  *
    805  * => return null if no pages free
    806  * => wake up pagedaemon if number of free pages drops below low water mark
    807  * => if obj != NULL, obj must be locked (to put in hash)
    808  * => if anon != NULL, anon must be locked (to put in anon)
    809  * => only one of obj or anon can be non-null
    810  * => caller must activate/deactivate page if it is not wired.
    811  */
    812 
    813 struct vm_page *
    814 uvm_pagealloc(obj, off, anon)
    815 	struct uvm_object *obj;
    816 	vm_offset_t off;
    817 	struct vm_anon *anon;
    818 {
    819 	int s;
    820 	struct vm_page *pg;
    821 
    822 #ifdef DIAGNOSTIC
    823 	/* sanity check */
    824 	if (obj && anon)
    825 		panic("uvm_pagealloc: obj and anon != NULL");
    826 #endif
    827 
    828 	s = splimp();
    829 
    830 	uvm_lock_fpageq();		/* lock free page queue */
    831 
    832 	/*
    833 	 * check to see if we need to generate some free pages waking
    834 	 * the pagedaemon.
    835 	 */
    836 
    837 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
    838 	    uvmexp.inactive < uvmexp.inactarg))
    839 		thread_wakeup(&uvm.pagedaemon);
    840 
    841 	/*
    842 	 * fail if any of these conditions is true:
    843 	 * [1]  there really are no free pages, or
    844 	 * [2]  only kernel "reserved" pages remain and
    845 	 *        the page isn't being allocated to a kernel object.
    846 	 * [3]  only pagedaemon "reserved" pages remain and
    847 	 *        the requestor isn't the pagedaemon.
    848 	 */
    849 
    850 	pg = uvm.page_free.tqh_first;
    851 	if (pg == NULL ||
    852 	    (uvmexp.free <= uvmexp.reserve_kernel &&
    853 	     !(obj && obj->uo_refs == UVM_OBJ_KERN)) ||
    854 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
    855 	     !(obj == uvmexp.kmem_object && curproc == uvm.pagedaemon_proc))) {
    856 		uvm_unlock_fpageq();
    857 		splx(s);
    858 		return(NULL);
    859 	}
    860 
    861 	TAILQ_REMOVE(&uvm.page_free, pg, pageq);
    862 	uvmexp.free--;
    863 
    864 	uvm_unlock_fpageq();		/* unlock free page queue */
    865 	splx(s);
    866 
    867 	pg->offset = off;
    868 	pg->uobject = obj;
    869 	pg->uanon = anon;
    870 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
    871 	pg->version++;
    872 	pg->wire_count = 0;
    873 	pg->loan_count = 0;
    874 	if (anon) {
    875 		anon->u.an_page = pg;
    876 		pg->pqflags = PQ_ANON;
    877 	} else {
    878 		if (obj)
    879 			uvm_pageinsert(pg);
    880 		pg->pqflags = 0;
    881 	}
    882 #if defined(UVM_PAGE_TRKOWN)
    883 	pg->owner_tag = NULL;
    884 #endif
    885 	UVM_PAGE_OWN(pg, "new alloc");
    886 
    887 	return(pg);
    888 }
    889 
    890 /*
    891  * uvm_pagerealloc: reallocate a page from one object to another
    892  *
    893  * => both objects must be locked
    894  */
    895 
    896 void
    897 uvm_pagerealloc(pg, newobj, newoff)
    898 	struct vm_page *pg;
    899 	struct uvm_object *newobj;
    900 	vm_offset_t newoff;
    901 {
    902 	/*
    903 	 * remove it from the old object
    904 	 */
    905 
    906 	if (pg->uobject) {
    907 		uvm_pageremove(pg);
    908 	}
    909 
    910 	/*
    911 	 * put it in the new object
    912 	 */
    913 
    914 	if (newobj) {
    915 		pg->uobject = newobj;
    916 		pg->offset = newoff;
    917 		pg->version++;
    918 		uvm_pageinsert(pg);
    919 	}
    920 
    921 	return;
    922 }
    923 
    924 
    925 /*
    926  * uvm_pagefree: free page
    927  *
    928  * => erase page's identity (i.e. remove from hash/object)
    929  * => put page on free list
    930  * => caller must lock owning object (either anon or uvm_object)
    931  * => caller must lock page queues
    932  * => assumes all valid mappings of pg are gone
    933  */
    934 
    935 void uvm_pagefree(pg)
    936 
    937 struct vm_page *pg;
    938 
    939 {
    940 	int s;
    941 	int saved_loan_count = pg->loan_count;
    942 
    943 	/*
    944 	 * if the page was an object page (and thus "TABLED"), remove it
    945 	 * from the object.
    946 	 */
    947 
    948 	if (pg->flags & PG_TABLED) {
    949 
    950 		/*
    951 		 * if the object page is on loan we are going to drop ownership.
    952 		 * it is possible that an anon will take over as owner for this
    953 		 * page later on.   the anon will want a !PG_CLEAN page so that
    954 		 * it knows it needs to allocate swap if it wants to page the
    955 		 * page out.
    956 		 */
    957 
    958 		if (saved_loan_count)
    959 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
    960 
    961 		uvm_pageremove(pg);
    962 
    963 		/*
    964 		 * if our page was on loan, then we just lost control over it
    965 		 * (in fact, if it was loaned to an anon, the anon may have
    966 		 * already taken over ownership of the page by now and thus
    967 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
    968 		 * return (when the last loan is dropped, then the page can be
    969 		 * freed by whatever was holding the last loan).
    970 		 */
    971 		if (saved_loan_count)
    972 			return;
    973 
    974 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
    975 
    976 		/*
    977 		 * if our page is owned by an anon and is loaned out to the
    978 		 * kernel then we just want to drop ownership and return.
    979 		 * the kernel must free the page when all its loans clear ...
    980 		 * note that the kernel can't change the loan status of our
    981 		 * page as long as we are holding PQ lock.
    982 		 */
    983 		pg->pqflags &= ~PQ_ANON;
    984 		pg->uanon = NULL;
    985 		return;
    986 	}
    987 
    988 #ifdef DIAGNOSTIC
    989 	if (saved_loan_count) {
    990 		printf("uvm_pagefree: warning: freeing page with a loan "
    991 		    "count of %d\n", saved_loan_count);
    992 		panic("uvm_pagefree: loan count");
    993 	}
    994 #endif
    995 
    996 
    997 	/*
    998 	 * now remove the page from the queues
    999 	 */
   1000 
   1001 	if (pg->pqflags & PQ_ACTIVE) {
   1002 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
   1003 		pg->pqflags &= ~PQ_ACTIVE;
   1004 		uvmexp.active--;
   1005 	}
   1006 	if (pg->pqflags & PQ_INACTIVE) {
   1007 		if (pg->pqflags & PQ_SWAPBACKED)
   1008 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
   1009 		else
   1010 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
   1011 		pg->pqflags &= ~PQ_INACTIVE;
   1012 		uvmexp.inactive--;
   1013 	}
   1014 
   1015 	/*
   1016 	 * if the page was wired, unwire it now.
   1017 	 */
   1018 	if (pg->wire_count)
   1019 	{
   1020 		pg->wire_count = 0;
   1021 		uvmexp.wired--;
   1022 	}
   1023 
   1024 	/*
   1025 	 * and put on free queue
   1026 	 */
   1027 
   1028 	s = splimp();
   1029 	uvm_lock_fpageq();
   1030 	TAILQ_INSERT_TAIL(&uvm.page_free, pg, pageq);
   1031 	pg->pqflags = PQ_FREE;
   1032 #ifdef DEBUG
   1033 	pg->uobject = (void *)0xdeadbeef;
   1034 	pg->offset = 0xdeadbeef;
   1035 	pg->uanon = (void *)0xdeadbeef;
   1036 #endif
   1037 	uvmexp.free++;
   1038 	uvm_unlock_fpageq();
   1039 	splx(s);
   1040 }
   1041 
   1042 #if defined(UVM_PAGE_TRKOWN)
   1043 /*
   1044  * uvm_page_own: set or release page ownership
   1045  *
   1046  * => this is a debugging function that keeps track of who sets PG_BUSY
   1047  *	and where they do it.   it can be used to track down problems
   1048  *	such a process setting "PG_BUSY" and never releasing it.
   1049  * => page's object [if any] must be locked
   1050  * => if "tag" is NULL then we are releasing page ownership
   1051  */
   1052 void
   1053 uvm_page_own(pg, tag)
   1054 	struct vm_page *pg;
   1055 	char *tag;
   1056 {
   1057 	/* gain ownership? */
   1058 	if (tag) {
   1059 		if (pg->owner_tag) {
   1060 			printf("uvm_page_own: page %p already owned "
   1061 			    "by proc %d [%s]\n", pg,
   1062 			     pg->owner, pg->owner_tag);
   1063 			panic("uvm_page_own");
   1064 		}
   1065 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1066 		pg->owner_tag = tag;
   1067 		return;
   1068 	}
   1069 
   1070 	/* drop ownership */
   1071 	if (pg->owner_tag == NULL) {
   1072 		printf("uvm_page_own: dropping ownership of an non-owned "
   1073 		    "page (%p)\n", pg);
   1074 		panic("uvm_page_own");
   1075 	}
   1076 	pg->owner_tag = NULL;
   1077 	return;
   1078 }
   1079 #endif
   1080