Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.91
      1 /*	$NetBSD: uvm_page.c,v 1.91 2003/11/03 03:58:28 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.91 2003/11/03 03:58:28 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either cpu caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 #ifdef DEBUG
    145 vaddr_t uvm_zerocheckkva;
    146 #endif /* DEBUG */
    147 
    148 /*
    149  * local prototypes
    150  */
    151 
    152 static void uvm_pageinsert __P((struct vm_page *));
    153 static void uvm_pageremove __P((struct vm_page *));
    154 
    155 /*
    156  * inline functions
    157  */
    158 
    159 /*
    160  * uvm_pageinsert: insert a page in the object and the hash table
    161  *
    162  * => caller must lock object
    163  * => caller must lock page queues
    164  * => call should have already set pg's object and offset pointers
    165  *    and bumped the version counter
    166  */
    167 
    168 __inline static void
    169 uvm_pageinsert(pg)
    170 	struct vm_page *pg;
    171 {
    172 	struct pglist *buck;
    173 	struct uvm_object *uobj = pg->uobject;
    174 
    175 	KASSERT((pg->flags & PG_TABLED) == 0);
    176 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    177 	simple_lock(&uvm.hashlock);
    178 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    179 	simple_unlock(&uvm.hashlock);
    180 
    181 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    182 		uvmexp.execpages++;
    183 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    184 		uvmexp.filepages++;
    185 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    186 		uvmexp.anonpages++;
    187 	}
    188 
    189 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    190 	pg->flags |= PG_TABLED;
    191 	uobj->uo_npages++;
    192 }
    193 
    194 /*
    195  * uvm_page_remove: remove page from object and hash
    196  *
    197  * => caller must lock object
    198  * => caller must lock page queues
    199  */
    200 
    201 static __inline void
    202 uvm_pageremove(pg)
    203 	struct vm_page *pg;
    204 {
    205 	struct pglist *buck;
    206 	struct uvm_object *uobj = pg->uobject;
    207 
    208 	KASSERT(pg->flags & PG_TABLED);
    209 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    210 	simple_lock(&uvm.hashlock);
    211 	TAILQ_REMOVE(buck, pg, hashq);
    212 	simple_unlock(&uvm.hashlock);
    213 
    214 	if (UVM_OBJ_IS_VTEXT(uobj)) {
    215 		uvmexp.execpages--;
    216 	} else if (UVM_OBJ_IS_VNODE(uobj)) {
    217 		uvmexp.filepages--;
    218 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    219 		uvmexp.anonpages--;
    220 	}
    221 
    222 	/* object should be locked */
    223 	uobj->uo_npages--;
    224 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    225 	pg->flags &= ~PG_TABLED;
    226 	pg->uobject = NULL;
    227 }
    228 
    229 static void
    230 uvm_page_init_buckets(struct pgfreelist *pgfl)
    231 {
    232 	int color, i;
    233 
    234 	for (color = 0; color < uvmexp.ncolors; color++) {
    235 		for (i = 0; i < PGFL_NQUEUES; i++) {
    236 			TAILQ_INIT(&pgfl->pgfl_buckets[
    237 			    color].pgfl_queues[i]);
    238 		}
    239 	}
    240 }
    241 
    242 /*
    243  * uvm_page_init: init the page system.   called from uvm_init().
    244  *
    245  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    246  */
    247 
    248 void
    249 uvm_page_init(kvm_startp, kvm_endp)
    250 	vaddr_t *kvm_startp, *kvm_endp;
    251 {
    252 	vsize_t freepages, pagecount, bucketcount, n;
    253 	struct pgflbucket *bucketarray;
    254 	struct vm_page *pagearray;
    255 	int lcv;
    256 	u_int i;
    257 	paddr_t paddr;
    258 
    259 	/*
    260 	 * init the page queues and page queue locks, except the free
    261 	 * list; we allocate that later (with the initial vm_page
    262 	 * structures).
    263 	 */
    264 
    265 	TAILQ_INIT(&uvm.page_active);
    266 	TAILQ_INIT(&uvm.page_inactive);
    267 	simple_lock_init(&uvm.pageqlock);
    268 	simple_lock_init(&uvm.fpageqlock);
    269 
    270 	/*
    271 	 * init the <obj,offset> => <page> hash table.  for now
    272 	 * we just have one bucket (the bootstrap bucket).  later on we
    273 	 * will allocate new buckets as we dynamically resize the hash table.
    274 	 */
    275 
    276 	uvm.page_nhash = 1;			/* 1 bucket */
    277 	uvm.page_hashmask = 0;			/* mask for hash function */
    278 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    279 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    280 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    281 
    282 	/*
    283 	 * allocate vm_page structures.
    284 	 */
    285 
    286 	/*
    287 	 * sanity check:
    288 	 * before calling this function the MD code is expected to register
    289 	 * some free RAM with the uvm_page_physload() function.   our job
    290 	 * now is to allocate vm_page structures for this memory.
    291 	 */
    292 
    293 	if (vm_nphysseg == 0)
    294 		panic("uvm_page_bootstrap: no memory pre-allocated");
    295 
    296 	/*
    297 	 * first calculate the number of free pages...
    298 	 *
    299 	 * note that we use start/end rather than avail_start/avail_end.
    300 	 * this allows us to allocate extra vm_page structures in case we
    301 	 * want to return some memory to the pool after booting.
    302 	 */
    303 
    304 	freepages = 0;
    305 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    306 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    307 
    308 	/*
    309 	 * Let MD code initialize the number of colors, or default
    310 	 * to 1 color if MD code doesn't care.
    311 	 */
    312 	if (uvmexp.ncolors == 0)
    313 		uvmexp.ncolors = 1;
    314 	uvmexp.colormask = uvmexp.ncolors - 1;
    315 
    316 	/*
    317 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    318 	 * use.   for each page of memory we use we need a vm_page structure.
    319 	 * thus, the total number of pages we can use is the total size of
    320 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    321 	 * structure.   we add one to freepages as a fudge factor to avoid
    322 	 * truncation errors (since we can only allocate in terms of whole
    323 	 * pages).
    324 	 */
    325 
    326 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    327 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    328 	    (PAGE_SIZE + sizeof(struct vm_page));
    329 
    330 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    331 	    sizeof(struct pgflbucket)) + (pagecount *
    332 	    sizeof(struct vm_page)));
    333 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    334 
    335 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    336 		uvm.page_free[lcv].pgfl_buckets =
    337 		    (bucketarray + (lcv * uvmexp.ncolors));
    338 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    339 	}
    340 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    341 
    342 	/*
    343 	 * init the vm_page structures and put them in the correct place.
    344 	 */
    345 
    346 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    347 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    348 
    349 		/* set up page array pointers */
    350 		vm_physmem[lcv].pgs = pagearray;
    351 		pagearray += n;
    352 		pagecount -= n;
    353 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    354 
    355 		/* init and free vm_pages (we've already zeroed them) */
    356 		paddr = ptoa(vm_physmem[lcv].start);
    357 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    358 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    359 #ifdef __HAVE_VM_PAGE_MD
    360 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    361 #endif
    362 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    363 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    364 				uvmexp.npages++;
    365 				/* add page to free pool */
    366 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    367 			}
    368 		}
    369 	}
    370 
    371 	/*
    372 	 * pass up the values of virtual_space_start and
    373 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    374 	 * layers of the VM.
    375 	 */
    376 
    377 	*kvm_startp = round_page(virtual_space_start);
    378 	*kvm_endp = trunc_page(virtual_space_end);
    379 #ifdef DEBUG
    380 	/*
    381 	 * steal kva for uvm_pagezerocheck().
    382 	 */
    383 	uvm_zerocheckkva = *kvm_startp;
    384 	*kvm_startp += PAGE_SIZE;
    385 #endif /* DEBUG */
    386 
    387 	/*
    388 	 * init locks for kernel threads
    389 	 */
    390 
    391 	simple_lock_init(&uvm.pagedaemon_lock);
    392 	simple_lock_init(&uvm.aiodoned_lock);
    393 
    394 	/*
    395 	 * init various thresholds.
    396 	 */
    397 
    398 	uvmexp.reserve_pagedaemon = 1;
    399 	uvmexp.reserve_kernel = 5;
    400 	uvmexp.anonminpct = 10;
    401 	uvmexp.fileminpct = 10;
    402 	uvmexp.execminpct = 5;
    403 	uvmexp.anonmaxpct = 80;
    404 	uvmexp.filemaxpct = 50;
    405 	uvmexp.execmaxpct = 30;
    406 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    407 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    408 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    409 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    410 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    411 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    412 
    413 	/*
    414 	 * determine if we should zero pages in the idle loop.
    415 	 */
    416 
    417 	uvm.page_idle_zero = vm_page_zero_enable;
    418 
    419 	/*
    420 	 * done!
    421 	 */
    422 
    423 	uvm.page_init_done = TRUE;
    424 }
    425 
    426 /*
    427  * uvm_setpagesize: set the page size
    428  *
    429  * => sets page_shift and page_mask from uvmexp.pagesize.
    430  */
    431 
    432 void
    433 uvm_setpagesize()
    434 {
    435 
    436 	/*
    437 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    438 	 * to be a constant (indicated by being a non-zero value).
    439 	 */
    440 	if (uvmexp.pagesize == 0) {
    441 		if (PAGE_SIZE == 0)
    442 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    443 		uvmexp.pagesize = PAGE_SIZE;
    444 	}
    445 	uvmexp.pagemask = uvmexp.pagesize - 1;
    446 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    447 		panic("uvm_setpagesize: page size not a power of two");
    448 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    449 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    450 			break;
    451 }
    452 
    453 /*
    454  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    455  */
    456 
    457 vaddr_t
    458 uvm_pageboot_alloc(size)
    459 	vsize_t size;
    460 {
    461 	static boolean_t initialized = FALSE;
    462 	vaddr_t addr;
    463 #if !defined(PMAP_STEAL_MEMORY)
    464 	vaddr_t vaddr;
    465 	paddr_t paddr;
    466 #endif
    467 
    468 	/*
    469 	 * on first call to this function, initialize ourselves.
    470 	 */
    471 	if (initialized == FALSE) {
    472 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    473 
    474 		/* round it the way we like it */
    475 		virtual_space_start = round_page(virtual_space_start);
    476 		virtual_space_end = trunc_page(virtual_space_end);
    477 
    478 		initialized = TRUE;
    479 	}
    480 
    481 	/* round to page size */
    482 	size = round_page(size);
    483 
    484 #if defined(PMAP_STEAL_MEMORY)
    485 
    486 	/*
    487 	 * defer bootstrap allocation to MD code (it may want to allocate
    488 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    489 	 * virtual_space_start/virtual_space_end if necessary.
    490 	 */
    491 
    492 	addr = pmap_steal_memory(size, &virtual_space_start,
    493 	    &virtual_space_end);
    494 
    495 	return(addr);
    496 
    497 #else /* !PMAP_STEAL_MEMORY */
    498 
    499 	/*
    500 	 * allocate virtual memory for this request
    501 	 */
    502 	if (virtual_space_start == virtual_space_end ||
    503 	    (virtual_space_end - virtual_space_start) < size)
    504 		panic("uvm_pageboot_alloc: out of virtual space");
    505 
    506 	addr = virtual_space_start;
    507 
    508 #ifdef PMAP_GROWKERNEL
    509 	/*
    510 	 * If the kernel pmap can't map the requested space,
    511 	 * then allocate more resources for it.
    512 	 */
    513 	if (uvm_maxkaddr < (addr + size)) {
    514 		uvm_maxkaddr = pmap_growkernel(addr + size);
    515 		if (uvm_maxkaddr < (addr + size))
    516 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    517 	}
    518 #endif
    519 
    520 	virtual_space_start += size;
    521 
    522 	/*
    523 	 * allocate and mapin physical pages to back new virtual pages
    524 	 */
    525 
    526 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    527 	    vaddr += PAGE_SIZE) {
    528 
    529 		if (!uvm_page_physget(&paddr))
    530 			panic("uvm_pageboot_alloc: out of memory");
    531 
    532 		/*
    533 		 * Note this memory is no longer managed, so using
    534 		 * pmap_kenter is safe.
    535 		 */
    536 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    537 	}
    538 	pmap_update(pmap_kernel());
    539 	return(addr);
    540 #endif	/* PMAP_STEAL_MEMORY */
    541 }
    542 
    543 #if !defined(PMAP_STEAL_MEMORY)
    544 /*
    545  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    546  *
    547  * => attempt to allocate it off the end of a segment in which the "avail"
    548  *    values match the start/end values.   if we can't do that, then we
    549  *    will advance both values (making them equal, and removing some
    550  *    vm_page structures from the non-avail area).
    551  * => return false if out of memory.
    552  */
    553 
    554 /* subroutine: try to allocate from memory chunks on the specified freelist */
    555 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    556 
    557 static boolean_t
    558 uvm_page_physget_freelist(paddrp, freelist)
    559 	paddr_t *paddrp;
    560 	int freelist;
    561 {
    562 	int lcv, x;
    563 
    564 	/* pass 1: try allocating from a matching end */
    565 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    566 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    567 #else
    568 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    569 #endif
    570 	{
    571 
    572 		if (uvm.page_init_done == TRUE)
    573 			panic("uvm_page_physget: called _after_ bootstrap");
    574 
    575 		if (vm_physmem[lcv].free_list != freelist)
    576 			continue;
    577 
    578 		/* try from front */
    579 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    580 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    581 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    582 			vm_physmem[lcv].avail_start++;
    583 			vm_physmem[lcv].start++;
    584 			/* nothing left?   nuke it */
    585 			if (vm_physmem[lcv].avail_start ==
    586 			    vm_physmem[lcv].end) {
    587 				if (vm_nphysseg == 1)
    588 				    panic("uvm_page_physget: out of memory!");
    589 				vm_nphysseg--;
    590 				for (x = lcv ; x < vm_nphysseg ; x++)
    591 					/* structure copy */
    592 					vm_physmem[x] = vm_physmem[x+1];
    593 			}
    594 			return (TRUE);
    595 		}
    596 
    597 		/* try from rear */
    598 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    599 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    600 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    601 			vm_physmem[lcv].avail_end--;
    602 			vm_physmem[lcv].end--;
    603 			/* nothing left?   nuke it */
    604 			if (vm_physmem[lcv].avail_end ==
    605 			    vm_physmem[lcv].start) {
    606 				if (vm_nphysseg == 1)
    607 				    panic("uvm_page_physget: out of memory!");
    608 				vm_nphysseg--;
    609 				for (x = lcv ; x < vm_nphysseg ; x++)
    610 					/* structure copy */
    611 					vm_physmem[x] = vm_physmem[x+1];
    612 			}
    613 			return (TRUE);
    614 		}
    615 	}
    616 
    617 	/* pass2: forget about matching ends, just allocate something */
    618 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    619 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    620 #else
    621 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    622 #endif
    623 	{
    624 
    625 		/* any room in this bank? */
    626 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    627 			continue;  /* nope */
    628 
    629 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    630 		vm_physmem[lcv].avail_start++;
    631 		/* truncate! */
    632 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    633 
    634 		/* nothing left?   nuke it */
    635 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    636 			if (vm_nphysseg == 1)
    637 				panic("uvm_page_physget: out of memory!");
    638 			vm_nphysseg--;
    639 			for (x = lcv ; x < vm_nphysseg ; x++)
    640 				/* structure copy */
    641 				vm_physmem[x] = vm_physmem[x+1];
    642 		}
    643 		return (TRUE);
    644 	}
    645 
    646 	return (FALSE);        /* whoops! */
    647 }
    648 
    649 boolean_t
    650 uvm_page_physget(paddrp)
    651 	paddr_t *paddrp;
    652 {
    653 	int i;
    654 
    655 	/* try in the order of freelist preference */
    656 	for (i = 0; i < VM_NFREELIST; i++)
    657 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    658 			return (TRUE);
    659 	return (FALSE);
    660 }
    661 #endif /* PMAP_STEAL_MEMORY */
    662 
    663 /*
    664  * uvm_page_physload: load physical memory into VM system
    665  *
    666  * => all args are PFs
    667  * => all pages in start/end get vm_page structures
    668  * => areas marked by avail_start/avail_end get added to the free page pool
    669  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    670  */
    671 
    672 void
    673 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    674 	paddr_t start, end, avail_start, avail_end;
    675 	int free_list;
    676 {
    677 	int preload, lcv;
    678 	psize_t npages;
    679 	struct vm_page *pgs;
    680 	struct vm_physseg *ps;
    681 
    682 	if (uvmexp.pagesize == 0)
    683 		panic("uvm_page_physload: page size not set!");
    684 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    685 		panic("uvm_page_physload: bad free list %d", free_list);
    686 	if (start >= end)
    687 		panic("uvm_page_physload: start >= end");
    688 
    689 	/*
    690 	 * do we have room?
    691 	 */
    692 
    693 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    694 		printf("uvm_page_physload: unable to load physical memory "
    695 		    "segment\n");
    696 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    697 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    698 		printf("\tincrease VM_PHYSSEG_MAX\n");
    699 		return;
    700 	}
    701 
    702 	/*
    703 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    704 	 * called yet, so malloc is not available).
    705 	 */
    706 
    707 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    708 		if (vm_physmem[lcv].pgs)
    709 			break;
    710 	}
    711 	preload = (lcv == vm_nphysseg);
    712 
    713 	/*
    714 	 * if VM is already running, attempt to malloc() vm_page structures
    715 	 */
    716 
    717 	if (!preload) {
    718 #if defined(VM_PHYSSEG_NOADD)
    719 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    720 #else
    721 		/* XXXCDC: need some sort of lockout for this case */
    722 		paddr_t paddr;
    723 		npages = end - start;  /* # of pages */
    724 		pgs = malloc(sizeof(struct vm_page) * npages,
    725 		    M_VMPAGE, M_NOWAIT);
    726 		if (pgs == NULL) {
    727 			printf("uvm_page_physload: can not malloc vm_page "
    728 			    "structs for segment\n");
    729 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    730 			return;
    731 		}
    732 		/* zero data, init phys_addr and free_list, and free pages */
    733 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    734 		for (lcv = 0, paddr = ptoa(start) ;
    735 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    736 			pgs[lcv].phys_addr = paddr;
    737 			pgs[lcv].free_list = free_list;
    738 			if (atop(paddr) >= avail_start &&
    739 			    atop(paddr) <= avail_end)
    740 				uvm_pagefree(&pgs[lcv]);
    741 		}
    742 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    743 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    744 #endif
    745 	} else {
    746 		pgs = NULL;
    747 		npages = 0;
    748 	}
    749 
    750 	/*
    751 	 * now insert us in the proper place in vm_physmem[]
    752 	 */
    753 
    754 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    755 	/* random: put it at the end (easy!) */
    756 	ps = &vm_physmem[vm_nphysseg];
    757 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    758 	{
    759 		int x;
    760 		/* sort by address for binary search */
    761 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    762 			if (start < vm_physmem[lcv].start)
    763 				break;
    764 		ps = &vm_physmem[lcv];
    765 		/* move back other entries, if necessary ... */
    766 		for (x = vm_nphysseg ; x > lcv ; x--)
    767 			/* structure copy */
    768 			vm_physmem[x] = vm_physmem[x - 1];
    769 	}
    770 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    771 	{
    772 		int x;
    773 		/* sort by largest segment first */
    774 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    775 			if ((end - start) >
    776 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    777 				break;
    778 		ps = &vm_physmem[lcv];
    779 		/* move back other entries, if necessary ... */
    780 		for (x = vm_nphysseg ; x > lcv ; x--)
    781 			/* structure copy */
    782 			vm_physmem[x] = vm_physmem[x - 1];
    783 	}
    784 #else
    785 	panic("uvm_page_physload: unknown physseg strategy selected!");
    786 #endif
    787 
    788 	ps->start = start;
    789 	ps->end = end;
    790 	ps->avail_start = avail_start;
    791 	ps->avail_end = avail_end;
    792 	if (preload) {
    793 		ps->pgs = NULL;
    794 	} else {
    795 		ps->pgs = pgs;
    796 		ps->lastpg = pgs + npages - 1;
    797 	}
    798 	ps->free_list = free_list;
    799 	vm_nphysseg++;
    800 
    801 	if (!preload)
    802 		uvm_page_rehash();
    803 }
    804 
    805 /*
    806  * uvm_page_rehash: reallocate hash table based on number of free pages.
    807  */
    808 
    809 void
    810 uvm_page_rehash()
    811 {
    812 	int freepages, lcv, bucketcount, oldcount;
    813 	struct pglist *newbuckets, *oldbuckets;
    814 	struct vm_page *pg;
    815 	size_t newsize, oldsize;
    816 
    817 	/*
    818 	 * compute number of pages that can go in the free pool
    819 	 */
    820 
    821 	freepages = 0;
    822 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    823 		freepages +=
    824 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    825 
    826 	/*
    827 	 * compute number of buckets needed for this number of pages
    828 	 */
    829 
    830 	bucketcount = 1;
    831 	while (bucketcount < freepages)
    832 		bucketcount = bucketcount * 2;
    833 
    834 	/*
    835 	 * compute the size of the current table and new table.
    836 	 */
    837 
    838 	oldbuckets = uvm.page_hash;
    839 	oldcount = uvm.page_nhash;
    840 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    841 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    842 
    843 	/*
    844 	 * allocate the new buckets
    845 	 */
    846 
    847 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    848 	if (newbuckets == NULL) {
    849 		printf("uvm_page_physrehash: WARNING: could not grow page "
    850 		    "hash table\n");
    851 		return;
    852 	}
    853 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    854 		TAILQ_INIT(&newbuckets[lcv]);
    855 
    856 	/*
    857 	 * now replace the old buckets with the new ones and rehash everything
    858 	 */
    859 
    860 	simple_lock(&uvm.hashlock);
    861 	uvm.page_hash = newbuckets;
    862 	uvm.page_nhash = bucketcount;
    863 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    864 
    865 	/* ... and rehash */
    866 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    867 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    868 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    869 			TAILQ_INSERT_TAIL(
    870 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    871 			  pg, hashq);
    872 		}
    873 	}
    874 	simple_unlock(&uvm.hashlock);
    875 
    876 	/*
    877 	 * free old bucket array if is not the boot-time table
    878 	 */
    879 
    880 	if (oldbuckets != &uvm_bootbucket)
    881 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    882 }
    883 
    884 /*
    885  * uvm_page_recolor: Recolor the pages if the new bucket count is
    886  * larger than the old one.
    887  */
    888 
    889 void
    890 uvm_page_recolor(int newncolors)
    891 {
    892 	struct pgflbucket *bucketarray, *oldbucketarray;
    893 	struct pgfreelist pgfl;
    894 	struct vm_page *pg;
    895 	vsize_t bucketcount;
    896 	int s, lcv, color, i, ocolors;
    897 
    898 	if (newncolors <= uvmexp.ncolors)
    899 		return;
    900 
    901 	if (uvm.page_init_done == FALSE) {
    902 		uvmexp.ncolors = newncolors;
    903 		return;
    904 	}
    905 
    906 	bucketcount = newncolors * VM_NFREELIST;
    907 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    908 	    M_VMPAGE, M_NOWAIT);
    909 	if (bucketarray == NULL) {
    910 		printf("WARNING: unable to allocate %ld page color buckets\n",
    911 		    (long) bucketcount);
    912 		return;
    913 	}
    914 
    915 	s = uvm_lock_fpageq();
    916 
    917 	/* Make sure we should still do this. */
    918 	if (newncolors <= uvmexp.ncolors) {
    919 		uvm_unlock_fpageq(s);
    920 		free(bucketarray, M_VMPAGE);
    921 		return;
    922 	}
    923 
    924 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    925 	ocolors = uvmexp.ncolors;
    926 
    927 	uvmexp.ncolors = newncolors;
    928 	uvmexp.colormask = uvmexp.ncolors - 1;
    929 
    930 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    931 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    932 		uvm_page_init_buckets(&pgfl);
    933 		for (color = 0; color < ocolors; color++) {
    934 			for (i = 0; i < PGFL_NQUEUES; i++) {
    935 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    936 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    937 				    != NULL) {
    938 					TAILQ_REMOVE(&uvm.page_free[
    939 					    lcv].pgfl_buckets[
    940 					    color].pgfl_queues[i], pg, pageq);
    941 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    942 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    943 					    i], pg, pageq);
    944 				}
    945 			}
    946 		}
    947 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    948 	}
    949 
    950 	if (have_recolored_pages) {
    951 		uvm_unlock_fpageq(s);
    952 		free(oldbucketarray, M_VMPAGE);
    953 		return;
    954 	}
    955 
    956 	have_recolored_pages = TRUE;
    957 	uvm_unlock_fpageq(s);
    958 }
    959 
    960 /*
    961  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    962  */
    963 
    964 static __inline struct vm_page *
    965 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    966     int *trycolorp)
    967 {
    968 	struct pglist *freeq;
    969 	struct vm_page *pg;
    970 	int color, trycolor = *trycolorp;
    971 
    972 	color = trycolor;
    973 	do {
    974 		if ((pg = TAILQ_FIRST((freeq =
    975 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    976 			goto gotit;
    977 		if ((pg = TAILQ_FIRST((freeq =
    978 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    979 			goto gotit;
    980 		color = (color + 1) & uvmexp.colormask;
    981 	} while (color != trycolor);
    982 
    983 	return (NULL);
    984 
    985  gotit:
    986 	TAILQ_REMOVE(freeq, pg, pageq);
    987 	uvmexp.free--;
    988 
    989 	/* update zero'd page count */
    990 	if (pg->flags & PG_ZERO)
    991 		uvmexp.zeropages--;
    992 
    993 	if (color == trycolor)
    994 		uvmexp.colorhit++;
    995 	else {
    996 		uvmexp.colormiss++;
    997 		*trycolorp = color;
    998 	}
    999 
   1000 	return (pg);
   1001 }
   1002 
   1003 /*
   1004  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1005  *
   1006  * => return null if no pages free
   1007  * => wake up pagedaemon if number of free pages drops below low water mark
   1008  * => if obj != NULL, obj must be locked (to put in hash)
   1009  * => if anon != NULL, anon must be locked (to put in anon)
   1010  * => only one of obj or anon can be non-null
   1011  * => caller must activate/deactivate page if it is not wired.
   1012  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1013  * => policy decision: it is more important to pull a page off of the
   1014  *	appropriate priority free list than it is to get a zero'd or
   1015  *	unknown contents page.  This is because we live with the
   1016  *	consequences of a bad free list decision for the entire
   1017  *	lifetime of the page, e.g. if the page comes from memory that
   1018  *	is slower to access.
   1019  */
   1020 
   1021 struct vm_page *
   1022 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1023 	struct uvm_object *obj;
   1024 	voff_t off;
   1025 	int flags;
   1026 	struct vm_anon *anon;
   1027 	int strat, free_list;
   1028 {
   1029 	int lcv, try1, try2, s, zeroit = 0, color;
   1030 	struct vm_page *pg;
   1031 	boolean_t use_reserve;
   1032 
   1033 	KASSERT(obj == NULL || anon == NULL);
   1034 	KASSERT(off == trunc_page(off));
   1035 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1036 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1037 
   1038 	s = uvm_lock_fpageq();
   1039 
   1040 	/*
   1041 	 * This implements a global round-robin page coloring
   1042 	 * algorithm.
   1043 	 *
   1044 	 * XXXJRT: Should we make the `nextcolor' per-cpu?
   1045 	 * XXXJRT: What about virtually-indexed caches?
   1046 	 */
   1047 
   1048 	color = uvm.page_free_nextcolor;
   1049 
   1050 	/*
   1051 	 * check to see if we need to generate some free pages waking
   1052 	 * the pagedaemon.
   1053 	 */
   1054 
   1055 	UVM_KICK_PDAEMON();
   1056 
   1057 	/*
   1058 	 * fail if any of these conditions is true:
   1059 	 * [1]  there really are no free pages, or
   1060 	 * [2]  only kernel "reserved" pages remain and
   1061 	 *        the page isn't being allocated to a kernel object.
   1062 	 * [3]  only pagedaemon "reserved" pages remain and
   1063 	 *        the requestor isn't the pagedaemon.
   1064 	 */
   1065 
   1066 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1067 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1068 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1069 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1070 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1071 		goto fail;
   1072 
   1073 #if PGFL_NQUEUES != 2
   1074 #error uvm_pagealloc_strat needs to be updated
   1075 #endif
   1076 
   1077 	/*
   1078 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1079 	 * we try the UNKNOWN queue first.
   1080 	 */
   1081 	if (flags & UVM_PGA_ZERO) {
   1082 		try1 = PGFL_ZEROS;
   1083 		try2 = PGFL_UNKNOWN;
   1084 	} else {
   1085 		try1 = PGFL_UNKNOWN;
   1086 		try2 = PGFL_ZEROS;
   1087 	}
   1088 
   1089  again:
   1090 	switch (strat) {
   1091 	case UVM_PGA_STRAT_NORMAL:
   1092 		/* Check all freelists in descending priority order. */
   1093 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1094 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1095 			    try1, try2, &color);
   1096 			if (pg != NULL)
   1097 				goto gotit;
   1098 		}
   1099 
   1100 		/* No pages free! */
   1101 		goto fail;
   1102 
   1103 	case UVM_PGA_STRAT_ONLY:
   1104 	case UVM_PGA_STRAT_FALLBACK:
   1105 		/* Attempt to allocate from the specified free list. */
   1106 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1107 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1108 		    try1, try2, &color);
   1109 		if (pg != NULL)
   1110 			goto gotit;
   1111 
   1112 		/* Fall back, if possible. */
   1113 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1114 			strat = UVM_PGA_STRAT_NORMAL;
   1115 			goto again;
   1116 		}
   1117 
   1118 		/* No pages free! */
   1119 		goto fail;
   1120 
   1121 	default:
   1122 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1123 		/* NOTREACHED */
   1124 	}
   1125 
   1126  gotit:
   1127 	/*
   1128 	 * We now know which color we actually allocated from; set
   1129 	 * the next color accordingly.
   1130 	 */
   1131 
   1132 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1133 
   1134 	/*
   1135 	 * update allocation statistics and remember if we have to
   1136 	 * zero the page
   1137 	 */
   1138 
   1139 	if (flags & UVM_PGA_ZERO) {
   1140 		if (pg->flags & PG_ZERO) {
   1141 			uvmexp.pga_zerohit++;
   1142 			zeroit = 0;
   1143 		} else {
   1144 			uvmexp.pga_zeromiss++;
   1145 			zeroit = 1;
   1146 		}
   1147 	}
   1148 	uvm_unlock_fpageq(s);
   1149 
   1150 	pg->offset = off;
   1151 	pg->uobject = obj;
   1152 	pg->uanon = anon;
   1153 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1154 	if (anon) {
   1155 		anon->u.an_page = pg;
   1156 		pg->pqflags = PQ_ANON;
   1157 		uvmexp.anonpages++;
   1158 	} else {
   1159 		if (obj) {
   1160 			uvm_pageinsert(pg);
   1161 		}
   1162 		pg->pqflags = 0;
   1163 	}
   1164 #if defined(UVM_PAGE_TRKOWN)
   1165 	pg->owner_tag = NULL;
   1166 #endif
   1167 	UVM_PAGE_OWN(pg, "new alloc");
   1168 
   1169 	if (flags & UVM_PGA_ZERO) {
   1170 		/*
   1171 		 * A zero'd page is not clean.  If we got a page not already
   1172 		 * zero'd, then we have to zero it ourselves.
   1173 		 */
   1174 		pg->flags &= ~PG_CLEAN;
   1175 		if (zeroit)
   1176 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1177 	}
   1178 
   1179 	return(pg);
   1180 
   1181  fail:
   1182 	uvm_unlock_fpageq(s);
   1183 	return (NULL);
   1184 }
   1185 
   1186 /*
   1187  * uvm_pagerealloc: reallocate a page from one object to another
   1188  *
   1189  * => both objects must be locked
   1190  */
   1191 
   1192 void
   1193 uvm_pagerealloc(pg, newobj, newoff)
   1194 	struct vm_page *pg;
   1195 	struct uvm_object *newobj;
   1196 	voff_t newoff;
   1197 {
   1198 	/*
   1199 	 * remove it from the old object
   1200 	 */
   1201 
   1202 	if (pg->uobject) {
   1203 		uvm_pageremove(pg);
   1204 	}
   1205 
   1206 	/*
   1207 	 * put it in the new object
   1208 	 */
   1209 
   1210 	if (newobj) {
   1211 		pg->uobject = newobj;
   1212 		pg->offset = newoff;
   1213 		uvm_pageinsert(pg);
   1214 	}
   1215 }
   1216 
   1217 #ifdef DEBUG
   1218 /*
   1219  * check if page is zero-filled
   1220  *
   1221  *  - called with free page queue lock held.
   1222  */
   1223 void
   1224 uvm_pagezerocheck(struct vm_page *pg)
   1225 {
   1226 	int *p, *ep;
   1227 
   1228 	KASSERT(uvm_zerocheckkva != 0);
   1229 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1230 
   1231 	/*
   1232 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1233 	 * uvm page allocator.
   1234 	 *
   1235 	 * it might be better to have "cpu-local temporary map" pmap interface.
   1236 	 */
   1237 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1238 	p = (int *)uvm_zerocheckkva;
   1239 	ep = (int *)((char *)p + PAGE_SIZE);
   1240 	while (p < ep) {
   1241 		if (*p != 0)
   1242 			panic("PG_ZERO page isn't zero-filled");
   1243 		p++;
   1244 	}
   1245 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1246 }
   1247 #endif /* DEBUG */
   1248 
   1249 /*
   1250  * uvm_pagefree: free page
   1251  *
   1252  * => erase page's identity (i.e. remove from hash/object)
   1253  * => put page on free list
   1254  * => caller must lock owning object (either anon or uvm_object)
   1255  * => caller must lock page queues
   1256  * => assumes all valid mappings of pg are gone
   1257  */
   1258 
   1259 void
   1260 uvm_pagefree(pg)
   1261 	struct vm_page *pg;
   1262 {
   1263 	int s;
   1264 	struct pglist *pgfl;
   1265 	boolean_t iszero;
   1266 
   1267 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1268 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1269 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1270 	LOCK_ASSERT(pg->uobject == NULL ||
   1271 		    simple_lock_held(&pg->uobject->vmobjlock));
   1272 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1273 		    simple_lock_held(&pg->uanon->an_lock));
   1274 
   1275 #ifdef DEBUG
   1276 	if (pg->uobject == (void *)0xdeadbeef &&
   1277 	    pg->uanon == (void *)0xdeadbeef) {
   1278 		panic("uvm_pagefree: freeing free page %p", pg);
   1279 	}
   1280 #endif /* DEBUG */
   1281 
   1282 	/*
   1283 	 * if the page is loaned, resolve the loan instead of freeing.
   1284 	 */
   1285 
   1286 	if (pg->loan_count) {
   1287 		KASSERT(pg->wire_count == 0);
   1288 
   1289 		/*
   1290 		 * if the page is owned by an anon then we just want to
   1291 		 * drop anon ownership.  the kernel will free the page when
   1292 		 * it is done with it.  if the page is owned by an object,
   1293 		 * remove it from the object and mark it dirty for the benefit
   1294 		 * of possible anon owners.
   1295 		 *
   1296 		 * regardless of previous ownership, wakeup any waiters,
   1297 		 * unbusy the page, and we're done.
   1298 		 */
   1299 
   1300 		if (pg->uobject != NULL) {
   1301 			uvm_pageremove(pg);
   1302 			pg->flags &= ~PG_CLEAN;
   1303 		} else if (pg->uanon != NULL) {
   1304 			if ((pg->pqflags & PQ_ANON) == 0) {
   1305 				pg->loan_count--;
   1306 			} else {
   1307 				pg->pqflags &= ~PQ_ANON;
   1308 			}
   1309 			pg->uanon = NULL;
   1310 		}
   1311 		if (pg->flags & PG_WANTED) {
   1312 			wakeup(pg);
   1313 		}
   1314 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1315 #ifdef UVM_PAGE_TRKOWN
   1316 		pg->owner_tag = NULL;
   1317 #endif
   1318 		if (pg->loan_count) {
   1319 			uvm_pagedequeue(pg);
   1320 			return;
   1321 		}
   1322 	}
   1323 
   1324 	/*
   1325 	 * remove page from its object or anon.
   1326 	 */
   1327 
   1328 	if (pg->uobject != NULL) {
   1329 		uvm_pageremove(pg);
   1330 	} else if (pg->uanon != NULL) {
   1331 		pg->uanon->u.an_page = NULL;
   1332 		uvmexp.anonpages--;
   1333 	}
   1334 
   1335 	/*
   1336 	 * now remove the page from the queues.
   1337 	 */
   1338 
   1339 	uvm_pagedequeue(pg);
   1340 
   1341 	/*
   1342 	 * if the page was wired, unwire it now.
   1343 	 */
   1344 
   1345 	if (pg->wire_count) {
   1346 		pg->wire_count = 0;
   1347 		uvmexp.wired--;
   1348 	}
   1349 
   1350 	/*
   1351 	 * and put on free queue
   1352 	 */
   1353 
   1354 	iszero = (pg->flags & PG_ZERO);
   1355 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1356 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1357 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1358 
   1359 	pg->pqflags = PQ_FREE;
   1360 #ifdef DEBUG
   1361 	pg->uobject = (void *)0xdeadbeef;
   1362 	pg->offset = 0xdeadbeef;
   1363 	pg->uanon = (void *)0xdeadbeef;
   1364 #endif
   1365 
   1366 	s = uvm_lock_fpageq();
   1367 
   1368 #ifdef DEBUG
   1369 	if (iszero)
   1370 		uvm_pagezerocheck(pg);
   1371 #endif /* DEBUG */
   1372 
   1373 	TAILQ_INSERT_TAIL(pgfl, pg, pageq);
   1374 	uvmexp.free++;
   1375 	if (iszero)
   1376 		uvmexp.zeropages++;
   1377 
   1378 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1379 		uvm.page_idle_zero = vm_page_zero_enable;
   1380 
   1381 	uvm_unlock_fpageq(s);
   1382 }
   1383 
   1384 /*
   1385  * uvm_page_unbusy: unbusy an array of pages.
   1386  *
   1387  * => pages must either all belong to the same object, or all belong to anons.
   1388  * => if pages are object-owned, object must be locked.
   1389  * => if pages are anon-owned, anons must be locked.
   1390  * => caller must lock page queues if pages may be released.
   1391  */
   1392 
   1393 void
   1394 uvm_page_unbusy(pgs, npgs)
   1395 	struct vm_page **pgs;
   1396 	int npgs;
   1397 {
   1398 	struct vm_page *pg;
   1399 	int i;
   1400 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1401 
   1402 	for (i = 0; i < npgs; i++) {
   1403 		pg = pgs[i];
   1404 		if (pg == NULL || pg == PGO_DONTCARE) {
   1405 			continue;
   1406 		}
   1407 		if (pg->flags & PG_WANTED) {
   1408 			wakeup(pg);
   1409 		}
   1410 		if (pg->flags & PG_RELEASED) {
   1411 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1412 			pg->flags &= ~PG_RELEASED;
   1413 			uvm_pagefree(pg);
   1414 		} else {
   1415 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1416 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1417 			UVM_PAGE_OWN(pg, NULL);
   1418 		}
   1419 	}
   1420 }
   1421 
   1422 #if defined(UVM_PAGE_TRKOWN)
   1423 /*
   1424  * uvm_page_own: set or release page ownership
   1425  *
   1426  * => this is a debugging function that keeps track of who sets PG_BUSY
   1427  *	and where they do it.   it can be used to track down problems
   1428  *	such a process setting "PG_BUSY" and never releasing it.
   1429  * => page's object [if any] must be locked
   1430  * => if "tag" is NULL then we are releasing page ownership
   1431  */
   1432 void
   1433 uvm_page_own(pg, tag)
   1434 	struct vm_page *pg;
   1435 	char *tag;
   1436 {
   1437 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1438 
   1439 	/* gain ownership? */
   1440 	if (tag) {
   1441 		if (pg->owner_tag) {
   1442 			printf("uvm_page_own: page %p already owned "
   1443 			    "by proc %d [%s]\n", pg,
   1444 			    pg->owner, pg->owner_tag);
   1445 			panic("uvm_page_own");
   1446 		}
   1447 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1448 		pg->owner_tag = tag;
   1449 		return;
   1450 	}
   1451 
   1452 	/* drop ownership */
   1453 	if (pg->owner_tag == NULL) {
   1454 		printf("uvm_page_own: dropping ownership of an non-owned "
   1455 		    "page (%p)\n", pg);
   1456 		panic("uvm_page_own");
   1457 	}
   1458 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1459 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1460 	    pg->uobject == uvm.kernel_object ||
   1461 	    pg->wire_count > 0 ||
   1462 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1463 	    pg->loan_count > 1);
   1464 	pg->owner_tag = NULL;
   1465 }
   1466 #endif
   1467 
   1468 /*
   1469  * uvm_pageidlezero: zero free pages while the system is idle.
   1470  *
   1471  * => try to complete one color bucket at a time, to reduce our impact
   1472  *	on the CPU cache.
   1473  * => we loop until we either reach the target or whichqs indicates that
   1474  *	there is a process ready to run.
   1475  */
   1476 void
   1477 uvm_pageidlezero()
   1478 {
   1479 	struct vm_page *pg;
   1480 	struct pgfreelist *pgfl;
   1481 	int free_list, s, firstbucket;
   1482 	static int nextbucket;
   1483 
   1484 	s = uvm_lock_fpageq();
   1485 	firstbucket = nextbucket;
   1486 	do {
   1487 		if (sched_whichqs != 0) {
   1488 			uvm_unlock_fpageq(s);
   1489 			return;
   1490 		}
   1491 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1492 			uvm.page_idle_zero = FALSE;
   1493 			uvm_unlock_fpageq(s);
   1494 			return;
   1495 		}
   1496 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1497 			pgfl = &uvm.page_free[free_list];
   1498 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1499 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1500 				if (sched_whichqs != 0) {
   1501 					uvm_unlock_fpageq(s);
   1502 					return;
   1503 				}
   1504 
   1505 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1506 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1507 				    pg, pageq);
   1508 				uvmexp.free--;
   1509 				uvm_unlock_fpageq(s);
   1510 #ifdef PMAP_PAGEIDLEZERO
   1511 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1512 
   1513 					/*
   1514 					 * The machine-dependent code detected
   1515 					 * some reason for us to abort zeroing
   1516 					 * pages, probably because there is a
   1517 					 * process now ready to run.
   1518 					 */
   1519 
   1520 					s = uvm_lock_fpageq();
   1521 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1522 					    nextbucket].pgfl_queues[
   1523 					    PGFL_UNKNOWN], pg, pageq);
   1524 					uvmexp.free++;
   1525 					uvmexp.zeroaborts++;
   1526 					uvm_unlock_fpageq(s);
   1527 					return;
   1528 				}
   1529 #else
   1530 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1531 #endif /* PMAP_PAGEIDLEZERO */
   1532 				pg->flags |= PG_ZERO;
   1533 
   1534 				s = uvm_lock_fpageq();
   1535 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1536 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1537 				    pg, pageq);
   1538 				uvmexp.free++;
   1539 				uvmexp.zeropages++;
   1540 			}
   1541 		}
   1542 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1543 	} while (nextbucket != firstbucket);
   1544 	uvm_unlock_fpageq(s);
   1545 }
   1546