Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.95
      1 /*	$NetBSD: uvm_page.c,v 1.95 2004/02/13 11:36:23 wiz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.95 2004/02/13 11:36:23 wiz Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either CPU caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 #ifdef DEBUG
    145 vaddr_t uvm_zerocheckkva;
    146 #endif /* DEBUG */
    147 
    148 /*
    149  * local prototypes
    150  */
    151 
    152 static void uvm_pageinsert __P((struct vm_page *));
    153 static void uvm_pageremove __P((struct vm_page *));
    154 
    155 /*
    156  * inline functions
    157  */
    158 
    159 /*
    160  * uvm_pageinsert: insert a page in the object and the hash table
    161  *
    162  * => caller must lock object
    163  * => caller must lock page queues
    164  * => call should have already set pg's object and offset pointers
    165  *    and bumped the version counter
    166  */
    167 
    168 __inline static void
    169 uvm_pageinsert(pg)
    170 	struct vm_page *pg;
    171 {
    172 	struct pglist *buck;
    173 	struct uvm_object *uobj = pg->uobject;
    174 
    175 	KASSERT((pg->flags & PG_TABLED) == 0);
    176 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    177 	simple_lock(&uvm.hashlock);
    178 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    179 	simple_unlock(&uvm.hashlock);
    180 
    181 	if (UVM_OBJ_IS_VNODE(uobj)) {
    182 		if (uobj->uo_npages == 0) {
    183 			struct vnode *vp = (struct vnode *)uobj;
    184 
    185 			vholdl(vp);
    186 		}
    187 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    188 			uvmexp.execpages++;
    189 		} else {
    190 			uvmexp.filepages++;
    191 		}
    192 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    193 		uvmexp.anonpages++;
    194 	}
    195 
    196 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    197 	pg->flags |= PG_TABLED;
    198 	uobj->uo_npages++;
    199 }
    200 
    201 /*
    202  * uvm_page_remove: remove page from object and hash
    203  *
    204  * => caller must lock object
    205  * => caller must lock page queues
    206  */
    207 
    208 static __inline void
    209 uvm_pageremove(pg)
    210 	struct vm_page *pg;
    211 {
    212 	struct pglist *buck;
    213 	struct uvm_object *uobj = pg->uobject;
    214 
    215 	KASSERT(pg->flags & PG_TABLED);
    216 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    217 	simple_lock(&uvm.hashlock);
    218 	TAILQ_REMOVE(buck, pg, hashq);
    219 	simple_unlock(&uvm.hashlock);
    220 
    221 	if (UVM_OBJ_IS_VNODE(uobj)) {
    222 		if (uobj->uo_npages == 1) {
    223 			struct vnode *vp = (struct vnode *)uobj;
    224 
    225 			holdrelel(vp);
    226 		}
    227 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    228 			uvmexp.execpages--;
    229 		} else {
    230 			uvmexp.filepages--;
    231 		}
    232 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    233 		uvmexp.anonpages--;
    234 	}
    235 
    236 	/* object should be locked */
    237 	uobj->uo_npages--;
    238 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    239 	pg->flags &= ~PG_TABLED;
    240 	pg->uobject = NULL;
    241 }
    242 
    243 static void
    244 uvm_page_init_buckets(struct pgfreelist *pgfl)
    245 {
    246 	int color, i;
    247 
    248 	for (color = 0; color < uvmexp.ncolors; color++) {
    249 		for (i = 0; i < PGFL_NQUEUES; i++) {
    250 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    251 		}
    252 	}
    253 }
    254 
    255 /*
    256  * uvm_page_init: init the page system.   called from uvm_init().
    257  *
    258  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    259  */
    260 
    261 void
    262 uvm_page_init(kvm_startp, kvm_endp)
    263 	vaddr_t *kvm_startp, *kvm_endp;
    264 {
    265 	vsize_t freepages, pagecount, bucketcount, n;
    266 	struct pgflbucket *bucketarray;
    267 	struct vm_page *pagearray;
    268 	int lcv;
    269 	u_int i;
    270 	paddr_t paddr;
    271 
    272 	/*
    273 	 * init the page queues and page queue locks, except the free
    274 	 * list; we allocate that later (with the initial vm_page
    275 	 * structures).
    276 	 */
    277 
    278 	TAILQ_INIT(&uvm.page_active);
    279 	TAILQ_INIT(&uvm.page_inactive);
    280 	simple_lock_init(&uvm.pageqlock);
    281 	simple_lock_init(&uvm.fpageqlock);
    282 
    283 	/*
    284 	 * init the <obj,offset> => <page> hash table.  for now
    285 	 * we just have one bucket (the bootstrap bucket).  later on we
    286 	 * will allocate new buckets as we dynamically resize the hash table.
    287 	 */
    288 
    289 	uvm.page_nhash = 1;			/* 1 bucket */
    290 	uvm.page_hashmask = 0;			/* mask for hash function */
    291 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    292 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    293 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    294 
    295 	/*
    296 	 * allocate vm_page structures.
    297 	 */
    298 
    299 	/*
    300 	 * sanity check:
    301 	 * before calling this function the MD code is expected to register
    302 	 * some free RAM with the uvm_page_physload() function.   our job
    303 	 * now is to allocate vm_page structures for this memory.
    304 	 */
    305 
    306 	if (vm_nphysseg == 0)
    307 		panic("uvm_page_bootstrap: no memory pre-allocated");
    308 
    309 	/*
    310 	 * first calculate the number of free pages...
    311 	 *
    312 	 * note that we use start/end rather than avail_start/avail_end.
    313 	 * this allows us to allocate extra vm_page structures in case we
    314 	 * want to return some memory to the pool after booting.
    315 	 */
    316 
    317 	freepages = 0;
    318 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    319 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    320 
    321 	/*
    322 	 * Let MD code initialize the number of colors, or default
    323 	 * to 1 color if MD code doesn't care.
    324 	 */
    325 	if (uvmexp.ncolors == 0)
    326 		uvmexp.ncolors = 1;
    327 	uvmexp.colormask = uvmexp.ncolors - 1;
    328 
    329 	/*
    330 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    331 	 * use.   for each page of memory we use we need a vm_page structure.
    332 	 * thus, the total number of pages we can use is the total size of
    333 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    334 	 * structure.   we add one to freepages as a fudge factor to avoid
    335 	 * truncation errors (since we can only allocate in terms of whole
    336 	 * pages).
    337 	 */
    338 
    339 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    340 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    341 	    (PAGE_SIZE + sizeof(struct vm_page));
    342 
    343 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    344 	    sizeof(struct pgflbucket)) + (pagecount *
    345 	    sizeof(struct vm_page)));
    346 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    347 
    348 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    349 		uvm.page_free[lcv].pgfl_buckets =
    350 		    (bucketarray + (lcv * uvmexp.ncolors));
    351 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    352 	}
    353 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    354 
    355 	/*
    356 	 * init the vm_page structures and put them in the correct place.
    357 	 */
    358 
    359 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    360 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    361 
    362 		/* set up page array pointers */
    363 		vm_physmem[lcv].pgs = pagearray;
    364 		pagearray += n;
    365 		pagecount -= n;
    366 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    367 
    368 		/* init and free vm_pages (we've already zeroed them) */
    369 		paddr = ptoa(vm_physmem[lcv].start);
    370 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    371 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    372 #ifdef __HAVE_VM_PAGE_MD
    373 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    374 #endif
    375 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    376 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    377 				uvmexp.npages++;
    378 				/* add page to free pool */
    379 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    380 			}
    381 		}
    382 	}
    383 
    384 	/*
    385 	 * pass up the values of virtual_space_start and
    386 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    387 	 * layers of the VM.
    388 	 */
    389 
    390 	*kvm_startp = round_page(virtual_space_start);
    391 	*kvm_endp = trunc_page(virtual_space_end);
    392 #ifdef DEBUG
    393 	/*
    394 	 * steal kva for uvm_pagezerocheck().
    395 	 */
    396 	uvm_zerocheckkva = *kvm_startp;
    397 	*kvm_startp += PAGE_SIZE;
    398 #endif /* DEBUG */
    399 
    400 	/*
    401 	 * init locks for kernel threads
    402 	 */
    403 
    404 	simple_lock_init(&uvm.pagedaemon_lock);
    405 	simple_lock_init(&uvm.aiodoned_lock);
    406 
    407 	/*
    408 	 * init various thresholds.
    409 	 */
    410 
    411 	uvmexp.reserve_pagedaemon = 1;
    412 	uvmexp.reserve_kernel = 5;
    413 	uvmexp.anonminpct = 10;
    414 	uvmexp.fileminpct = 10;
    415 	uvmexp.execminpct = 5;
    416 	uvmexp.anonmaxpct = 80;
    417 	uvmexp.filemaxpct = 50;
    418 	uvmexp.execmaxpct = 30;
    419 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    420 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    421 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    422 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    423 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    424 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    425 
    426 	/*
    427 	 * determine if we should zero pages in the idle loop.
    428 	 */
    429 
    430 	uvm.page_idle_zero = vm_page_zero_enable;
    431 
    432 	/*
    433 	 * done!
    434 	 */
    435 
    436 	uvm.page_init_done = TRUE;
    437 }
    438 
    439 /*
    440  * uvm_setpagesize: set the page size
    441  *
    442  * => sets page_shift and page_mask from uvmexp.pagesize.
    443  */
    444 
    445 void
    446 uvm_setpagesize()
    447 {
    448 
    449 	/*
    450 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    451 	 * to be a constant (indicated by being a non-zero value).
    452 	 */
    453 	if (uvmexp.pagesize == 0) {
    454 		if (PAGE_SIZE == 0)
    455 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    456 		uvmexp.pagesize = PAGE_SIZE;
    457 	}
    458 	uvmexp.pagemask = uvmexp.pagesize - 1;
    459 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    460 		panic("uvm_setpagesize: page size not a power of two");
    461 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    462 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    463 			break;
    464 }
    465 
    466 /*
    467  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    468  */
    469 
    470 vaddr_t
    471 uvm_pageboot_alloc(size)
    472 	vsize_t size;
    473 {
    474 	static boolean_t initialized = FALSE;
    475 	vaddr_t addr;
    476 #if !defined(PMAP_STEAL_MEMORY)
    477 	vaddr_t vaddr;
    478 	paddr_t paddr;
    479 #endif
    480 
    481 	/*
    482 	 * on first call to this function, initialize ourselves.
    483 	 */
    484 	if (initialized == FALSE) {
    485 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    486 
    487 		/* round it the way we like it */
    488 		virtual_space_start = round_page(virtual_space_start);
    489 		virtual_space_end = trunc_page(virtual_space_end);
    490 
    491 		initialized = TRUE;
    492 	}
    493 
    494 	/* round to page size */
    495 	size = round_page(size);
    496 
    497 #if defined(PMAP_STEAL_MEMORY)
    498 
    499 	/*
    500 	 * defer bootstrap allocation to MD code (it may want to allocate
    501 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    502 	 * virtual_space_start/virtual_space_end if necessary.
    503 	 */
    504 
    505 	addr = pmap_steal_memory(size, &virtual_space_start,
    506 	    &virtual_space_end);
    507 
    508 	return(addr);
    509 
    510 #else /* !PMAP_STEAL_MEMORY */
    511 
    512 	/*
    513 	 * allocate virtual memory for this request
    514 	 */
    515 	if (virtual_space_start == virtual_space_end ||
    516 	    (virtual_space_end - virtual_space_start) < size)
    517 		panic("uvm_pageboot_alloc: out of virtual space");
    518 
    519 	addr = virtual_space_start;
    520 
    521 #ifdef PMAP_GROWKERNEL
    522 	/*
    523 	 * If the kernel pmap can't map the requested space,
    524 	 * then allocate more resources for it.
    525 	 */
    526 	if (uvm_maxkaddr < (addr + size)) {
    527 		uvm_maxkaddr = pmap_growkernel(addr + size);
    528 		if (uvm_maxkaddr < (addr + size))
    529 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    530 	}
    531 #endif
    532 
    533 	virtual_space_start += size;
    534 
    535 	/*
    536 	 * allocate and mapin physical pages to back new virtual pages
    537 	 */
    538 
    539 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    540 	    vaddr += PAGE_SIZE) {
    541 
    542 		if (!uvm_page_physget(&paddr))
    543 			panic("uvm_pageboot_alloc: out of memory");
    544 
    545 		/*
    546 		 * Note this memory is no longer managed, so using
    547 		 * pmap_kenter is safe.
    548 		 */
    549 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    550 	}
    551 	pmap_update(pmap_kernel());
    552 	return(addr);
    553 #endif	/* PMAP_STEAL_MEMORY */
    554 }
    555 
    556 #if !defined(PMAP_STEAL_MEMORY)
    557 /*
    558  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    559  *
    560  * => attempt to allocate it off the end of a segment in which the "avail"
    561  *    values match the start/end values.   if we can't do that, then we
    562  *    will advance both values (making them equal, and removing some
    563  *    vm_page structures from the non-avail area).
    564  * => return false if out of memory.
    565  */
    566 
    567 /* subroutine: try to allocate from memory chunks on the specified freelist */
    568 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
    569 
    570 static boolean_t
    571 uvm_page_physget_freelist(paddrp, freelist)
    572 	paddr_t *paddrp;
    573 	int freelist;
    574 {
    575 	int lcv, x;
    576 
    577 	/* pass 1: try allocating from a matching end */
    578 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    579 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    580 #else
    581 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    582 #endif
    583 	{
    584 
    585 		if (uvm.page_init_done == TRUE)
    586 			panic("uvm_page_physget: called _after_ bootstrap");
    587 
    588 		if (vm_physmem[lcv].free_list != freelist)
    589 			continue;
    590 
    591 		/* try from front */
    592 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    593 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    594 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    595 			vm_physmem[lcv].avail_start++;
    596 			vm_physmem[lcv].start++;
    597 			/* nothing left?   nuke it */
    598 			if (vm_physmem[lcv].avail_start ==
    599 			    vm_physmem[lcv].end) {
    600 				if (vm_nphysseg == 1)
    601 				    panic("uvm_page_physget: out of memory!");
    602 				vm_nphysseg--;
    603 				for (x = lcv ; x < vm_nphysseg ; x++)
    604 					/* structure copy */
    605 					vm_physmem[x] = vm_physmem[x+1];
    606 			}
    607 			return (TRUE);
    608 		}
    609 
    610 		/* try from rear */
    611 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    612 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    613 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    614 			vm_physmem[lcv].avail_end--;
    615 			vm_physmem[lcv].end--;
    616 			/* nothing left?   nuke it */
    617 			if (vm_physmem[lcv].avail_end ==
    618 			    vm_physmem[lcv].start) {
    619 				if (vm_nphysseg == 1)
    620 				    panic("uvm_page_physget: out of memory!");
    621 				vm_nphysseg--;
    622 				for (x = lcv ; x < vm_nphysseg ; x++)
    623 					/* structure copy */
    624 					vm_physmem[x] = vm_physmem[x+1];
    625 			}
    626 			return (TRUE);
    627 		}
    628 	}
    629 
    630 	/* pass2: forget about matching ends, just allocate something */
    631 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    632 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    633 #else
    634 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    635 #endif
    636 	{
    637 
    638 		/* any room in this bank? */
    639 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    640 			continue;  /* nope */
    641 
    642 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    643 		vm_physmem[lcv].avail_start++;
    644 		/* truncate! */
    645 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    646 
    647 		/* nothing left?   nuke it */
    648 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    649 			if (vm_nphysseg == 1)
    650 				panic("uvm_page_physget: out of memory!");
    651 			vm_nphysseg--;
    652 			for (x = lcv ; x < vm_nphysseg ; x++)
    653 				/* structure copy */
    654 				vm_physmem[x] = vm_physmem[x+1];
    655 		}
    656 		return (TRUE);
    657 	}
    658 
    659 	return (FALSE);        /* whoops! */
    660 }
    661 
    662 boolean_t
    663 uvm_page_physget(paddrp)
    664 	paddr_t *paddrp;
    665 {
    666 	int i;
    667 
    668 	/* try in the order of freelist preference */
    669 	for (i = 0; i < VM_NFREELIST; i++)
    670 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    671 			return (TRUE);
    672 	return (FALSE);
    673 }
    674 #endif /* PMAP_STEAL_MEMORY */
    675 
    676 /*
    677  * uvm_page_physload: load physical memory into VM system
    678  *
    679  * => all args are PFs
    680  * => all pages in start/end get vm_page structures
    681  * => areas marked by avail_start/avail_end get added to the free page pool
    682  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    683  */
    684 
    685 void
    686 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    687 	paddr_t start, end, avail_start, avail_end;
    688 	int free_list;
    689 {
    690 	int preload, lcv;
    691 	psize_t npages;
    692 	struct vm_page *pgs;
    693 	struct vm_physseg *ps;
    694 
    695 	if (uvmexp.pagesize == 0)
    696 		panic("uvm_page_physload: page size not set!");
    697 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    698 		panic("uvm_page_physload: bad free list %d", free_list);
    699 	if (start >= end)
    700 		panic("uvm_page_physload: start >= end");
    701 
    702 	/*
    703 	 * do we have room?
    704 	 */
    705 
    706 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    707 		printf("uvm_page_physload: unable to load physical memory "
    708 		    "segment\n");
    709 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    710 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    711 		printf("\tincrease VM_PHYSSEG_MAX\n");
    712 		return;
    713 	}
    714 
    715 	/*
    716 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    717 	 * called yet, so malloc is not available).
    718 	 */
    719 
    720 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    721 		if (vm_physmem[lcv].pgs)
    722 			break;
    723 	}
    724 	preload = (lcv == vm_nphysseg);
    725 
    726 	/*
    727 	 * if VM is already running, attempt to malloc() vm_page structures
    728 	 */
    729 
    730 	if (!preload) {
    731 #if defined(VM_PHYSSEG_NOADD)
    732 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    733 #else
    734 		/* XXXCDC: need some sort of lockout for this case */
    735 		paddr_t paddr;
    736 		npages = end - start;  /* # of pages */
    737 		pgs = malloc(sizeof(struct vm_page) * npages,
    738 		    M_VMPAGE, M_NOWAIT);
    739 		if (pgs == NULL) {
    740 			printf("uvm_page_physload: can not malloc vm_page "
    741 			    "structs for segment\n");
    742 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    743 			return;
    744 		}
    745 		/* zero data, init phys_addr and free_list, and free pages */
    746 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    747 		for (lcv = 0, paddr = ptoa(start) ;
    748 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    749 			pgs[lcv].phys_addr = paddr;
    750 			pgs[lcv].free_list = free_list;
    751 			if (atop(paddr) >= avail_start &&
    752 			    atop(paddr) <= avail_end)
    753 				uvm_pagefree(&pgs[lcv]);
    754 		}
    755 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    756 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    757 #endif
    758 	} else {
    759 		pgs = NULL;
    760 		npages = 0;
    761 	}
    762 
    763 	/*
    764 	 * now insert us in the proper place in vm_physmem[]
    765 	 */
    766 
    767 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    768 	/* random: put it at the end (easy!) */
    769 	ps = &vm_physmem[vm_nphysseg];
    770 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    771 	{
    772 		int x;
    773 		/* sort by address for binary search */
    774 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    775 			if (start < vm_physmem[lcv].start)
    776 				break;
    777 		ps = &vm_physmem[lcv];
    778 		/* move back other entries, if necessary ... */
    779 		for (x = vm_nphysseg ; x > lcv ; x--)
    780 			/* structure copy */
    781 			vm_physmem[x] = vm_physmem[x - 1];
    782 	}
    783 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    784 	{
    785 		int x;
    786 		/* sort by largest segment first */
    787 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    788 			if ((end - start) >
    789 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    790 				break;
    791 		ps = &vm_physmem[lcv];
    792 		/* move back other entries, if necessary ... */
    793 		for (x = vm_nphysseg ; x > lcv ; x--)
    794 			/* structure copy */
    795 			vm_physmem[x] = vm_physmem[x - 1];
    796 	}
    797 #else
    798 	panic("uvm_page_physload: unknown physseg strategy selected!");
    799 #endif
    800 
    801 	ps->start = start;
    802 	ps->end = end;
    803 	ps->avail_start = avail_start;
    804 	ps->avail_end = avail_end;
    805 	if (preload) {
    806 		ps->pgs = NULL;
    807 	} else {
    808 		ps->pgs = pgs;
    809 		ps->lastpg = pgs + npages - 1;
    810 	}
    811 	ps->free_list = free_list;
    812 	vm_nphysseg++;
    813 
    814 	if (!preload)
    815 		uvm_page_rehash();
    816 }
    817 
    818 /*
    819  * uvm_page_rehash: reallocate hash table based on number of free pages.
    820  */
    821 
    822 void
    823 uvm_page_rehash()
    824 {
    825 	int freepages, lcv, bucketcount, oldcount;
    826 	struct pglist *newbuckets, *oldbuckets;
    827 	struct vm_page *pg;
    828 	size_t newsize, oldsize;
    829 
    830 	/*
    831 	 * compute number of pages that can go in the free pool
    832 	 */
    833 
    834 	freepages = 0;
    835 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    836 		freepages +=
    837 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    838 
    839 	/*
    840 	 * compute number of buckets needed for this number of pages
    841 	 */
    842 
    843 	bucketcount = 1;
    844 	while (bucketcount < freepages)
    845 		bucketcount = bucketcount * 2;
    846 
    847 	/*
    848 	 * compute the size of the current table and new table.
    849 	 */
    850 
    851 	oldbuckets = uvm.page_hash;
    852 	oldcount = uvm.page_nhash;
    853 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    854 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    855 
    856 	/*
    857 	 * allocate the new buckets
    858 	 */
    859 
    860 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    861 	if (newbuckets == NULL) {
    862 		printf("uvm_page_physrehash: WARNING: could not grow page "
    863 		    "hash table\n");
    864 		return;
    865 	}
    866 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    867 		TAILQ_INIT(&newbuckets[lcv]);
    868 
    869 	/*
    870 	 * now replace the old buckets with the new ones and rehash everything
    871 	 */
    872 
    873 	simple_lock(&uvm.hashlock);
    874 	uvm.page_hash = newbuckets;
    875 	uvm.page_nhash = bucketcount;
    876 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    877 
    878 	/* ... and rehash */
    879 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    880 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    881 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    882 			TAILQ_INSERT_TAIL(
    883 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    884 			  pg, hashq);
    885 		}
    886 	}
    887 	simple_unlock(&uvm.hashlock);
    888 
    889 	/*
    890 	 * free old bucket array if is not the boot-time table
    891 	 */
    892 
    893 	if (oldbuckets != &uvm_bootbucket)
    894 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    895 }
    896 
    897 /*
    898  * uvm_page_recolor: Recolor the pages if the new bucket count is
    899  * larger than the old one.
    900  */
    901 
    902 void
    903 uvm_page_recolor(int newncolors)
    904 {
    905 	struct pgflbucket *bucketarray, *oldbucketarray;
    906 	struct pgfreelist pgfl;
    907 	struct vm_page *pg;
    908 	vsize_t bucketcount;
    909 	int s, lcv, color, i, ocolors;
    910 
    911 	if (newncolors <= uvmexp.ncolors)
    912 		return;
    913 
    914 	if (uvm.page_init_done == FALSE) {
    915 		uvmexp.ncolors = newncolors;
    916 		return;
    917 	}
    918 
    919 	bucketcount = newncolors * VM_NFREELIST;
    920 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    921 	    M_VMPAGE, M_NOWAIT);
    922 	if (bucketarray == NULL) {
    923 		printf("WARNING: unable to allocate %ld page color buckets\n",
    924 		    (long) bucketcount);
    925 		return;
    926 	}
    927 
    928 	s = uvm_lock_fpageq();
    929 
    930 	/* Make sure we should still do this. */
    931 	if (newncolors <= uvmexp.ncolors) {
    932 		uvm_unlock_fpageq(s);
    933 		free(bucketarray, M_VMPAGE);
    934 		return;
    935 	}
    936 
    937 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    938 	ocolors = uvmexp.ncolors;
    939 
    940 	uvmexp.ncolors = newncolors;
    941 	uvmexp.colormask = uvmexp.ncolors - 1;
    942 
    943 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    944 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    945 		uvm_page_init_buckets(&pgfl);
    946 		for (color = 0; color < ocolors; color++) {
    947 			for (i = 0; i < PGFL_NQUEUES; i++) {
    948 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    949 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    950 				    != NULL) {
    951 					TAILQ_REMOVE(&uvm.page_free[
    952 					    lcv].pgfl_buckets[
    953 					    color].pgfl_queues[i], pg, pageq);
    954 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    955 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    956 					    i], pg, pageq);
    957 				}
    958 			}
    959 		}
    960 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    961 	}
    962 
    963 	if (have_recolored_pages) {
    964 		uvm_unlock_fpageq(s);
    965 		free(oldbucketarray, M_VMPAGE);
    966 		return;
    967 	}
    968 
    969 	have_recolored_pages = TRUE;
    970 	uvm_unlock_fpageq(s);
    971 }
    972 
    973 /*
    974  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    975  */
    976 
    977 static __inline struct vm_page *
    978 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    979     int *trycolorp)
    980 {
    981 	struct pglist *freeq;
    982 	struct vm_page *pg;
    983 	int color, trycolor = *trycolorp;
    984 
    985 	color = trycolor;
    986 	do {
    987 		if ((pg = TAILQ_FIRST((freeq =
    988 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
    989 			goto gotit;
    990 		if ((pg = TAILQ_FIRST((freeq =
    991 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
    992 			goto gotit;
    993 		color = (color + 1) & uvmexp.colormask;
    994 	} while (color != trycolor);
    995 
    996 	return (NULL);
    997 
    998  gotit:
    999 	TAILQ_REMOVE(freeq, pg, pageq);
   1000 	uvmexp.free--;
   1001 
   1002 	/* update zero'd page count */
   1003 	if (pg->flags & PG_ZERO)
   1004 		uvmexp.zeropages--;
   1005 
   1006 	if (color == trycolor)
   1007 		uvmexp.colorhit++;
   1008 	else {
   1009 		uvmexp.colormiss++;
   1010 		*trycolorp = color;
   1011 	}
   1012 
   1013 	return (pg);
   1014 }
   1015 
   1016 /*
   1017  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1018  *
   1019  * => return null if no pages free
   1020  * => wake up pagedaemon if number of free pages drops below low water mark
   1021  * => if obj != NULL, obj must be locked (to put in hash)
   1022  * => if anon != NULL, anon must be locked (to put in anon)
   1023  * => only one of obj or anon can be non-null
   1024  * => caller must activate/deactivate page if it is not wired.
   1025  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1026  * => policy decision: it is more important to pull a page off of the
   1027  *	appropriate priority free list than it is to get a zero'd or
   1028  *	unknown contents page.  This is because we live with the
   1029  *	consequences of a bad free list decision for the entire
   1030  *	lifetime of the page, e.g. if the page comes from memory that
   1031  *	is slower to access.
   1032  */
   1033 
   1034 struct vm_page *
   1035 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1036 	struct uvm_object *obj;
   1037 	voff_t off;
   1038 	int flags;
   1039 	struct vm_anon *anon;
   1040 	int strat, free_list;
   1041 {
   1042 	int lcv, try1, try2, s, zeroit = 0, color;
   1043 	struct vm_page *pg;
   1044 	boolean_t use_reserve;
   1045 
   1046 	KASSERT(obj == NULL || anon == NULL);
   1047 	KASSERT(off == trunc_page(off));
   1048 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1049 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1050 
   1051 	s = uvm_lock_fpageq();
   1052 
   1053 	/*
   1054 	 * This implements a global round-robin page coloring
   1055 	 * algorithm.
   1056 	 *
   1057 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1058 	 * XXXJRT: What about virtually-indexed caches?
   1059 	 */
   1060 
   1061 	color = uvm.page_free_nextcolor;
   1062 
   1063 	/*
   1064 	 * check to see if we need to generate some free pages waking
   1065 	 * the pagedaemon.
   1066 	 */
   1067 
   1068 	UVM_KICK_PDAEMON();
   1069 
   1070 	/*
   1071 	 * fail if any of these conditions is true:
   1072 	 * [1]  there really are no free pages, or
   1073 	 * [2]  only kernel "reserved" pages remain and
   1074 	 *        the page isn't being allocated to a kernel object.
   1075 	 * [3]  only pagedaemon "reserved" pages remain and
   1076 	 *        the requestor isn't the pagedaemon.
   1077 	 */
   1078 
   1079 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1080 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1081 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1082 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1083 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1084 		goto fail;
   1085 
   1086 #if PGFL_NQUEUES != 2
   1087 #error uvm_pagealloc_strat needs to be updated
   1088 #endif
   1089 
   1090 	/*
   1091 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1092 	 * we try the UNKNOWN queue first.
   1093 	 */
   1094 	if (flags & UVM_PGA_ZERO) {
   1095 		try1 = PGFL_ZEROS;
   1096 		try2 = PGFL_UNKNOWN;
   1097 	} else {
   1098 		try1 = PGFL_UNKNOWN;
   1099 		try2 = PGFL_ZEROS;
   1100 	}
   1101 
   1102  again:
   1103 	switch (strat) {
   1104 	case UVM_PGA_STRAT_NORMAL:
   1105 		/* Check all freelists in descending priority order. */
   1106 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1107 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1108 			    try1, try2, &color);
   1109 			if (pg != NULL)
   1110 				goto gotit;
   1111 		}
   1112 
   1113 		/* No pages free! */
   1114 		goto fail;
   1115 
   1116 	case UVM_PGA_STRAT_ONLY:
   1117 	case UVM_PGA_STRAT_FALLBACK:
   1118 		/* Attempt to allocate from the specified free list. */
   1119 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1120 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1121 		    try1, try2, &color);
   1122 		if (pg != NULL)
   1123 			goto gotit;
   1124 
   1125 		/* Fall back, if possible. */
   1126 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1127 			strat = UVM_PGA_STRAT_NORMAL;
   1128 			goto again;
   1129 		}
   1130 
   1131 		/* No pages free! */
   1132 		goto fail;
   1133 
   1134 	default:
   1135 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1136 		/* NOTREACHED */
   1137 	}
   1138 
   1139  gotit:
   1140 	/*
   1141 	 * We now know which color we actually allocated from; set
   1142 	 * the next color accordingly.
   1143 	 */
   1144 
   1145 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1146 
   1147 	/*
   1148 	 * update allocation statistics and remember if we have to
   1149 	 * zero the page
   1150 	 */
   1151 
   1152 	if (flags & UVM_PGA_ZERO) {
   1153 		if (pg->flags & PG_ZERO) {
   1154 			uvmexp.pga_zerohit++;
   1155 			zeroit = 0;
   1156 		} else {
   1157 			uvmexp.pga_zeromiss++;
   1158 			zeroit = 1;
   1159 		}
   1160 	}
   1161 	uvm_unlock_fpageq(s);
   1162 
   1163 	pg->offset = off;
   1164 	pg->uobject = obj;
   1165 	pg->uanon = anon;
   1166 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1167 	if (anon) {
   1168 		anon->u.an_page = pg;
   1169 		pg->pqflags = PQ_ANON;
   1170 		uvmexp.anonpages++;
   1171 	} else {
   1172 		if (obj) {
   1173 			uvm_pageinsert(pg);
   1174 		}
   1175 		pg->pqflags = 0;
   1176 	}
   1177 #if defined(UVM_PAGE_TRKOWN)
   1178 	pg->owner_tag = NULL;
   1179 #endif
   1180 	UVM_PAGE_OWN(pg, "new alloc");
   1181 
   1182 	if (flags & UVM_PGA_ZERO) {
   1183 		/*
   1184 		 * A zero'd page is not clean.  If we got a page not already
   1185 		 * zero'd, then we have to zero it ourselves.
   1186 		 */
   1187 		pg->flags &= ~PG_CLEAN;
   1188 		if (zeroit)
   1189 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1190 	}
   1191 
   1192 	return(pg);
   1193 
   1194  fail:
   1195 	uvm_unlock_fpageq(s);
   1196 	return (NULL);
   1197 }
   1198 
   1199 /*
   1200  * uvm_pagerealloc: reallocate a page from one object to another
   1201  *
   1202  * => both objects must be locked
   1203  */
   1204 
   1205 void
   1206 uvm_pagerealloc(pg, newobj, newoff)
   1207 	struct vm_page *pg;
   1208 	struct uvm_object *newobj;
   1209 	voff_t newoff;
   1210 {
   1211 	/*
   1212 	 * remove it from the old object
   1213 	 */
   1214 
   1215 	if (pg->uobject) {
   1216 		uvm_pageremove(pg);
   1217 	}
   1218 
   1219 	/*
   1220 	 * put it in the new object
   1221 	 */
   1222 
   1223 	if (newobj) {
   1224 		pg->uobject = newobj;
   1225 		pg->offset = newoff;
   1226 		uvm_pageinsert(pg);
   1227 	}
   1228 }
   1229 
   1230 #ifdef DEBUG
   1231 /*
   1232  * check if page is zero-filled
   1233  *
   1234  *  - called with free page queue lock held.
   1235  */
   1236 void
   1237 uvm_pagezerocheck(struct vm_page *pg)
   1238 {
   1239 	int *p, *ep;
   1240 
   1241 	KASSERT(uvm_zerocheckkva != 0);
   1242 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1243 
   1244 	/*
   1245 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1246 	 * uvm page allocator.
   1247 	 *
   1248 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1249 	 */
   1250 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1251 	p = (int *)uvm_zerocheckkva;
   1252 	ep = (int *)((char *)p + PAGE_SIZE);
   1253 	pmap_update(pmap_kernel());
   1254 	while (p < ep) {
   1255 		if (*p != 0)
   1256 			panic("PG_ZERO page isn't zero-filled");
   1257 		p++;
   1258 	}
   1259 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1260 }
   1261 #endif /* DEBUG */
   1262 
   1263 /*
   1264  * uvm_pagefree: free page
   1265  *
   1266  * => erase page's identity (i.e. remove from hash/object)
   1267  * => put page on free list
   1268  * => caller must lock owning object (either anon or uvm_object)
   1269  * => caller must lock page queues
   1270  * => assumes all valid mappings of pg are gone
   1271  */
   1272 
   1273 void
   1274 uvm_pagefree(pg)
   1275 	struct vm_page *pg;
   1276 {
   1277 	int s;
   1278 	struct pglist *pgfl;
   1279 	boolean_t iszero;
   1280 
   1281 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1282 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1283 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1284 	LOCK_ASSERT(pg->uobject == NULL ||
   1285 		    simple_lock_held(&pg->uobject->vmobjlock));
   1286 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1287 		    simple_lock_held(&pg->uanon->an_lock));
   1288 
   1289 #ifdef DEBUG
   1290 	if (pg->uobject == (void *)0xdeadbeef &&
   1291 	    pg->uanon == (void *)0xdeadbeef) {
   1292 		panic("uvm_pagefree: freeing free page %p", pg);
   1293 	}
   1294 #endif /* DEBUG */
   1295 
   1296 	/*
   1297 	 * if the page is loaned, resolve the loan instead of freeing.
   1298 	 */
   1299 
   1300 	if (pg->loan_count) {
   1301 		KASSERT(pg->wire_count == 0);
   1302 
   1303 		/*
   1304 		 * if the page is owned by an anon then we just want to
   1305 		 * drop anon ownership.  the kernel will free the page when
   1306 		 * it is done with it.  if the page is owned by an object,
   1307 		 * remove it from the object and mark it dirty for the benefit
   1308 		 * of possible anon owners.
   1309 		 *
   1310 		 * regardless of previous ownership, wakeup any waiters,
   1311 		 * unbusy the page, and we're done.
   1312 		 */
   1313 
   1314 		if (pg->uobject != NULL) {
   1315 			uvm_pageremove(pg);
   1316 			pg->flags &= ~PG_CLEAN;
   1317 		} else if (pg->uanon != NULL) {
   1318 			if ((pg->pqflags & PQ_ANON) == 0) {
   1319 				pg->loan_count--;
   1320 			} else {
   1321 				pg->pqflags &= ~PQ_ANON;
   1322 			}
   1323 			pg->uanon = NULL;
   1324 		}
   1325 		if (pg->flags & PG_WANTED) {
   1326 			wakeup(pg);
   1327 		}
   1328 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1329 #ifdef UVM_PAGE_TRKOWN
   1330 		pg->owner_tag = NULL;
   1331 #endif
   1332 		if (pg->loan_count) {
   1333 			uvm_pagedequeue(pg);
   1334 			return;
   1335 		}
   1336 	}
   1337 
   1338 	/*
   1339 	 * remove page from its object or anon.
   1340 	 */
   1341 
   1342 	if (pg->uobject != NULL) {
   1343 		uvm_pageremove(pg);
   1344 	} else if (pg->uanon != NULL) {
   1345 		pg->uanon->u.an_page = NULL;
   1346 		uvmexp.anonpages--;
   1347 	}
   1348 
   1349 	/*
   1350 	 * now remove the page from the queues.
   1351 	 */
   1352 
   1353 	uvm_pagedequeue(pg);
   1354 
   1355 	/*
   1356 	 * if the page was wired, unwire it now.
   1357 	 */
   1358 
   1359 	if (pg->wire_count) {
   1360 		pg->wire_count = 0;
   1361 		uvmexp.wired--;
   1362 	}
   1363 
   1364 	/*
   1365 	 * and put on free queue
   1366 	 */
   1367 
   1368 	iszero = (pg->flags & PG_ZERO);
   1369 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1370 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1371 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1372 
   1373 	pg->pqflags = PQ_FREE;
   1374 #ifdef DEBUG
   1375 	pg->uobject = (void *)0xdeadbeef;
   1376 	pg->offset = 0xdeadbeef;
   1377 	pg->uanon = (void *)0xdeadbeef;
   1378 #endif
   1379 
   1380 	s = uvm_lock_fpageq();
   1381 
   1382 #ifdef DEBUG
   1383 	if (iszero)
   1384 		uvm_pagezerocheck(pg);
   1385 #endif /* DEBUG */
   1386 
   1387 	TAILQ_INSERT_TAIL(pgfl, pg, pageq);
   1388 	uvmexp.free++;
   1389 	if (iszero)
   1390 		uvmexp.zeropages++;
   1391 
   1392 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1393 		uvm.page_idle_zero = vm_page_zero_enable;
   1394 
   1395 	uvm_unlock_fpageq(s);
   1396 }
   1397 
   1398 /*
   1399  * uvm_page_unbusy: unbusy an array of pages.
   1400  *
   1401  * => pages must either all belong to the same object, or all belong to anons.
   1402  * => if pages are object-owned, object must be locked.
   1403  * => if pages are anon-owned, anons must be locked.
   1404  * => caller must lock page queues if pages may be released.
   1405  */
   1406 
   1407 void
   1408 uvm_page_unbusy(pgs, npgs)
   1409 	struct vm_page **pgs;
   1410 	int npgs;
   1411 {
   1412 	struct vm_page *pg;
   1413 	int i;
   1414 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1415 
   1416 	for (i = 0; i < npgs; i++) {
   1417 		pg = pgs[i];
   1418 		if (pg == NULL || pg == PGO_DONTCARE) {
   1419 			continue;
   1420 		}
   1421 		if (pg->flags & PG_WANTED) {
   1422 			wakeup(pg);
   1423 		}
   1424 		if (pg->flags & PG_RELEASED) {
   1425 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1426 			pg->flags &= ~PG_RELEASED;
   1427 			uvm_pagefree(pg);
   1428 		} else {
   1429 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1430 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1431 			UVM_PAGE_OWN(pg, NULL);
   1432 		}
   1433 	}
   1434 }
   1435 
   1436 #if defined(UVM_PAGE_TRKOWN)
   1437 /*
   1438  * uvm_page_own: set or release page ownership
   1439  *
   1440  * => this is a debugging function that keeps track of who sets PG_BUSY
   1441  *	and where they do it.   it can be used to track down problems
   1442  *	such a process setting "PG_BUSY" and never releasing it.
   1443  * => page's object [if any] must be locked
   1444  * => if "tag" is NULL then we are releasing page ownership
   1445  */
   1446 void
   1447 uvm_page_own(pg, tag)
   1448 	struct vm_page *pg;
   1449 	char *tag;
   1450 {
   1451 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1452 
   1453 	/* gain ownership? */
   1454 	if (tag) {
   1455 		if (pg->owner_tag) {
   1456 			printf("uvm_page_own: page %p already owned "
   1457 			    "by proc %d [%s]\n", pg,
   1458 			    pg->owner, pg->owner_tag);
   1459 			panic("uvm_page_own");
   1460 		}
   1461 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1462 		pg->owner_tag = tag;
   1463 		return;
   1464 	}
   1465 
   1466 	/* drop ownership */
   1467 	if (pg->owner_tag == NULL) {
   1468 		printf("uvm_page_own: dropping ownership of an non-owned "
   1469 		    "page (%p)\n", pg);
   1470 		panic("uvm_page_own");
   1471 	}
   1472 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1473 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1474 	    pg->uobject == uvm.kernel_object ||
   1475 	    pg->wire_count > 0 ||
   1476 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1477 	    pg->loan_count > 1);
   1478 	pg->owner_tag = NULL;
   1479 }
   1480 #endif
   1481 
   1482 /*
   1483  * uvm_pageidlezero: zero free pages while the system is idle.
   1484  *
   1485  * => try to complete one color bucket at a time, to reduce our impact
   1486  *	on the CPU cache.
   1487  * => we loop until we either reach the target or whichqs indicates that
   1488  *	there is a process ready to run.
   1489  */
   1490 void
   1491 uvm_pageidlezero()
   1492 {
   1493 	struct vm_page *pg;
   1494 	struct pgfreelist *pgfl;
   1495 	int free_list, s, firstbucket;
   1496 	static int nextbucket;
   1497 
   1498 	s = uvm_lock_fpageq();
   1499 	firstbucket = nextbucket;
   1500 	do {
   1501 		if (sched_whichqs != 0) {
   1502 			uvm_unlock_fpageq(s);
   1503 			return;
   1504 		}
   1505 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1506 			uvm.page_idle_zero = FALSE;
   1507 			uvm_unlock_fpageq(s);
   1508 			return;
   1509 		}
   1510 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1511 			pgfl = &uvm.page_free[free_list];
   1512 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1513 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1514 				if (sched_whichqs != 0) {
   1515 					uvm_unlock_fpageq(s);
   1516 					return;
   1517 				}
   1518 
   1519 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1520 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1521 				    pg, pageq);
   1522 				uvmexp.free--;
   1523 				uvm_unlock_fpageq(s);
   1524 #ifdef PMAP_PAGEIDLEZERO
   1525 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1526 
   1527 					/*
   1528 					 * The machine-dependent code detected
   1529 					 * some reason for us to abort zeroing
   1530 					 * pages, probably because there is a
   1531 					 * process now ready to run.
   1532 					 */
   1533 
   1534 					s = uvm_lock_fpageq();
   1535 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1536 					    nextbucket].pgfl_queues[
   1537 					    PGFL_UNKNOWN], pg, pageq);
   1538 					uvmexp.free++;
   1539 					uvmexp.zeroaborts++;
   1540 					uvm_unlock_fpageq(s);
   1541 					return;
   1542 				}
   1543 #else
   1544 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1545 #endif /* PMAP_PAGEIDLEZERO */
   1546 				pg->flags |= PG_ZERO;
   1547 
   1548 				s = uvm_lock_fpageq();
   1549 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1550 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1551 				    pg, pageq);
   1552 				uvmexp.free++;
   1553 				uvmexp.zeropages++;
   1554 			}
   1555 		}
   1556 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1557 	} while (nextbucket != firstbucket);
   1558 	uvm_unlock_fpageq(s);
   1559 }
   1560