Home | History | Annotate | Line # | Download | only in uvm
uvm_page.c revision 1.98
      1 /*	$NetBSD: uvm_page.c,v 1.98 2004/05/05 11:58:27 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
     42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_page.c: page ops.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.98 2004/05/05 11:58:27 yamt Exp $");
     75 
     76 #include "opt_uvmhist.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/malloc.h>
     81 #include <sys/sched.h>
     82 #include <sys/kernel.h>
     83 #include <sys/vnode.h>
     84 #include <sys/proc.h>
     85 
     86 #define UVM_PAGE                /* pull in uvm_page.h functions */
     87 #include <uvm/uvm.h>
     88 
     89 /*
     90  * global vars... XXXCDC: move to uvm. structure.
     91  */
     92 
     93 /*
     94  * physical memory config is stored in vm_physmem.
     95  */
     96 
     97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
     98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
     99 
    100 /*
    101  * Some supported CPUs in a given architecture don't support all
    102  * of the things necessary to do idle page zero'ing efficiently.
    103  * We therefore provide a way to disable it from machdep code here.
    104  */
    105 /*
    106  * XXX disabled until we can find a way to do this without causing
    107  * problems for either CPU caches or DMA latency.
    108  */
    109 boolean_t vm_page_zero_enable = FALSE;
    110 
    111 /*
    112  * local variables
    113  */
    114 
    115 /*
    116  * these variables record the values returned by vm_page_bootstrap,
    117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
    118  * and pmap_startup here also uses them internally.
    119  */
    120 
    121 static vaddr_t      virtual_space_start;
    122 static vaddr_t      virtual_space_end;
    123 
    124 /*
    125  * we use a hash table with only one bucket during bootup.  we will
    126  * later rehash (resize) the hash table once the allocator is ready.
    127  * we static allocate the one bootstrap bucket below...
    128  */
    129 
    130 static struct pglist uvm_bootbucket;
    131 
    132 /*
    133  * we allocate an initial number of page colors in uvm_page_init(),
    134  * and remember them.  We may re-color pages as cache sizes are
    135  * discovered during the autoconfiguration phase.  But we can never
    136  * free the initial set of buckets, since they are allocated using
    137  * uvm_pageboot_alloc().
    138  */
    139 
    140 static boolean_t have_recolored_pages /* = FALSE */;
    141 
    142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
    143 
    144 #ifdef DEBUG
    145 vaddr_t uvm_zerocheckkva;
    146 #endif /* DEBUG */
    147 
    148 /*
    149  * local prototypes
    150  */
    151 
    152 static void uvm_pageinsert(struct vm_page *);
    153 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
    154 static void uvm_pageremove(struct vm_page *);
    155 
    156 /*
    157  * inline functions
    158  */
    159 
    160 /*
    161  * uvm_pageinsert: insert a page in the object and the hash table
    162  * uvm_pageinsert_after: insert a page into the specified place in listq
    163  *
    164  * => caller must lock object
    165  * => caller must lock page queues
    166  * => call should have already set pg's object and offset pointers
    167  *    and bumped the version counter
    168  */
    169 
    170 __inline static void
    171 uvm_pageinsert_after(pg, where)
    172 	struct vm_page *pg;
    173 	struct vm_page *where;
    174 {
    175 	struct pglist *buck;
    176 	struct uvm_object *uobj = pg->uobject;
    177 
    178 	KASSERT((pg->flags & PG_TABLED) == 0);
    179 	KASSERT(where == NULL || (where->flags & PG_TABLED));
    180 	KASSERT(where == NULL || (where->uobject == uobj));
    181 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    182 	simple_lock(&uvm.hashlock);
    183 	TAILQ_INSERT_TAIL(buck, pg, hashq);
    184 	simple_unlock(&uvm.hashlock);
    185 
    186 	if (UVM_OBJ_IS_VNODE(uobj)) {
    187 		if (uobj->uo_npages == 0) {
    188 			struct vnode *vp = (struct vnode *)uobj;
    189 
    190 			vholdl(vp);
    191 		}
    192 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    193 			uvmexp.execpages++;
    194 		} else {
    195 			uvmexp.filepages++;
    196 		}
    197 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    198 		uvmexp.anonpages++;
    199 	}
    200 
    201 	if (where)
    202 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
    203 	else
    204 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
    205 	pg->flags |= PG_TABLED;
    206 	uobj->uo_npages++;
    207 }
    208 
    209 __inline static void
    210 uvm_pageinsert(pg)
    211 	struct vm_page *pg;
    212 {
    213 
    214 	uvm_pageinsert_after(pg, NULL);
    215 }
    216 
    217 /*
    218  * uvm_page_remove: remove page from object and hash
    219  *
    220  * => caller must lock object
    221  * => caller must lock page queues
    222  */
    223 
    224 static __inline void
    225 uvm_pageremove(pg)
    226 	struct vm_page *pg;
    227 {
    228 	struct pglist *buck;
    229 	struct uvm_object *uobj = pg->uobject;
    230 
    231 	KASSERT(pg->flags & PG_TABLED);
    232 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
    233 	simple_lock(&uvm.hashlock);
    234 	TAILQ_REMOVE(buck, pg, hashq);
    235 	simple_unlock(&uvm.hashlock);
    236 
    237 	if (UVM_OBJ_IS_VNODE(uobj)) {
    238 		if (uobj->uo_npages == 1) {
    239 			struct vnode *vp = (struct vnode *)uobj;
    240 
    241 			holdrelel(vp);
    242 		}
    243 		if (UVM_OBJ_IS_VTEXT(uobj)) {
    244 			uvmexp.execpages--;
    245 		} else {
    246 			uvmexp.filepages--;
    247 		}
    248 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
    249 		uvmexp.anonpages--;
    250 	}
    251 
    252 	/* object should be locked */
    253 	uobj->uo_npages--;
    254 	TAILQ_REMOVE(&uobj->memq, pg, listq);
    255 	pg->flags &= ~PG_TABLED;
    256 	pg->uobject = NULL;
    257 }
    258 
    259 static void
    260 uvm_page_init_buckets(struct pgfreelist *pgfl)
    261 {
    262 	int color, i;
    263 
    264 	for (color = 0; color < uvmexp.ncolors; color++) {
    265 		for (i = 0; i < PGFL_NQUEUES; i++) {
    266 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
    267 		}
    268 	}
    269 }
    270 
    271 /*
    272  * uvm_page_init: init the page system.   called from uvm_init().
    273  *
    274  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
    275  */
    276 
    277 void
    278 uvm_page_init(kvm_startp, kvm_endp)
    279 	vaddr_t *kvm_startp, *kvm_endp;
    280 {
    281 	vsize_t freepages, pagecount, bucketcount, n;
    282 	struct pgflbucket *bucketarray;
    283 	struct vm_page *pagearray;
    284 	int lcv;
    285 	u_int i;
    286 	paddr_t paddr;
    287 
    288 	/*
    289 	 * init the page queues and page queue locks, except the free
    290 	 * list; we allocate that later (with the initial vm_page
    291 	 * structures).
    292 	 */
    293 
    294 	TAILQ_INIT(&uvm.page_active);
    295 	TAILQ_INIT(&uvm.page_inactive);
    296 	simple_lock_init(&uvm.pageqlock);
    297 	simple_lock_init(&uvm.fpageqlock);
    298 
    299 	/*
    300 	 * init the <obj,offset> => <page> hash table.  for now
    301 	 * we just have one bucket (the bootstrap bucket).  later on we
    302 	 * will allocate new buckets as we dynamically resize the hash table.
    303 	 */
    304 
    305 	uvm.page_nhash = 1;			/* 1 bucket */
    306 	uvm.page_hashmask = 0;			/* mask for hash function */
    307 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
    308 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
    309 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
    310 
    311 	/*
    312 	 * allocate vm_page structures.
    313 	 */
    314 
    315 	/*
    316 	 * sanity check:
    317 	 * before calling this function the MD code is expected to register
    318 	 * some free RAM with the uvm_page_physload() function.   our job
    319 	 * now is to allocate vm_page structures for this memory.
    320 	 */
    321 
    322 	if (vm_nphysseg == 0)
    323 		panic("uvm_page_bootstrap: no memory pre-allocated");
    324 
    325 	/*
    326 	 * first calculate the number of free pages...
    327 	 *
    328 	 * note that we use start/end rather than avail_start/avail_end.
    329 	 * this allows us to allocate extra vm_page structures in case we
    330 	 * want to return some memory to the pool after booting.
    331 	 */
    332 
    333 	freepages = 0;
    334 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    335 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
    336 
    337 	/*
    338 	 * Let MD code initialize the number of colors, or default
    339 	 * to 1 color if MD code doesn't care.
    340 	 */
    341 	if (uvmexp.ncolors == 0)
    342 		uvmexp.ncolors = 1;
    343 	uvmexp.colormask = uvmexp.ncolors - 1;
    344 
    345 	/*
    346 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
    347 	 * use.   for each page of memory we use we need a vm_page structure.
    348 	 * thus, the total number of pages we can use is the total size of
    349 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
    350 	 * structure.   we add one to freepages as a fudge factor to avoid
    351 	 * truncation errors (since we can only allocate in terms of whole
    352 	 * pages).
    353 	 */
    354 
    355 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
    356 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
    357 	    (PAGE_SIZE + sizeof(struct vm_page));
    358 
    359 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
    360 	    sizeof(struct pgflbucket)) + (pagecount *
    361 	    sizeof(struct vm_page)));
    362 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
    363 
    364 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    365 		uvm.page_free[lcv].pgfl_buckets =
    366 		    (bucketarray + (lcv * uvmexp.ncolors));
    367 		uvm_page_init_buckets(&uvm.page_free[lcv]);
    368 	}
    369 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
    370 
    371 	/*
    372 	 * init the vm_page structures and put them in the correct place.
    373 	 */
    374 
    375 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    376 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
    377 
    378 		/* set up page array pointers */
    379 		vm_physmem[lcv].pgs = pagearray;
    380 		pagearray += n;
    381 		pagecount -= n;
    382 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
    383 
    384 		/* init and free vm_pages (we've already zeroed them) */
    385 		paddr = ptoa(vm_physmem[lcv].start);
    386 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
    387 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
    388 #ifdef __HAVE_VM_PAGE_MD
    389 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
    390 #endif
    391 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
    392 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
    393 				uvmexp.npages++;
    394 				/* add page to free pool */
    395 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
    396 			}
    397 		}
    398 	}
    399 
    400 	/*
    401 	 * pass up the values of virtual_space_start and
    402 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
    403 	 * layers of the VM.
    404 	 */
    405 
    406 	*kvm_startp = round_page(virtual_space_start);
    407 	*kvm_endp = trunc_page(virtual_space_end);
    408 #ifdef DEBUG
    409 	/*
    410 	 * steal kva for uvm_pagezerocheck().
    411 	 */
    412 	uvm_zerocheckkva = *kvm_startp;
    413 	*kvm_startp += PAGE_SIZE;
    414 #endif /* DEBUG */
    415 
    416 	/*
    417 	 * init locks for kernel threads
    418 	 */
    419 
    420 	simple_lock_init(&uvm.pagedaemon_lock);
    421 	simple_lock_init(&uvm.aiodoned_lock);
    422 
    423 	/*
    424 	 * init various thresholds.
    425 	 */
    426 
    427 	uvmexp.reserve_pagedaemon = 1;
    428 	uvmexp.reserve_kernel = 5;
    429 	uvmexp.anonminpct = 10;
    430 	uvmexp.fileminpct = 10;
    431 	uvmexp.execminpct = 5;
    432 	uvmexp.anonmaxpct = 80;
    433 	uvmexp.filemaxpct = 50;
    434 	uvmexp.execmaxpct = 30;
    435 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
    436 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
    437 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
    438 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
    439 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
    440 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
    441 
    442 	/*
    443 	 * determine if we should zero pages in the idle loop.
    444 	 */
    445 
    446 	uvm.page_idle_zero = vm_page_zero_enable;
    447 
    448 	/*
    449 	 * done!
    450 	 */
    451 
    452 	uvm.page_init_done = TRUE;
    453 }
    454 
    455 /*
    456  * uvm_setpagesize: set the page size
    457  *
    458  * => sets page_shift and page_mask from uvmexp.pagesize.
    459  */
    460 
    461 void
    462 uvm_setpagesize()
    463 {
    464 
    465 	/*
    466 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
    467 	 * to be a constant (indicated by being a non-zero value).
    468 	 */
    469 	if (uvmexp.pagesize == 0) {
    470 		if (PAGE_SIZE == 0)
    471 			panic("uvm_setpagesize: uvmexp.pagesize not set");
    472 		uvmexp.pagesize = PAGE_SIZE;
    473 	}
    474 	uvmexp.pagemask = uvmexp.pagesize - 1;
    475 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
    476 		panic("uvm_setpagesize: page size not a power of two");
    477 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
    478 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
    479 			break;
    480 }
    481 
    482 /*
    483  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
    484  */
    485 
    486 vaddr_t
    487 uvm_pageboot_alloc(size)
    488 	vsize_t size;
    489 {
    490 	static boolean_t initialized = FALSE;
    491 	vaddr_t addr;
    492 #if !defined(PMAP_STEAL_MEMORY)
    493 	vaddr_t vaddr;
    494 	paddr_t paddr;
    495 #endif
    496 
    497 	/*
    498 	 * on first call to this function, initialize ourselves.
    499 	 */
    500 	if (initialized == FALSE) {
    501 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
    502 
    503 		/* round it the way we like it */
    504 		virtual_space_start = round_page(virtual_space_start);
    505 		virtual_space_end = trunc_page(virtual_space_end);
    506 
    507 		initialized = TRUE;
    508 	}
    509 
    510 	/* round to page size */
    511 	size = round_page(size);
    512 
    513 #if defined(PMAP_STEAL_MEMORY)
    514 
    515 	/*
    516 	 * defer bootstrap allocation to MD code (it may want to allocate
    517 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
    518 	 * virtual_space_start/virtual_space_end if necessary.
    519 	 */
    520 
    521 	addr = pmap_steal_memory(size, &virtual_space_start,
    522 	    &virtual_space_end);
    523 
    524 	return(addr);
    525 
    526 #else /* !PMAP_STEAL_MEMORY */
    527 
    528 	/*
    529 	 * allocate virtual memory for this request
    530 	 */
    531 	if (virtual_space_start == virtual_space_end ||
    532 	    (virtual_space_end - virtual_space_start) < size)
    533 		panic("uvm_pageboot_alloc: out of virtual space");
    534 
    535 	addr = virtual_space_start;
    536 
    537 #ifdef PMAP_GROWKERNEL
    538 	/*
    539 	 * If the kernel pmap can't map the requested space,
    540 	 * then allocate more resources for it.
    541 	 */
    542 	if (uvm_maxkaddr < (addr + size)) {
    543 		uvm_maxkaddr = pmap_growkernel(addr + size);
    544 		if (uvm_maxkaddr < (addr + size))
    545 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
    546 	}
    547 #endif
    548 
    549 	virtual_space_start += size;
    550 
    551 	/*
    552 	 * allocate and mapin physical pages to back new virtual pages
    553 	 */
    554 
    555 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
    556 	    vaddr += PAGE_SIZE) {
    557 
    558 		if (!uvm_page_physget(&paddr))
    559 			panic("uvm_pageboot_alloc: out of memory");
    560 
    561 		/*
    562 		 * Note this memory is no longer managed, so using
    563 		 * pmap_kenter is safe.
    564 		 */
    565 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
    566 	}
    567 	pmap_update(pmap_kernel());
    568 	return(addr);
    569 #endif	/* PMAP_STEAL_MEMORY */
    570 }
    571 
    572 #if !defined(PMAP_STEAL_MEMORY)
    573 /*
    574  * uvm_page_physget: "steal" one page from the vm_physmem structure.
    575  *
    576  * => attempt to allocate it off the end of a segment in which the "avail"
    577  *    values match the start/end values.   if we can't do that, then we
    578  *    will advance both values (making them equal, and removing some
    579  *    vm_page structures from the non-avail area).
    580  * => return false if out of memory.
    581  */
    582 
    583 /* subroutine: try to allocate from memory chunks on the specified freelist */
    584 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
    585 
    586 static boolean_t
    587 uvm_page_physget_freelist(paddrp, freelist)
    588 	paddr_t *paddrp;
    589 	int freelist;
    590 {
    591 	int lcv, x;
    592 
    593 	/* pass 1: try allocating from a matching end */
    594 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    595 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    596 #else
    597 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    598 #endif
    599 	{
    600 
    601 		if (uvm.page_init_done == TRUE)
    602 			panic("uvm_page_physget: called _after_ bootstrap");
    603 
    604 		if (vm_physmem[lcv].free_list != freelist)
    605 			continue;
    606 
    607 		/* try from front */
    608 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
    609 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    610 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
    611 			vm_physmem[lcv].avail_start++;
    612 			vm_physmem[lcv].start++;
    613 			/* nothing left?   nuke it */
    614 			if (vm_physmem[lcv].avail_start ==
    615 			    vm_physmem[lcv].end) {
    616 				if (vm_nphysseg == 1)
    617 				    panic("uvm_page_physget: out of memory!");
    618 				vm_nphysseg--;
    619 				for (x = lcv ; x < vm_nphysseg ; x++)
    620 					/* structure copy */
    621 					vm_physmem[x] = vm_physmem[x+1];
    622 			}
    623 			return (TRUE);
    624 		}
    625 
    626 		/* try from rear */
    627 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
    628 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
    629 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
    630 			vm_physmem[lcv].avail_end--;
    631 			vm_physmem[lcv].end--;
    632 			/* nothing left?   nuke it */
    633 			if (vm_physmem[lcv].avail_end ==
    634 			    vm_physmem[lcv].start) {
    635 				if (vm_nphysseg == 1)
    636 				    panic("uvm_page_physget: out of memory!");
    637 				vm_nphysseg--;
    638 				for (x = lcv ; x < vm_nphysseg ; x++)
    639 					/* structure copy */
    640 					vm_physmem[x] = vm_physmem[x+1];
    641 			}
    642 			return (TRUE);
    643 		}
    644 	}
    645 
    646 	/* pass2: forget about matching ends, just allocate something */
    647 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    648 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
    649 #else
    650 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    651 #endif
    652 	{
    653 
    654 		/* any room in this bank? */
    655 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
    656 			continue;  /* nope */
    657 
    658 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
    659 		vm_physmem[lcv].avail_start++;
    660 		/* truncate! */
    661 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
    662 
    663 		/* nothing left?   nuke it */
    664 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
    665 			if (vm_nphysseg == 1)
    666 				panic("uvm_page_physget: out of memory!");
    667 			vm_nphysseg--;
    668 			for (x = lcv ; x < vm_nphysseg ; x++)
    669 				/* structure copy */
    670 				vm_physmem[x] = vm_physmem[x+1];
    671 		}
    672 		return (TRUE);
    673 	}
    674 
    675 	return (FALSE);        /* whoops! */
    676 }
    677 
    678 boolean_t
    679 uvm_page_physget(paddrp)
    680 	paddr_t *paddrp;
    681 {
    682 	int i;
    683 
    684 	/* try in the order of freelist preference */
    685 	for (i = 0; i < VM_NFREELIST; i++)
    686 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
    687 			return (TRUE);
    688 	return (FALSE);
    689 }
    690 #endif /* PMAP_STEAL_MEMORY */
    691 
    692 /*
    693  * uvm_page_physload: load physical memory into VM system
    694  *
    695  * => all args are PFs
    696  * => all pages in start/end get vm_page structures
    697  * => areas marked by avail_start/avail_end get added to the free page pool
    698  * => we are limited to VM_PHYSSEG_MAX physical memory segments
    699  */
    700 
    701 void
    702 uvm_page_physload(start, end, avail_start, avail_end, free_list)
    703 	paddr_t start, end, avail_start, avail_end;
    704 	int free_list;
    705 {
    706 	int preload, lcv;
    707 	psize_t npages;
    708 	struct vm_page *pgs;
    709 	struct vm_physseg *ps;
    710 
    711 	if (uvmexp.pagesize == 0)
    712 		panic("uvm_page_physload: page size not set!");
    713 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
    714 		panic("uvm_page_physload: bad free list %d", free_list);
    715 	if (start >= end)
    716 		panic("uvm_page_physload: start >= end");
    717 
    718 	/*
    719 	 * do we have room?
    720 	 */
    721 
    722 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
    723 		printf("uvm_page_physload: unable to load physical memory "
    724 		    "segment\n");
    725 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
    726 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
    727 		printf("\tincrease VM_PHYSSEG_MAX\n");
    728 		return;
    729 	}
    730 
    731 	/*
    732 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
    733 	 * called yet, so malloc is not available).
    734 	 */
    735 
    736 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
    737 		if (vm_physmem[lcv].pgs)
    738 			break;
    739 	}
    740 	preload = (lcv == vm_nphysseg);
    741 
    742 	/*
    743 	 * if VM is already running, attempt to malloc() vm_page structures
    744 	 */
    745 
    746 	if (!preload) {
    747 #if defined(VM_PHYSSEG_NOADD)
    748 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
    749 #else
    750 		/* XXXCDC: need some sort of lockout for this case */
    751 		paddr_t paddr;
    752 		npages = end - start;  /* # of pages */
    753 		pgs = malloc(sizeof(struct vm_page) * npages,
    754 		    M_VMPAGE, M_NOWAIT);
    755 		if (pgs == NULL) {
    756 			printf("uvm_page_physload: can not malloc vm_page "
    757 			    "structs for segment\n");
    758 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
    759 			return;
    760 		}
    761 		/* zero data, init phys_addr and free_list, and free pages */
    762 		memset(pgs, 0, sizeof(struct vm_page) * npages);
    763 		for (lcv = 0, paddr = ptoa(start) ;
    764 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
    765 			pgs[lcv].phys_addr = paddr;
    766 			pgs[lcv].free_list = free_list;
    767 			if (atop(paddr) >= avail_start &&
    768 			    atop(paddr) <= avail_end)
    769 				uvm_pagefree(&pgs[lcv]);
    770 		}
    771 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
    772 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
    773 #endif
    774 	} else {
    775 		pgs = NULL;
    776 		npages = 0;
    777 	}
    778 
    779 	/*
    780 	 * now insert us in the proper place in vm_physmem[]
    781 	 */
    782 
    783 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
    784 	/* random: put it at the end (easy!) */
    785 	ps = &vm_physmem[vm_nphysseg];
    786 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    787 	{
    788 		int x;
    789 		/* sort by address for binary search */
    790 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    791 			if (start < vm_physmem[lcv].start)
    792 				break;
    793 		ps = &vm_physmem[lcv];
    794 		/* move back other entries, if necessary ... */
    795 		for (x = vm_nphysseg ; x > lcv ; x--)
    796 			/* structure copy */
    797 			vm_physmem[x] = vm_physmem[x - 1];
    798 	}
    799 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
    800 	{
    801 		int x;
    802 		/* sort by largest segment first */
    803 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    804 			if ((end - start) >
    805 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
    806 				break;
    807 		ps = &vm_physmem[lcv];
    808 		/* move back other entries, if necessary ... */
    809 		for (x = vm_nphysseg ; x > lcv ; x--)
    810 			/* structure copy */
    811 			vm_physmem[x] = vm_physmem[x - 1];
    812 	}
    813 #else
    814 	panic("uvm_page_physload: unknown physseg strategy selected!");
    815 #endif
    816 
    817 	ps->start = start;
    818 	ps->end = end;
    819 	ps->avail_start = avail_start;
    820 	ps->avail_end = avail_end;
    821 	if (preload) {
    822 		ps->pgs = NULL;
    823 	} else {
    824 		ps->pgs = pgs;
    825 		ps->lastpg = pgs + npages - 1;
    826 	}
    827 	ps->free_list = free_list;
    828 	vm_nphysseg++;
    829 
    830 	if (!preload)
    831 		uvm_page_rehash();
    832 }
    833 
    834 /*
    835  * uvm_page_rehash: reallocate hash table based on number of free pages.
    836  */
    837 
    838 void
    839 uvm_page_rehash()
    840 {
    841 	int freepages, lcv, bucketcount, oldcount;
    842 	struct pglist *newbuckets, *oldbuckets;
    843 	struct vm_page *pg;
    844 	size_t newsize, oldsize;
    845 
    846 	/*
    847 	 * compute number of pages that can go in the free pool
    848 	 */
    849 
    850 	freepages = 0;
    851 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
    852 		freepages +=
    853 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
    854 
    855 	/*
    856 	 * compute number of buckets needed for this number of pages
    857 	 */
    858 
    859 	bucketcount = 1;
    860 	while (bucketcount < freepages)
    861 		bucketcount = bucketcount * 2;
    862 
    863 	/*
    864 	 * compute the size of the current table and new table.
    865 	 */
    866 
    867 	oldbuckets = uvm.page_hash;
    868 	oldcount = uvm.page_nhash;
    869 	oldsize = round_page(sizeof(struct pglist) * oldcount);
    870 	newsize = round_page(sizeof(struct pglist) * bucketcount);
    871 
    872 	/*
    873 	 * allocate the new buckets
    874 	 */
    875 
    876 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
    877 	if (newbuckets == NULL) {
    878 		printf("uvm_page_physrehash: WARNING: could not grow page "
    879 		    "hash table\n");
    880 		return;
    881 	}
    882 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
    883 		TAILQ_INIT(&newbuckets[lcv]);
    884 
    885 	/*
    886 	 * now replace the old buckets with the new ones and rehash everything
    887 	 */
    888 
    889 	simple_lock(&uvm.hashlock);
    890 	uvm.page_hash = newbuckets;
    891 	uvm.page_nhash = bucketcount;
    892 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
    893 
    894 	/* ... and rehash */
    895 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
    896 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
    897 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
    898 			TAILQ_INSERT_TAIL(
    899 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
    900 			  pg, hashq);
    901 		}
    902 	}
    903 	simple_unlock(&uvm.hashlock);
    904 
    905 	/*
    906 	 * free old bucket array if is not the boot-time table
    907 	 */
    908 
    909 	if (oldbuckets != &uvm_bootbucket)
    910 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
    911 }
    912 
    913 /*
    914  * uvm_page_recolor: Recolor the pages if the new bucket count is
    915  * larger than the old one.
    916  */
    917 
    918 void
    919 uvm_page_recolor(int newncolors)
    920 {
    921 	struct pgflbucket *bucketarray, *oldbucketarray;
    922 	struct pgfreelist pgfl;
    923 	struct vm_page *pg;
    924 	vsize_t bucketcount;
    925 	int s, lcv, color, i, ocolors;
    926 
    927 	if (newncolors <= uvmexp.ncolors)
    928 		return;
    929 
    930 	if (uvm.page_init_done == FALSE) {
    931 		uvmexp.ncolors = newncolors;
    932 		return;
    933 	}
    934 
    935 	bucketcount = newncolors * VM_NFREELIST;
    936 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
    937 	    M_VMPAGE, M_NOWAIT);
    938 	if (bucketarray == NULL) {
    939 		printf("WARNING: unable to allocate %ld page color buckets\n",
    940 		    (long) bucketcount);
    941 		return;
    942 	}
    943 
    944 	s = uvm_lock_fpageq();
    945 
    946 	/* Make sure we should still do this. */
    947 	if (newncolors <= uvmexp.ncolors) {
    948 		uvm_unlock_fpageq(s);
    949 		free(bucketarray, M_VMPAGE);
    950 		return;
    951 	}
    952 
    953 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
    954 	ocolors = uvmexp.ncolors;
    955 
    956 	uvmexp.ncolors = newncolors;
    957 	uvmexp.colormask = uvmexp.ncolors - 1;
    958 
    959 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
    960 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
    961 		uvm_page_init_buckets(&pgfl);
    962 		for (color = 0; color < ocolors; color++) {
    963 			for (i = 0; i < PGFL_NQUEUES; i++) {
    964 				while ((pg = TAILQ_FIRST(&uvm.page_free[
    965 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
    966 				    != NULL) {
    967 					TAILQ_REMOVE(&uvm.page_free[
    968 					    lcv].pgfl_buckets[
    969 					    color].pgfl_queues[i], pg, pageq);
    970 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
    971 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
    972 					    i], pg, pageq);
    973 				}
    974 			}
    975 		}
    976 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
    977 	}
    978 
    979 	if (have_recolored_pages) {
    980 		uvm_unlock_fpageq(s);
    981 		free(oldbucketarray, M_VMPAGE);
    982 		return;
    983 	}
    984 
    985 	have_recolored_pages = TRUE;
    986 	uvm_unlock_fpageq(s);
    987 }
    988 
    989 /*
    990  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
    991  */
    992 
    993 static __inline struct vm_page *
    994 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
    995     int *trycolorp)
    996 {
    997 	struct pglist *freeq;
    998 	struct vm_page *pg;
    999 	int color, trycolor = *trycolorp;
   1000 
   1001 	color = trycolor;
   1002 	do {
   1003 		if ((pg = TAILQ_FIRST((freeq =
   1004 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
   1005 			goto gotit;
   1006 		if ((pg = TAILQ_FIRST((freeq =
   1007 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
   1008 			goto gotit;
   1009 		color = (color + 1) & uvmexp.colormask;
   1010 	} while (color != trycolor);
   1011 
   1012 	return (NULL);
   1013 
   1014  gotit:
   1015 	TAILQ_REMOVE(freeq, pg, pageq);
   1016 	uvmexp.free--;
   1017 
   1018 	/* update zero'd page count */
   1019 	if (pg->flags & PG_ZERO)
   1020 		uvmexp.zeropages--;
   1021 
   1022 	if (color == trycolor)
   1023 		uvmexp.colorhit++;
   1024 	else {
   1025 		uvmexp.colormiss++;
   1026 		*trycolorp = color;
   1027 	}
   1028 
   1029 	return (pg);
   1030 }
   1031 
   1032 /*
   1033  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
   1034  *
   1035  * => return null if no pages free
   1036  * => wake up pagedaemon if number of free pages drops below low water mark
   1037  * => if obj != NULL, obj must be locked (to put in hash)
   1038  * => if anon != NULL, anon must be locked (to put in anon)
   1039  * => only one of obj or anon can be non-null
   1040  * => caller must activate/deactivate page if it is not wired.
   1041  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
   1042  * => policy decision: it is more important to pull a page off of the
   1043  *	appropriate priority free list than it is to get a zero'd or
   1044  *	unknown contents page.  This is because we live with the
   1045  *	consequences of a bad free list decision for the entire
   1046  *	lifetime of the page, e.g. if the page comes from memory that
   1047  *	is slower to access.
   1048  */
   1049 
   1050 struct vm_page *
   1051 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
   1052 	struct uvm_object *obj;
   1053 	voff_t off;
   1054 	int flags;
   1055 	struct vm_anon *anon;
   1056 	int strat, free_list;
   1057 {
   1058 	int lcv, try1, try2, s, zeroit = 0, color;
   1059 	struct vm_page *pg;
   1060 	boolean_t use_reserve;
   1061 
   1062 	KASSERT(obj == NULL || anon == NULL);
   1063 	KASSERT(off == trunc_page(off));
   1064 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
   1065 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
   1066 
   1067 	s = uvm_lock_fpageq();
   1068 
   1069 	/*
   1070 	 * This implements a global round-robin page coloring
   1071 	 * algorithm.
   1072 	 *
   1073 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
   1074 	 * XXXJRT: What about virtually-indexed caches?
   1075 	 */
   1076 
   1077 	color = uvm.page_free_nextcolor;
   1078 
   1079 	/*
   1080 	 * check to see if we need to generate some free pages waking
   1081 	 * the pagedaemon.
   1082 	 */
   1083 
   1084 	UVM_KICK_PDAEMON();
   1085 
   1086 	/*
   1087 	 * fail if any of these conditions is true:
   1088 	 * [1]  there really are no free pages, or
   1089 	 * [2]  only kernel "reserved" pages remain and
   1090 	 *        the page isn't being allocated to a kernel object.
   1091 	 * [3]  only pagedaemon "reserved" pages remain and
   1092 	 *        the requestor isn't the pagedaemon.
   1093 	 */
   1094 
   1095 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
   1096 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
   1097 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
   1098 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
   1099 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
   1100 		goto fail;
   1101 
   1102 #if PGFL_NQUEUES != 2
   1103 #error uvm_pagealloc_strat needs to be updated
   1104 #endif
   1105 
   1106 	/*
   1107 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
   1108 	 * we try the UNKNOWN queue first.
   1109 	 */
   1110 	if (flags & UVM_PGA_ZERO) {
   1111 		try1 = PGFL_ZEROS;
   1112 		try2 = PGFL_UNKNOWN;
   1113 	} else {
   1114 		try1 = PGFL_UNKNOWN;
   1115 		try2 = PGFL_ZEROS;
   1116 	}
   1117 
   1118  again:
   1119 	switch (strat) {
   1120 	case UVM_PGA_STRAT_NORMAL:
   1121 		/* Check all freelists in descending priority order. */
   1122 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
   1123 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
   1124 			    try1, try2, &color);
   1125 			if (pg != NULL)
   1126 				goto gotit;
   1127 		}
   1128 
   1129 		/* No pages free! */
   1130 		goto fail;
   1131 
   1132 	case UVM_PGA_STRAT_ONLY:
   1133 	case UVM_PGA_STRAT_FALLBACK:
   1134 		/* Attempt to allocate from the specified free list. */
   1135 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
   1136 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
   1137 		    try1, try2, &color);
   1138 		if (pg != NULL)
   1139 			goto gotit;
   1140 
   1141 		/* Fall back, if possible. */
   1142 		if (strat == UVM_PGA_STRAT_FALLBACK) {
   1143 			strat = UVM_PGA_STRAT_NORMAL;
   1144 			goto again;
   1145 		}
   1146 
   1147 		/* No pages free! */
   1148 		goto fail;
   1149 
   1150 	default:
   1151 		panic("uvm_pagealloc_strat: bad strat %d", strat);
   1152 		/* NOTREACHED */
   1153 	}
   1154 
   1155  gotit:
   1156 	/*
   1157 	 * We now know which color we actually allocated from; set
   1158 	 * the next color accordingly.
   1159 	 */
   1160 
   1161 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
   1162 
   1163 	/*
   1164 	 * update allocation statistics and remember if we have to
   1165 	 * zero the page
   1166 	 */
   1167 
   1168 	if (flags & UVM_PGA_ZERO) {
   1169 		if (pg->flags & PG_ZERO) {
   1170 			uvmexp.pga_zerohit++;
   1171 			zeroit = 0;
   1172 		} else {
   1173 			uvmexp.pga_zeromiss++;
   1174 			zeroit = 1;
   1175 		}
   1176 	}
   1177 	uvm_unlock_fpageq(s);
   1178 
   1179 	pg->offset = off;
   1180 	pg->uobject = obj;
   1181 	pg->uanon = anon;
   1182 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
   1183 	if (anon) {
   1184 		anon->u.an_page = pg;
   1185 		pg->pqflags = PQ_ANON;
   1186 		uvmexp.anonpages++;
   1187 	} else {
   1188 		if (obj) {
   1189 			uvm_pageinsert(pg);
   1190 		}
   1191 		pg->pqflags = 0;
   1192 	}
   1193 #if defined(UVM_PAGE_TRKOWN)
   1194 	pg->owner_tag = NULL;
   1195 #endif
   1196 	UVM_PAGE_OWN(pg, "new alloc");
   1197 
   1198 	if (flags & UVM_PGA_ZERO) {
   1199 		/*
   1200 		 * A zero'd page is not clean.  If we got a page not already
   1201 		 * zero'd, then we have to zero it ourselves.
   1202 		 */
   1203 		pg->flags &= ~PG_CLEAN;
   1204 		if (zeroit)
   1205 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1206 	}
   1207 
   1208 	return(pg);
   1209 
   1210  fail:
   1211 	uvm_unlock_fpageq(s);
   1212 	return (NULL);
   1213 }
   1214 
   1215 /*
   1216  * uvm_pagereplace: replace a page with another
   1217  *
   1218  * => object must be locked
   1219  */
   1220 
   1221 void
   1222 uvm_pagereplace(oldpg, newpg)
   1223 	struct vm_page *oldpg;
   1224 	struct vm_page *newpg;
   1225 {
   1226 
   1227 	KASSERT((oldpg->flags & PG_TABLED) != 0);
   1228 	KASSERT(oldpg->uobject != NULL);
   1229 	KASSERT((newpg->flags & PG_TABLED) == 0);
   1230 	KASSERT(newpg->uobject == NULL);
   1231 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
   1232 
   1233 	newpg->uobject = oldpg->uobject;
   1234 	newpg->offset = oldpg->offset;
   1235 
   1236 	uvm_pageinsert_after(newpg, oldpg);
   1237 	uvm_pageremove(oldpg);
   1238 }
   1239 
   1240 /*
   1241  * uvm_pagerealloc: reallocate a page from one object to another
   1242  *
   1243  * => both objects must be locked
   1244  */
   1245 
   1246 void
   1247 uvm_pagerealloc(pg, newobj, newoff)
   1248 	struct vm_page *pg;
   1249 	struct uvm_object *newobj;
   1250 	voff_t newoff;
   1251 {
   1252 	/*
   1253 	 * remove it from the old object
   1254 	 */
   1255 
   1256 	if (pg->uobject) {
   1257 		uvm_pageremove(pg);
   1258 	}
   1259 
   1260 	/*
   1261 	 * put it in the new object
   1262 	 */
   1263 
   1264 	if (newobj) {
   1265 		pg->uobject = newobj;
   1266 		pg->offset = newoff;
   1267 		uvm_pageinsert(pg);
   1268 	}
   1269 }
   1270 
   1271 #ifdef DEBUG
   1272 /*
   1273  * check if page is zero-filled
   1274  *
   1275  *  - called with free page queue lock held.
   1276  */
   1277 void
   1278 uvm_pagezerocheck(struct vm_page *pg)
   1279 {
   1280 	int *p, *ep;
   1281 
   1282 	KASSERT(uvm_zerocheckkva != 0);
   1283 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
   1284 
   1285 	/*
   1286 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
   1287 	 * uvm page allocator.
   1288 	 *
   1289 	 * it might be better to have "CPU-local temporary map" pmap interface.
   1290 	 */
   1291 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
   1292 	p = (int *)uvm_zerocheckkva;
   1293 	ep = (int *)((char *)p + PAGE_SIZE);
   1294 	pmap_update(pmap_kernel());
   1295 	while (p < ep) {
   1296 		if (*p != 0)
   1297 			panic("PG_ZERO page isn't zero-filled");
   1298 		p++;
   1299 	}
   1300 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
   1301 }
   1302 #endif /* DEBUG */
   1303 
   1304 /*
   1305  * uvm_pagefree: free page
   1306  *
   1307  * => erase page's identity (i.e. remove from hash/object)
   1308  * => put page on free list
   1309  * => caller must lock owning object (either anon or uvm_object)
   1310  * => caller must lock page queues
   1311  * => assumes all valid mappings of pg are gone
   1312  */
   1313 
   1314 void
   1315 uvm_pagefree(pg)
   1316 	struct vm_page *pg;
   1317 {
   1318 	int s;
   1319 	struct pglist *pgfl;
   1320 	boolean_t iszero;
   1321 
   1322 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1323 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
   1324 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
   1325 	LOCK_ASSERT(pg->uobject == NULL ||
   1326 		    simple_lock_held(&pg->uobject->vmobjlock));
   1327 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
   1328 		    simple_lock_held(&pg->uanon->an_lock));
   1329 
   1330 #ifdef DEBUG
   1331 	if (pg->uobject == (void *)0xdeadbeef &&
   1332 	    pg->uanon == (void *)0xdeadbeef) {
   1333 		panic("uvm_pagefree: freeing free page %p", pg);
   1334 	}
   1335 #endif /* DEBUG */
   1336 
   1337 	/*
   1338 	 * if the page is loaned, resolve the loan instead of freeing.
   1339 	 */
   1340 
   1341 	if (pg->loan_count) {
   1342 		KASSERT(pg->wire_count == 0);
   1343 
   1344 		/*
   1345 		 * if the page is owned by an anon then we just want to
   1346 		 * drop anon ownership.  the kernel will free the page when
   1347 		 * it is done with it.  if the page is owned by an object,
   1348 		 * remove it from the object and mark it dirty for the benefit
   1349 		 * of possible anon owners.
   1350 		 *
   1351 		 * regardless of previous ownership, wakeup any waiters,
   1352 		 * unbusy the page, and we're done.
   1353 		 */
   1354 
   1355 		if (pg->uobject != NULL) {
   1356 			uvm_pageremove(pg);
   1357 			pg->flags &= ~PG_CLEAN;
   1358 		} else if (pg->uanon != NULL) {
   1359 			if ((pg->pqflags & PQ_ANON) == 0) {
   1360 				pg->loan_count--;
   1361 			} else {
   1362 				pg->pqflags &= ~PQ_ANON;
   1363 			}
   1364 			pg->uanon = NULL;
   1365 		}
   1366 		if (pg->flags & PG_WANTED) {
   1367 			wakeup(pg);
   1368 		}
   1369 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
   1370 #ifdef UVM_PAGE_TRKOWN
   1371 		pg->owner_tag = NULL;
   1372 #endif
   1373 		if (pg->loan_count) {
   1374 			uvm_pagedequeue(pg);
   1375 			return;
   1376 		}
   1377 	}
   1378 
   1379 	/*
   1380 	 * remove page from its object or anon.
   1381 	 */
   1382 
   1383 	if (pg->uobject != NULL) {
   1384 		uvm_pageremove(pg);
   1385 	} else if (pg->uanon != NULL) {
   1386 		pg->uanon->u.an_page = NULL;
   1387 		uvmexp.anonpages--;
   1388 	}
   1389 
   1390 	/*
   1391 	 * now remove the page from the queues.
   1392 	 */
   1393 
   1394 	uvm_pagedequeue(pg);
   1395 
   1396 	/*
   1397 	 * if the page was wired, unwire it now.
   1398 	 */
   1399 
   1400 	if (pg->wire_count) {
   1401 		pg->wire_count = 0;
   1402 		uvmexp.wired--;
   1403 	}
   1404 
   1405 	/*
   1406 	 * and put on free queue
   1407 	 */
   1408 
   1409 	iszero = (pg->flags & PG_ZERO);
   1410 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
   1411 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
   1412 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
   1413 
   1414 	pg->pqflags = PQ_FREE;
   1415 #ifdef DEBUG
   1416 	pg->uobject = (void *)0xdeadbeef;
   1417 	pg->offset = 0xdeadbeef;
   1418 	pg->uanon = (void *)0xdeadbeef;
   1419 #endif
   1420 
   1421 	s = uvm_lock_fpageq();
   1422 
   1423 #ifdef DEBUG
   1424 	if (iszero)
   1425 		uvm_pagezerocheck(pg);
   1426 #endif /* DEBUG */
   1427 
   1428 	TAILQ_INSERT_TAIL(pgfl, pg, pageq);
   1429 	uvmexp.free++;
   1430 	if (iszero)
   1431 		uvmexp.zeropages++;
   1432 
   1433 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
   1434 		uvm.page_idle_zero = vm_page_zero_enable;
   1435 
   1436 	uvm_unlock_fpageq(s);
   1437 }
   1438 
   1439 /*
   1440  * uvm_page_unbusy: unbusy an array of pages.
   1441  *
   1442  * => pages must either all belong to the same object, or all belong to anons.
   1443  * => if pages are object-owned, object must be locked.
   1444  * => if pages are anon-owned, anons must be locked.
   1445  * => caller must lock page queues if pages may be released.
   1446  * => caller must make sure that anon-owned pages are not PG_RELEASED.
   1447  */
   1448 
   1449 void
   1450 uvm_page_unbusy(pgs, npgs)
   1451 	struct vm_page **pgs;
   1452 	int npgs;
   1453 {
   1454 	struct vm_page *pg;
   1455 	int i;
   1456 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
   1457 
   1458 	for (i = 0; i < npgs; i++) {
   1459 		pg = pgs[i];
   1460 		if (pg == NULL || pg == PGO_DONTCARE) {
   1461 			continue;
   1462 		}
   1463 
   1464 		LOCK_ASSERT(pg->uobject == NULL ||
   1465 		    simple_lock_held(&pg->uobject->vmobjlock));
   1466 		LOCK_ASSERT(pg->uobject != NULL ||
   1467 		    (pg->uanon != NULL &&
   1468 		    simple_lock_held(&pg->uanon->an_lock)));
   1469 
   1470 		KASSERT(pg->flags & PG_BUSY);
   1471 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
   1472 		if (pg->flags & PG_WANTED) {
   1473 			wakeup(pg);
   1474 		}
   1475 		if (pg->flags & PG_RELEASED) {
   1476 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
   1477 			KASSERT(pg->uobject != NULL ||
   1478 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
   1479 			pg->flags &= ~PG_RELEASED;
   1480 			uvm_pagefree(pg);
   1481 		} else {
   1482 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
   1483 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1484 			UVM_PAGE_OWN(pg, NULL);
   1485 		}
   1486 	}
   1487 }
   1488 
   1489 #if defined(UVM_PAGE_TRKOWN)
   1490 /*
   1491  * uvm_page_own: set or release page ownership
   1492  *
   1493  * => this is a debugging function that keeps track of who sets PG_BUSY
   1494  *	and where they do it.   it can be used to track down problems
   1495  *	such a process setting "PG_BUSY" and never releasing it.
   1496  * => page's object [if any] must be locked
   1497  * => if "tag" is NULL then we are releasing page ownership
   1498  */
   1499 void
   1500 uvm_page_own(pg, tag)
   1501 	struct vm_page *pg;
   1502 	char *tag;
   1503 {
   1504 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
   1505 
   1506 	/* gain ownership? */
   1507 	if (tag) {
   1508 		if (pg->owner_tag) {
   1509 			printf("uvm_page_own: page %p already owned "
   1510 			    "by proc %d [%s]\n", pg,
   1511 			    pg->owner, pg->owner_tag);
   1512 			panic("uvm_page_own");
   1513 		}
   1514 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
   1515 		pg->owner_tag = tag;
   1516 		return;
   1517 	}
   1518 
   1519 	/* drop ownership */
   1520 	if (pg->owner_tag == NULL) {
   1521 		printf("uvm_page_own: dropping ownership of an non-owned "
   1522 		    "page (%p)\n", pg);
   1523 		panic("uvm_page_own");
   1524 	}
   1525 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
   1526 	    (pg->uanon == NULL && pg->uobject == NULL) ||
   1527 	    pg->uobject == uvm.kernel_object ||
   1528 	    pg->wire_count > 0 ||
   1529 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
   1530 	    pg->loan_count > 1);
   1531 	pg->owner_tag = NULL;
   1532 }
   1533 #endif
   1534 
   1535 /*
   1536  * uvm_pageidlezero: zero free pages while the system is idle.
   1537  *
   1538  * => try to complete one color bucket at a time, to reduce our impact
   1539  *	on the CPU cache.
   1540  * => we loop until we either reach the target or whichqs indicates that
   1541  *	there is a process ready to run.
   1542  */
   1543 void
   1544 uvm_pageidlezero()
   1545 {
   1546 	struct vm_page *pg;
   1547 	struct pgfreelist *pgfl;
   1548 	int free_list, s, firstbucket;
   1549 	static int nextbucket;
   1550 
   1551 	s = uvm_lock_fpageq();
   1552 	firstbucket = nextbucket;
   1553 	do {
   1554 		if (sched_whichqs != 0) {
   1555 			uvm_unlock_fpageq(s);
   1556 			return;
   1557 		}
   1558 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
   1559 			uvm.page_idle_zero = FALSE;
   1560 			uvm_unlock_fpageq(s);
   1561 			return;
   1562 		}
   1563 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
   1564 			pgfl = &uvm.page_free[free_list];
   1565 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
   1566 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
   1567 				if (sched_whichqs != 0) {
   1568 					uvm_unlock_fpageq(s);
   1569 					return;
   1570 				}
   1571 
   1572 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
   1573 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
   1574 				    pg, pageq);
   1575 				uvmexp.free--;
   1576 				uvm_unlock_fpageq(s);
   1577 #ifdef PMAP_PAGEIDLEZERO
   1578 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
   1579 
   1580 					/*
   1581 					 * The machine-dependent code detected
   1582 					 * some reason for us to abort zeroing
   1583 					 * pages, probably because there is a
   1584 					 * process now ready to run.
   1585 					 */
   1586 
   1587 					s = uvm_lock_fpageq();
   1588 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1589 					    nextbucket].pgfl_queues[
   1590 					    PGFL_UNKNOWN], pg, pageq);
   1591 					uvmexp.free++;
   1592 					uvmexp.zeroaborts++;
   1593 					uvm_unlock_fpageq(s);
   1594 					return;
   1595 				}
   1596 #else
   1597 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
   1598 #endif /* PMAP_PAGEIDLEZERO */
   1599 				pg->flags |= PG_ZERO;
   1600 
   1601 				s = uvm_lock_fpageq();
   1602 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
   1603 				    nextbucket].pgfl_queues[PGFL_ZEROS],
   1604 				    pg, pageq);
   1605 				uvmexp.free++;
   1606 				uvmexp.zeropages++;
   1607 			}
   1608 		}
   1609 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
   1610 	} while (nextbucket != firstbucket);
   1611 	uvm_unlock_fpageq(s);
   1612 }
   1613