uvm_page.h revision 1.16 1 /* $NetBSD: uvm_page.h,v 1.16 2000/06/27 09:00:14 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.h 7.3 (Berkeley) 4/21/91
42 * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #ifndef _UVM_UVM_PAGE_H_
70 #define _UVM_UVM_PAGE_H_
71
72 /*
73 * uvm_page.h
74 */
75
76 /*
77 * Resident memory system definitions.
78 */
79
80 /*
81 * Management of resident (logical) pages.
82 *
83 * A small structure is kept for each resident
84 * page, indexed by page number. Each structure
85 * is an element of several lists:
86 *
87 * A hash table bucket used to quickly
88 * perform object/offset lookups
89 *
90 * A list of all pages for a given object,
91 * so they can be quickly deactivated at
92 * time of deallocation.
93 *
94 * An ordered list of pages due for pageout.
95 *
96 * In addition, the structure contains the object
97 * and offset to which this page belongs (for pageout),
98 * and sundry status bits.
99 *
100 * Fields in this structure are locked either by the lock on the
101 * object that the page belongs to (O) or by the lock on the page
102 * queues (P) [or both].
103 */
104
105 /*
106 * locking note: the mach version of this data structure had bit
107 * fields for the flags, and the bit fields were divided into two
108 * items (depending on who locked what). some time, in BSD, the bit
109 * fields were dumped and all the flags were lumped into one short.
110 * that is fine for a single threaded uniprocessor OS, but bad if you
111 * want to actual make use of locking (simple_lock's). so, we've
112 * seperated things back out again.
113 *
114 * note the page structure has no lock of its own.
115 */
116
117 #include <uvm/uvm_extern.h>
118 #include <uvm/uvm_pglist.h>
119
120 struct vm_page {
121 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO
122 * queue or free list (P) */
123 TAILQ_ENTRY(vm_page) hashq; /* hash table links (O)*/
124 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O)*/
125
126 struct vm_anon *uanon; /* anon (O,P) */
127 struct uvm_object *uobject; /* object (O,P) */
128 voff_t offset; /* offset into object (O,P) */
129
130 u_short flags; /* object flags [O] */
131 u_short version; /* version count [O] */
132 u_short wire_count; /* wired down map refs [P] */
133 u_short pqflags; /* page queue flags [P] */
134 u_int loan_count; /* number of active loans
135 * to read: [O or P]
136 * to modify: [O _and_ P] */
137 paddr_t phys_addr; /* physical address of page */
138 #if defined(UVM_PAGE_TRKOWN)
139 /* debugging fields to track page ownership */
140 pid_t owner; /* proc that set PG_BUSY */
141 char *owner_tag; /* why it was set busy */
142 #endif
143 };
144
145 /*
146 * These are the flags defined for vm_page.
147 *
148 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
149 */
150
151 /*
152 * locking rules:
153 * PG_ ==> locked by object lock
154 * PQ_ ==> lock by page queue lock
155 * PQ_FREE is locked by free queue lock and is mutex with all other PQs
156 *
157 * PG_ZERO is used to indicate that a page has been pre-zero'd. This flag
158 * is only set when the page is on no queues, and is cleared when the page
159 * is placed on the free list.
160 *
161 * possible deadwood: PG_FAULTING, PQ_LAUNDRY
162 */
163 #define PG_CLEAN 0x0008 /* page has not been modified */
164 #define PG_BUSY 0x0010 /* page is in transit */
165 #define PG_WANTED 0x0020 /* someone is waiting for page */
166 #define PG_TABLED 0x0040 /* page is in VP table */
167 #define PG_ZERO 0x0100 /* page is pre-zero'd */
168 #define PG_FAKE 0x0200 /* page is placeholder for pagein */
169 #define PG_FILLED 0x0400 /* client flag to set when filled */
170 #define PG_DIRTY 0x0800 /* client flag to set when dirty */
171 #define PG_RELEASED 0x1000 /* page released while paging */
172 #define PG_FAULTING 0x2000 /* page is being faulted in */
173 #define PG_CLEANCHK 0x4000 /* clean bit has been checked */
174
175 #define PQ_FREE 0x0001 /* page is on free list */
176 #define PQ_INACTIVE 0x0002 /* page is in inactive list */
177 #define PQ_ACTIVE 0x0004 /* page is in active list */
178 #define PQ_LAUNDRY 0x0008 /* page is being cleaned now */
179 #define PQ_ANON 0x0010 /* page is part of an anon, rather
180 than an uvm_object */
181 #define PQ_AOBJ 0x0020 /* page is part of an anonymous
182 uvm_object */
183 #define PQ_SWAPBACKED (PQ_ANON|PQ_AOBJ)
184
185 /*
186 * physical memory layout structure
187 *
188 * MD vmparam.h must #define:
189 * VM_PHYSEG_MAX = max number of physical memory segments we support
190 * (if this is "1" then we revert to a "contig" case)
191 * VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSEG_MAX > 1)
192 * - VM_PSTRAT_RANDOM: linear search (random order)
193 * - VM_PSTRAT_BSEARCH: binary search (sorted by address)
194 * - VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first)
195 * - others?
196 * XXXCDC: eventually we should remove contig and old non-contig cases
197 * and purge all left-over global variables...
198 */
199 #define VM_PSTRAT_RANDOM 1
200 #define VM_PSTRAT_BSEARCH 2
201 #define VM_PSTRAT_BIGFIRST 3
202
203 /*
204 * vm_physmemseg: describes one segment of physical memory
205 */
206 struct vm_physseg {
207 paddr_t start; /* PF# of first page in segment */
208 paddr_t end; /* (PF# of last page in segment) + 1 */
209 paddr_t avail_start; /* PF# of first free page in segment */
210 paddr_t avail_end; /* (PF# of last free page in segment) +1 */
211 int free_list; /* which free list they belong on */
212 struct vm_page *pgs; /* vm_page structures (from start) */
213 struct vm_page *lastpg; /* vm_page structure for end */
214 struct pmap_physseg pmseg; /* pmap specific (MD) data */
215 };
216
217 #ifdef _KERNEL
218
219 /*
220 * globals
221 */
222
223 extern boolean_t vm_page_zero_enable;
224
225 /*
226 * Each pageable resident page falls into one of three lists:
227 *
228 * free
229 * Available for allocation now.
230 * inactive
231 * Not referenced in any map, but still has an
232 * object/offset-page mapping, and may be dirty.
233 * This is the list of pages that should be
234 * paged out next.
235 * active
236 * A list of pages which have been placed in
237 * at least one physical map. This list is
238 * ordered, in LRU-like fashion.
239 */
240
241 extern
242 struct pglist vm_page_queue_free; /* memory free queue */
243 extern
244 struct pglist vm_page_queue_active; /* active memory queue */
245 extern
246 struct pglist vm_page_queue_inactive; /* inactive memory queue */
247
248 /*
249 * physical memory config is stored in vm_physmem.
250 */
251
252 extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
253 extern int vm_nphysseg;
254
255 /*
256 * handle inline options
257 */
258
259 #ifdef UVM_PAGE_INLINE
260 #define PAGE_INLINE static __inline
261 #else
262 #define PAGE_INLINE /* nothing */
263 #endif /* UVM_PAGE_INLINE */
264
265 /*
266 * prototypes: the following prototypes define the interface to pages
267 */
268
269 void uvm_page_init __P((vaddr_t *, vaddr_t *));
270 #if defined(UVM_PAGE_TRKOWN)
271 void uvm_page_own __P((struct vm_page *, char *));
272 #endif
273 #if !defined(PMAP_STEAL_MEMORY)
274 boolean_t uvm_page_physget __P((paddr_t *));
275 #endif
276 void uvm_page_rehash __P((void));
277 void uvm_pageidlezero __P((void));
278
279 PAGE_INLINE int uvm_lock_fpageq __P((void));
280 PAGE_INLINE void uvm_unlock_fpageq __P((int));
281
282 PAGE_INLINE void uvm_pageactivate __P((struct vm_page *));
283 vaddr_t uvm_pageboot_alloc __P((vsize_t));
284 PAGE_INLINE void uvm_pagecopy __P((struct vm_page *, struct vm_page *));
285 PAGE_INLINE void uvm_pagedeactivate __P((struct vm_page *));
286 void uvm_pagefree __P((struct vm_page *));
287 PAGE_INLINE struct vm_page *uvm_pagelookup __P((struct uvm_object *, voff_t));
288 void uvm_pageremove __P((struct vm_page *));
289 /* uvm_pagerename: not needed */
290 PAGE_INLINE void uvm_pageunwire __P((struct vm_page *));
291 PAGE_INLINE void uvm_pagewait __P((struct vm_page *, int));
292 PAGE_INLINE void uvm_pagewake __P((struct vm_page *));
293 PAGE_INLINE void uvm_pagewire __P((struct vm_page *));
294 PAGE_INLINE void uvm_pagezero __P((struct vm_page *));
295
296 PAGE_INLINE int uvm_page_lookup_freelist __P((struct vm_page *));
297
298 static struct vm_page *PHYS_TO_VM_PAGE __P((paddr_t));
299 static int vm_physseg_find __P((paddr_t, int *));
300
301 /*
302 * macros
303 */
304
305 #define uvm_lock_pageq() simple_lock(&uvm.pageqlock)
306 #define uvm_unlock_pageq() simple_unlock(&uvm.pageqlock)
307
308 #define uvm_pagehash(obj,off) \
309 (((unsigned long)obj+(unsigned long)atop(off)) & uvm.page_hashmask)
310
311 #define UVM_PAGEZERO_TARGET (uvmexp.free)
312
313 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
314
315 /*
316 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
317 */
318
319 /*
320 * vm_physseg_find: find vm_physseg structure that belongs to a PA
321 */
322 static __inline int
323 vm_physseg_find(pframe, offp)
324 paddr_t pframe;
325 int *offp;
326 {
327 #if VM_PHYSSEG_MAX == 1
328
329 /* 'contig' case */
330 if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) {
331 if (offp)
332 *offp = pframe - vm_physmem[0].start;
333 return(0);
334 }
335 return(-1);
336
337 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
338 /* binary search for it */
339 int start, len, try;
340
341 /*
342 * if try is too large (thus target is less than than try) we reduce
343 * the length to trunc(len/2) [i.e. everything smaller than "try"]
344 *
345 * if the try is too small (thus target is greater than try) then
346 * we set the new start to be (try + 1). this means we need to
347 * reduce the length to (round(len/2) - 1).
348 *
349 * note "adjust" below which takes advantage of the fact that
350 * (round(len/2) - 1) == trunc((len - 1) / 2)
351 * for any value of len we may have
352 */
353
354 for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
355 try = start + (len / 2); /* try in the middle */
356
357 /* start past our try? */
358 if (pframe >= vm_physmem[try].start) {
359 /* was try correct? */
360 if (pframe < vm_physmem[try].end) {
361 if (offp)
362 *offp = pframe - vm_physmem[try].start;
363 return(try); /* got it */
364 }
365 start = try + 1; /* next time, start here */
366 len--; /* "adjust" */
367 } else {
368 /*
369 * pframe before try, just reduce length of
370 * region, done in "for" loop
371 */
372 }
373 }
374 return(-1);
375
376 #else
377 /* linear search for it */
378 int lcv;
379
380 for (lcv = 0; lcv < vm_nphysseg; lcv++) {
381 if (pframe >= vm_physmem[lcv].start &&
382 pframe < vm_physmem[lcv].end) {
383 if (offp)
384 *offp = pframe - vm_physmem[lcv].start;
385 return(lcv); /* got it */
386 }
387 }
388 return(-1);
389
390 #endif
391 }
392
393
394 /*
395 * IS_VM_PHYSADDR: only used my mips/pmax/pica trap/pmap.
396 */
397
398 #define IS_VM_PHYSADDR(PA) (vm_physseg_find(atop(PA), NULL) != -1)
399
400 /*
401 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
402 * back from an I/O mapping (ugh!). used in some MD code as well.
403 */
404 static __inline struct vm_page *
405 PHYS_TO_VM_PAGE(pa)
406 paddr_t pa;
407 {
408 paddr_t pf = atop(pa);
409 int off;
410 int psi;
411
412 psi = vm_physseg_find(pf, &off);
413 if (psi != -1)
414 return(&vm_physmem[psi].pgs[off]);
415 return(NULL);
416 }
417
418 #define VM_PAGE_IS_FREE(entry) ((entry)->pqflags & PQ_FREE)
419
420 extern
421 simple_lock_data_t vm_page_queue_lock; /* lock on active and inactive
422 page queues */
423 extern /* lock on free page queue */
424 simple_lock_data_t vm_page_queue_free_lock;
425
426 #define PAGE_ASSERT_WAIT(m, interruptible) { \
427 (m)->flags |= PG_WANTED; \
428 assert_wait((m), (interruptible)); \
429 }
430
431 #define PAGE_WAKEUP(m) { \
432 (m)->flags &= ~PG_BUSY; \
433 if ((m)->flags & PG_WANTED) { \
434 (m)->flags &= ~PG_WANTED; \
435 wakeup((m)); \
436 } \
437 }
438
439 #define vm_page_lock_queues() simple_lock(&vm_page_queue_lock)
440 #define vm_page_unlock_queues() simple_unlock(&vm_page_queue_lock)
441
442 #define vm_page_set_modified(m) { (m)->flags &= ~PG_CLEAN; }
443
444 #define VM_PAGE_INIT(mem, obj, offset) { \
445 (mem)->flags = PG_BUSY | PG_CLEAN | PG_FAKE; \
446 if (obj) \
447 vm_page_insert((mem), (obj), (offset)); \
448 else \
449 (mem)->object = NULL; \
450 (mem)->wire_count = 0; \
451 }
452
453 #if VM_PAGE_DEBUG
454
455 /*
456 * VM_PAGE_CHECK: debugging check of a vm_page structure
457 */
458 static __inline void
459 VM_PAGE_CHECK(mem)
460 struct vm_page *mem;
461 {
462 int lcv;
463
464 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
465 if ((unsigned int) mem >= (unsigned int) vm_physmem[lcv].pgs &&
466 (unsigned int) mem <= (unsigned int) vm_physmem[lcv].lastpg)
467 break;
468 }
469 if (lcv == vm_nphysseg ||
470 (mem->flags & (PG_ACTIVE|PG_INACTIVE)) == (PG_ACTIVE|PG_INACTIVE))
471 panic("vm_page_check: not valid!");
472 return;
473 }
474
475 #else /* VM_PAGE_DEBUG */
476 #define VM_PAGE_CHECK(mem)
477 #endif /* VM_PAGE_DEBUG */
478
479 #endif /* _KERNEL */
480
481 #endif /* _UVM_UVM_PAGE_H_ */
482