uvm_page.h revision 1.17 1 /* $NetBSD: uvm_page.h,v 1.17 2000/10/03 20:50:49 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_page.h 7.3 (Berkeley) 4/21/91
42 * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #ifndef _UVM_UVM_PAGE_H_
70 #define _UVM_UVM_PAGE_H_
71
72 /*
73 * uvm_page.h
74 */
75
76 /*
77 * Resident memory system definitions.
78 */
79
80 /*
81 * Management of resident (logical) pages.
82 *
83 * A small structure is kept for each resident
84 * page, indexed by page number. Each structure
85 * is an element of several lists:
86 *
87 * A hash table bucket used to quickly
88 * perform object/offset lookups
89 *
90 * A list of all pages for a given object,
91 * so they can be quickly deactivated at
92 * time of deallocation.
93 *
94 * An ordered list of pages due for pageout.
95 *
96 * In addition, the structure contains the object
97 * and offset to which this page belongs (for pageout),
98 * and sundry status bits.
99 *
100 * Fields in this structure are locked either by the lock on the
101 * object that the page belongs to (O) or by the lock on the page
102 * queues (P) [or both].
103 */
104
105 /*
106 * locking note: the mach version of this data structure had bit
107 * fields for the flags, and the bit fields were divided into two
108 * items (depending on who locked what). some time, in BSD, the bit
109 * fields were dumped and all the flags were lumped into one short.
110 * that is fine for a single threaded uniprocessor OS, but bad if you
111 * want to actual make use of locking (simple_lock's). so, we've
112 * seperated things back out again.
113 *
114 * note the page structure has no lock of its own.
115 */
116
117 #include <uvm/uvm_extern.h>
118 #include <uvm/uvm_pglist.h>
119
120 struct vm_page {
121 TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO
122 * queue or free list (P) */
123 TAILQ_ENTRY(vm_page) hashq; /* hash table links (O)*/
124 TAILQ_ENTRY(vm_page) listq; /* pages in same object (O)*/
125
126 struct vm_anon *uanon; /* anon (O,P) */
127 struct uvm_object *uobject; /* object (O,P) */
128 voff_t offset; /* offset into object (O,P) */
129
130 u_short flags; /* object flags [O] */
131 u_short version; /* version count [O] */
132 u_short wire_count; /* wired down map refs [P] */
133 u_short pqflags; /* page queue flags [P] */
134 u_int loan_count; /* number of active loans
135 * to read: [O or P]
136 * to modify: [O _and_ P] */
137 paddr_t phys_addr; /* physical address of page */
138 #if defined(UVM_PAGE_TRKOWN)
139 /* debugging fields to track page ownership */
140 pid_t owner; /* proc that set PG_BUSY */
141 char *owner_tag; /* why it was set busy */
142 #endif
143 };
144
145 /*
146 * These are the flags defined for vm_page.
147 *
148 * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
149 */
150
151 /*
152 * locking rules:
153 * PG_ ==> locked by object lock
154 * PQ_ ==> lock by page queue lock
155 * PQ_FREE is locked by free queue lock and is mutex with all other PQs
156 *
157 * PG_ZERO is used to indicate that a page has been pre-zero'd. This flag
158 * is only set when the page is on no queues, and is cleared when the page
159 * is placed on the free list.
160 *
161 * possible deadwood: PG_FAULTING, PQ_LAUNDRY
162 */
163 #define PG_CLEAN 0x0008 /* page has not been modified */
164 #define PG_BUSY 0x0010 /* page is in transit */
165 #define PG_WANTED 0x0020 /* someone is waiting for page */
166 #define PG_TABLED 0x0040 /* page is in VP table */
167 #define PG_ZERO 0x0100 /* page is pre-zero'd */
168 #define PG_FAKE 0x0200 /* page is placeholder for pagein */
169 #define PG_FILLED 0x0400 /* client flag to set when filled */
170 #define PG_DIRTY 0x0800 /* client flag to set when dirty */
171 #define PG_RELEASED 0x1000 /* page released while paging */
172 #define PG_FAULTING 0x2000 /* page is being faulted in */
173 #define PG_CLEANCHK 0x4000 /* clean bit has been checked */
174
175 #define PQ_FREE 0x0001 /* page is on free list */
176 #define PQ_INACTIVE 0x0002 /* page is in inactive list */
177 #define PQ_ACTIVE 0x0004 /* page is in active list */
178 #define PQ_LAUNDRY 0x0008 /* page is being cleaned now */
179 #define PQ_ANON 0x0010 /* page is part of an anon, rather
180 than an uvm_object */
181 #define PQ_AOBJ 0x0020 /* page is part of an anonymous
182 uvm_object */
183 #define PQ_SWAPBACKED (PQ_ANON|PQ_AOBJ)
184
185 /*
186 * physical memory layout structure
187 *
188 * MD vmparam.h must #define:
189 * VM_PHYSEG_MAX = max number of physical memory segments we support
190 * (if this is "1" then we revert to a "contig" case)
191 * VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSEG_MAX > 1)
192 * - VM_PSTRAT_RANDOM: linear search (random order)
193 * - VM_PSTRAT_BSEARCH: binary search (sorted by address)
194 * - VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first)
195 * - others?
196 * XXXCDC: eventually we should purge all left-over global variables...
197 */
198 #define VM_PSTRAT_RANDOM 1
199 #define VM_PSTRAT_BSEARCH 2
200 #define VM_PSTRAT_BIGFIRST 3
201
202 /*
203 * vm_physmemseg: describes one segment of physical memory
204 */
205 struct vm_physseg {
206 paddr_t start; /* PF# of first page in segment */
207 paddr_t end; /* (PF# of last page in segment) + 1 */
208 paddr_t avail_start; /* PF# of first free page in segment */
209 paddr_t avail_end; /* (PF# of last free page in segment) +1 */
210 int free_list; /* which free list they belong on */
211 struct vm_page *pgs; /* vm_page structures (from start) */
212 struct vm_page *lastpg; /* vm_page structure for end */
213 struct pmap_physseg pmseg; /* pmap specific (MD) data */
214 };
215
216 #ifdef _KERNEL
217
218 /*
219 * globals
220 */
221
222 extern boolean_t vm_page_zero_enable;
223
224 /*
225 * Each pageable resident page falls into one of three lists:
226 *
227 * free
228 * Available for allocation now.
229 * inactive
230 * Not referenced in any map, but still has an
231 * object/offset-page mapping, and may be dirty.
232 * This is the list of pages that should be
233 * paged out next.
234 * active
235 * A list of pages which have been placed in
236 * at least one physical map. This list is
237 * ordered, in LRU-like fashion.
238 */
239
240 extern
241 struct pglist vm_page_queue_free; /* memory free queue */
242 extern
243 struct pglist vm_page_queue_active; /* active memory queue */
244 extern
245 struct pglist vm_page_queue_inactive; /* inactive memory queue */
246
247 /*
248 * physical memory config is stored in vm_physmem.
249 */
250
251 extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
252 extern int vm_nphysseg;
253
254 /*
255 * handle inline options
256 */
257
258 #ifdef UVM_PAGE_INLINE
259 #define PAGE_INLINE static __inline
260 #else
261 #define PAGE_INLINE /* nothing */
262 #endif /* UVM_PAGE_INLINE */
263
264 /*
265 * prototypes: the following prototypes define the interface to pages
266 */
267
268 void uvm_page_init __P((vaddr_t *, vaddr_t *));
269 #if defined(UVM_PAGE_TRKOWN)
270 void uvm_page_own __P((struct vm_page *, char *));
271 #endif
272 #if !defined(PMAP_STEAL_MEMORY)
273 boolean_t uvm_page_physget __P((paddr_t *));
274 #endif
275 void uvm_page_rehash __P((void));
276 void uvm_pageidlezero __P((void));
277
278 PAGE_INLINE int uvm_lock_fpageq __P((void));
279 PAGE_INLINE void uvm_unlock_fpageq __P((int));
280
281 PAGE_INLINE void uvm_pageactivate __P((struct vm_page *));
282 vaddr_t uvm_pageboot_alloc __P((vsize_t));
283 PAGE_INLINE void uvm_pagecopy __P((struct vm_page *, struct vm_page *));
284 PAGE_INLINE void uvm_pagedeactivate __P((struct vm_page *));
285 void uvm_pagefree __P((struct vm_page *));
286 PAGE_INLINE struct vm_page *uvm_pagelookup __P((struct uvm_object *, voff_t));
287 void uvm_pageremove __P((struct vm_page *));
288 /* uvm_pagerename: not needed */
289 PAGE_INLINE void uvm_pageunwire __P((struct vm_page *));
290 PAGE_INLINE void uvm_pagewait __P((struct vm_page *, int));
291 PAGE_INLINE void uvm_pagewake __P((struct vm_page *));
292 PAGE_INLINE void uvm_pagewire __P((struct vm_page *));
293 PAGE_INLINE void uvm_pagezero __P((struct vm_page *));
294
295 PAGE_INLINE int uvm_page_lookup_freelist __P((struct vm_page *));
296
297 static struct vm_page *PHYS_TO_VM_PAGE __P((paddr_t));
298 static int vm_physseg_find __P((paddr_t, int *));
299
300 /*
301 * macros
302 */
303
304 #define uvm_lock_pageq() simple_lock(&uvm.pageqlock)
305 #define uvm_unlock_pageq() simple_unlock(&uvm.pageqlock)
306
307 #define uvm_pagehash(obj,off) \
308 (((unsigned long)obj+(unsigned long)atop(off)) & uvm.page_hashmask)
309
310 #define UVM_PAGEZERO_TARGET (uvmexp.free)
311
312 #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
313
314 /*
315 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
316 */
317
318 /*
319 * vm_physseg_find: find vm_physseg structure that belongs to a PA
320 */
321 static __inline int
322 vm_physseg_find(pframe, offp)
323 paddr_t pframe;
324 int *offp;
325 {
326 #if VM_PHYSSEG_MAX == 1
327
328 /* 'contig' case */
329 if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) {
330 if (offp)
331 *offp = pframe - vm_physmem[0].start;
332 return(0);
333 }
334 return(-1);
335
336 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
337 /* binary search for it */
338 int start, len, try;
339
340 /*
341 * if try is too large (thus target is less than than try) we reduce
342 * the length to trunc(len/2) [i.e. everything smaller than "try"]
343 *
344 * if the try is too small (thus target is greater than try) then
345 * we set the new start to be (try + 1). this means we need to
346 * reduce the length to (round(len/2) - 1).
347 *
348 * note "adjust" below which takes advantage of the fact that
349 * (round(len/2) - 1) == trunc((len - 1) / 2)
350 * for any value of len we may have
351 */
352
353 for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
354 try = start + (len / 2); /* try in the middle */
355
356 /* start past our try? */
357 if (pframe >= vm_physmem[try].start) {
358 /* was try correct? */
359 if (pframe < vm_physmem[try].end) {
360 if (offp)
361 *offp = pframe - vm_physmem[try].start;
362 return(try); /* got it */
363 }
364 start = try + 1; /* next time, start here */
365 len--; /* "adjust" */
366 } else {
367 /*
368 * pframe before try, just reduce length of
369 * region, done in "for" loop
370 */
371 }
372 }
373 return(-1);
374
375 #else
376 /* linear search for it */
377 int lcv;
378
379 for (lcv = 0; lcv < vm_nphysseg; lcv++) {
380 if (pframe >= vm_physmem[lcv].start &&
381 pframe < vm_physmem[lcv].end) {
382 if (offp)
383 *offp = pframe - vm_physmem[lcv].start;
384 return(lcv); /* got it */
385 }
386 }
387 return(-1);
388
389 #endif
390 }
391
392
393 /*
394 * IS_VM_PHYSADDR: only used my mips/pmax/pica trap/pmap.
395 */
396
397 #define IS_VM_PHYSADDR(PA) (vm_physseg_find(atop(PA), NULL) != -1)
398
399 /*
400 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
401 * back from an I/O mapping (ugh!). used in some MD code as well.
402 */
403 static __inline struct vm_page *
404 PHYS_TO_VM_PAGE(pa)
405 paddr_t pa;
406 {
407 paddr_t pf = atop(pa);
408 int off;
409 int psi;
410
411 psi = vm_physseg_find(pf, &off);
412 if (psi != -1)
413 return(&vm_physmem[psi].pgs[off]);
414 return(NULL);
415 }
416
417 #define VM_PAGE_IS_FREE(entry) ((entry)->pqflags & PQ_FREE)
418
419 extern
420 simple_lock_data_t vm_page_queue_lock; /* lock on active and inactive
421 page queues */
422 extern /* lock on free page queue */
423 simple_lock_data_t vm_page_queue_free_lock;
424
425 #define PAGE_ASSERT_WAIT(m, interruptible) { \
426 (m)->flags |= PG_WANTED; \
427 assert_wait((m), (interruptible)); \
428 }
429
430 #define PAGE_WAKEUP(m) { \
431 (m)->flags &= ~PG_BUSY; \
432 if ((m)->flags & PG_WANTED) { \
433 (m)->flags &= ~PG_WANTED; \
434 wakeup((m)); \
435 } \
436 }
437
438 #define vm_page_lock_queues() simple_lock(&vm_page_queue_lock)
439 #define vm_page_unlock_queues() simple_unlock(&vm_page_queue_lock)
440
441 #define vm_page_set_modified(m) { (m)->flags &= ~PG_CLEAN; }
442
443 #define VM_PAGE_INIT(mem, obj, offset) { \
444 (mem)->flags = PG_BUSY | PG_CLEAN | PG_FAKE; \
445 if (obj) \
446 vm_page_insert((mem), (obj), (offset)); \
447 else \
448 (mem)->object = NULL; \
449 (mem)->wire_count = 0; \
450 }
451
452 #if VM_PAGE_DEBUG
453
454 /*
455 * VM_PAGE_CHECK: debugging check of a vm_page structure
456 */
457 static __inline void
458 VM_PAGE_CHECK(mem)
459 struct vm_page *mem;
460 {
461 int lcv;
462
463 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
464 if ((unsigned int) mem >= (unsigned int) vm_physmem[lcv].pgs &&
465 (unsigned int) mem <= (unsigned int) vm_physmem[lcv].lastpg)
466 break;
467 }
468 if (lcv == vm_nphysseg ||
469 (mem->flags & (PG_ACTIVE|PG_INACTIVE)) == (PG_ACTIVE|PG_INACTIVE))
470 panic("vm_page_check: not valid!");
471 return;
472 }
473
474 #else /* VM_PAGE_DEBUG */
475 #define VM_PAGE_CHECK(mem)
476 #endif /* VM_PAGE_DEBUG */
477
478 #endif /* _KERNEL */
479
480 #endif /* _UVM_UVM_PAGE_H_ */
481