Home | History | Annotate | Line # | Download | only in uvm
uvm_page.h revision 1.26
      1 /*	$NetBSD: uvm_page.h,v 1.26 2001/05/25 04:06:16 chs Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_page.h   7.3 (Berkeley) 4/21/91
     42  * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #ifndef _UVM_UVM_PAGE_H_
     70 #define _UVM_UVM_PAGE_H_
     71 
     72 /*
     73  * uvm_page.h
     74  */
     75 
     76 /*
     77  *	Resident memory system definitions.
     78  */
     79 
     80 /*
     81  *	Management of resident (logical) pages.
     82  *
     83  *	A small structure is kept for each resident
     84  *	page, indexed by page number.  Each structure
     85  *	is an element of several lists:
     86  *
     87  *		A hash table bucket used to quickly
     88  *		perform object/offset lookups
     89  *
     90  *		A list of all pages for a given object,
     91  *		so they can be quickly deactivated at
     92  *		time of deallocation.
     93  *
     94  *		An ordered list of pages due for pageout.
     95  *
     96  *	In addition, the structure contains the object
     97  *	and offset to which this page belongs (for pageout),
     98  *	and sundry status bits.
     99  *
    100  *	Fields in this structure are locked either by the lock on the
    101  *	object that the page belongs to (O) or by the lock on the page
    102  *	queues (P) [or both].
    103  */
    104 
    105 /*
    106  * locking note: the mach version of this data structure had bit
    107  * fields for the flags, and the bit fields were divided into two
    108  * items (depending on who locked what).  some time, in BSD, the bit
    109  * fields were dumped and all the flags were lumped into one short.
    110  * that is fine for a single threaded uniprocessor OS, but bad if you
    111  * want to actual make use of locking (simple_lock's).  so, we've
    112  * seperated things back out again.
    113  *
    114  * note the page structure has no lock of its own.
    115  *
    116  * XXX the use of locked u_short fields is dangerous, as they are not
    117  *     addressable on all architectures and hence cannot be individually
    118  *     locked. Right now it works because each aligned pair uses the same
    119  *     lock and all current ports can lock an int32_t.
    120  */
    121 
    122 #include <uvm/uvm_extern.h>
    123 #include <uvm/uvm_pglist.h>
    124 
    125 struct vm_page {
    126 	TAILQ_ENTRY(vm_page)	pageq;		/* queue info for FIFO
    127 						 * queue or free list (P) */
    128 	TAILQ_ENTRY(vm_page)	hashq;		/* hash table links (O)*/
    129 	TAILQ_ENTRY(vm_page)	listq;		/* pages in same object (O)*/
    130 
    131 	struct vm_anon		*uanon;		/* anon (O,P) */
    132 	struct uvm_object	*uobject;	/* object (O,P) */
    133 	voff_t			offset;		/* offset into object (O,P) */
    134 
    135 	u_short			flags;		/* object flags [O] */
    136 	u_short			version;	/* version count [O] */
    137 	u_short			wire_count;	/* wired down map refs [P] */
    138 	u_short			pqflags;	/* page queue flags [P] */
    139 	u_int			loan_count;	/* number of active loans
    140 						 * to read: [O or P]
    141 						 * to modify: [O _and_ P] */
    142 	paddr_t			phys_addr;	/* physical address of page */
    143 
    144 #ifdef __HAVE_VM_PAGE_MD
    145 	struct vm_page_md	mdpage;		/* pmap-specific data */
    146 #endif
    147 
    148 #if defined(UVM_PAGE_TRKOWN)
    149 	/* debugging fields to track page ownership */
    150 	pid_t			owner;		/* proc that set PG_BUSY */
    151 	char			*owner_tag;	/* why it was set busy */
    152 #endif
    153 };
    154 
    155 /*
    156  * These are the flags defined for vm_page.
    157  */
    158 
    159 /*
    160  * locking rules:
    161  *   PG_ ==> locked by object lock
    162  *   PQ_ ==> lock by page queue lock
    163  *   PQ_FREE is locked by free queue lock and is mutex with all other PQs
    164  *
    165  * PG_ZERO is used to indicate that a page has been pre-zero'd.  This flag
    166  * is only set when the page is on no queues, and is cleared when the page
    167  * is placed on the free list.
    168  */
    169 
    170 #define	PG_BUSY		0x0001		/* page is locked */
    171 #define	PG_WANTED	0x0002		/* someone is waiting for page */
    172 #define	PG_TABLED	0x0004		/* page is in VP table  */
    173 #define	PG_CLEAN	0x0008		/* page has not been modified */
    174 #define PG_CLEANCHK	0x0010		/* clean bit has been checked */
    175 #define PG_RELEASED	0x0020		/* page released while paging */
    176 #define	PG_FAKE		0x0040		/* page is not yet initialized */
    177 #define PG_RDONLY	0x0080		/* page must be mapped read-only */
    178 #define PG_ZERO		0x0100		/* page is pre-zero'd */
    179 
    180 #define PG_PAGER1	0x1000		/* pager-specific flag */
    181 
    182 #define PQ_FREE		0x0001		/* page is on free list */
    183 #define PQ_INACTIVE	0x0002		/* page is in inactive list */
    184 #define PQ_ACTIVE	0x0004		/* page is in active list */
    185 #define PQ_ANON		0x0010		/* page is part of an anon, rather
    186 					   than an uvm_object */
    187 #define PQ_AOBJ		0x0020		/* page is part of an anonymous
    188 					   uvm_object */
    189 #define PQ_SWAPBACKED	(PQ_ANON|PQ_AOBJ)
    190 
    191 /*
    192  * physical memory layout structure
    193  *
    194  * MD vmparam.h must #define:
    195  *   VM_PHYSEG_MAX = max number of physical memory segments we support
    196  *		   (if this is "1" then we revert to a "contig" case)
    197  *   VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSEG_MAX > 1)
    198  * 	- VM_PSTRAT_RANDOM:   linear search (random order)
    199  *	- VM_PSTRAT_BSEARCH:  binary search (sorted by address)
    200  *	- VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first)
    201  *      - others?
    202  *   XXXCDC: eventually we should purge all left-over global variables...
    203  */
    204 #define VM_PSTRAT_RANDOM	1
    205 #define VM_PSTRAT_BSEARCH	2
    206 #define VM_PSTRAT_BIGFIRST	3
    207 
    208 /*
    209  * vm_physmemseg: describes one segment of physical memory
    210  */
    211 struct vm_physseg {
    212 	paddr_t	start;			/* PF# of first page in segment */
    213 	paddr_t	end;			/* (PF# of last page in segment) + 1 */
    214 	paddr_t	avail_start;		/* PF# of first free page in segment */
    215 	paddr_t	avail_end;		/* (PF# of last free page in segment) +1  */
    216 	int	free_list;		/* which free list they belong on */
    217 	struct	vm_page *pgs;		/* vm_page structures (from start) */
    218 	struct	vm_page *lastpg;	/* vm_page structure for end */
    219 #ifdef __HAVE_PMAP_PHYSSEG
    220 	struct	pmap_physseg pmseg;	/* pmap specific (MD) data */
    221 #endif
    222 };
    223 
    224 #ifdef _KERNEL
    225 
    226 /*
    227  * globals
    228  */
    229 
    230 extern boolean_t vm_page_zero_enable;
    231 
    232 /*
    233  *	Each pageable resident page falls into one of three lists:
    234  *
    235  *	free
    236  *		Available for allocation now.
    237  *	inactive
    238  *		Not referenced in any map, but still has an
    239  *		object/offset-page mapping, and may be dirty.
    240  *		This is the list of pages that should be
    241  *		paged out next.
    242  *	active
    243  *		A list of pages which have been placed in
    244  *		at least one physical map.  This list is
    245  *		ordered, in LRU-like fashion.
    246  */
    247 
    248 extern struct pglist	vm_page_queue_free;	/* memory free queue */
    249 extern struct pglist	vm_page_queue_active;	/* active memory queue */
    250 extern struct pglist	vm_page_queue_inactive;	/* inactive memory queue */
    251 
    252 /*
    253  * physical memory config is stored in vm_physmem.
    254  */
    255 
    256 extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
    257 extern int vm_nphysseg;
    258 
    259 /*
    260  * handle inline options
    261  */
    262 
    263 #ifdef UVM_PAGE_INLINE
    264 #define PAGE_INLINE static __inline
    265 #else
    266 #define PAGE_INLINE /* nothing */
    267 #endif /* UVM_PAGE_INLINE */
    268 
    269 /*
    270  * prototypes: the following prototypes define the interface to pages
    271  */
    272 
    273 void uvm_page_init __P((vaddr_t *, vaddr_t *));
    274 #if defined(UVM_PAGE_TRKOWN)
    275 void uvm_page_own __P((struct vm_page *, char *));
    276 #endif
    277 #if !defined(PMAP_STEAL_MEMORY)
    278 boolean_t uvm_page_physget __P((paddr_t *));
    279 #endif
    280 void uvm_page_rehash __P((void));
    281 void uvm_page_recolor __P((int));
    282 void uvm_pageidlezero __P((void));
    283 
    284 PAGE_INLINE int uvm_lock_fpageq __P((void));
    285 PAGE_INLINE void uvm_unlock_fpageq __P((int));
    286 
    287 PAGE_INLINE void uvm_pageactivate __P((struct vm_page *));
    288 vaddr_t uvm_pageboot_alloc __P((vsize_t));
    289 PAGE_INLINE void uvm_pagecopy __P((struct vm_page *, struct vm_page *));
    290 PAGE_INLINE void uvm_pagedeactivate __P((struct vm_page *));
    291 void uvm_pagefree __P((struct vm_page *));
    292 void uvm_page_unbusy __P((struct vm_page **, int));
    293 PAGE_INLINE struct vm_page *uvm_pagelookup __P((struct uvm_object *, voff_t));
    294 PAGE_INLINE void uvm_pageunwire __P((struct vm_page *));
    295 PAGE_INLINE void uvm_pagewait __P((struct vm_page *, int));
    296 PAGE_INLINE void uvm_pagewake __P((struct vm_page *));
    297 PAGE_INLINE void uvm_pagewire __P((struct vm_page *));
    298 PAGE_INLINE void uvm_pagezero __P((struct vm_page *));
    299 
    300 PAGE_INLINE int uvm_page_lookup_freelist __P((struct vm_page *));
    301 
    302 static struct vm_page *PHYS_TO_VM_PAGE __P((paddr_t));
    303 static int vm_physseg_find __P((paddr_t, int *));
    304 
    305 /*
    306  * macros
    307  */
    308 
    309 #define uvm_lock_pageq()	simple_lock(&uvm.pageqlock)
    310 #define uvm_unlock_pageq()	simple_unlock(&uvm.pageqlock)
    311 
    312 #define uvm_pagehash(obj,off) \
    313 	(((unsigned long)obj+(unsigned long)atop(off)) & uvm.page_hashmask)
    314 
    315 #define	UVM_PAGEZERO_TARGET	(uvmexp.free)
    316 
    317 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
    318 
    319 /*
    320  * Compute the page color bucket for a given page.
    321  */
    322 #define	VM_PGCOLOR_BUCKET(pg) \
    323 	(atop(VM_PAGE_TO_PHYS((pg))) & uvmexp.colormask)
    324 
    325 /*
    326  * when VM_PHYSSEG_MAX is 1, we can simplify these functions
    327  */
    328 
    329 /*
    330  * vm_physseg_find: find vm_physseg structure that belongs to a PA
    331  */
    332 static __inline int
    333 vm_physseg_find(pframe, offp)
    334 	paddr_t pframe;
    335 	int	*offp;
    336 {
    337 #if VM_PHYSSEG_MAX == 1
    338 
    339 	/* 'contig' case */
    340 	if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) {
    341 		if (offp)
    342 			*offp = pframe - vm_physmem[0].start;
    343 		return(0);
    344 	}
    345 	return(-1);
    346 
    347 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
    348 	/* binary search for it */
    349 	int	start, len, try;
    350 
    351 	/*
    352 	 * if try is too large (thus target is less than than try) we reduce
    353 	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
    354 	 *
    355 	 * if the try is too small (thus target is greater than try) then
    356 	 * we set the new start to be (try + 1).   this means we need to
    357 	 * reduce the length to (round(len/2) - 1).
    358 	 *
    359 	 * note "adjust" below which takes advantage of the fact that
    360 	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
    361 	 * for any value of len we may have
    362 	 */
    363 
    364 	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
    365 		try = start + (len / 2);	/* try in the middle */
    366 
    367 		/* start past our try? */
    368 		if (pframe >= vm_physmem[try].start) {
    369 			/* was try correct? */
    370 			if (pframe < vm_physmem[try].end) {
    371 				if (offp)
    372 					*offp = pframe - vm_physmem[try].start;
    373 				return(try);            /* got it */
    374 			}
    375 			start = try + 1;	/* next time, start here */
    376 			len--;			/* "adjust" */
    377 		} else {
    378 			/*
    379 			 * pframe before try, just reduce length of
    380 			 * region, done in "for" loop
    381 			 */
    382 		}
    383 	}
    384 	return(-1);
    385 
    386 #else
    387 	/* linear search for it */
    388 	int	lcv;
    389 
    390 	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
    391 		if (pframe >= vm_physmem[lcv].start &&
    392 		    pframe < vm_physmem[lcv].end) {
    393 			if (offp)
    394 				*offp = pframe - vm_physmem[lcv].start;
    395 			return(lcv);		   /* got it */
    396 		}
    397 	}
    398 	return(-1);
    399 
    400 #endif
    401 }
    402 
    403 
    404 /*
    405  * IS_VM_PHYSADDR: only used my mips/pmax/pica trap/pmap.
    406  */
    407 
    408 #define IS_VM_PHYSADDR(PA) (vm_physseg_find(atop(PA), NULL) != -1)
    409 
    410 /*
    411  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
    412  * back from an I/O mapping (ugh!).   used in some MD code as well.
    413  */
    414 static __inline struct vm_page *
    415 PHYS_TO_VM_PAGE(pa)
    416 	paddr_t pa;
    417 {
    418 	paddr_t pf = atop(pa);
    419 	int	off;
    420 	int	psi;
    421 
    422 	psi = vm_physseg_find(pf, &off);
    423 	if (psi != -1)
    424 		return(&vm_physmem[psi].pgs[off]);
    425 	return(NULL);
    426 }
    427 
    428 #define VM_PAGE_IS_FREE(entry)  ((entry)->pqflags & PQ_FREE)
    429 
    430 #endif /* _KERNEL */
    431 
    432 #endif /* _UVM_UVM_PAGE_H_ */
    433