uvm_pdaemon.c revision 1.101 1 1.101 pooka /* $NetBSD: uvm_pdaemon.c,v 1.101 2010/06/02 15:48:49 pooka Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.34 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
42 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.34 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.34 chs *
54 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.34 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.1 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_pdaemon.c: the page daemon
71 1.1 mrg */
72 1.42 lukem
73 1.42 lukem #include <sys/cdefs.h>
74 1.101 pooka __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.101 2010/06/02 15:48:49 pooka Exp $");
75 1.42 lukem
76 1.42 lukem #include "opt_uvmhist.h"
77 1.69 yamt #include "opt_readahead.h"
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.24 chs #include <sys/buf.h>
85 1.94 ad #include <sys/module.h>
86 1.96 ad #include <sys/atomic.h>
87 1.1 mrg
88 1.1 mrg #include <uvm/uvm.h>
89 1.77 yamt #include <uvm/uvm_pdpolicy.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
94 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
95 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
96 1.14 chs */
97 1.14 chs
98 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
99 1.14 chs
100 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
101 1.14 chs
102 1.14 chs /*
103 1.1 mrg * local prototypes
104 1.1 mrg */
105 1.1 mrg
106 1.65 thorpej static void uvmpd_scan(void);
107 1.77 yamt static void uvmpd_scan_queue(void);
108 1.65 thorpej static void uvmpd_tune(void);
109 1.1 mrg
110 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
111 1.89 ad
112 1.1 mrg /*
113 1.61 chs * XXX hack to avoid hangs when large processes fork.
114 1.61 chs */
115 1.96 ad u_int uvm_extrapages;
116 1.61 chs
117 1.98 haad static kmutex_t uvm_reclaim_lock;
118 1.98 haad
119 1.98 haad SLIST_HEAD(uvm_reclaim_hooks, uvm_reclaim_hook) uvm_reclaim_list;
120 1.98 haad
121 1.61 chs /*
122 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
123 1.1 mrg *
124 1.1 mrg * => should be called with all locks released
125 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
126 1.1 mrg */
127 1.1 mrg
128 1.19 thorpej void
129 1.65 thorpej uvm_wait(const char *wmsg)
130 1.8 mrg {
131 1.8 mrg int timo = 0;
132 1.89 ad
133 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
134 1.1 mrg
135 1.8 mrg /*
136 1.8 mrg * check for page daemon going to sleep (waiting for itself)
137 1.8 mrg */
138 1.1 mrg
139 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
140 1.8 mrg /*
141 1.8 mrg * now we have a problem: the pagedaemon wants to go to
142 1.8 mrg * sleep until it frees more memory. but how can it
143 1.8 mrg * free more memory if it is asleep? that is a deadlock.
144 1.8 mrg * we have two options:
145 1.8 mrg * [1] panic now
146 1.8 mrg * [2] put a timeout on the sleep, thus causing the
147 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
148 1.8 mrg *
149 1.8 mrg * note that option [2] will only help us if we get lucky
150 1.8 mrg * and some other process on the system breaks the deadlock
151 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
152 1.8 mrg * to continue). for now we panic if DEBUG is defined,
153 1.8 mrg * otherwise we hope for the best with option [2] (better
154 1.8 mrg * yet, this should never happen in the first place!).
155 1.8 mrg */
156 1.1 mrg
157 1.8 mrg printf("pagedaemon: deadlock detected!\n");
158 1.8 mrg timo = hz >> 3; /* set timeout */
159 1.1 mrg #if defined(DEBUG)
160 1.8 mrg /* DEBUG: panic so we can debug it */
161 1.8 mrg panic("pagedaemon deadlock");
162 1.1 mrg #endif
163 1.8 mrg }
164 1.1 mrg
165 1.89 ad uvm_pagedaemon_waiters++;
166 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
167 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
168 1.1 mrg }
169 1.1 mrg
170 1.77 yamt /*
171 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
172 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
173 1.89 ad *
174 1.89 ad * => called with uvm_fpageqlock held.
175 1.77 yamt */
176 1.77 yamt
177 1.77 yamt void
178 1.77 yamt uvm_kick_pdaemon(void)
179 1.77 yamt {
180 1.77 yamt
181 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
182 1.89 ad
183 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
184 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
185 1.77 yamt uvmpdpol_needsscan_p())) {
186 1.77 yamt wakeup(&uvm.pagedaemon);
187 1.77 yamt }
188 1.77 yamt }
189 1.1 mrg
190 1.1 mrg /*
191 1.1 mrg * uvmpd_tune: tune paging parameters
192 1.1 mrg *
193 1.1 mrg * => called when ever memory is added (or removed?) to the system
194 1.1 mrg * => caller must call with page queues locked
195 1.1 mrg */
196 1.1 mrg
197 1.65 thorpej static void
198 1.37 chs uvmpd_tune(void)
199 1.8 mrg {
200 1.95 ad int val;
201 1.95 ad
202 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
203 1.1 mrg
204 1.93 ad /*
205 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
206 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
207 1.93 ad */
208 1.95 ad val = uvmexp.npages / 200;
209 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
210 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
211 1.95 ad val *= ncpu;
212 1.23 bjh21
213 1.23 bjh21 /* Make sure there's always a user page free. */
214 1.95 ad if (val < uvmexp.reserve_kernel + 1)
215 1.95 ad val = uvmexp.reserve_kernel + 1;
216 1.95 ad uvmexp.freemin = val;
217 1.95 ad
218 1.96 ad /* Calculate free target. */
219 1.95 ad val = (uvmexp.freemin * 4) / 3;
220 1.95 ad if (val <= uvmexp.freemin)
221 1.95 ad val = uvmexp.freemin + 1;
222 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
223 1.61 chs
224 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
225 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
226 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
227 1.1 mrg }
228 1.1 mrg
229 1.1 mrg /*
230 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
231 1.1 mrg */
232 1.1 mrg
233 1.8 mrg void
234 1.80 yamt uvm_pageout(void *arg)
235 1.8 mrg {
236 1.60 enami int bufcnt, npages = 0;
237 1.61 chs int extrapages = 0;
238 1.88 ad struct pool *pp;
239 1.88 ad uint64_t where;
240 1.98 haad struct uvm_reclaim_hook *hook;
241 1.98 haad
242 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
243 1.24 chs
244 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
245 1.8 mrg
246 1.8 mrg /*
247 1.8 mrg * ensure correct priority and set paging parameters...
248 1.8 mrg */
249 1.8 mrg
250 1.86 ad uvm.pagedaemon_lwp = curlwp;
251 1.89 ad mutex_enter(&uvm_pageqlock);
252 1.8 mrg npages = uvmexp.npages;
253 1.8 mrg uvmpd_tune();
254 1.89 ad mutex_exit(&uvm_pageqlock);
255 1.8 mrg
256 1.8 mrg /*
257 1.8 mrg * main loop
258 1.8 mrg */
259 1.24 chs
260 1.24 chs for (;;) {
261 1.93 ad bool needsscan, needsfree;
262 1.24 chs
263 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
264 1.89 ad if (uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) {
265 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
266 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
267 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
268 1.89 ad uvmexp.pdwoke++;
269 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
270 1.89 ad } else {
271 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
272 1.89 ad }
273 1.24 chs
274 1.8 mrg /*
275 1.24 chs * now lock page queues and recompute inactive count
276 1.8 mrg */
277 1.8 mrg
278 1.89 ad mutex_enter(&uvm_pageqlock);
279 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
280 1.24 chs npages = uvmexp.npages;
281 1.61 chs extrapages = uvm_extrapages;
282 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
283 1.24 chs uvmpd_tune();
284 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
285 1.24 chs }
286 1.24 chs
287 1.77 yamt uvmpdpol_tune();
288 1.24 chs
289 1.60 enami /*
290 1.60 enami * Estimate a hint. Note that bufmem are returned to
291 1.60 enami * system only when entire pool page is empty.
292 1.60 enami */
293 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
294 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
295 1.60 enami if (bufcnt < 0)
296 1.60 enami bufcnt = 0;
297 1.60 enami
298 1.77 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
299 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
300 1.8 mrg
301 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
302 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
303 1.89 ad
304 1.8 mrg /*
305 1.24 chs * scan if needed
306 1.8 mrg */
307 1.97 ad if (needsscan) {
308 1.97 ad mutex_spin_exit(&uvm_fpageqlock);
309 1.24 chs uvmpd_scan();
310 1.97 ad mutex_spin_enter(&uvm_fpageqlock);
311 1.97 ad }
312 1.8 mrg
313 1.8 mrg /*
314 1.24 chs * if there's any free memory to be had,
315 1.24 chs * wake up any waiters.
316 1.8 mrg */
317 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
318 1.24 chs uvmexp.paging == 0) {
319 1.24 chs wakeup(&uvmexp.free);
320 1.89 ad uvm_pagedaemon_waiters = 0;
321 1.8 mrg }
322 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
323 1.1 mrg
324 1.8 mrg /*
325 1.24 chs * scan done. unlock page queues (the only lock we are holding)
326 1.8 mrg */
327 1.89 ad mutex_exit(&uvm_pageqlock);
328 1.38 chs
329 1.88 ad /*
330 1.93 ad * if we don't need free memory, we're done.
331 1.93 ad */
332 1.93 ad
333 1.93 ad if (!needsfree)
334 1.93 ad continue;
335 1.93 ad
336 1.93 ad /*
337 1.88 ad * start draining pool resources now that we're not
338 1.88 ad * holding any locks.
339 1.88 ad */
340 1.88 ad pool_drain_start(&pp, &where);
341 1.60 enami
342 1.38 chs /*
343 1.88 ad * kill unused metadata buffers.
344 1.38 chs */
345 1.89 ad mutex_enter(&bufcache_lock);
346 1.88 ad buf_drain(bufcnt << PAGE_SHIFT);
347 1.89 ad mutex_exit(&bufcache_lock);
348 1.57 jdolecek
349 1.98 haad mutex_enter(&uvm_reclaim_lock);
350 1.98 haad SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
351 1.98 haad (*hook->uvm_reclaim_hook)();
352 1.98 haad }
353 1.98 haad mutex_exit(&uvm_reclaim_lock);
354 1.98 haad
355 1.57 jdolecek /*
356 1.88 ad * complete draining the pools.
357 1.88 ad */
358 1.88 ad pool_drain_end(pp, where);
359 1.24 chs }
360 1.24 chs /*NOTREACHED*/
361 1.24 chs }
362 1.24 chs
363 1.8 mrg
364 1.24 chs /*
365 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
366 1.24 chs */
367 1.8 mrg
368 1.24 chs void
369 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
370 1.24 chs {
371 1.81 yamt struct buf *bp = (void *)wk;
372 1.9 pk
373 1.81 yamt KASSERT(&bp->b_work == wk);
374 1.8 mrg
375 1.81 yamt /*
376 1.81 yamt * process an i/o that's done.
377 1.81 yamt */
378 1.8 mrg
379 1.81 yamt (*bp->b_iodone)(bp);
380 1.89 ad }
381 1.89 ad
382 1.89 ad void
383 1.89 ad uvm_pageout_start(int npages)
384 1.89 ad {
385 1.89 ad
386 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
387 1.89 ad uvmexp.paging += npages;
388 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
389 1.89 ad }
390 1.89 ad
391 1.89 ad void
392 1.89 ad uvm_pageout_done(int npages)
393 1.89 ad {
394 1.89 ad
395 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
396 1.89 ad KASSERT(uvmexp.paging >= npages);
397 1.89 ad uvmexp.paging -= npages;
398 1.89 ad
399 1.89 ad /*
400 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
401 1.89 ad */
402 1.89 ad
403 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
404 1.81 yamt wakeup(&uvm.pagedaemon);
405 1.81 yamt } else {
406 1.81 yamt wakeup(&uvmexp.free);
407 1.89 ad uvm_pagedaemon_waiters = 0;
408 1.8 mrg }
409 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
410 1.1 mrg }
411 1.1 mrg
412 1.76 yamt /*
413 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
414 1.76 yamt *
415 1.76 yamt * => called with pageq locked.
416 1.76 yamt * => resolve orphaned O->A loaned page.
417 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
418 1.76 yamt */
419 1.76 yamt
420 1.89 ad kmutex_t *
421 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
422 1.76 yamt {
423 1.76 yamt struct uvm_object *uobj = pg->uobject;
424 1.89 ad kmutex_t *slock;
425 1.89 ad
426 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
427 1.76 yamt
428 1.76 yamt if (uobj != NULL) {
429 1.76 yamt slock = &uobj->vmobjlock;
430 1.76 yamt } else {
431 1.76 yamt struct vm_anon *anon = pg->uanon;
432 1.76 yamt
433 1.76 yamt KASSERT(anon != NULL);
434 1.76 yamt slock = &anon->an_lock;
435 1.76 yamt }
436 1.76 yamt
437 1.89 ad if (!mutex_tryenter(slock)) {
438 1.76 yamt return NULL;
439 1.76 yamt }
440 1.76 yamt
441 1.76 yamt if (uobj == NULL) {
442 1.76 yamt
443 1.76 yamt /*
444 1.76 yamt * set PQ_ANON if it isn't set already.
445 1.76 yamt */
446 1.76 yamt
447 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
448 1.76 yamt KASSERT(pg->loan_count > 0);
449 1.76 yamt pg->loan_count--;
450 1.76 yamt pg->pqflags |= PQ_ANON;
451 1.76 yamt /* anon now owns it */
452 1.76 yamt }
453 1.76 yamt }
454 1.76 yamt
455 1.76 yamt return slock;
456 1.76 yamt }
457 1.76 yamt
458 1.73 yamt #if defined(VMSWAP)
459 1.73 yamt struct swapcluster {
460 1.73 yamt int swc_slot;
461 1.73 yamt int swc_nallocated;
462 1.73 yamt int swc_nused;
463 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
464 1.73 yamt };
465 1.73 yamt
466 1.73 yamt static void
467 1.73 yamt swapcluster_init(struct swapcluster *swc)
468 1.73 yamt {
469 1.73 yamt
470 1.73 yamt swc->swc_slot = 0;
471 1.89 ad swc->swc_nused = 0;
472 1.73 yamt }
473 1.73 yamt
474 1.73 yamt static int
475 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
476 1.73 yamt {
477 1.73 yamt int slot;
478 1.73 yamt int npages;
479 1.73 yamt
480 1.73 yamt if (swc->swc_slot != 0) {
481 1.73 yamt return 0;
482 1.73 yamt }
483 1.73 yamt
484 1.73 yamt /* Even with strange MAXPHYS, the shift
485 1.73 yamt implicitly rounds down to a page. */
486 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
487 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
488 1.73 yamt if (slot == 0) {
489 1.73 yamt return ENOMEM;
490 1.73 yamt }
491 1.73 yamt swc->swc_slot = slot;
492 1.73 yamt swc->swc_nallocated = npages;
493 1.73 yamt swc->swc_nused = 0;
494 1.73 yamt
495 1.73 yamt return 0;
496 1.73 yamt }
497 1.73 yamt
498 1.73 yamt static int
499 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
500 1.73 yamt {
501 1.73 yamt int slot;
502 1.73 yamt struct uvm_object *uobj;
503 1.73 yamt
504 1.73 yamt KASSERT(swc->swc_slot != 0);
505 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
506 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
507 1.73 yamt
508 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
509 1.73 yamt uobj = pg->uobject;
510 1.73 yamt if (uobj == NULL) {
511 1.89 ad KASSERT(mutex_owned(&pg->uanon->an_lock));
512 1.73 yamt pg->uanon->an_swslot = slot;
513 1.73 yamt } else {
514 1.73 yamt int result;
515 1.73 yamt
516 1.89 ad KASSERT(mutex_owned(&uobj->vmobjlock));
517 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
518 1.73 yamt if (result == -1) {
519 1.73 yamt return ENOMEM;
520 1.73 yamt }
521 1.73 yamt }
522 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
523 1.73 yamt swc->swc_nused++;
524 1.73 yamt
525 1.73 yamt return 0;
526 1.73 yamt }
527 1.73 yamt
528 1.73 yamt static void
529 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
530 1.73 yamt {
531 1.73 yamt int slot;
532 1.73 yamt int nused;
533 1.73 yamt int nallocated;
534 1.73 yamt int error;
535 1.73 yamt
536 1.73 yamt if (swc->swc_slot == 0) {
537 1.73 yamt return;
538 1.73 yamt }
539 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
540 1.73 yamt
541 1.73 yamt slot = swc->swc_slot;
542 1.73 yamt nused = swc->swc_nused;
543 1.73 yamt nallocated = swc->swc_nallocated;
544 1.73 yamt
545 1.73 yamt /*
546 1.73 yamt * if this is the final pageout we could have a few
547 1.73 yamt * unused swap blocks. if so, free them now.
548 1.73 yamt */
549 1.73 yamt
550 1.73 yamt if (nused < nallocated) {
551 1.73 yamt if (!now) {
552 1.73 yamt return;
553 1.73 yamt }
554 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
555 1.73 yamt }
556 1.73 yamt
557 1.73 yamt /*
558 1.73 yamt * now start the pageout.
559 1.73 yamt */
560 1.73 yamt
561 1.91 yamt if (nused > 0) {
562 1.91 yamt uvmexp.pdpageouts++;
563 1.91 yamt uvm_pageout_start(nused);
564 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
565 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
566 1.91 yamt }
567 1.73 yamt
568 1.73 yamt /*
569 1.73 yamt * zero swslot to indicate that we are
570 1.73 yamt * no longer building a swap-backed cluster.
571 1.73 yamt */
572 1.73 yamt
573 1.73 yamt swc->swc_slot = 0;
574 1.89 ad swc->swc_nused = 0;
575 1.89 ad }
576 1.89 ad
577 1.89 ad static int
578 1.89 ad swapcluster_nused(struct swapcluster *swc)
579 1.89 ad {
580 1.89 ad
581 1.89 ad return swc->swc_nused;
582 1.73 yamt }
583 1.77 yamt
584 1.77 yamt /*
585 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
586 1.77 yamt *
587 1.77 yamt * => called with owner locked.
588 1.84 thorpej * => return true if a page had an associated slot.
589 1.77 yamt */
590 1.77 yamt
591 1.83 thorpej static bool
592 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
593 1.77 yamt {
594 1.84 thorpej bool result = false;
595 1.77 yamt struct vm_anon *anon = pg->uanon;
596 1.77 yamt
597 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
598 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
599 1.77 yamt anon->an_swslot = 0;
600 1.77 yamt pg->flags &= ~PG_CLEAN;
601 1.84 thorpej result = true;
602 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
603 1.77 yamt int slot = uao_set_swslot(pg->uobject,
604 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
605 1.77 yamt if (slot) {
606 1.77 yamt uvm_swap_free(slot, 1);
607 1.77 yamt pg->flags &= ~PG_CLEAN;
608 1.84 thorpej result = true;
609 1.77 yamt }
610 1.77 yamt }
611 1.77 yamt
612 1.77 yamt return result;
613 1.77 yamt }
614 1.77 yamt
615 1.77 yamt /*
616 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
617 1.77 yamt *
618 1.84 thorpej * => return true if a slot is successfully freed.
619 1.77 yamt */
620 1.77 yamt
621 1.83 thorpej bool
622 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
623 1.77 yamt {
624 1.89 ad kmutex_t *slock;
625 1.83 thorpej bool result;
626 1.77 yamt
627 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
628 1.84 thorpej return false;
629 1.77 yamt }
630 1.77 yamt
631 1.77 yamt /*
632 1.77 yamt * lock the page's owner.
633 1.77 yamt */
634 1.77 yamt
635 1.77 yamt slock = uvmpd_trylockowner(pg);
636 1.77 yamt if (slock == NULL) {
637 1.84 thorpej return false;
638 1.77 yamt }
639 1.77 yamt
640 1.77 yamt /*
641 1.77 yamt * skip this page if it's busy.
642 1.77 yamt */
643 1.77 yamt
644 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
645 1.89 ad mutex_exit(slock);
646 1.84 thorpej return false;
647 1.77 yamt }
648 1.77 yamt
649 1.77 yamt result = uvmpd_dropswap(pg);
650 1.77 yamt
651 1.89 ad mutex_exit(slock);
652 1.77 yamt
653 1.77 yamt return result;
654 1.77 yamt }
655 1.77 yamt
656 1.73 yamt #endif /* defined(VMSWAP) */
657 1.73 yamt
658 1.1 mrg /*
659 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
660 1.77 yamt * to clean or free.
661 1.1 mrg *
662 1.1 mrg * => called with page queues locked
663 1.1 mrg * => we work on meeting our free target by converting inactive pages
664 1.1 mrg * into free pages.
665 1.1 mrg * => we handle the building of swap-backed clusters
666 1.1 mrg */
667 1.1 mrg
668 1.65 thorpej static void
669 1.77 yamt uvmpd_scan_queue(void)
670 1.8 mrg {
671 1.77 yamt struct vm_page *p;
672 1.8 mrg struct uvm_object *uobj;
673 1.37 chs struct vm_anon *anon;
674 1.68 yamt #if defined(VMSWAP)
675 1.73 yamt struct swapcluster swc;
676 1.68 yamt #endif /* defined(VMSWAP) */
677 1.77 yamt int dirtyreacts;
678 1.89 ad int lockownerfail;
679 1.89 ad kmutex_t *slock;
680 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
681 1.1 mrg
682 1.8 mrg /*
683 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
684 1.24 chs * to stay in the loop while we have a page to scan or we have
685 1.8 mrg * a swap-cluster to build.
686 1.8 mrg */
687 1.24 chs
688 1.73 yamt #if defined(VMSWAP)
689 1.73 yamt swapcluster_init(&swc);
690 1.73 yamt #endif /* defined(VMSWAP) */
691 1.77 yamt
692 1.14 chs dirtyreacts = 0;
693 1.89 ad lockownerfail = 0;
694 1.77 yamt uvmpdpol_scaninit();
695 1.43 chs
696 1.77 yamt while (/* CONSTCOND */ 1) {
697 1.24 chs
698 1.73 yamt /*
699 1.73 yamt * see if we've met the free target.
700 1.73 yamt */
701 1.73 yamt
702 1.89 ad if (uvmexp.free + uvmexp.paging
703 1.89 ad #if defined(VMSWAP)
704 1.89 ad + swapcluster_nused(&swc)
705 1.89 ad #endif /* defined(VMSWAP) */
706 1.89 ad >= uvmexp.freetarg << 2 ||
707 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
708 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
709 1.73 yamt "exit loop", 0, 0, 0, 0);
710 1.73 yamt break;
711 1.73 yamt }
712 1.24 chs
713 1.77 yamt p = uvmpdpol_selectvictim();
714 1.77 yamt if (p == NULL) {
715 1.77 yamt break;
716 1.77 yamt }
717 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
718 1.77 yamt KASSERT(p->wire_count == 0);
719 1.77 yamt
720 1.73 yamt /*
721 1.73 yamt * we are below target and have a new page to consider.
722 1.73 yamt */
723 1.30 chs
724 1.73 yamt anon = p->uanon;
725 1.73 yamt uobj = p->uobject;
726 1.8 mrg
727 1.73 yamt /*
728 1.73 yamt * first we attempt to lock the object that this page
729 1.73 yamt * belongs to. if our attempt fails we skip on to
730 1.73 yamt * the next page (no harm done). it is important to
731 1.73 yamt * "try" locking the object as we are locking in the
732 1.73 yamt * wrong order (pageq -> object) and we don't want to
733 1.73 yamt * deadlock.
734 1.73 yamt *
735 1.73 yamt * the only time we expect to see an ownerless page
736 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
737 1.73 yamt * anon has loaned a page from a uvm_object and the
738 1.73 yamt * uvm_object has dropped the ownership. in that
739 1.73 yamt * case, the anon can "take over" the loaned page
740 1.73 yamt * and make it its own.
741 1.73 yamt */
742 1.30 chs
743 1.76 yamt slock = uvmpd_trylockowner(p);
744 1.76 yamt if (slock == NULL) {
745 1.89 ad /*
746 1.89 ad * yield cpu to make a chance for an LWP holding
747 1.89 ad * the lock run. otherwise we can busy-loop too long
748 1.89 ad * if the page queue is filled with a lot of pages
749 1.89 ad * from few objects.
750 1.89 ad */
751 1.89 ad lockownerfail++;
752 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
753 1.89 ad mutex_exit(&uvm_pageqlock);
754 1.89 ad /* XXX Better than yielding but inadequate. */
755 1.89 ad kpause("livelock", false, 1, NULL);
756 1.89 ad mutex_enter(&uvm_pageqlock);
757 1.89 ad lockownerfail = 0;
758 1.89 ad }
759 1.76 yamt continue;
760 1.76 yamt }
761 1.76 yamt if (p->flags & PG_BUSY) {
762 1.89 ad mutex_exit(slock);
763 1.76 yamt uvmexp.pdbusy++;
764 1.76 yamt continue;
765 1.76 yamt }
766 1.76 yamt
767 1.73 yamt /* does the page belong to an object? */
768 1.73 yamt if (uobj != NULL) {
769 1.73 yamt uvmexp.pdobscan++;
770 1.73 yamt } else {
771 1.73 yamt #if defined(VMSWAP)
772 1.73 yamt KASSERT(anon != NULL);
773 1.73 yamt uvmexp.pdanscan++;
774 1.68 yamt #else /* defined(VMSWAP) */
775 1.73 yamt panic("%s: anon", __func__);
776 1.68 yamt #endif /* defined(VMSWAP) */
777 1.73 yamt }
778 1.8 mrg
779 1.37 chs
780 1.73 yamt /*
781 1.73 yamt * we now have the object and the page queues locked.
782 1.73 yamt * if the page is not swap-backed, call the object's
783 1.73 yamt * pager to flush and free the page.
784 1.73 yamt */
785 1.37 chs
786 1.69 yamt #if defined(READAHEAD_STATS)
787 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
788 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
789 1.73 yamt uvm_ra_miss.ev_count++;
790 1.73 yamt }
791 1.69 yamt #endif /* defined(READAHEAD_STATS) */
792 1.69 yamt
793 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
794 1.82 alc KASSERT(uobj != NULL);
795 1.89 ad mutex_exit(&uvm_pageqlock);
796 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
797 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
798 1.89 ad mutex_enter(&uvm_pageqlock);
799 1.73 yamt continue;
800 1.73 yamt }
801 1.37 chs
802 1.73 yamt /*
803 1.73 yamt * the page is swap-backed. remove all the permissions
804 1.73 yamt * from the page so we can sync the modified info
805 1.73 yamt * without any race conditions. if the page is clean
806 1.73 yamt * we can free it now and continue.
807 1.73 yamt */
808 1.8 mrg
809 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
810 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
811 1.73 yamt p->flags &= ~(PG_CLEAN);
812 1.73 yamt }
813 1.73 yamt if (p->flags & PG_CLEAN) {
814 1.73 yamt int slot;
815 1.73 yamt int pageidx;
816 1.73 yamt
817 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
818 1.73 yamt uvm_pagefree(p);
819 1.73 yamt uvmexp.pdfreed++;
820 1.8 mrg
821 1.8 mrg /*
822 1.73 yamt * for anons, we need to remove the page
823 1.73 yamt * from the anon ourselves. for aobjs,
824 1.73 yamt * pagefree did that for us.
825 1.8 mrg */
826 1.24 chs
827 1.73 yamt if (anon) {
828 1.73 yamt KASSERT(anon->an_swslot != 0);
829 1.73 yamt anon->an_page = NULL;
830 1.73 yamt slot = anon->an_swslot;
831 1.73 yamt } else {
832 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
833 1.8 mrg }
834 1.89 ad mutex_exit(slock);
835 1.8 mrg
836 1.73 yamt if (slot > 0) {
837 1.73 yamt /* this page is now only in swap. */
838 1.87 ad mutex_enter(&uvm_swap_data_lock);
839 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
840 1.73 yamt uvmexp.swpgonly++;
841 1.87 ad mutex_exit(&uvm_swap_data_lock);
842 1.37 chs }
843 1.73 yamt continue;
844 1.73 yamt }
845 1.37 chs
846 1.77 yamt #if defined(VMSWAP)
847 1.73 yamt /*
848 1.73 yamt * this page is dirty, skip it if we'll have met our
849 1.73 yamt * free target when all the current pageouts complete.
850 1.73 yamt */
851 1.24 chs
852 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
853 1.89 ad mutex_exit(slock);
854 1.73 yamt continue;
855 1.73 yamt }
856 1.14 chs
857 1.73 yamt /*
858 1.73 yamt * free any swap space allocated to the page since
859 1.73 yamt * we'll have to write it again with its new data.
860 1.73 yamt */
861 1.24 chs
862 1.77 yamt uvmpd_dropswap(p);
863 1.14 chs
864 1.73 yamt /*
865 1.97 ad * start new swap pageout cluster (if necessary).
866 1.97 ad *
867 1.97 ad * if swap is full reactivate this page so that
868 1.97 ad * we eventually cycle all pages through the
869 1.97 ad * inactive queue.
870 1.73 yamt */
871 1.68 yamt
872 1.97 ad if (swapcluster_allocslots(&swc)) {
873 1.73 yamt dirtyreacts++;
874 1.73 yamt uvm_pageactivate(p);
875 1.89 ad mutex_exit(slock);
876 1.73 yamt continue;
877 1.8 mrg }
878 1.8 mrg
879 1.8 mrg /*
880 1.73 yamt * at this point, we're definitely going reuse this
881 1.73 yamt * page. mark the page busy and delayed-free.
882 1.73 yamt * we should remove the page from the page queues
883 1.73 yamt * so we don't ever look at it again.
884 1.73 yamt * adjust counters and such.
885 1.8 mrg */
886 1.8 mrg
887 1.73 yamt p->flags |= PG_BUSY;
888 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
889 1.73 yamt
890 1.73 yamt p->flags |= PG_PAGEOUT;
891 1.73 yamt uvm_pagedequeue(p);
892 1.73 yamt
893 1.73 yamt uvmexp.pgswapout++;
894 1.89 ad mutex_exit(&uvm_pageqlock);
895 1.8 mrg
896 1.8 mrg /*
897 1.73 yamt * add the new page to the cluster.
898 1.8 mrg */
899 1.8 mrg
900 1.73 yamt if (swapcluster_add(&swc, p)) {
901 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
902 1.73 yamt UVM_PAGE_OWN(p, NULL);
903 1.89 ad mutex_enter(&uvm_pageqlock);
904 1.77 yamt dirtyreacts++;
905 1.73 yamt uvm_pageactivate(p);
906 1.89 ad mutex_exit(slock);
907 1.73 yamt continue;
908 1.73 yamt }
909 1.89 ad mutex_exit(slock);
910 1.73 yamt
911 1.84 thorpej swapcluster_flush(&swc, false);
912 1.89 ad mutex_enter(&uvm_pageqlock);
913 1.73 yamt
914 1.8 mrg /*
915 1.31 chs * the pageout is in progress. bump counters and set up
916 1.31 chs * for the next loop.
917 1.8 mrg */
918 1.8 mrg
919 1.31 chs uvmexp.pdpending++;
920 1.77 yamt
921 1.77 yamt #else /* defined(VMSWAP) */
922 1.77 yamt uvm_pageactivate(p);
923 1.89 ad mutex_exit(slock);
924 1.77 yamt #endif /* defined(VMSWAP) */
925 1.73 yamt }
926 1.73 yamt
927 1.73 yamt #if defined(VMSWAP)
928 1.89 ad mutex_exit(&uvm_pageqlock);
929 1.84 thorpej swapcluster_flush(&swc, true);
930 1.89 ad mutex_enter(&uvm_pageqlock);
931 1.68 yamt #endif /* defined(VMSWAP) */
932 1.1 mrg }
933 1.1 mrg
934 1.1 mrg /*
935 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
936 1.1 mrg *
937 1.1 mrg * => called with pageq's locked
938 1.1 mrg */
939 1.1 mrg
940 1.65 thorpej static void
941 1.37 chs uvmpd_scan(void)
942 1.1 mrg {
943 1.77 yamt int swap_shortage, pages_freed;
944 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
945 1.1 mrg
946 1.37 chs uvmexp.pdrevs++;
947 1.1 mrg
948 1.8 mrg /*
949 1.93 ad * work on meeting our targets. first we work on our free target
950 1.93 ad * by converting inactive pages into free pages. then we work on
951 1.93 ad * meeting our inactive target by converting active pages to
952 1.93 ad * inactive ones.
953 1.8 mrg */
954 1.8 mrg
955 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
956 1.8 mrg
957 1.14 chs pages_freed = uvmexp.pdfreed;
958 1.77 yamt uvmpd_scan_queue();
959 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
960 1.8 mrg
961 1.8 mrg /*
962 1.14 chs * detect if we're not going to be able to page anything out
963 1.14 chs * until we free some swap resources from active pages.
964 1.14 chs */
965 1.24 chs
966 1.14 chs swap_shortage = 0;
967 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
968 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
969 1.52 pk !uvm_swapisfull() &&
970 1.14 chs pages_freed == 0) {
971 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
972 1.14 chs }
973 1.24 chs
974 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
975 1.93 ad
976 1.93 ad /*
977 1.94 ad * if still below the minimum target, try unloading kernel
978 1.94 ad * modules.
979 1.94 ad */
980 1.93 ad
981 1.94 ad if (uvmexp.free < uvmexp.freemin) {
982 1.94 ad module_thread_kick();
983 1.93 ad }
984 1.1 mrg }
985 1.62 yamt
986 1.62 yamt /*
987 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
988 1.62 yamt *
989 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
990 1.62 yamt *
991 1.62 yamt * XXX should be tunable.
992 1.62 yamt * XXX should consider pools, etc?
993 1.62 yamt */
994 1.62 yamt
995 1.83 thorpej bool
996 1.62 yamt uvm_reclaimable(void)
997 1.62 yamt {
998 1.62 yamt int filepages;
999 1.77 yamt int active, inactive;
1000 1.62 yamt
1001 1.62 yamt /*
1002 1.62 yamt * if swap is not full, no problem.
1003 1.62 yamt */
1004 1.62 yamt
1005 1.62 yamt if (!uvm_swapisfull()) {
1006 1.84 thorpej return true;
1007 1.62 yamt }
1008 1.62 yamt
1009 1.62 yamt /*
1010 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
1011 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1012 1.62 yamt *
1013 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1014 1.63 yamt *
1015 1.63 yamt * XXX should consider about other reclaimable memory.
1016 1.63 yamt * XXX ie. pools, traditional buffer cache.
1017 1.62 yamt */
1018 1.62 yamt
1019 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1020 1.77 yamt uvm_estimatepageable(&active, &inactive);
1021 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1022 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1023 1.84 thorpej return true;
1024 1.62 yamt }
1025 1.62 yamt
1026 1.62 yamt /*
1027 1.62 yamt * kill the process, fail allocation, etc..
1028 1.62 yamt */
1029 1.62 yamt
1030 1.84 thorpej return false;
1031 1.62 yamt }
1032 1.77 yamt
1033 1.77 yamt void
1034 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1035 1.77 yamt {
1036 1.77 yamt
1037 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1038 1.77 yamt }
1039 1.98 haad
1040 1.98 haad void
1041 1.98 haad uvm_reclaim_init(void)
1042 1.98 haad {
1043 1.98 haad
1044 1.98 haad /* Initialize UVM reclaim hooks. */
1045 1.98 haad mutex_init(&uvm_reclaim_lock, MUTEX_DEFAULT, IPL_NONE);
1046 1.98 haad SLIST_INIT(&uvm_reclaim_list);
1047 1.98 haad }
1048 1.98 haad
1049 1.98 haad void
1050 1.98 haad uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook)
1051 1.98 haad {
1052 1.98 haad
1053 1.98 haad KASSERT(hook != NULL);
1054 1.98 haad
1055 1.98 haad mutex_enter(&uvm_reclaim_lock);
1056 1.98 haad SLIST_INSERT_HEAD(&uvm_reclaim_list, hook, uvm_reclaim_next);
1057 1.98 haad mutex_exit(&uvm_reclaim_lock);
1058 1.98 haad }
1059 1.98 haad
1060 1.98 haad void
1061 1.98 haad uvm_reclaim_hook_del(struct uvm_reclaim_hook *hook_entry)
1062 1.98 haad {
1063 1.98 haad struct uvm_reclaim_hook *hook;
1064 1.98 haad
1065 1.98 haad KASSERT(hook_entry != NULL);
1066 1.98 haad
1067 1.98 haad mutex_enter(&uvm_reclaim_lock);
1068 1.98 haad SLIST_FOREACH(hook, &uvm_reclaim_list, uvm_reclaim_next) {
1069 1.98 haad if (hook != hook_entry) {
1070 1.98 haad continue;
1071 1.98 haad }
1072 1.98 haad
1073 1.98 haad SLIST_REMOVE(&uvm_reclaim_list, hook, uvm_reclaim_hook,
1074 1.98 haad uvm_reclaim_next);
1075 1.98 haad break;
1076 1.98 haad }
1077 1.98 haad
1078 1.98 haad mutex_exit(&uvm_reclaim_lock);
1079 1.98 haad }
1080