uvm_pdaemon.c revision 1.103.2.4 1 1.103.2.4 yamt /* $NetBSD: uvm_pdaemon.c,v 1.103.2.4 2012/04/17 00:09:00 yamt Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.103.2.4 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.103.2.4 2012/04/17 00:09:00 yamt Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.1 mrg #include <sys/param.h>
75 1.1 mrg #include <sys/proc.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/kernel.h>
78 1.9 pk #include <sys/pool.h>
79 1.24 chs #include <sys/buf.h>
80 1.94 ad #include <sys/module.h>
81 1.96 ad #include <sys/atomic.h>
82 1.1 mrg
83 1.1 mrg #include <uvm/uvm.h>
84 1.77 yamt #include <uvm/uvm_pdpolicy.h>
85 1.1 mrg
86 1.1 mrg /*
87 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
88 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
89 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
90 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
91 1.14 chs */
92 1.14 chs
93 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
94 1.14 chs
95 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
96 1.14 chs
97 1.14 chs /*
98 1.1 mrg * local prototypes
99 1.1 mrg */
100 1.1 mrg
101 1.65 thorpej static void uvmpd_scan(void);
102 1.77 yamt static void uvmpd_scan_queue(void);
103 1.65 thorpej static void uvmpd_tune(void);
104 1.1 mrg
105 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
106 1.89 ad
107 1.1 mrg /*
108 1.61 chs * XXX hack to avoid hangs when large processes fork.
109 1.61 chs */
110 1.96 ad u_int uvm_extrapages;
111 1.61 chs
112 1.61 chs /*
113 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
114 1.1 mrg *
115 1.1 mrg * => should be called with all locks released
116 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
117 1.1 mrg */
118 1.1 mrg
119 1.19 thorpej void
120 1.65 thorpej uvm_wait(const char *wmsg)
121 1.8 mrg {
122 1.8 mrg int timo = 0;
123 1.89 ad
124 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
125 1.1 mrg
126 1.8 mrg /*
127 1.8 mrg * check for page daemon going to sleep (waiting for itself)
128 1.8 mrg */
129 1.1 mrg
130 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
131 1.8 mrg /*
132 1.8 mrg * now we have a problem: the pagedaemon wants to go to
133 1.8 mrg * sleep until it frees more memory. but how can it
134 1.8 mrg * free more memory if it is asleep? that is a deadlock.
135 1.8 mrg * we have two options:
136 1.8 mrg * [1] panic now
137 1.8 mrg * [2] put a timeout on the sleep, thus causing the
138 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
139 1.8 mrg *
140 1.8 mrg * note that option [2] will only help us if we get lucky
141 1.8 mrg * and some other process on the system breaks the deadlock
142 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
143 1.8 mrg * to continue). for now we panic if DEBUG is defined,
144 1.8 mrg * otherwise we hope for the best with option [2] (better
145 1.8 mrg * yet, this should never happen in the first place!).
146 1.8 mrg */
147 1.1 mrg
148 1.8 mrg printf("pagedaemon: deadlock detected!\n");
149 1.8 mrg timo = hz >> 3; /* set timeout */
150 1.1 mrg #if defined(DEBUG)
151 1.8 mrg /* DEBUG: panic so we can debug it */
152 1.8 mrg panic("pagedaemon deadlock");
153 1.1 mrg #endif
154 1.8 mrg }
155 1.1 mrg
156 1.89 ad uvm_pagedaemon_waiters++;
157 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
158 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
159 1.1 mrg }
160 1.1 mrg
161 1.77 yamt /*
162 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
163 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
164 1.89 ad *
165 1.89 ad * => called with uvm_fpageqlock held.
166 1.77 yamt */
167 1.77 yamt
168 1.77 yamt void
169 1.77 yamt uvm_kick_pdaemon(void)
170 1.77 yamt {
171 1.77 yamt
172 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
173 1.89 ad
174 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
175 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
176 1.103.2.4 yamt uvmpdpol_needsscan_p()) ||
177 1.103.2.4 yamt uvm_km_va_starved_p()) {
178 1.77 yamt wakeup(&uvm.pagedaemon);
179 1.77 yamt }
180 1.77 yamt }
181 1.1 mrg
182 1.1 mrg /*
183 1.1 mrg * uvmpd_tune: tune paging parameters
184 1.1 mrg *
185 1.1 mrg * => called when ever memory is added (or removed?) to the system
186 1.1 mrg * => caller must call with page queues locked
187 1.1 mrg */
188 1.1 mrg
189 1.65 thorpej static void
190 1.37 chs uvmpd_tune(void)
191 1.8 mrg {
192 1.95 ad int val;
193 1.95 ad
194 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
195 1.1 mrg
196 1.93 ad /*
197 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
198 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
199 1.93 ad */
200 1.95 ad val = uvmexp.npages / 200;
201 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
202 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
203 1.95 ad val *= ncpu;
204 1.23 bjh21
205 1.23 bjh21 /* Make sure there's always a user page free. */
206 1.95 ad if (val < uvmexp.reserve_kernel + 1)
207 1.95 ad val = uvmexp.reserve_kernel + 1;
208 1.95 ad uvmexp.freemin = val;
209 1.95 ad
210 1.96 ad /* Calculate free target. */
211 1.95 ad val = (uvmexp.freemin * 4) / 3;
212 1.95 ad if (val <= uvmexp.freemin)
213 1.95 ad val = uvmexp.freemin + 1;
214 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
215 1.61 chs
216 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
217 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
218 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
219 1.1 mrg }
220 1.1 mrg
221 1.1 mrg /*
222 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
223 1.1 mrg */
224 1.1 mrg
225 1.8 mrg void
226 1.80 yamt uvm_pageout(void *arg)
227 1.8 mrg {
228 1.60 enami int bufcnt, npages = 0;
229 1.61 chs int extrapages = 0;
230 1.88 ad struct pool *pp;
231 1.88 ad uint64_t where;
232 1.98 haad
233 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
234 1.24 chs
235 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
236 1.8 mrg
237 1.8 mrg /*
238 1.8 mrg * ensure correct priority and set paging parameters...
239 1.8 mrg */
240 1.8 mrg
241 1.86 ad uvm.pagedaemon_lwp = curlwp;
242 1.89 ad mutex_enter(&uvm_pageqlock);
243 1.8 mrg npages = uvmexp.npages;
244 1.8 mrg uvmpd_tune();
245 1.89 ad mutex_exit(&uvm_pageqlock);
246 1.8 mrg
247 1.8 mrg /*
248 1.8 mrg * main loop
249 1.8 mrg */
250 1.24 chs
251 1.24 chs for (;;) {
252 1.103.2.4 yamt bool needsscan, needsfree, kmem_va_starved;
253 1.103.2.4 yamt
254 1.103.2.4 yamt kmem_va_starved = uvm_km_va_starved_p();
255 1.24 chs
256 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
257 1.103.2.4 yamt if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
258 1.103.2.4 yamt !kmem_va_starved) {
259 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
260 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
261 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
262 1.89 ad uvmexp.pdwoke++;
263 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
264 1.89 ad } else {
265 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
266 1.89 ad }
267 1.24 chs
268 1.8 mrg /*
269 1.24 chs * now lock page queues and recompute inactive count
270 1.8 mrg */
271 1.8 mrg
272 1.89 ad mutex_enter(&uvm_pageqlock);
273 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
274 1.24 chs npages = uvmexp.npages;
275 1.61 chs extrapages = uvm_extrapages;
276 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
277 1.24 chs uvmpd_tune();
278 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
279 1.24 chs }
280 1.24 chs
281 1.77 yamt uvmpdpol_tune();
282 1.24 chs
283 1.60 enami /*
284 1.60 enami * Estimate a hint. Note that bufmem are returned to
285 1.60 enami * system only when entire pool page is empty.
286 1.60 enami */
287 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
288 1.60 enami bufcnt = uvmexp.freetarg - uvmexp.free;
289 1.60 enami if (bufcnt < 0)
290 1.60 enami bufcnt = 0;
291 1.60 enami
292 1.77 yamt UVMHIST_LOG(pdhist," free/ftarg=%d/%d",
293 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
294 1.8 mrg
295 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
296 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
297 1.89 ad
298 1.8 mrg /*
299 1.24 chs * scan if needed
300 1.8 mrg */
301 1.97 ad if (needsscan) {
302 1.97 ad mutex_spin_exit(&uvm_fpageqlock);
303 1.24 chs uvmpd_scan();
304 1.97 ad mutex_spin_enter(&uvm_fpageqlock);
305 1.97 ad }
306 1.8 mrg
307 1.8 mrg /*
308 1.24 chs * if there's any free memory to be had,
309 1.24 chs * wake up any waiters.
310 1.8 mrg */
311 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
312 1.24 chs uvmexp.paging == 0) {
313 1.24 chs wakeup(&uvmexp.free);
314 1.89 ad uvm_pagedaemon_waiters = 0;
315 1.8 mrg }
316 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
317 1.1 mrg
318 1.8 mrg /*
319 1.24 chs * scan done. unlock page queues (the only lock we are holding)
320 1.8 mrg */
321 1.89 ad mutex_exit(&uvm_pageqlock);
322 1.38 chs
323 1.88 ad /*
324 1.93 ad * if we don't need free memory, we're done.
325 1.93 ad */
326 1.93 ad
327 1.103.2.4 yamt if (!needsfree && !kmem_va_starved)
328 1.93 ad continue;
329 1.93 ad
330 1.93 ad /*
331 1.88 ad * start draining pool resources now that we're not
332 1.88 ad * holding any locks.
333 1.88 ad */
334 1.88 ad pool_drain_start(&pp, &where);
335 1.60 enami
336 1.38 chs /*
337 1.88 ad * kill unused metadata buffers.
338 1.38 chs */
339 1.89 ad mutex_enter(&bufcache_lock);
340 1.88 ad buf_drain(bufcnt << PAGE_SHIFT);
341 1.89 ad mutex_exit(&bufcache_lock);
342 1.57 jdolecek
343 1.57 jdolecek /*
344 1.88 ad * complete draining the pools.
345 1.88 ad */
346 1.88 ad pool_drain_end(pp, where);
347 1.24 chs }
348 1.24 chs /*NOTREACHED*/
349 1.24 chs }
350 1.24 chs
351 1.8 mrg
352 1.24 chs /*
353 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
354 1.24 chs */
355 1.8 mrg
356 1.24 chs void
357 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
358 1.24 chs {
359 1.81 yamt struct buf *bp = (void *)wk;
360 1.9 pk
361 1.81 yamt KASSERT(&bp->b_work == wk);
362 1.8 mrg
363 1.81 yamt /*
364 1.81 yamt * process an i/o that's done.
365 1.81 yamt */
366 1.8 mrg
367 1.81 yamt (*bp->b_iodone)(bp);
368 1.89 ad }
369 1.89 ad
370 1.89 ad void
371 1.89 ad uvm_pageout_start(int npages)
372 1.89 ad {
373 1.89 ad
374 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
375 1.89 ad uvmexp.paging += npages;
376 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
377 1.89 ad }
378 1.89 ad
379 1.89 ad void
380 1.89 ad uvm_pageout_done(int npages)
381 1.89 ad {
382 1.89 ad
383 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
384 1.89 ad KASSERT(uvmexp.paging >= npages);
385 1.89 ad uvmexp.paging -= npages;
386 1.89 ad
387 1.89 ad /*
388 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
389 1.89 ad */
390 1.89 ad
391 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
392 1.81 yamt wakeup(&uvm.pagedaemon);
393 1.81 yamt } else {
394 1.81 yamt wakeup(&uvmexp.free);
395 1.89 ad uvm_pagedaemon_waiters = 0;
396 1.8 mrg }
397 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
398 1.1 mrg }
399 1.1 mrg
400 1.76 yamt /*
401 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
402 1.76 yamt *
403 1.76 yamt * => called with pageq locked.
404 1.76 yamt * => resolve orphaned O->A loaned page.
405 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
406 1.76 yamt */
407 1.76 yamt
408 1.89 ad kmutex_t *
409 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
410 1.76 yamt {
411 1.103.2.2 yamt kmutex_t *lock;
412 1.89 ad
413 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
414 1.103.2.2 yamt lock = uvm_page_getlock(pg);
415 1.103.2.2 yamt KASSERT(lock != NULL);
416 1.103.2.2 yamt if (!mutex_tryenter(lock)) {
417 1.76 yamt return NULL;
418 1.76 yamt }
419 1.103.2.3 yamt uvm_loan_resolve_orphan(pg, true);
420 1.103.2.2 yamt return lock;
421 1.76 yamt }
422 1.76 yamt
423 1.73 yamt #if defined(VMSWAP)
424 1.73 yamt struct swapcluster {
425 1.73 yamt int swc_slot;
426 1.73 yamt int swc_nallocated;
427 1.73 yamt int swc_nused;
428 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
429 1.73 yamt };
430 1.73 yamt
431 1.73 yamt static void
432 1.73 yamt swapcluster_init(struct swapcluster *swc)
433 1.73 yamt {
434 1.73 yamt
435 1.73 yamt swc->swc_slot = 0;
436 1.89 ad swc->swc_nused = 0;
437 1.73 yamt }
438 1.73 yamt
439 1.73 yamt static int
440 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
441 1.73 yamt {
442 1.73 yamt int slot;
443 1.73 yamt int npages;
444 1.73 yamt
445 1.73 yamt if (swc->swc_slot != 0) {
446 1.73 yamt return 0;
447 1.73 yamt }
448 1.73 yamt
449 1.73 yamt /* Even with strange MAXPHYS, the shift
450 1.73 yamt implicitly rounds down to a page. */
451 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
452 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
453 1.73 yamt if (slot == 0) {
454 1.73 yamt return ENOMEM;
455 1.73 yamt }
456 1.73 yamt swc->swc_slot = slot;
457 1.73 yamt swc->swc_nallocated = npages;
458 1.73 yamt swc->swc_nused = 0;
459 1.73 yamt
460 1.73 yamt return 0;
461 1.73 yamt }
462 1.73 yamt
463 1.73 yamt static int
464 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
465 1.73 yamt {
466 1.73 yamt int slot;
467 1.73 yamt struct uvm_object *uobj;
468 1.73 yamt
469 1.73 yamt KASSERT(swc->swc_slot != 0);
470 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
471 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
472 1.73 yamt
473 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
474 1.73 yamt uobj = pg->uobject;
475 1.73 yamt if (uobj == NULL) {
476 1.103 rmind KASSERT(mutex_owned(pg->uanon->an_lock));
477 1.73 yamt pg->uanon->an_swslot = slot;
478 1.73 yamt } else {
479 1.73 yamt int result;
480 1.73 yamt
481 1.103 rmind KASSERT(mutex_owned(uobj->vmobjlock));
482 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
483 1.73 yamt if (result == -1) {
484 1.73 yamt return ENOMEM;
485 1.73 yamt }
486 1.73 yamt }
487 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
488 1.73 yamt swc->swc_nused++;
489 1.73 yamt
490 1.73 yamt return 0;
491 1.73 yamt }
492 1.73 yamt
493 1.73 yamt static void
494 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
495 1.73 yamt {
496 1.73 yamt int slot;
497 1.73 yamt int nused;
498 1.73 yamt int nallocated;
499 1.73 yamt int error;
500 1.73 yamt
501 1.73 yamt if (swc->swc_slot == 0) {
502 1.73 yamt return;
503 1.73 yamt }
504 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
505 1.73 yamt
506 1.73 yamt slot = swc->swc_slot;
507 1.73 yamt nused = swc->swc_nused;
508 1.73 yamt nallocated = swc->swc_nallocated;
509 1.73 yamt
510 1.73 yamt /*
511 1.73 yamt * if this is the final pageout we could have a few
512 1.73 yamt * unused swap blocks. if so, free them now.
513 1.73 yamt */
514 1.73 yamt
515 1.73 yamt if (nused < nallocated) {
516 1.73 yamt if (!now) {
517 1.73 yamt return;
518 1.73 yamt }
519 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
520 1.73 yamt }
521 1.73 yamt
522 1.73 yamt /*
523 1.73 yamt * now start the pageout.
524 1.73 yamt */
525 1.73 yamt
526 1.91 yamt if (nused > 0) {
527 1.91 yamt uvmexp.pdpageouts++;
528 1.91 yamt uvm_pageout_start(nused);
529 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
530 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
531 1.91 yamt }
532 1.73 yamt
533 1.73 yamt /*
534 1.73 yamt * zero swslot to indicate that we are
535 1.73 yamt * no longer building a swap-backed cluster.
536 1.73 yamt */
537 1.73 yamt
538 1.73 yamt swc->swc_slot = 0;
539 1.89 ad swc->swc_nused = 0;
540 1.89 ad }
541 1.89 ad
542 1.89 ad static int
543 1.89 ad swapcluster_nused(struct swapcluster *swc)
544 1.89 ad {
545 1.89 ad
546 1.89 ad return swc->swc_nused;
547 1.73 yamt }
548 1.77 yamt
549 1.77 yamt /*
550 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
551 1.77 yamt *
552 1.77 yamt * => called with owner locked.
553 1.84 thorpej * => return true if a page had an associated slot.
554 1.77 yamt */
555 1.77 yamt
556 1.83 thorpej static bool
557 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
558 1.77 yamt {
559 1.84 thorpej bool result = false;
560 1.77 yamt struct vm_anon *anon = pg->uanon;
561 1.77 yamt
562 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
563 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
564 1.77 yamt anon->an_swslot = 0;
565 1.103.2.1 yamt uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
566 1.84 thorpej result = true;
567 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
568 1.77 yamt int slot = uao_set_swslot(pg->uobject,
569 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
570 1.77 yamt if (slot) {
571 1.77 yamt uvm_swap_free(slot, 1);
572 1.103.2.1 yamt uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
573 1.84 thorpej result = true;
574 1.77 yamt }
575 1.77 yamt }
576 1.77 yamt
577 1.77 yamt return result;
578 1.77 yamt }
579 1.77 yamt
580 1.77 yamt /*
581 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
582 1.77 yamt *
583 1.84 thorpej * => return true if a slot is successfully freed.
584 1.77 yamt */
585 1.77 yamt
586 1.83 thorpej bool
587 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
588 1.77 yamt {
589 1.89 ad kmutex_t *slock;
590 1.83 thorpej bool result;
591 1.77 yamt
592 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
593 1.84 thorpej return false;
594 1.77 yamt }
595 1.77 yamt
596 1.77 yamt /*
597 1.77 yamt * lock the page's owner.
598 1.77 yamt */
599 1.77 yamt
600 1.77 yamt slock = uvmpd_trylockowner(pg);
601 1.77 yamt if (slock == NULL) {
602 1.84 thorpej return false;
603 1.77 yamt }
604 1.77 yamt
605 1.77 yamt /*
606 1.77 yamt * skip this page if it's busy.
607 1.77 yamt */
608 1.77 yamt
609 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
610 1.89 ad mutex_exit(slock);
611 1.84 thorpej return false;
612 1.77 yamt }
613 1.77 yamt
614 1.77 yamt result = uvmpd_dropswap(pg);
615 1.77 yamt
616 1.89 ad mutex_exit(slock);
617 1.77 yamt
618 1.77 yamt return result;
619 1.77 yamt }
620 1.77 yamt
621 1.73 yamt #endif /* defined(VMSWAP) */
622 1.73 yamt
623 1.1 mrg /*
624 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
625 1.77 yamt * to clean or free.
626 1.1 mrg *
627 1.1 mrg * => called with page queues locked
628 1.1 mrg * => we work on meeting our free target by converting inactive pages
629 1.1 mrg * into free pages.
630 1.1 mrg * => we handle the building of swap-backed clusters
631 1.1 mrg */
632 1.1 mrg
633 1.65 thorpej static void
634 1.77 yamt uvmpd_scan_queue(void)
635 1.8 mrg {
636 1.77 yamt struct vm_page *p;
637 1.8 mrg struct uvm_object *uobj;
638 1.37 chs struct vm_anon *anon;
639 1.68 yamt #if defined(VMSWAP)
640 1.73 yamt struct swapcluster swc;
641 1.68 yamt #endif /* defined(VMSWAP) */
642 1.77 yamt int dirtyreacts;
643 1.89 ad int lockownerfail;
644 1.89 ad kmutex_t *slock;
645 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
646 1.1 mrg
647 1.73 yamt #if defined(VMSWAP)
648 1.73 yamt swapcluster_init(&swc);
649 1.73 yamt #endif /* defined(VMSWAP) */
650 1.77 yamt
651 1.14 chs dirtyreacts = 0;
652 1.89 ad lockownerfail = 0;
653 1.77 yamt uvmpdpol_scaninit();
654 1.43 chs
655 1.77 yamt while (/* CONSTCOND */ 1) {
656 1.24 chs
657 1.73 yamt /*
658 1.73 yamt * see if we've met the free target.
659 1.73 yamt */
660 1.73 yamt
661 1.89 ad if (uvmexp.free + uvmexp.paging
662 1.89 ad #if defined(VMSWAP)
663 1.89 ad + swapcluster_nused(&swc)
664 1.89 ad #endif /* defined(VMSWAP) */
665 1.89 ad >= uvmexp.freetarg << 2 ||
666 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
667 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
668 1.73 yamt "exit loop", 0, 0, 0, 0);
669 1.73 yamt break;
670 1.73 yamt }
671 1.24 chs
672 1.77 yamt p = uvmpdpol_selectvictim();
673 1.77 yamt if (p == NULL) {
674 1.77 yamt break;
675 1.77 yamt }
676 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
677 1.77 yamt KASSERT(p->wire_count == 0);
678 1.77 yamt
679 1.73 yamt /*
680 1.73 yamt * we are below target and have a new page to consider.
681 1.73 yamt */
682 1.30 chs
683 1.73 yamt anon = p->uanon;
684 1.73 yamt uobj = p->uobject;
685 1.8 mrg
686 1.73 yamt /*
687 1.73 yamt * first we attempt to lock the object that this page
688 1.73 yamt * belongs to. if our attempt fails we skip on to
689 1.73 yamt * the next page (no harm done). it is important to
690 1.73 yamt * "try" locking the object as we are locking in the
691 1.73 yamt * wrong order (pageq -> object) and we don't want to
692 1.73 yamt * deadlock.
693 1.73 yamt *
694 1.73 yamt * the only time we expect to see an ownerless page
695 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
696 1.73 yamt * anon has loaned a page from a uvm_object and the
697 1.73 yamt * uvm_object has dropped the ownership. in that
698 1.73 yamt * case, the anon can "take over" the loaned page
699 1.73 yamt * and make it its own.
700 1.73 yamt */
701 1.30 chs
702 1.76 yamt slock = uvmpd_trylockowner(p);
703 1.76 yamt if (slock == NULL) {
704 1.89 ad /*
705 1.89 ad * yield cpu to make a chance for an LWP holding
706 1.89 ad * the lock run. otherwise we can busy-loop too long
707 1.89 ad * if the page queue is filled with a lot of pages
708 1.89 ad * from few objects.
709 1.89 ad */
710 1.89 ad lockownerfail++;
711 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
712 1.103.2.2 yamt mutex_obj_pause(uvm_page_getlock(p),
713 1.103.2.2 yamt &uvm_pageqlock);
714 1.89 ad lockownerfail = 0;
715 1.89 ad }
716 1.76 yamt continue;
717 1.76 yamt }
718 1.76 yamt if (p->flags & PG_BUSY) {
719 1.89 ad mutex_exit(slock);
720 1.76 yamt uvmexp.pdbusy++;
721 1.76 yamt continue;
722 1.76 yamt }
723 1.76 yamt
724 1.73 yamt /* does the page belong to an object? */
725 1.73 yamt if (uobj != NULL) {
726 1.73 yamt uvmexp.pdobscan++;
727 1.73 yamt } else {
728 1.73 yamt #if defined(VMSWAP)
729 1.73 yamt KASSERT(anon != NULL);
730 1.73 yamt uvmexp.pdanscan++;
731 1.68 yamt #else /* defined(VMSWAP) */
732 1.73 yamt panic("%s: anon", __func__);
733 1.68 yamt #endif /* defined(VMSWAP) */
734 1.73 yamt }
735 1.8 mrg
736 1.37 chs
737 1.73 yamt /*
738 1.73 yamt * we now have the object and the page queues locked.
739 1.73 yamt * if the page is not swap-backed, call the object's
740 1.73 yamt * pager to flush and free the page.
741 1.73 yamt */
742 1.37 chs
743 1.69 yamt #if defined(READAHEAD_STATS)
744 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
745 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
746 1.73 yamt uvm_ra_miss.ev_count++;
747 1.73 yamt }
748 1.69 yamt #endif /* defined(READAHEAD_STATS) */
749 1.69 yamt
750 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
751 1.82 alc KASSERT(uobj != NULL);
752 1.89 ad mutex_exit(&uvm_pageqlock);
753 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
754 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
755 1.89 ad mutex_enter(&uvm_pageqlock);
756 1.73 yamt continue;
757 1.73 yamt }
758 1.37 chs
759 1.73 yamt /*
760 1.73 yamt * the page is swap-backed. remove all the permissions
761 1.73 yamt * from the page so we can sync the modified info
762 1.73 yamt * without any race conditions. if the page is clean
763 1.73 yamt * we can free it now and continue.
764 1.73 yamt */
765 1.8 mrg
766 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
767 1.103.2.1 yamt if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
768 1.103.2.1 yamt if (pmap_clear_modify(p)) {
769 1.103.2.1 yamt uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
770 1.103.2.1 yamt } else {
771 1.103.2.1 yamt uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
772 1.103.2.1 yamt }
773 1.73 yamt }
774 1.103.2.1 yamt if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
775 1.73 yamt int slot;
776 1.73 yamt int pageidx;
777 1.73 yamt
778 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
779 1.73 yamt uvm_pagefree(p);
780 1.73 yamt uvmexp.pdfreed++;
781 1.8 mrg
782 1.8 mrg /*
783 1.73 yamt * for anons, we need to remove the page
784 1.73 yamt * from the anon ourselves. for aobjs,
785 1.73 yamt * pagefree did that for us.
786 1.8 mrg */
787 1.24 chs
788 1.73 yamt if (anon) {
789 1.73 yamt KASSERT(anon->an_swslot != 0);
790 1.73 yamt anon->an_page = NULL;
791 1.73 yamt slot = anon->an_swslot;
792 1.73 yamt } else {
793 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
794 1.8 mrg }
795 1.89 ad mutex_exit(slock);
796 1.8 mrg
797 1.73 yamt if (slot > 0) {
798 1.73 yamt /* this page is now only in swap. */
799 1.87 ad mutex_enter(&uvm_swap_data_lock);
800 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
801 1.73 yamt uvmexp.swpgonly++;
802 1.87 ad mutex_exit(&uvm_swap_data_lock);
803 1.37 chs }
804 1.73 yamt continue;
805 1.73 yamt }
806 1.37 chs
807 1.77 yamt #if defined(VMSWAP)
808 1.73 yamt /*
809 1.73 yamt * this page is dirty, skip it if we'll have met our
810 1.73 yamt * free target when all the current pageouts complete.
811 1.73 yamt */
812 1.24 chs
813 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
814 1.89 ad mutex_exit(slock);
815 1.73 yamt continue;
816 1.73 yamt }
817 1.14 chs
818 1.73 yamt /*
819 1.73 yamt * free any swap space allocated to the page since
820 1.73 yamt * we'll have to write it again with its new data.
821 1.73 yamt */
822 1.24 chs
823 1.77 yamt uvmpd_dropswap(p);
824 1.14 chs
825 1.73 yamt /*
826 1.97 ad * start new swap pageout cluster (if necessary).
827 1.97 ad *
828 1.97 ad * if swap is full reactivate this page so that
829 1.97 ad * we eventually cycle all pages through the
830 1.97 ad * inactive queue.
831 1.73 yamt */
832 1.68 yamt
833 1.97 ad if (swapcluster_allocslots(&swc)) {
834 1.73 yamt dirtyreacts++;
835 1.73 yamt uvm_pageactivate(p);
836 1.89 ad mutex_exit(slock);
837 1.73 yamt continue;
838 1.8 mrg }
839 1.8 mrg
840 1.8 mrg /*
841 1.73 yamt * at this point, we're definitely going reuse this
842 1.73 yamt * page. mark the page busy and delayed-free.
843 1.73 yamt * we should remove the page from the page queues
844 1.73 yamt * so we don't ever look at it again.
845 1.73 yamt * adjust counters and such.
846 1.8 mrg */
847 1.8 mrg
848 1.73 yamt p->flags |= PG_BUSY;
849 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
850 1.73 yamt
851 1.73 yamt p->flags |= PG_PAGEOUT;
852 1.73 yamt uvm_pagedequeue(p);
853 1.73 yamt
854 1.73 yamt uvmexp.pgswapout++;
855 1.89 ad mutex_exit(&uvm_pageqlock);
856 1.8 mrg
857 1.8 mrg /*
858 1.73 yamt * add the new page to the cluster.
859 1.8 mrg */
860 1.8 mrg
861 1.73 yamt if (swapcluster_add(&swc, p)) {
862 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
863 1.73 yamt UVM_PAGE_OWN(p, NULL);
864 1.89 ad mutex_enter(&uvm_pageqlock);
865 1.77 yamt dirtyreacts++;
866 1.73 yamt uvm_pageactivate(p);
867 1.89 ad mutex_exit(slock);
868 1.73 yamt continue;
869 1.73 yamt }
870 1.89 ad mutex_exit(slock);
871 1.73 yamt
872 1.84 thorpej swapcluster_flush(&swc, false);
873 1.89 ad mutex_enter(&uvm_pageqlock);
874 1.73 yamt
875 1.8 mrg /*
876 1.31 chs * the pageout is in progress. bump counters and set up
877 1.31 chs * for the next loop.
878 1.8 mrg */
879 1.8 mrg
880 1.31 chs uvmexp.pdpending++;
881 1.77 yamt
882 1.77 yamt #else /* defined(VMSWAP) */
883 1.77 yamt uvm_pageactivate(p);
884 1.89 ad mutex_exit(slock);
885 1.77 yamt #endif /* defined(VMSWAP) */
886 1.73 yamt }
887 1.73 yamt
888 1.73 yamt #if defined(VMSWAP)
889 1.89 ad mutex_exit(&uvm_pageqlock);
890 1.84 thorpej swapcluster_flush(&swc, true);
891 1.89 ad mutex_enter(&uvm_pageqlock);
892 1.68 yamt #endif /* defined(VMSWAP) */
893 1.1 mrg }
894 1.1 mrg
895 1.1 mrg /*
896 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
897 1.1 mrg *
898 1.1 mrg * => called with pageq's locked
899 1.1 mrg */
900 1.1 mrg
901 1.65 thorpej static void
902 1.37 chs uvmpd_scan(void)
903 1.1 mrg {
904 1.77 yamt int swap_shortage, pages_freed;
905 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
906 1.1 mrg
907 1.37 chs uvmexp.pdrevs++;
908 1.1 mrg
909 1.8 mrg /*
910 1.93 ad * work on meeting our targets. first we work on our free target
911 1.93 ad * by converting inactive pages into free pages. then we work on
912 1.93 ad * meeting our inactive target by converting active pages to
913 1.93 ad * inactive ones.
914 1.8 mrg */
915 1.8 mrg
916 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
917 1.8 mrg
918 1.14 chs pages_freed = uvmexp.pdfreed;
919 1.77 yamt uvmpd_scan_queue();
920 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
921 1.8 mrg
922 1.8 mrg /*
923 1.14 chs * detect if we're not going to be able to page anything out
924 1.14 chs * until we free some swap resources from active pages.
925 1.14 chs */
926 1.24 chs
927 1.14 chs swap_shortage = 0;
928 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
929 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
930 1.52 pk !uvm_swapisfull() &&
931 1.14 chs pages_freed == 0) {
932 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
933 1.14 chs }
934 1.24 chs
935 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
936 1.93 ad
937 1.93 ad /*
938 1.94 ad * if still below the minimum target, try unloading kernel
939 1.94 ad * modules.
940 1.94 ad */
941 1.93 ad
942 1.94 ad if (uvmexp.free < uvmexp.freemin) {
943 1.94 ad module_thread_kick();
944 1.93 ad }
945 1.1 mrg }
946 1.62 yamt
947 1.62 yamt /*
948 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
949 1.62 yamt *
950 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
951 1.62 yamt *
952 1.62 yamt * XXX should be tunable.
953 1.62 yamt * XXX should consider pools, etc?
954 1.62 yamt */
955 1.62 yamt
956 1.83 thorpej bool
957 1.62 yamt uvm_reclaimable(void)
958 1.62 yamt {
959 1.62 yamt int filepages;
960 1.77 yamt int active, inactive;
961 1.62 yamt
962 1.62 yamt /*
963 1.62 yamt * if swap is not full, no problem.
964 1.62 yamt */
965 1.62 yamt
966 1.62 yamt if (!uvm_swapisfull()) {
967 1.84 thorpej return true;
968 1.62 yamt }
969 1.62 yamt
970 1.62 yamt /*
971 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
972 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
973 1.62 yamt *
974 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
975 1.63 yamt *
976 1.63 yamt * XXX should consider about other reclaimable memory.
977 1.63 yamt * XXX ie. pools, traditional buffer cache.
978 1.62 yamt */
979 1.62 yamt
980 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
981 1.77 yamt uvm_estimatepageable(&active, &inactive);
982 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
983 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
984 1.84 thorpej return true;
985 1.62 yamt }
986 1.62 yamt
987 1.62 yamt /*
988 1.62 yamt * kill the process, fail allocation, etc..
989 1.62 yamt */
990 1.62 yamt
991 1.84 thorpej return false;
992 1.62 yamt }
993 1.77 yamt
994 1.77 yamt void
995 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
996 1.77 yamt {
997 1.77 yamt
998 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
999 1.77 yamt }
1000 1.98 haad
1001