uvm_pdaemon.c revision 1.11 1 1.11 chs /* $NetBSD: uvm_pdaemon.c,v 1.11 1998/10/18 23:50:00 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
46 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
47 1.1 mrg *
48 1.1 mrg *
49 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 1.1 mrg * All rights reserved.
51 1.1 mrg *
52 1.1 mrg * Permission to use, copy, modify and distribute this software and
53 1.1 mrg * its documentation is hereby granted, provided that both the copyright
54 1.1 mrg * notice and this permission notice appear in all copies of the
55 1.1 mrg * software, derivative works or modified versions, and any portions
56 1.1 mrg * thereof, and that both notices appear in supporting documentation.
57 1.1 mrg *
58 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 1.1 mrg *
62 1.1 mrg * Carnegie Mellon requests users of this software to return to
63 1.1 mrg *
64 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 1.1 mrg * School of Computer Science
66 1.1 mrg * Carnegie Mellon University
67 1.1 mrg * Pittsburgh PA 15213-3890
68 1.1 mrg *
69 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
70 1.1 mrg * rights to redistribute these changes.
71 1.1 mrg */
72 1.1 mrg
73 1.7 mrg #include "opt_uvmhist.h"
74 1.7 mrg
75 1.1 mrg /*
76 1.1 mrg * uvm_pdaemon.c: the page daemon
77 1.1 mrg */
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.1 mrg
85 1.1 mrg #include <vm/vm.h>
86 1.1 mrg #include <vm/vm_page.h>
87 1.1 mrg #include <vm/vm_kern.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * local prototypes
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg static void uvmpd_scan __P((void));
96 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
97 1.1 mrg static void uvmpd_tune __P((void));
98 1.1 mrg
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
102 1.1 mrg *
103 1.1 mrg * => should be called with all locks released
104 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
105 1.1 mrg */
106 1.1 mrg
107 1.1 mrg void uvm_wait(wmsg)
108 1.8 mrg char *wmsg;
109 1.8 mrg {
110 1.8 mrg int timo = 0;
111 1.8 mrg int s = splbio();
112 1.1 mrg
113 1.8 mrg /*
114 1.8 mrg * check for page daemon going to sleep (waiting for itself)
115 1.8 mrg */
116 1.1 mrg
117 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
118 1.8 mrg /*
119 1.8 mrg * now we have a problem: the pagedaemon wants to go to
120 1.8 mrg * sleep until it frees more memory. but how can it
121 1.8 mrg * free more memory if it is asleep? that is a deadlock.
122 1.8 mrg * we have two options:
123 1.8 mrg * [1] panic now
124 1.8 mrg * [2] put a timeout on the sleep, thus causing the
125 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
126 1.8 mrg *
127 1.8 mrg * note that option [2] will only help us if we get lucky
128 1.8 mrg * and some other process on the system breaks the deadlock
129 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
130 1.8 mrg * to continue). for now we panic if DEBUG is defined,
131 1.8 mrg * otherwise we hope for the best with option [2] (better
132 1.8 mrg * yet, this should never happen in the first place!).
133 1.8 mrg */
134 1.1 mrg
135 1.8 mrg printf("pagedaemon: deadlock detected!\n");
136 1.8 mrg timo = hz >> 3; /* set timeout */
137 1.1 mrg #if defined(DEBUG)
138 1.8 mrg /* DEBUG: panic so we can debug it */
139 1.8 mrg panic("pagedaemon deadlock");
140 1.1 mrg #endif
141 1.8 mrg }
142 1.1 mrg
143 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
144 1.8 mrg thread_wakeup(&uvm.pagedaemon); /* wake the daemon! */
145 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
146 1.8 mrg timo);
147 1.1 mrg
148 1.8 mrg splx(s);
149 1.1 mrg }
150 1.1 mrg
151 1.1 mrg
152 1.1 mrg /*
153 1.1 mrg * uvmpd_tune: tune paging parameters
154 1.1 mrg *
155 1.1 mrg * => called when ever memory is added (or removed?) to the system
156 1.1 mrg * => caller must call with page queues locked
157 1.1 mrg */
158 1.1 mrg
159 1.8 mrg static void
160 1.8 mrg uvmpd_tune()
161 1.8 mrg {
162 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
163 1.1 mrg
164 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
165 1.1 mrg
166 1.8 mrg /* between 16k and 256k */
167 1.8 mrg /* XXX: what are these values good for? */
168 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
169 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
170 1.1 mrg
171 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
172 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
173 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
174 1.1 mrg
175 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
176 1.1 mrg
177 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
178 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
179 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
180 1.1 mrg }
181 1.1 mrg
182 1.1 mrg /*
183 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
184 1.1 mrg */
185 1.1 mrg
186 1.8 mrg void
187 1.8 mrg uvm_pageout()
188 1.8 mrg {
189 1.8 mrg int npages = 0;
190 1.8 mrg int s;
191 1.8 mrg struct uvm_aiodesc *aio, *nextaio;
192 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
193 1.8 mrg
194 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
195 1.8 mrg
196 1.8 mrg /*
197 1.8 mrg * ensure correct priority and set paging parameters...
198 1.8 mrg */
199 1.8 mrg
200 1.8 mrg uvm.pagedaemon_proc = curproc;
201 1.8 mrg (void) spl0();
202 1.8 mrg uvm_lock_pageq();
203 1.8 mrg npages = uvmexp.npages;
204 1.8 mrg uvmpd_tune();
205 1.8 mrg uvm_unlock_pageq();
206 1.8 mrg
207 1.8 mrg /*
208 1.8 mrg * main loop
209 1.8 mrg */
210 1.8 mrg while (TRUE) {
211 1.1 mrg
212 1.8 mrg /*
213 1.8 mrg * carefully attempt to go to sleep (without losing "wakeups"!).
214 1.8 mrg * we need splbio because we want to make sure the aio_done list
215 1.8 mrg * is totally empty before we go to sleep.
216 1.8 mrg */
217 1.8 mrg
218 1.8 mrg s = splbio();
219 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
220 1.8 mrg
221 1.8 mrg /*
222 1.8 mrg * if we've got done aio's, then bypass the sleep
223 1.8 mrg */
224 1.8 mrg
225 1.8 mrg if (uvm.aio_done.tqh_first == NULL) {
226 1.8 mrg UVMHIST_LOG(maphist," <<SLEEPING>>",0,0,0,0);
227 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
228 1.8 mrg &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0);
229 1.8 mrg uvmexp.pdwoke++;
230 1.8 mrg UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
231 1.8 mrg
232 1.8 mrg /* relock pagedaemon_lock, still at splbio */
233 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
234 1.8 mrg }
235 1.8 mrg
236 1.8 mrg /*
237 1.8 mrg * check for done aio structures
238 1.8 mrg */
239 1.8 mrg
240 1.8 mrg aio = uvm.aio_done.tqh_first; /* save current list (if any)*/
241 1.8 mrg if (aio) {
242 1.8 mrg TAILQ_INIT(&uvm.aio_done); /* zero global list */
243 1.8 mrg }
244 1.1 mrg
245 1.8 mrg simple_unlock(&uvm.pagedaemon_lock); /* unlock */
246 1.8 mrg splx(s); /* drop splbio */
247 1.1 mrg
248 1.8 mrg /*
249 1.8 mrg * first clear out any pending aios (to free space in case we
250 1.8 mrg * want to pageout more stuff).
251 1.8 mrg */
252 1.8 mrg
253 1.8 mrg for (/*null*/; aio != NULL ; aio = nextaio) {
254 1.8 mrg
255 1.8 mrg uvmexp.paging -= aio->npages;
256 1.8 mrg nextaio = aio->aioq.tqe_next;
257 1.8 mrg aio->aiodone(aio);
258 1.8 mrg
259 1.8 mrg }
260 1.9 pk
261 1.9 pk /* Next, drain pool resources */
262 1.9 pk pool_drain(0);
263 1.8 mrg
264 1.8 mrg /*
265 1.8 mrg * now lock page queues and recompute inactive count
266 1.8 mrg */
267 1.8 mrg uvm_lock_pageq();
268 1.8 mrg
269 1.8 mrg if (npages != uvmexp.npages) { /* check for new pages? */
270 1.8 mrg npages = uvmexp.npages;
271 1.8 mrg uvmpd_tune();
272 1.8 mrg }
273 1.8 mrg
274 1.8 mrg uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
275 1.8 mrg if (uvmexp.inactarg <= uvmexp.freetarg)
276 1.8 mrg uvmexp.inactarg = uvmexp.freetarg + 1;
277 1.8 mrg
278 1.8 mrg UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
279 1.8 mrg uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
280 1.8 mrg uvmexp.inactarg);
281 1.8 mrg
282 1.8 mrg /*
283 1.8 mrg * scan if needed
284 1.8 mrg * [XXX: note we are reading uvm.free without locking]
285 1.8 mrg */
286 1.8 mrg if (uvmexp.free < uvmexp.freetarg ||
287 1.8 mrg uvmexp.inactive < uvmexp.inactarg)
288 1.8 mrg uvmpd_scan();
289 1.8 mrg
290 1.8 mrg /*
291 1.8 mrg * done scan. unlock page queues (the only lock we are holding)
292 1.8 mrg */
293 1.8 mrg uvm_unlock_pageq();
294 1.8 mrg
295 1.8 mrg /*
296 1.8 mrg * done! restart loop.
297 1.8 mrg */
298 1.8 mrg thread_wakeup(&uvmexp.free);
299 1.8 mrg }
300 1.8 mrg /*NOTREACHED*/
301 1.1 mrg }
302 1.1 mrg
303 1.1 mrg /*
304 1.1 mrg * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
305 1.1 mrg * its own function for ease of reading.
306 1.1 mrg *
307 1.1 mrg * => called with page queues locked
308 1.1 mrg * => we work on meeting our free target by converting inactive pages
309 1.1 mrg * into free pages.
310 1.1 mrg * => we handle the building of swap-backed clusters
311 1.1 mrg * => we return TRUE if we are exiting because we met our target
312 1.1 mrg */
313 1.1 mrg
314 1.8 mrg static boolean_t
315 1.8 mrg uvmpd_scan_inactive(pglst)
316 1.8 mrg struct pglist *pglst;
317 1.8 mrg {
318 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
319 1.8 mrg int s, free, result;
320 1.8 mrg struct vm_page *p, *nextpg;
321 1.8 mrg struct uvm_object *uobj;
322 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
323 1.8 mrg int npages;
324 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
325 1.8 mrg int swnpages, swcpages; /* XXX: see below */
326 1.8 mrg int swslot, oldslot;
327 1.8 mrg struct vm_anon *anon;
328 1.8 mrg boolean_t swap_backed;
329 1.10 eeh vaddr_t start;
330 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
331 1.1 mrg
332 1.8 mrg /*
333 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
334 1.8 mrg * list from object-backed pages. however, merging the two lists
335 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
336 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
337 1.8 mrg * clustering types in the event of a mixed inactive queue).
338 1.8 mrg */
339 1.1 mrg
340 1.8 mrg /*
341 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
342 1.8 mrg * to stay in the loop while we have a page to scan or we have
343 1.8 mrg * a swap-cluster to build.
344 1.8 mrg */
345 1.8 mrg swslot = 0;
346 1.8 mrg swnpages = swcpages = 0;
347 1.8 mrg free = 0;
348 1.8 mrg
349 1.8 mrg for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) {
350 1.8 mrg
351 1.8 mrg /*
352 1.8 mrg * note that p can be NULL iff we have traversed the whole
353 1.8 mrg * list and need to do one final swap-backed clustered pageout.
354 1.8 mrg */
355 1.8 mrg if (p) {
356 1.8 mrg /*
357 1.8 mrg * update our copy of "free" and see if we've met
358 1.8 mrg * our target
359 1.8 mrg */
360 1.8 mrg s = splimp();
361 1.8 mrg uvm_lock_fpageq();
362 1.8 mrg free = uvmexp.free;
363 1.8 mrg uvm_unlock_fpageq();
364 1.8 mrg splx(s);
365 1.8 mrg
366 1.8 mrg if (free >= uvmexp.freetarg) {
367 1.8 mrg UVMHIST_LOG(pdhist," met free target: "
368 1.8 mrg "exit loop", 0, 0, 0, 0);
369 1.8 mrg retval = TRUE; /* hit the target! */
370 1.8 mrg
371 1.8 mrg if (swslot == 0)
372 1.8 mrg /* exit now if no swap-i/o pending */
373 1.8 mrg break;
374 1.8 mrg
375 1.8 mrg /* set p to null to signal final swap i/o */
376 1.8 mrg p = NULL;
377 1.8 mrg }
378 1.8 mrg }
379 1.8 mrg
380 1.8 mrg uobj = NULL; /* be safe and shut gcc up */
381 1.8 mrg anon = NULL; /* be safe and shut gcc up */
382 1.8 mrg
383 1.8 mrg if (p) { /* if (we have a new page to consider) */
384 1.8 mrg /*
385 1.8 mrg * we are below target and have a new page to consider.
386 1.8 mrg */
387 1.8 mrg uvmexp.pdscans++;
388 1.8 mrg nextpg = p->pageq.tqe_next;
389 1.8 mrg
390 1.8 mrg /*
391 1.8 mrg * move referenced pages back to active queue and
392 1.8 mrg * skip to next page (unlikely to happen since
393 1.8 mrg * inactive pages shouldn't have any valid mappings
394 1.8 mrg * and we cleared reference before deactivating).
395 1.8 mrg */
396 1.8 mrg if (pmap_is_referenced(PMAP_PGARG(p))) {
397 1.8 mrg uvm_pageactivate(p);
398 1.8 mrg uvmexp.pdreact++;
399 1.8 mrg continue;
400 1.8 mrg }
401 1.8 mrg
402 1.8 mrg /*
403 1.8 mrg * first we attempt to lock the object that this page
404 1.8 mrg * belongs to. if our attempt fails we skip on to
405 1.8 mrg * the next page (no harm done). it is important to
406 1.8 mrg * "try" locking the object as we are locking in the
407 1.8 mrg * wrong order (pageq -> object) and we don't want to
408 1.8 mrg * get deadlocked.
409 1.8 mrg *
410 1.8 mrg * the only time we exepct to see an ownerless page
411 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
412 1.8 mrg * anon has loaned a page from a uvm_object and the
413 1.8 mrg * uvm_object has dropped the ownership. in that
414 1.8 mrg * case, the anon can "take over" the loaned page
415 1.8 mrg * and make it its own.
416 1.8 mrg */
417 1.8 mrg
418 1.8 mrg /* is page part of an anon or ownerless ? */
419 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
420 1.1 mrg
421 1.8 mrg anon = p->uanon;
422 1.1 mrg
423 1.1 mrg #ifdef DIAGNOSTIC
424 1.8 mrg /* to be on inactive q, page must be part
425 1.8 mrg * of _something_ */
426 1.8 mrg if (anon == NULL)
427 1.8 mrg panic("pagedaemon: page with no anon "
428 1.8 mrg "or object detected - loop 1");
429 1.1 mrg #endif
430 1.1 mrg
431 1.8 mrg if (!simple_lock_try(&anon->an_lock))
432 1.8 mrg /* lock failed, skip this page */
433 1.8 mrg continue;
434 1.8 mrg
435 1.8 mrg /*
436 1.8 mrg * if the page is ownerless, claim it in the
437 1.8 mrg * name of "anon"!
438 1.8 mrg */
439 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
440 1.1 mrg #ifdef DIAGNOSTIC
441 1.8 mrg if (p->loan_count < 1)
442 1.8 mrg panic("pagedaemon: non-loaned "
443 1.8 mrg "ownerless page detected -"
444 1.8 mrg " loop 1");
445 1.1 mrg #endif
446 1.8 mrg p->loan_count--;
447 1.8 mrg p->pqflags |= PQ_ANON; /* anon now owns it */
448 1.8 mrg }
449 1.8 mrg
450 1.8 mrg if (p->flags & PG_BUSY) {
451 1.8 mrg simple_unlock(&anon->an_lock);
452 1.8 mrg uvmexp.pdbusy++;
453 1.8 mrg /* someone else owns page, skip it */
454 1.8 mrg continue;
455 1.8 mrg }
456 1.8 mrg
457 1.8 mrg uvmexp.pdanscan++;
458 1.8 mrg
459 1.8 mrg } else {
460 1.8 mrg
461 1.8 mrg uobj = p->uobject;
462 1.8 mrg
463 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
464 1.8 mrg /* lock failed, skip this page */
465 1.8 mrg continue;
466 1.8 mrg
467 1.8 mrg if (p->flags & PG_BUSY) {
468 1.8 mrg simple_unlock(&uobj->vmobjlock);
469 1.8 mrg uvmexp.pdbusy++;
470 1.8 mrg /* someone else owns page, skip it */
471 1.8 mrg continue;
472 1.8 mrg }
473 1.8 mrg
474 1.8 mrg uvmexp.pdobscan++;
475 1.8 mrg }
476 1.8 mrg
477 1.8 mrg /*
478 1.8 mrg * we now have the object and the page queues locked.
479 1.8 mrg * the page is not busy. if the page is clean we
480 1.8 mrg * can free it now and continue.
481 1.8 mrg */
482 1.8 mrg
483 1.8 mrg if (p->flags & PG_CLEAN) {
484 1.8 mrg /* zap all mappings with pmap_page_protect... */
485 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
486 1.8 mrg uvm_pagefree(p);
487 1.8 mrg uvmexp.pdfreed++;
488 1.8 mrg
489 1.8 mrg if (anon) {
490 1.1 mrg #ifdef DIAGNOSTIC
491 1.8 mrg /*
492 1.8 mrg * an anonymous page can only be clean
493 1.8 mrg * if it has valid backing store.
494 1.8 mrg */
495 1.8 mrg if (anon->an_swslot == 0)
496 1.8 mrg panic("pagedaemon: clean anon "
497 1.8 mrg "page without backing store?");
498 1.1 mrg #endif
499 1.8 mrg /* remove from object */
500 1.8 mrg anon->u.an_page = NULL;
501 1.8 mrg simple_unlock(&anon->an_lock);
502 1.8 mrg } else {
503 1.8 mrg /* pagefree has already removed the
504 1.8 mrg * page from the object */
505 1.8 mrg simple_unlock(&uobj->vmobjlock);
506 1.8 mrg }
507 1.8 mrg continue;
508 1.8 mrg }
509 1.8 mrg
510 1.8 mrg /*
511 1.8 mrg * this page is dirty, skip it if we'll have met our
512 1.8 mrg * free target when all the current pageouts complete.
513 1.8 mrg */
514 1.8 mrg if (free + uvmexp.paging > uvmexp.freetarg)
515 1.8 mrg {
516 1.8 mrg if (anon) {
517 1.8 mrg simple_unlock(&anon->an_lock);
518 1.8 mrg } else {
519 1.8 mrg simple_unlock(&uobj->vmobjlock);
520 1.8 mrg }
521 1.8 mrg continue;
522 1.8 mrg }
523 1.8 mrg
524 1.8 mrg /*
525 1.8 mrg * the page we are looking at is dirty. we must
526 1.8 mrg * clean it before it can be freed. to do this we
527 1.8 mrg * first mark the page busy so that no one else will
528 1.8 mrg * touch the page. we write protect all the mappings
529 1.8 mrg * of the page so that no one touches it while it is
530 1.8 mrg * in I/O.
531 1.8 mrg */
532 1.8 mrg
533 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
534 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
535 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
536 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
537 1.8 mrg uvmexp.pgswapout++;
538 1.8 mrg
539 1.8 mrg /*
540 1.8 mrg * for swap-backed pages we need to (re)allocate
541 1.8 mrg * swap space.
542 1.8 mrg */
543 1.8 mrg if (swap_backed) {
544 1.8 mrg
545 1.8 mrg /*
546 1.8 mrg * free old swap slot (if any)
547 1.8 mrg */
548 1.8 mrg if (anon) {
549 1.8 mrg if (anon->an_swslot) {
550 1.8 mrg uvm_swap_free(anon->an_swslot,
551 1.8 mrg 1);
552 1.8 mrg anon->an_swslot = 0;
553 1.8 mrg }
554 1.8 mrg } else {
555 1.8 mrg oldslot = uao_set_swslot(uobj,
556 1.11 chs p->offset >> PAGE_SHIFT, 0);
557 1.8 mrg
558 1.8 mrg if (oldslot)
559 1.8 mrg uvm_swap_free(oldslot, 1);
560 1.8 mrg }
561 1.8 mrg
562 1.8 mrg /*
563 1.8 mrg * start new cluster (if necessary)
564 1.8 mrg */
565 1.8 mrg if (swslot == 0) {
566 1.8 mrg /* want this much */
567 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
568 1.8 mrg
569 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
570 1.8 mrg TRUE);
571 1.8 mrg
572 1.8 mrg if (swslot == 0) {
573 1.8 mrg /* no swap? give up! */
574 1.8 mrg p->flags &= ~PG_BUSY;
575 1.8 mrg UVM_PAGE_OWN(p, NULL);
576 1.8 mrg if (anon)
577 1.8 mrg simple_unlock(
578 1.8 mrg &anon->an_lock);
579 1.8 mrg else
580 1.8 mrg simple_unlock(
581 1.8 mrg &uobj->vmobjlock);
582 1.8 mrg continue;
583 1.8 mrg }
584 1.8 mrg swcpages = 0; /* cluster is empty */
585 1.8 mrg }
586 1.8 mrg
587 1.8 mrg /*
588 1.8 mrg * add block to cluster
589 1.8 mrg */
590 1.8 mrg swpps[swcpages] = p;
591 1.8 mrg uvmexp.pgswapout++;
592 1.8 mrg if (anon)
593 1.8 mrg anon->an_swslot = swslot + swcpages;
594 1.8 mrg else
595 1.8 mrg uao_set_swslot(uobj,
596 1.11 chs p->offset >> PAGE_SHIFT,
597 1.8 mrg swslot + swcpages);
598 1.8 mrg swcpages++;
599 1.8 mrg
600 1.8 mrg /* done (swap-backed) */
601 1.8 mrg }
602 1.8 mrg
603 1.8 mrg /* end: if (p) ["if we have new page to consider"] */
604 1.8 mrg } else {
605 1.8 mrg
606 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
607 1.8 mrg swap_backed = TRUE;
608 1.8 mrg }
609 1.8 mrg
610 1.8 mrg /*
611 1.8 mrg * now consider doing the pageout.
612 1.8 mrg *
613 1.8 mrg * for swap-backed pages, we do the pageout if we have either
614 1.8 mrg * filled the cluster (in which case (swnpages == swcpages) or
615 1.8 mrg * run out of pages (p == NULL).
616 1.8 mrg *
617 1.8 mrg * for object pages, we always do the pageout.
618 1.8 mrg */
619 1.8 mrg if (swap_backed) {
620 1.8 mrg
621 1.8 mrg if (p) { /* if we just added a page to cluster */
622 1.8 mrg if (anon)
623 1.8 mrg simple_unlock(&anon->an_lock);
624 1.8 mrg else
625 1.8 mrg simple_unlock(&uobj->vmobjlock);
626 1.8 mrg
627 1.8 mrg /* cluster not full yet? */
628 1.8 mrg if (swcpages < swnpages)
629 1.8 mrg continue;
630 1.8 mrg }
631 1.8 mrg
632 1.8 mrg /* starting I/O now... set up for it */
633 1.8 mrg npages = swcpages;
634 1.8 mrg ppsp = swpps;
635 1.8 mrg /* for swap-backed pages only */
636 1.10 eeh start = (vaddr_t) swslot;
637 1.8 mrg
638 1.8 mrg /* if this is final pageout we could have a few
639 1.8 mrg * extra swap blocks */
640 1.8 mrg if (swcpages < swnpages) {
641 1.8 mrg uvm_swap_free(swslot + swcpages,
642 1.8 mrg (swnpages - swcpages));
643 1.8 mrg }
644 1.1 mrg
645 1.8 mrg } else {
646 1.1 mrg
647 1.8 mrg /* normal object pageout */
648 1.8 mrg ppsp = pps;
649 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
650 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
651 1.8 mrg start = 0;
652 1.8 mrg
653 1.8 mrg }
654 1.8 mrg
655 1.8 mrg /*
656 1.8 mrg * now do the pageout.
657 1.8 mrg *
658 1.8 mrg * for swap_backed pages we have already built the cluster.
659 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
660 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
661 1.8 mrg *
662 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
663 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
664 1.8 mrg * always does this for un-successful I/O requests). this
665 1.8 mrg * allows us to do clustered pageout without having to deal
666 1.8 mrg * with cluster pages at this level.
667 1.8 mrg *
668 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
669 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
670 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
671 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
672 1.8 mrg *
673 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
674 1.8 mrg */
675 1.8 mrg
676 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
677 1.8 mrg uvmexp.pdpageouts++;
678 1.8 mrg result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
679 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
680 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
681 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
682 1.8 mrg
683 1.8 mrg /*
684 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
685 1.8 mrg * no longer building a swap-backed cluster.
686 1.8 mrg */
687 1.8 mrg
688 1.8 mrg if (swap_backed)
689 1.8 mrg swslot = 0; /* done with this cluster */
690 1.8 mrg
691 1.8 mrg /*
692 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
693 1.8 mrg * async I/O is in progress and the async I/O done routine
694 1.8 mrg * will clean up after us. in this case we move on to the
695 1.8 mrg * next page.
696 1.8 mrg *
697 1.8 mrg * there is a very remote chance that the pending async i/o can
698 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
699 1.8 mrg * may no longer be on the inactive queue. so we verify this
700 1.8 mrg * when determining the next page (starting over at the head if
701 1.8 mrg * we've lost our inactive page).
702 1.8 mrg */
703 1.8 mrg
704 1.8 mrg if (result == VM_PAGER_PEND) {
705 1.8 mrg uvmexp.paging += npages;
706 1.8 mrg uvm_lock_pageq(); /* relock page queues */
707 1.8 mrg uvmexp.pdpending++;
708 1.8 mrg if (p) {
709 1.8 mrg if (p->pqflags & PQ_INACTIVE)
710 1.8 mrg /* reload! */
711 1.8 mrg nextpg = p->pageq.tqe_next;
712 1.8 mrg else
713 1.8 mrg /* reload! */
714 1.8 mrg nextpg = pglst->tqh_first;
715 1.8 mrg } else {
716 1.8 mrg nextpg = NULL; /* done list */
717 1.8 mrg }
718 1.8 mrg continue;
719 1.8 mrg }
720 1.8 mrg
721 1.8 mrg /*
722 1.8 mrg * clean up "p" if we have one
723 1.8 mrg */
724 1.8 mrg
725 1.8 mrg if (p) {
726 1.8 mrg /*
727 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
728 1.8 mrg * has freed any cluster pages it may have allocated
729 1.8 mrg * during I/O. all that is left for us to do is
730 1.8 mrg * clean up page "p" (which is still PG_BUSY).
731 1.8 mrg *
732 1.8 mrg * our result could be one of the following:
733 1.8 mrg * VM_PAGER_OK: successful pageout
734 1.8 mrg *
735 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
736 1.8 mrg * to next page
737 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
738 1.8 mrg * "reactivate" page to get it out of the way (it
739 1.8 mrg * will eventually drift back into the inactive
740 1.8 mrg * queue for a retry).
741 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
742 1.8 mrg * only valid for "get" operations
743 1.8 mrg */
744 1.8 mrg
745 1.8 mrg /* relock p's object: page queues not lock yet, so
746 1.8 mrg * no need for "try" */
747 1.8 mrg
748 1.8 mrg /* !swap_backed case: already locked... */
749 1.8 mrg if (swap_backed) {
750 1.8 mrg if (anon)
751 1.8 mrg simple_lock(&anon->an_lock);
752 1.8 mrg else
753 1.8 mrg simple_lock(&uobj->vmobjlock);
754 1.8 mrg }
755 1.1 mrg
756 1.1 mrg #ifdef DIAGNOSTIC
757 1.8 mrg if (result == VM_PAGER_UNLOCK)
758 1.8 mrg panic("pagedaemon: pageout returned "
759 1.8 mrg "invalid 'unlock' code");
760 1.1 mrg #endif
761 1.1 mrg
762 1.8 mrg /* handle PG_WANTED now */
763 1.8 mrg if (p->flags & PG_WANTED)
764 1.8 mrg /* still holding object lock */
765 1.8 mrg thread_wakeup(p);
766 1.8 mrg
767 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
768 1.8 mrg UVM_PAGE_OWN(p, NULL);
769 1.8 mrg
770 1.8 mrg /* released during I/O? */
771 1.8 mrg if (p->flags & PG_RELEASED) {
772 1.8 mrg if (anon) {
773 1.8 mrg /* remove page so we can get nextpg */
774 1.8 mrg anon->u.an_page = NULL;
775 1.8 mrg
776 1.8 mrg /* XXX needed? */
777 1.8 mrg simple_unlock(&anon->an_lock);
778 1.8 mrg uvm_anfree(anon); /* kills anon */
779 1.8 mrg pmap_page_protect(PMAP_PGARG(p),
780 1.8 mrg VM_PROT_NONE);
781 1.8 mrg anon = NULL;
782 1.8 mrg uvm_lock_pageq();
783 1.8 mrg nextpg = p->pageq.tqe_next;
784 1.8 mrg /* free released page */
785 1.8 mrg uvm_pagefree(p);
786 1.1 mrg
787 1.8 mrg } else {
788 1.1 mrg
789 1.1 mrg #ifdef DIAGNOSTIC
790 1.8 mrg if (uobj->pgops->pgo_releasepg == NULL)
791 1.8 mrg panic("pagedaemon: no "
792 1.8 mrg "pgo_releasepg function");
793 1.1 mrg #endif
794 1.1 mrg
795 1.8 mrg /*
796 1.8 mrg * pgo_releasepg nukes the page and
797 1.8 mrg * gets "nextpg" for us. it returns
798 1.8 mrg * with the page queues locked (when
799 1.8 mrg * given nextpg ptr).
800 1.8 mrg */
801 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
802 1.8 mrg &nextpg))
803 1.8 mrg /* uobj died after release */
804 1.8 mrg uobj = NULL;
805 1.8 mrg
806 1.8 mrg /*
807 1.8 mrg * lock page queues here so that they're
808 1.8 mrg * always locked at the end of the loop.
809 1.8 mrg */
810 1.8 mrg uvm_lock_pageq();
811 1.8 mrg }
812 1.8 mrg
813 1.8 mrg } else { /* page was not released during I/O */
814 1.8 mrg
815 1.8 mrg uvm_lock_pageq();
816 1.8 mrg nextpg = p->pageq.tqe_next;
817 1.8 mrg
818 1.8 mrg if (result != VM_PAGER_OK) {
819 1.8 mrg
820 1.8 mrg /* pageout was a failure... */
821 1.8 mrg if (result != VM_PAGER_AGAIN)
822 1.8 mrg uvm_pageactivate(p);
823 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
824 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
825 1.8 mrg * swap block? */
826 1.8 mrg
827 1.8 mrg } else {
828 1.8 mrg
829 1.8 mrg /* pageout was a success... */
830 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
831 1.8 mrg pmap_clear_modify(PMAP_PGARG(p));
832 1.8 mrg p->flags |= PG_CLEAN;
833 1.8 mrg /* XXX: could free page here, but old
834 1.8 mrg * pagedaemon does not */
835 1.8 mrg
836 1.8 mrg }
837 1.8 mrg }
838 1.8 mrg
839 1.8 mrg /*
840 1.8 mrg * drop object lock (if there is an object left). do
841 1.8 mrg * a safety check of nextpg to make sure it is on the
842 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
843 1.8 mrg * the inactive queue can't be re-queued [note: not
844 1.8 mrg * true for active queue]).
845 1.8 mrg */
846 1.8 mrg
847 1.8 mrg if (anon)
848 1.8 mrg simple_unlock(&anon->an_lock);
849 1.8 mrg else if (uobj)
850 1.8 mrg simple_unlock(&uobj->vmobjlock);
851 1.8 mrg
852 1.8 mrg } /* if (p) */ else {
853 1.8 mrg
854 1.8 mrg /* if p is null in this loop, make sure it stays null
855 1.8 mrg * in next loop */
856 1.8 mrg nextpg = NULL;
857 1.8 mrg
858 1.8 mrg /*
859 1.8 mrg * lock page queues here just so they're always locked
860 1.8 mrg * at the end of the loop.
861 1.8 mrg */
862 1.8 mrg uvm_lock_pageq();
863 1.8 mrg }
864 1.8 mrg
865 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
866 1.8 mrg printf("pagedaemon: invalid nextpg! reverting to "
867 1.8 mrg "queue head\n");
868 1.8 mrg nextpg = pglst->tqh_first; /* reload! */
869 1.8 mrg }
870 1.1 mrg
871 1.8 mrg } /* end of "inactive" 'for' loop */
872 1.8 mrg return (retval);
873 1.1 mrg }
874 1.1 mrg
875 1.1 mrg /*
876 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
877 1.1 mrg *
878 1.1 mrg * => called with pageq's locked
879 1.1 mrg */
880 1.1 mrg
881 1.8 mrg void
882 1.8 mrg uvmpd_scan()
883 1.1 mrg {
884 1.8 mrg int s, free, pages_freed, page_shortage;
885 1.8 mrg struct vm_page *p, *nextpg;
886 1.8 mrg struct uvm_object *uobj;
887 1.8 mrg boolean_t got_it;
888 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
889 1.1 mrg
890 1.8 mrg uvmexp.pdrevs++; /* counter */
891 1.1 mrg
892 1.1 mrg #ifdef __GNUC__
893 1.8 mrg uobj = NULL; /* XXX gcc */
894 1.1 mrg #endif
895 1.8 mrg /*
896 1.8 mrg * get current "free" page count
897 1.8 mrg */
898 1.8 mrg s = splimp();
899 1.8 mrg uvm_lock_fpageq();
900 1.8 mrg free = uvmexp.free;
901 1.8 mrg uvm_unlock_fpageq();
902 1.8 mrg splx(s);
903 1.1 mrg
904 1.1 mrg #ifndef __SWAP_BROKEN
905 1.8 mrg /*
906 1.8 mrg * swap out some processes if we are below our free target.
907 1.8 mrg * we need to unlock the page queues for this.
908 1.8 mrg */
909 1.8 mrg if (free < uvmexp.freetarg) {
910 1.8 mrg
911 1.8 mrg uvmexp.pdswout++;
912 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
913 1.8 mrg uvmexp.freetarg, 0, 0);
914 1.8 mrg uvm_unlock_pageq();
915 1.8 mrg uvm_swapout_threads();
916 1.8 mrg pmap_update(); /* update so we can scan inactive q */
917 1.8 mrg uvm_lock_pageq();
918 1.1 mrg
919 1.8 mrg }
920 1.1 mrg #endif
921 1.1 mrg
922 1.8 mrg /*
923 1.8 mrg * now we want to work on meeting our targets. first we work on our
924 1.8 mrg * free target by converting inactive pages into free pages. then
925 1.8 mrg * we work on meeting our inactive target by converting active pages
926 1.8 mrg * to inactive ones.
927 1.8 mrg */
928 1.8 mrg
929 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
930 1.8 mrg pages_freed = uvmexp.pdfreed; /* so far... */
931 1.8 mrg
932 1.8 mrg /*
933 1.8 mrg * do loop #1! alternate starting queue between swap and object based
934 1.8 mrg * on the low bit of uvmexp.pdrevs (which we bump by one each call).
935 1.8 mrg */
936 1.8 mrg
937 1.8 mrg got_it = FALSE;
938 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
939 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
940 1.8 mrg if (!got_it)
941 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
942 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
943 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
944 1.8 mrg
945 1.8 mrg /*
946 1.8 mrg * we have done the scan to get free pages. now we work on meeting
947 1.8 mrg * our inactive target.
948 1.8 mrg */
949 1.8 mrg
950 1.8 mrg page_shortage = uvmexp.inactarg - uvmexp.inactive;
951 1.8 mrg pages_freed = uvmexp.pdfreed - pages_freed; /* # pages freed in loop */
952 1.8 mrg if (page_shortage <= 0 && pages_freed == 0)
953 1.8 mrg page_shortage = 1;
954 1.8 mrg
955 1.8 mrg UVMHIST_LOG(pdhist, " second loop: page_shortage=%d", page_shortage,
956 1.8 mrg 0, 0, 0);
957 1.8 mrg for (p = uvm.page_active.tqh_first ;
958 1.8 mrg p != NULL && page_shortage > 0 ; p = nextpg) {
959 1.8 mrg nextpg = p->pageq.tqe_next;
960 1.8 mrg if (p->flags & PG_BUSY)
961 1.8 mrg continue; /* quick check before trying to lock */
962 1.8 mrg
963 1.8 mrg /*
964 1.8 mrg * lock owner
965 1.8 mrg */
966 1.8 mrg /* is page anon owned or ownerless? */
967 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
968 1.1 mrg
969 1.1 mrg #ifdef DIAGNOSTIC
970 1.8 mrg if (p->uanon == NULL)
971 1.8 mrg panic("pagedaemon: page with no anon or "
972 1.8 mrg "object detected - loop 2");
973 1.1 mrg #endif
974 1.1 mrg
975 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
976 1.8 mrg continue;
977 1.1 mrg
978 1.8 mrg /* take over the page? */
979 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
980 1.1 mrg
981 1.1 mrg #ifdef DIAGNOSTIC
982 1.8 mrg if (p->loan_count < 1)
983 1.8 mrg panic("pagedaemon: non-loaned "
984 1.8 mrg "ownerless page detected - loop 2");
985 1.1 mrg #endif
986 1.1 mrg
987 1.8 mrg p->loan_count--;
988 1.8 mrg p->pqflags |= PQ_ANON;
989 1.8 mrg }
990 1.8 mrg
991 1.8 mrg } else {
992 1.8 mrg
993 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
994 1.8 mrg continue;
995 1.8 mrg
996 1.8 mrg }
997 1.8 mrg
998 1.8 mrg if ((p->flags & PG_BUSY) == 0) {
999 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
1000 1.8 mrg /* no need to check wire_count as pg is "active" */
1001 1.8 mrg uvm_pagedeactivate(p);
1002 1.8 mrg uvmexp.pddeact++;
1003 1.8 mrg page_shortage--;
1004 1.8 mrg }
1005 1.8 mrg
1006 1.8 mrg if (p->pqflags & PQ_ANON)
1007 1.8 mrg simple_unlock(&p->uanon->an_lock);
1008 1.8 mrg else
1009 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1010 1.8 mrg }
1011 1.8 mrg
1012 1.8 mrg /*
1013 1.8 mrg * done scan
1014 1.8 mrg */
1015 1.1 mrg }
1016