uvm_pdaemon.c revision 1.110 1 1.110 chs /* $NetBSD: uvm_pdaemon.c,v 1.110 2019/04/21 15:32:18 chs Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.110 chs __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.110 2019/04/21 15:32:18 chs Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.1 mrg #include <sys/param.h>
75 1.1 mrg #include <sys/proc.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/kernel.h>
78 1.9 pk #include <sys/pool.h>
79 1.24 chs #include <sys/buf.h>
80 1.94 ad #include <sys/module.h>
81 1.96 ad #include <sys/atomic.h>
82 1.110 chs #include <sys/kthread.h>
83 1.1 mrg
84 1.1 mrg #include <uvm/uvm.h>
85 1.77 yamt #include <uvm/uvm_pdpolicy.h>
86 1.1 mrg
87 1.107 matt #ifdef UVMHIST
88 1.107 matt UVMHIST_DEFINE(pdhist);
89 1.107 matt #endif
90 1.107 matt
91 1.1 mrg /*
92 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
94 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
95 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
96 1.14 chs */
97 1.14 chs
98 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
99 1.14 chs
100 1.89 ad #define UVMPD_NUMTRYLOCKOWNER 16
101 1.14 chs
102 1.14 chs /*
103 1.1 mrg * local prototypes
104 1.1 mrg */
105 1.1 mrg
106 1.65 thorpej static void uvmpd_scan(void);
107 1.77 yamt static void uvmpd_scan_queue(void);
108 1.65 thorpej static void uvmpd_tune(void);
109 1.110 chs static void uvmpd_pool_drain_thread(void *);
110 1.110 chs static void uvmpd_pool_drain_wakeup(void);
111 1.1 mrg
112 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
113 1.89 ad
114 1.110 chs /* State for the pool drainer thread */
115 1.110 chs static kmutex_t uvmpd_pool_drain_lock;
116 1.110 chs static kcondvar_t uvmpd_pool_drain_cv;
117 1.110 chs static bool uvmpd_pool_drain_run = false;
118 1.110 chs
119 1.1 mrg /*
120 1.61 chs * XXX hack to avoid hangs when large processes fork.
121 1.61 chs */
122 1.96 ad u_int uvm_extrapages;
123 1.61 chs
124 1.61 chs /*
125 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
126 1.1 mrg *
127 1.1 mrg * => should be called with all locks released
128 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
129 1.1 mrg */
130 1.1 mrg
131 1.19 thorpej void
132 1.65 thorpej uvm_wait(const char *wmsg)
133 1.8 mrg {
134 1.8 mrg int timo = 0;
135 1.89 ad
136 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
137 1.1 mrg
138 1.8 mrg /*
139 1.8 mrg * check for page daemon going to sleep (waiting for itself)
140 1.8 mrg */
141 1.1 mrg
142 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
143 1.8 mrg /*
144 1.8 mrg * now we have a problem: the pagedaemon wants to go to
145 1.8 mrg * sleep until it frees more memory. but how can it
146 1.8 mrg * free more memory if it is asleep? that is a deadlock.
147 1.8 mrg * we have two options:
148 1.8 mrg * [1] panic now
149 1.8 mrg * [2] put a timeout on the sleep, thus causing the
150 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
151 1.8 mrg *
152 1.8 mrg * note that option [2] will only help us if we get lucky
153 1.8 mrg * and some other process on the system breaks the deadlock
154 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
155 1.8 mrg * to continue). for now we panic if DEBUG is defined,
156 1.8 mrg * otherwise we hope for the best with option [2] (better
157 1.8 mrg * yet, this should never happen in the first place!).
158 1.8 mrg */
159 1.1 mrg
160 1.8 mrg printf("pagedaemon: deadlock detected!\n");
161 1.8 mrg timo = hz >> 3; /* set timeout */
162 1.1 mrg #if defined(DEBUG)
163 1.8 mrg /* DEBUG: panic so we can debug it */
164 1.8 mrg panic("pagedaemon deadlock");
165 1.1 mrg #endif
166 1.8 mrg }
167 1.1 mrg
168 1.89 ad uvm_pagedaemon_waiters++;
169 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
170 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
171 1.1 mrg }
172 1.1 mrg
173 1.77 yamt /*
174 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
175 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
176 1.89 ad *
177 1.89 ad * => called with uvm_fpageqlock held.
178 1.77 yamt */
179 1.77 yamt
180 1.77 yamt void
181 1.77 yamt uvm_kick_pdaemon(void)
182 1.77 yamt {
183 1.77 yamt
184 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
185 1.89 ad
186 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
187 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
188 1.105 para uvmpdpol_needsscan_p()) ||
189 1.105 para uvm_km_va_starved_p()) {
190 1.77 yamt wakeup(&uvm.pagedaemon);
191 1.77 yamt }
192 1.77 yamt }
193 1.1 mrg
194 1.1 mrg /*
195 1.1 mrg * uvmpd_tune: tune paging parameters
196 1.1 mrg *
197 1.1 mrg * => called when ever memory is added (or removed?) to the system
198 1.1 mrg * => caller must call with page queues locked
199 1.1 mrg */
200 1.1 mrg
201 1.65 thorpej static void
202 1.37 chs uvmpd_tune(void)
203 1.8 mrg {
204 1.95 ad int val;
205 1.95 ad
206 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
207 1.1 mrg
208 1.93 ad /*
209 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
210 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
211 1.93 ad */
212 1.95 ad val = uvmexp.npages / 200;
213 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
214 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
215 1.95 ad val *= ncpu;
216 1.23 bjh21
217 1.23 bjh21 /* Make sure there's always a user page free. */
218 1.95 ad if (val < uvmexp.reserve_kernel + 1)
219 1.95 ad val = uvmexp.reserve_kernel + 1;
220 1.95 ad uvmexp.freemin = val;
221 1.95 ad
222 1.96 ad /* Calculate free target. */
223 1.95 ad val = (uvmexp.freemin * 4) / 3;
224 1.95 ad if (val <= uvmexp.freemin)
225 1.95 ad val = uvmexp.freemin + 1;
226 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
227 1.61 chs
228 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
229 1.109 pgoyette UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
230 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
231 1.1 mrg }
232 1.1 mrg
233 1.1 mrg /*
234 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
235 1.1 mrg */
236 1.1 mrg
237 1.8 mrg void
238 1.80 yamt uvm_pageout(void *arg)
239 1.8 mrg {
240 1.110 chs int npages = 0;
241 1.61 chs int extrapages = 0;
242 1.98 haad
243 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
244 1.24 chs
245 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
246 1.8 mrg
247 1.110 chs mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
248 1.110 chs cv_init(&uvmpd_pool_drain_cv, "pooldrain");
249 1.110 chs
250 1.110 chs /* Create the pool drainer kernel thread. */
251 1.110 chs if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
252 1.110 chs uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
253 1.110 chs panic("fork pooldrain");
254 1.110 chs
255 1.8 mrg /*
256 1.8 mrg * ensure correct priority and set paging parameters...
257 1.8 mrg */
258 1.8 mrg
259 1.86 ad uvm.pagedaemon_lwp = curlwp;
260 1.89 ad mutex_enter(&uvm_pageqlock);
261 1.8 mrg npages = uvmexp.npages;
262 1.8 mrg uvmpd_tune();
263 1.89 ad mutex_exit(&uvm_pageqlock);
264 1.8 mrg
265 1.8 mrg /*
266 1.8 mrg * main loop
267 1.8 mrg */
268 1.24 chs
269 1.24 chs for (;;) {
270 1.105 para bool needsscan, needsfree, kmem_va_starved;
271 1.105 para
272 1.105 para kmem_va_starved = uvm_km_va_starved_p();
273 1.24 chs
274 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
275 1.105 para if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
276 1.105 para !kmem_va_starved) {
277 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
278 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
279 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
280 1.89 ad uvmexp.pdwoke++;
281 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
282 1.89 ad } else {
283 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
284 1.89 ad }
285 1.24 chs
286 1.8 mrg /*
287 1.24 chs * now lock page queues and recompute inactive count
288 1.8 mrg */
289 1.8 mrg
290 1.89 ad mutex_enter(&uvm_pageqlock);
291 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
292 1.24 chs npages = uvmexp.npages;
293 1.61 chs extrapages = uvm_extrapages;
294 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
295 1.24 chs uvmpd_tune();
296 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
297 1.24 chs }
298 1.24 chs
299 1.77 yamt uvmpdpol_tune();
300 1.24 chs
301 1.60 enami /*
302 1.60 enami * Estimate a hint. Note that bufmem are returned to
303 1.60 enami * system only when entire pool page is empty.
304 1.60 enami */
305 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
306 1.60 enami
307 1.109 pgoyette UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
308 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
309 1.8 mrg
310 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
311 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
312 1.89 ad
313 1.8 mrg /*
314 1.24 chs * scan if needed
315 1.8 mrg */
316 1.97 ad if (needsscan) {
317 1.97 ad mutex_spin_exit(&uvm_fpageqlock);
318 1.24 chs uvmpd_scan();
319 1.97 ad mutex_spin_enter(&uvm_fpageqlock);
320 1.97 ad }
321 1.8 mrg
322 1.8 mrg /*
323 1.24 chs * if there's any free memory to be had,
324 1.24 chs * wake up any waiters.
325 1.8 mrg */
326 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
327 1.24 chs uvmexp.paging == 0) {
328 1.24 chs wakeup(&uvmexp.free);
329 1.89 ad uvm_pagedaemon_waiters = 0;
330 1.8 mrg }
331 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
332 1.1 mrg
333 1.8 mrg /*
334 1.24 chs * scan done. unlock page queues (the only lock we are holding)
335 1.8 mrg */
336 1.89 ad mutex_exit(&uvm_pageqlock);
337 1.38 chs
338 1.88 ad /*
339 1.93 ad * if we don't need free memory, we're done.
340 1.93 ad */
341 1.93 ad
342 1.105 para if (!needsfree && !kmem_va_starved)
343 1.93 ad continue;
344 1.93 ad
345 1.93 ad /*
346 1.110 chs * kick the pool drainer thread.
347 1.38 chs */
348 1.57 jdolecek
349 1.110 chs uvmpd_pool_drain_wakeup();
350 1.24 chs }
351 1.24 chs /*NOTREACHED*/
352 1.24 chs }
353 1.24 chs
354 1.8 mrg
355 1.24 chs /*
356 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
357 1.24 chs */
358 1.8 mrg
359 1.24 chs void
360 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
361 1.24 chs {
362 1.81 yamt struct buf *bp = (void *)wk;
363 1.9 pk
364 1.81 yamt KASSERT(&bp->b_work == wk);
365 1.8 mrg
366 1.81 yamt /*
367 1.81 yamt * process an i/o that's done.
368 1.81 yamt */
369 1.8 mrg
370 1.81 yamt (*bp->b_iodone)(bp);
371 1.89 ad }
372 1.89 ad
373 1.89 ad void
374 1.89 ad uvm_pageout_start(int npages)
375 1.89 ad {
376 1.89 ad
377 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
378 1.89 ad uvmexp.paging += npages;
379 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
380 1.89 ad }
381 1.89 ad
382 1.89 ad void
383 1.89 ad uvm_pageout_done(int npages)
384 1.89 ad {
385 1.89 ad
386 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
387 1.89 ad KASSERT(uvmexp.paging >= npages);
388 1.89 ad uvmexp.paging -= npages;
389 1.89 ad
390 1.89 ad /*
391 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
392 1.89 ad */
393 1.89 ad
394 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
395 1.81 yamt wakeup(&uvm.pagedaemon);
396 1.81 yamt } else {
397 1.81 yamt wakeup(&uvmexp.free);
398 1.89 ad uvm_pagedaemon_waiters = 0;
399 1.8 mrg }
400 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
401 1.1 mrg }
402 1.1 mrg
403 1.76 yamt /*
404 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
405 1.76 yamt *
406 1.76 yamt * => called with pageq locked.
407 1.76 yamt * => resolve orphaned O->A loaned page.
408 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
409 1.76 yamt */
410 1.76 yamt
411 1.89 ad kmutex_t *
412 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
413 1.76 yamt {
414 1.76 yamt struct uvm_object *uobj = pg->uobject;
415 1.89 ad kmutex_t *slock;
416 1.89 ad
417 1.89 ad KASSERT(mutex_owned(&uvm_pageqlock));
418 1.76 yamt
419 1.76 yamt if (uobj != NULL) {
420 1.103 rmind slock = uobj->vmobjlock;
421 1.76 yamt } else {
422 1.76 yamt struct vm_anon *anon = pg->uanon;
423 1.76 yamt
424 1.76 yamt KASSERT(anon != NULL);
425 1.103 rmind slock = anon->an_lock;
426 1.76 yamt }
427 1.76 yamt
428 1.89 ad if (!mutex_tryenter(slock)) {
429 1.76 yamt return NULL;
430 1.76 yamt }
431 1.76 yamt
432 1.76 yamt if (uobj == NULL) {
433 1.76 yamt
434 1.76 yamt /*
435 1.76 yamt * set PQ_ANON if it isn't set already.
436 1.76 yamt */
437 1.76 yamt
438 1.76 yamt if ((pg->pqflags & PQ_ANON) == 0) {
439 1.76 yamt KASSERT(pg->loan_count > 0);
440 1.76 yamt pg->loan_count--;
441 1.76 yamt pg->pqflags |= PQ_ANON;
442 1.76 yamt /* anon now owns it */
443 1.76 yamt }
444 1.76 yamt }
445 1.76 yamt
446 1.76 yamt return slock;
447 1.76 yamt }
448 1.76 yamt
449 1.73 yamt #if defined(VMSWAP)
450 1.73 yamt struct swapcluster {
451 1.73 yamt int swc_slot;
452 1.73 yamt int swc_nallocated;
453 1.73 yamt int swc_nused;
454 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
455 1.73 yamt };
456 1.73 yamt
457 1.73 yamt static void
458 1.73 yamt swapcluster_init(struct swapcluster *swc)
459 1.73 yamt {
460 1.73 yamt
461 1.73 yamt swc->swc_slot = 0;
462 1.89 ad swc->swc_nused = 0;
463 1.73 yamt }
464 1.73 yamt
465 1.73 yamt static int
466 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
467 1.73 yamt {
468 1.73 yamt int slot;
469 1.73 yamt int npages;
470 1.73 yamt
471 1.73 yamt if (swc->swc_slot != 0) {
472 1.73 yamt return 0;
473 1.73 yamt }
474 1.73 yamt
475 1.73 yamt /* Even with strange MAXPHYS, the shift
476 1.73 yamt implicitly rounds down to a page. */
477 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
478 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
479 1.73 yamt if (slot == 0) {
480 1.73 yamt return ENOMEM;
481 1.73 yamt }
482 1.73 yamt swc->swc_slot = slot;
483 1.73 yamt swc->swc_nallocated = npages;
484 1.73 yamt swc->swc_nused = 0;
485 1.73 yamt
486 1.73 yamt return 0;
487 1.73 yamt }
488 1.73 yamt
489 1.73 yamt static int
490 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
491 1.73 yamt {
492 1.73 yamt int slot;
493 1.73 yamt struct uvm_object *uobj;
494 1.73 yamt
495 1.73 yamt KASSERT(swc->swc_slot != 0);
496 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
497 1.73 yamt KASSERT((pg->pqflags & PQ_SWAPBACKED) != 0);
498 1.73 yamt
499 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
500 1.73 yamt uobj = pg->uobject;
501 1.73 yamt if (uobj == NULL) {
502 1.103 rmind KASSERT(mutex_owned(pg->uanon->an_lock));
503 1.73 yamt pg->uanon->an_swslot = slot;
504 1.73 yamt } else {
505 1.73 yamt int result;
506 1.73 yamt
507 1.103 rmind KASSERT(mutex_owned(uobj->vmobjlock));
508 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
509 1.73 yamt if (result == -1) {
510 1.73 yamt return ENOMEM;
511 1.73 yamt }
512 1.73 yamt }
513 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
514 1.73 yamt swc->swc_nused++;
515 1.73 yamt
516 1.73 yamt return 0;
517 1.73 yamt }
518 1.73 yamt
519 1.73 yamt static void
520 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
521 1.73 yamt {
522 1.73 yamt int slot;
523 1.73 yamt int nused;
524 1.73 yamt int nallocated;
525 1.108 martin int error __diagused;
526 1.73 yamt
527 1.73 yamt if (swc->swc_slot == 0) {
528 1.73 yamt return;
529 1.73 yamt }
530 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
531 1.73 yamt
532 1.73 yamt slot = swc->swc_slot;
533 1.73 yamt nused = swc->swc_nused;
534 1.73 yamt nallocated = swc->swc_nallocated;
535 1.73 yamt
536 1.73 yamt /*
537 1.73 yamt * if this is the final pageout we could have a few
538 1.73 yamt * unused swap blocks. if so, free them now.
539 1.73 yamt */
540 1.73 yamt
541 1.73 yamt if (nused < nallocated) {
542 1.73 yamt if (!now) {
543 1.73 yamt return;
544 1.73 yamt }
545 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
546 1.73 yamt }
547 1.73 yamt
548 1.73 yamt /*
549 1.73 yamt * now start the pageout.
550 1.73 yamt */
551 1.73 yamt
552 1.91 yamt if (nused > 0) {
553 1.91 yamt uvmexp.pdpageouts++;
554 1.91 yamt uvm_pageout_start(nused);
555 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
556 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
557 1.91 yamt }
558 1.73 yamt
559 1.73 yamt /*
560 1.73 yamt * zero swslot to indicate that we are
561 1.73 yamt * no longer building a swap-backed cluster.
562 1.73 yamt */
563 1.73 yamt
564 1.73 yamt swc->swc_slot = 0;
565 1.89 ad swc->swc_nused = 0;
566 1.89 ad }
567 1.89 ad
568 1.89 ad static int
569 1.89 ad swapcluster_nused(struct swapcluster *swc)
570 1.89 ad {
571 1.89 ad
572 1.89 ad return swc->swc_nused;
573 1.73 yamt }
574 1.77 yamt
575 1.77 yamt /*
576 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
577 1.77 yamt *
578 1.77 yamt * => called with owner locked.
579 1.84 thorpej * => return true if a page had an associated slot.
580 1.77 yamt */
581 1.77 yamt
582 1.83 thorpej static bool
583 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
584 1.77 yamt {
585 1.84 thorpej bool result = false;
586 1.77 yamt struct vm_anon *anon = pg->uanon;
587 1.77 yamt
588 1.77 yamt if ((pg->pqflags & PQ_ANON) && anon->an_swslot) {
589 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
590 1.77 yamt anon->an_swslot = 0;
591 1.77 yamt pg->flags &= ~PG_CLEAN;
592 1.84 thorpej result = true;
593 1.77 yamt } else if (pg->pqflags & PQ_AOBJ) {
594 1.77 yamt int slot = uao_set_swslot(pg->uobject,
595 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
596 1.77 yamt if (slot) {
597 1.77 yamt uvm_swap_free(slot, 1);
598 1.77 yamt pg->flags &= ~PG_CLEAN;
599 1.84 thorpej result = true;
600 1.77 yamt }
601 1.77 yamt }
602 1.77 yamt
603 1.77 yamt return result;
604 1.77 yamt }
605 1.77 yamt
606 1.77 yamt /*
607 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
608 1.77 yamt *
609 1.84 thorpej * => return true if a slot is successfully freed.
610 1.77 yamt */
611 1.77 yamt
612 1.83 thorpej bool
613 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
614 1.77 yamt {
615 1.89 ad kmutex_t *slock;
616 1.83 thorpej bool result;
617 1.77 yamt
618 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
619 1.84 thorpej return false;
620 1.77 yamt }
621 1.77 yamt
622 1.77 yamt /*
623 1.77 yamt * lock the page's owner.
624 1.77 yamt */
625 1.77 yamt
626 1.77 yamt slock = uvmpd_trylockowner(pg);
627 1.77 yamt if (slock == NULL) {
628 1.84 thorpej return false;
629 1.77 yamt }
630 1.77 yamt
631 1.77 yamt /*
632 1.77 yamt * skip this page if it's busy.
633 1.77 yamt */
634 1.77 yamt
635 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
636 1.89 ad mutex_exit(slock);
637 1.84 thorpej return false;
638 1.77 yamt }
639 1.77 yamt
640 1.77 yamt result = uvmpd_dropswap(pg);
641 1.77 yamt
642 1.89 ad mutex_exit(slock);
643 1.77 yamt
644 1.77 yamt return result;
645 1.77 yamt }
646 1.77 yamt
647 1.73 yamt #endif /* defined(VMSWAP) */
648 1.73 yamt
649 1.1 mrg /*
650 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
651 1.77 yamt * to clean or free.
652 1.1 mrg *
653 1.1 mrg * => called with page queues locked
654 1.1 mrg * => we work on meeting our free target by converting inactive pages
655 1.1 mrg * into free pages.
656 1.1 mrg * => we handle the building of swap-backed clusters
657 1.1 mrg */
658 1.1 mrg
659 1.65 thorpej static void
660 1.77 yamt uvmpd_scan_queue(void)
661 1.8 mrg {
662 1.77 yamt struct vm_page *p;
663 1.8 mrg struct uvm_object *uobj;
664 1.37 chs struct vm_anon *anon;
665 1.68 yamt #if defined(VMSWAP)
666 1.73 yamt struct swapcluster swc;
667 1.68 yamt #endif /* defined(VMSWAP) */
668 1.77 yamt int dirtyreacts;
669 1.89 ad int lockownerfail;
670 1.89 ad kmutex_t *slock;
671 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
672 1.1 mrg
673 1.8 mrg /*
674 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
675 1.24 chs * to stay in the loop while we have a page to scan or we have
676 1.8 mrg * a swap-cluster to build.
677 1.8 mrg */
678 1.24 chs
679 1.73 yamt #if defined(VMSWAP)
680 1.73 yamt swapcluster_init(&swc);
681 1.73 yamt #endif /* defined(VMSWAP) */
682 1.77 yamt
683 1.14 chs dirtyreacts = 0;
684 1.89 ad lockownerfail = 0;
685 1.77 yamt uvmpdpol_scaninit();
686 1.43 chs
687 1.77 yamt while (/* CONSTCOND */ 1) {
688 1.24 chs
689 1.73 yamt /*
690 1.73 yamt * see if we've met the free target.
691 1.73 yamt */
692 1.73 yamt
693 1.89 ad if (uvmexp.free + uvmexp.paging
694 1.89 ad #if defined(VMSWAP)
695 1.89 ad + swapcluster_nused(&swc)
696 1.89 ad #endif /* defined(VMSWAP) */
697 1.89 ad >= uvmexp.freetarg << 2 ||
698 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
699 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
700 1.73 yamt "exit loop", 0, 0, 0, 0);
701 1.73 yamt break;
702 1.73 yamt }
703 1.24 chs
704 1.77 yamt p = uvmpdpol_selectvictim();
705 1.77 yamt if (p == NULL) {
706 1.77 yamt break;
707 1.77 yamt }
708 1.77 yamt KASSERT(uvmpdpol_pageisqueued_p(p));
709 1.77 yamt KASSERT(p->wire_count == 0);
710 1.77 yamt
711 1.73 yamt /*
712 1.73 yamt * we are below target and have a new page to consider.
713 1.73 yamt */
714 1.30 chs
715 1.73 yamt anon = p->uanon;
716 1.73 yamt uobj = p->uobject;
717 1.8 mrg
718 1.73 yamt /*
719 1.73 yamt * first we attempt to lock the object that this page
720 1.73 yamt * belongs to. if our attempt fails we skip on to
721 1.73 yamt * the next page (no harm done). it is important to
722 1.73 yamt * "try" locking the object as we are locking in the
723 1.73 yamt * wrong order (pageq -> object) and we don't want to
724 1.73 yamt * deadlock.
725 1.73 yamt *
726 1.73 yamt * the only time we expect to see an ownerless page
727 1.73 yamt * (i.e. a page with no uobject and !PQ_ANON) is if an
728 1.73 yamt * anon has loaned a page from a uvm_object and the
729 1.73 yamt * uvm_object has dropped the ownership. in that
730 1.73 yamt * case, the anon can "take over" the loaned page
731 1.73 yamt * and make it its own.
732 1.73 yamt */
733 1.30 chs
734 1.76 yamt slock = uvmpd_trylockowner(p);
735 1.76 yamt if (slock == NULL) {
736 1.89 ad /*
737 1.89 ad * yield cpu to make a chance for an LWP holding
738 1.89 ad * the lock run. otherwise we can busy-loop too long
739 1.89 ad * if the page queue is filled with a lot of pages
740 1.89 ad * from few objects.
741 1.89 ad */
742 1.89 ad lockownerfail++;
743 1.89 ad if (lockownerfail > UVMPD_NUMTRYLOCKOWNER) {
744 1.89 ad mutex_exit(&uvm_pageqlock);
745 1.89 ad /* XXX Better than yielding but inadequate. */
746 1.89 ad kpause("livelock", false, 1, NULL);
747 1.89 ad mutex_enter(&uvm_pageqlock);
748 1.89 ad lockownerfail = 0;
749 1.89 ad }
750 1.76 yamt continue;
751 1.76 yamt }
752 1.76 yamt if (p->flags & PG_BUSY) {
753 1.89 ad mutex_exit(slock);
754 1.76 yamt uvmexp.pdbusy++;
755 1.76 yamt continue;
756 1.76 yamt }
757 1.76 yamt
758 1.73 yamt /* does the page belong to an object? */
759 1.73 yamt if (uobj != NULL) {
760 1.73 yamt uvmexp.pdobscan++;
761 1.73 yamt } else {
762 1.73 yamt #if defined(VMSWAP)
763 1.73 yamt KASSERT(anon != NULL);
764 1.73 yamt uvmexp.pdanscan++;
765 1.68 yamt #else /* defined(VMSWAP) */
766 1.73 yamt panic("%s: anon", __func__);
767 1.68 yamt #endif /* defined(VMSWAP) */
768 1.73 yamt }
769 1.8 mrg
770 1.37 chs
771 1.73 yamt /*
772 1.73 yamt * we now have the object and the page queues locked.
773 1.73 yamt * if the page is not swap-backed, call the object's
774 1.73 yamt * pager to flush and free the page.
775 1.73 yamt */
776 1.37 chs
777 1.69 yamt #if defined(READAHEAD_STATS)
778 1.77 yamt if ((p->pqflags & PQ_READAHEAD) != 0) {
779 1.77 yamt p->pqflags &= ~PQ_READAHEAD;
780 1.73 yamt uvm_ra_miss.ev_count++;
781 1.73 yamt }
782 1.69 yamt #endif /* defined(READAHEAD_STATS) */
783 1.69 yamt
784 1.73 yamt if ((p->pqflags & PQ_SWAPBACKED) == 0) {
785 1.82 alc KASSERT(uobj != NULL);
786 1.89 ad mutex_exit(&uvm_pageqlock);
787 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
788 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
789 1.89 ad mutex_enter(&uvm_pageqlock);
790 1.73 yamt continue;
791 1.73 yamt }
792 1.37 chs
793 1.73 yamt /*
794 1.73 yamt * the page is swap-backed. remove all the permissions
795 1.73 yamt * from the page so we can sync the modified info
796 1.73 yamt * without any race conditions. if the page is clean
797 1.73 yamt * we can free it now and continue.
798 1.73 yamt */
799 1.8 mrg
800 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
801 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
802 1.73 yamt p->flags &= ~(PG_CLEAN);
803 1.73 yamt }
804 1.73 yamt if (p->flags & PG_CLEAN) {
805 1.73 yamt int slot;
806 1.73 yamt int pageidx;
807 1.73 yamt
808 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
809 1.73 yamt uvm_pagefree(p);
810 1.73 yamt uvmexp.pdfreed++;
811 1.8 mrg
812 1.8 mrg /*
813 1.73 yamt * for anons, we need to remove the page
814 1.73 yamt * from the anon ourselves. for aobjs,
815 1.73 yamt * pagefree did that for us.
816 1.8 mrg */
817 1.24 chs
818 1.73 yamt if (anon) {
819 1.73 yamt KASSERT(anon->an_swslot != 0);
820 1.73 yamt anon->an_page = NULL;
821 1.73 yamt slot = anon->an_swslot;
822 1.73 yamt } else {
823 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
824 1.8 mrg }
825 1.89 ad mutex_exit(slock);
826 1.8 mrg
827 1.73 yamt if (slot > 0) {
828 1.73 yamt /* this page is now only in swap. */
829 1.87 ad mutex_enter(&uvm_swap_data_lock);
830 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
831 1.73 yamt uvmexp.swpgonly++;
832 1.87 ad mutex_exit(&uvm_swap_data_lock);
833 1.37 chs }
834 1.73 yamt continue;
835 1.73 yamt }
836 1.37 chs
837 1.77 yamt #if defined(VMSWAP)
838 1.73 yamt /*
839 1.73 yamt * this page is dirty, skip it if we'll have met our
840 1.73 yamt * free target when all the current pageouts complete.
841 1.73 yamt */
842 1.24 chs
843 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
844 1.89 ad mutex_exit(slock);
845 1.73 yamt continue;
846 1.73 yamt }
847 1.14 chs
848 1.73 yamt /*
849 1.73 yamt * free any swap space allocated to the page since
850 1.73 yamt * we'll have to write it again with its new data.
851 1.73 yamt */
852 1.24 chs
853 1.77 yamt uvmpd_dropswap(p);
854 1.14 chs
855 1.73 yamt /*
856 1.97 ad * start new swap pageout cluster (if necessary).
857 1.97 ad *
858 1.97 ad * if swap is full reactivate this page so that
859 1.97 ad * we eventually cycle all pages through the
860 1.97 ad * inactive queue.
861 1.73 yamt */
862 1.68 yamt
863 1.97 ad if (swapcluster_allocslots(&swc)) {
864 1.73 yamt dirtyreacts++;
865 1.73 yamt uvm_pageactivate(p);
866 1.89 ad mutex_exit(slock);
867 1.73 yamt continue;
868 1.8 mrg }
869 1.8 mrg
870 1.8 mrg /*
871 1.73 yamt * at this point, we're definitely going reuse this
872 1.73 yamt * page. mark the page busy and delayed-free.
873 1.73 yamt * we should remove the page from the page queues
874 1.73 yamt * so we don't ever look at it again.
875 1.73 yamt * adjust counters and such.
876 1.8 mrg */
877 1.8 mrg
878 1.73 yamt p->flags |= PG_BUSY;
879 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
880 1.73 yamt
881 1.73 yamt p->flags |= PG_PAGEOUT;
882 1.73 yamt uvm_pagedequeue(p);
883 1.73 yamt
884 1.73 yamt uvmexp.pgswapout++;
885 1.89 ad mutex_exit(&uvm_pageqlock);
886 1.8 mrg
887 1.8 mrg /*
888 1.73 yamt * add the new page to the cluster.
889 1.8 mrg */
890 1.8 mrg
891 1.73 yamt if (swapcluster_add(&swc, p)) {
892 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
893 1.73 yamt UVM_PAGE_OWN(p, NULL);
894 1.89 ad mutex_enter(&uvm_pageqlock);
895 1.77 yamt dirtyreacts++;
896 1.73 yamt uvm_pageactivate(p);
897 1.89 ad mutex_exit(slock);
898 1.73 yamt continue;
899 1.73 yamt }
900 1.89 ad mutex_exit(slock);
901 1.73 yamt
902 1.84 thorpej swapcluster_flush(&swc, false);
903 1.89 ad mutex_enter(&uvm_pageqlock);
904 1.73 yamt
905 1.8 mrg /*
906 1.31 chs * the pageout is in progress. bump counters and set up
907 1.31 chs * for the next loop.
908 1.8 mrg */
909 1.8 mrg
910 1.31 chs uvmexp.pdpending++;
911 1.77 yamt
912 1.77 yamt #else /* defined(VMSWAP) */
913 1.77 yamt uvm_pageactivate(p);
914 1.89 ad mutex_exit(slock);
915 1.77 yamt #endif /* defined(VMSWAP) */
916 1.73 yamt }
917 1.73 yamt
918 1.73 yamt #if defined(VMSWAP)
919 1.89 ad mutex_exit(&uvm_pageqlock);
920 1.84 thorpej swapcluster_flush(&swc, true);
921 1.89 ad mutex_enter(&uvm_pageqlock);
922 1.68 yamt #endif /* defined(VMSWAP) */
923 1.1 mrg }
924 1.1 mrg
925 1.1 mrg /*
926 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
927 1.1 mrg *
928 1.1 mrg * => called with pageq's locked
929 1.1 mrg */
930 1.1 mrg
931 1.65 thorpej static void
932 1.37 chs uvmpd_scan(void)
933 1.1 mrg {
934 1.77 yamt int swap_shortage, pages_freed;
935 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
936 1.1 mrg
937 1.37 chs uvmexp.pdrevs++;
938 1.1 mrg
939 1.8 mrg /*
940 1.93 ad * work on meeting our targets. first we work on our free target
941 1.93 ad * by converting inactive pages into free pages. then we work on
942 1.93 ad * meeting our inactive target by converting active pages to
943 1.93 ad * inactive ones.
944 1.8 mrg */
945 1.8 mrg
946 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
947 1.8 mrg
948 1.14 chs pages_freed = uvmexp.pdfreed;
949 1.77 yamt uvmpd_scan_queue();
950 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
951 1.8 mrg
952 1.8 mrg /*
953 1.14 chs * detect if we're not going to be able to page anything out
954 1.14 chs * until we free some swap resources from active pages.
955 1.14 chs */
956 1.24 chs
957 1.14 chs swap_shortage = 0;
958 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
959 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
960 1.52 pk !uvm_swapisfull() &&
961 1.14 chs pages_freed == 0) {
962 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
963 1.14 chs }
964 1.24 chs
965 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
966 1.93 ad
967 1.93 ad /*
968 1.94 ad * if still below the minimum target, try unloading kernel
969 1.94 ad * modules.
970 1.94 ad */
971 1.93 ad
972 1.94 ad if (uvmexp.free < uvmexp.freemin) {
973 1.94 ad module_thread_kick();
974 1.93 ad }
975 1.1 mrg }
976 1.62 yamt
977 1.62 yamt /*
978 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
979 1.62 yamt *
980 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
981 1.62 yamt *
982 1.62 yamt * XXX should be tunable.
983 1.62 yamt * XXX should consider pools, etc?
984 1.62 yamt */
985 1.62 yamt
986 1.83 thorpej bool
987 1.62 yamt uvm_reclaimable(void)
988 1.62 yamt {
989 1.62 yamt int filepages;
990 1.77 yamt int active, inactive;
991 1.62 yamt
992 1.62 yamt /*
993 1.62 yamt * if swap is not full, no problem.
994 1.62 yamt */
995 1.62 yamt
996 1.62 yamt if (!uvm_swapisfull()) {
997 1.84 thorpej return true;
998 1.62 yamt }
999 1.62 yamt
1000 1.62 yamt /*
1001 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
1002 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
1003 1.62 yamt *
1004 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1005 1.63 yamt *
1006 1.63 yamt * XXX should consider about other reclaimable memory.
1007 1.63 yamt * XXX ie. pools, traditional buffer cache.
1008 1.62 yamt */
1009 1.62 yamt
1010 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1011 1.77 yamt uvm_estimatepageable(&active, &inactive);
1012 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1013 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1014 1.84 thorpej return true;
1015 1.62 yamt }
1016 1.62 yamt
1017 1.62 yamt /*
1018 1.62 yamt * kill the process, fail allocation, etc..
1019 1.62 yamt */
1020 1.62 yamt
1021 1.84 thorpej return false;
1022 1.62 yamt }
1023 1.77 yamt
1024 1.77 yamt void
1025 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1026 1.77 yamt {
1027 1.77 yamt
1028 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1029 1.77 yamt }
1030 1.98 haad
1031 1.110 chs
1032 1.110 chs /*
1033 1.110 chs * Use a separate thread for draining pools.
1034 1.110 chs * This work can't done from the main pagedaemon thread because
1035 1.110 chs * some pool allocators need to take vm_map locks.
1036 1.110 chs */
1037 1.110 chs
1038 1.110 chs static void
1039 1.110 chs uvmpd_pool_drain_thread(void *arg)
1040 1.110 chs {
1041 1.110 chs int bufcnt;
1042 1.110 chs
1043 1.110 chs for (;;) {
1044 1.110 chs mutex_enter(&uvmpd_pool_drain_lock);
1045 1.110 chs if (!uvmpd_pool_drain_run) {
1046 1.110 chs cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
1047 1.110 chs }
1048 1.110 chs uvmpd_pool_drain_run = false;
1049 1.110 chs mutex_exit(&uvmpd_pool_drain_lock);
1050 1.110 chs
1051 1.110 chs /*
1052 1.110 chs * kill unused metadata buffers.
1053 1.110 chs */
1054 1.110 chs mutex_spin_enter(&uvm_fpageqlock);
1055 1.110 chs bufcnt = uvmexp.freetarg - uvmexp.free;
1056 1.110 chs mutex_spin_exit(&uvm_fpageqlock);
1057 1.110 chs if (bufcnt < 0)
1058 1.110 chs bufcnt = 0;
1059 1.110 chs
1060 1.110 chs mutex_enter(&bufcache_lock);
1061 1.110 chs buf_drain(bufcnt << PAGE_SHIFT);
1062 1.110 chs mutex_exit(&bufcache_lock);
1063 1.110 chs
1064 1.110 chs /*
1065 1.110 chs * drain a pool.
1066 1.110 chs */
1067 1.110 chs pool_drain(NULL);
1068 1.110 chs }
1069 1.110 chs /*NOTREACHED*/
1070 1.110 chs }
1071 1.110 chs
1072 1.110 chs static void
1073 1.110 chs uvmpd_pool_drain_wakeup(void)
1074 1.110 chs {
1075 1.110 chs
1076 1.110 chs mutex_enter(&uvmpd_pool_drain_lock);
1077 1.110 chs uvmpd_pool_drain_run = true;
1078 1.110 chs cv_signal(&uvmpd_pool_drain_cv);
1079 1.110 chs mutex_exit(&uvmpd_pool_drain_lock);
1080 1.110 chs }
1081