uvm_pdaemon.c revision 1.114 1 1.114 ad /* $NetBSD: uvm_pdaemon.c,v 1.114 2019/12/14 15:04:47 ad Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.114 ad __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.114 2019/12/14 15:04:47 ad Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.1 mrg #include <sys/param.h>
75 1.1 mrg #include <sys/proc.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/kernel.h>
78 1.9 pk #include <sys/pool.h>
79 1.24 chs #include <sys/buf.h>
80 1.94 ad #include <sys/module.h>
81 1.96 ad #include <sys/atomic.h>
82 1.110 chs #include <sys/kthread.h>
83 1.1 mrg
84 1.1 mrg #include <uvm/uvm.h>
85 1.77 yamt #include <uvm/uvm_pdpolicy.h>
86 1.1 mrg
87 1.107 matt #ifdef UVMHIST
88 1.107 matt UVMHIST_DEFINE(pdhist);
89 1.107 matt #endif
90 1.107 matt
91 1.1 mrg /*
92 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
93 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
94 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
95 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
96 1.14 chs */
97 1.14 chs
98 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
99 1.14 chs
100 1.113 ad #define UVMPD_NUMTRYLOCKOWNER 128
101 1.14 chs
102 1.14 chs /*
103 1.1 mrg * local prototypes
104 1.1 mrg */
105 1.1 mrg
106 1.65 thorpej static void uvmpd_scan(void);
107 1.77 yamt static void uvmpd_scan_queue(void);
108 1.65 thorpej static void uvmpd_tune(void);
109 1.110 chs static void uvmpd_pool_drain_thread(void *);
110 1.110 chs static void uvmpd_pool_drain_wakeup(void);
111 1.1 mrg
112 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
113 1.89 ad
114 1.110 chs /* State for the pool drainer thread */
115 1.113 ad static kmutex_t uvmpd_pool_drain_lock __cacheline_aligned;
116 1.110 chs static kcondvar_t uvmpd_pool_drain_cv;
117 1.110 chs static bool uvmpd_pool_drain_run = false;
118 1.110 chs
119 1.1 mrg /*
120 1.61 chs * XXX hack to avoid hangs when large processes fork.
121 1.61 chs */
122 1.96 ad u_int uvm_extrapages;
123 1.61 chs
124 1.61 chs /*
125 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
126 1.1 mrg *
127 1.1 mrg * => should be called with all locks released
128 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
129 1.1 mrg */
130 1.1 mrg
131 1.19 thorpej void
132 1.65 thorpej uvm_wait(const char *wmsg)
133 1.8 mrg {
134 1.8 mrg int timo = 0;
135 1.89 ad
136 1.111 chs if (uvm.pagedaemon_lwp == NULL)
137 1.111 chs panic("out of memory before the pagedaemon thread exists");
138 1.111 chs
139 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
140 1.1 mrg
141 1.8 mrg /*
142 1.8 mrg * check for page daemon going to sleep (waiting for itself)
143 1.8 mrg */
144 1.1 mrg
145 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
146 1.8 mrg /*
147 1.8 mrg * now we have a problem: the pagedaemon wants to go to
148 1.8 mrg * sleep until it frees more memory. but how can it
149 1.8 mrg * free more memory if it is asleep? that is a deadlock.
150 1.8 mrg * we have two options:
151 1.8 mrg * [1] panic now
152 1.8 mrg * [2] put a timeout on the sleep, thus causing the
153 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
154 1.8 mrg *
155 1.8 mrg * note that option [2] will only help us if we get lucky
156 1.8 mrg * and some other process on the system breaks the deadlock
157 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
158 1.8 mrg * to continue). for now we panic if DEBUG is defined,
159 1.8 mrg * otherwise we hope for the best with option [2] (better
160 1.8 mrg * yet, this should never happen in the first place!).
161 1.8 mrg */
162 1.1 mrg
163 1.8 mrg printf("pagedaemon: deadlock detected!\n");
164 1.8 mrg timo = hz >> 3; /* set timeout */
165 1.1 mrg #if defined(DEBUG)
166 1.8 mrg /* DEBUG: panic so we can debug it */
167 1.8 mrg panic("pagedaemon deadlock");
168 1.1 mrg #endif
169 1.8 mrg }
170 1.1 mrg
171 1.89 ad uvm_pagedaemon_waiters++;
172 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
173 1.89 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm_fpageqlock, false, wmsg, timo);
174 1.1 mrg }
175 1.1 mrg
176 1.77 yamt /*
177 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
178 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
179 1.89 ad *
180 1.89 ad * => called with uvm_fpageqlock held.
181 1.77 yamt */
182 1.77 yamt
183 1.77 yamt void
184 1.77 yamt uvm_kick_pdaemon(void)
185 1.77 yamt {
186 1.77 yamt
187 1.89 ad KASSERT(mutex_owned(&uvm_fpageqlock));
188 1.89 ad
189 1.77 yamt if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
190 1.77 yamt (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
191 1.105 para uvmpdpol_needsscan_p()) ||
192 1.105 para uvm_km_va_starved_p()) {
193 1.77 yamt wakeup(&uvm.pagedaemon);
194 1.77 yamt }
195 1.77 yamt }
196 1.1 mrg
197 1.1 mrg /*
198 1.1 mrg * uvmpd_tune: tune paging parameters
199 1.1 mrg *
200 1.1 mrg * => called when ever memory is added (or removed?) to the system
201 1.1 mrg */
202 1.1 mrg
203 1.65 thorpej static void
204 1.37 chs uvmpd_tune(void)
205 1.8 mrg {
206 1.95 ad int val;
207 1.95 ad
208 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
209 1.1 mrg
210 1.93 ad /*
211 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
212 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
213 1.93 ad */
214 1.95 ad val = uvmexp.npages / 200;
215 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
216 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
217 1.95 ad val *= ncpu;
218 1.23 bjh21
219 1.23 bjh21 /* Make sure there's always a user page free. */
220 1.95 ad if (val < uvmexp.reserve_kernel + 1)
221 1.95 ad val = uvmexp.reserve_kernel + 1;
222 1.95 ad uvmexp.freemin = val;
223 1.95 ad
224 1.96 ad /* Calculate free target. */
225 1.95 ad val = (uvmexp.freemin * 4) / 3;
226 1.95 ad if (val <= uvmexp.freemin)
227 1.95 ad val = uvmexp.freemin + 1;
228 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
229 1.61 chs
230 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
231 1.109 pgoyette UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
232 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
233 1.1 mrg }
234 1.1 mrg
235 1.1 mrg /*
236 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
237 1.1 mrg */
238 1.1 mrg
239 1.8 mrg void
240 1.80 yamt uvm_pageout(void *arg)
241 1.8 mrg {
242 1.110 chs int npages = 0;
243 1.61 chs int extrapages = 0;
244 1.98 haad
245 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
246 1.24 chs
247 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
248 1.8 mrg
249 1.110 chs mutex_init(&uvmpd_pool_drain_lock, MUTEX_DEFAULT, IPL_VM);
250 1.110 chs cv_init(&uvmpd_pool_drain_cv, "pooldrain");
251 1.110 chs
252 1.110 chs /* Create the pool drainer kernel thread. */
253 1.110 chs if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
254 1.110 chs uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
255 1.110 chs panic("fork pooldrain");
256 1.110 chs
257 1.8 mrg /*
258 1.8 mrg * ensure correct priority and set paging parameters...
259 1.8 mrg */
260 1.8 mrg
261 1.86 ad uvm.pagedaemon_lwp = curlwp;
262 1.8 mrg npages = uvmexp.npages;
263 1.8 mrg uvmpd_tune();
264 1.8 mrg
265 1.8 mrg /*
266 1.8 mrg * main loop
267 1.8 mrg */
268 1.24 chs
269 1.24 chs for (;;) {
270 1.105 para bool needsscan, needsfree, kmem_va_starved;
271 1.105 para
272 1.105 para kmem_va_starved = uvm_km_va_starved_p();
273 1.24 chs
274 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
275 1.105 para if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
276 1.105 para !kmem_va_starved) {
277 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
278 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
279 1.89 ad &uvm_fpageqlock, false, "pgdaemon", 0);
280 1.89 ad uvmexp.pdwoke++;
281 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
282 1.89 ad } else {
283 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
284 1.89 ad }
285 1.24 chs
286 1.8 mrg /*
287 1.113 ad * now recompute inactive count
288 1.8 mrg */
289 1.8 mrg
290 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
291 1.24 chs npages = uvmexp.npages;
292 1.61 chs extrapages = uvm_extrapages;
293 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
294 1.24 chs uvmpd_tune();
295 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
296 1.24 chs }
297 1.24 chs
298 1.77 yamt uvmpdpol_tune();
299 1.24 chs
300 1.60 enami /*
301 1.60 enami * Estimate a hint. Note that bufmem are returned to
302 1.60 enami * system only when entire pool page is empty.
303 1.60 enami */
304 1.89 ad mutex_spin_enter(&uvm_fpageqlock);
305 1.60 enami
306 1.109 pgoyette UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
307 1.77 yamt uvmexp.free, uvmexp.freetarg, 0,0);
308 1.8 mrg
309 1.93 ad needsfree = uvmexp.free + uvmexp.paging < uvmexp.freetarg;
310 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
311 1.89 ad
312 1.8 mrg /*
313 1.24 chs * scan if needed
314 1.8 mrg */
315 1.97 ad if (needsscan) {
316 1.97 ad mutex_spin_exit(&uvm_fpageqlock);
317 1.24 chs uvmpd_scan();
318 1.97 ad mutex_spin_enter(&uvm_fpageqlock);
319 1.97 ad }
320 1.8 mrg
321 1.8 mrg /*
322 1.24 chs * if there's any free memory to be had,
323 1.24 chs * wake up any waiters.
324 1.8 mrg */
325 1.24 chs if (uvmexp.free > uvmexp.reserve_kernel ||
326 1.24 chs uvmexp.paging == 0) {
327 1.24 chs wakeup(&uvmexp.free);
328 1.89 ad uvm_pagedaemon_waiters = 0;
329 1.8 mrg }
330 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
331 1.1 mrg
332 1.8 mrg /*
333 1.113 ad * scan done. if we don't need free memory, we're done.
334 1.93 ad */
335 1.93 ad
336 1.105 para if (!needsfree && !kmem_va_starved)
337 1.93 ad continue;
338 1.93 ad
339 1.93 ad /*
340 1.110 chs * kick the pool drainer thread.
341 1.38 chs */
342 1.57 jdolecek
343 1.110 chs uvmpd_pool_drain_wakeup();
344 1.24 chs }
345 1.24 chs /*NOTREACHED*/
346 1.24 chs }
347 1.24 chs
348 1.8 mrg
349 1.24 chs /*
350 1.81 yamt * uvm_aiodone_worker: a workqueue callback for the aiodone daemon.
351 1.24 chs */
352 1.8 mrg
353 1.24 chs void
354 1.81 yamt uvm_aiodone_worker(struct work *wk, void *dummy)
355 1.24 chs {
356 1.81 yamt struct buf *bp = (void *)wk;
357 1.9 pk
358 1.81 yamt KASSERT(&bp->b_work == wk);
359 1.8 mrg
360 1.81 yamt /*
361 1.81 yamt * process an i/o that's done.
362 1.81 yamt */
363 1.8 mrg
364 1.81 yamt (*bp->b_iodone)(bp);
365 1.89 ad }
366 1.89 ad
367 1.89 ad void
368 1.89 ad uvm_pageout_start(int npages)
369 1.89 ad {
370 1.89 ad
371 1.114 ad atomic_inc_uint(&uvmexp.pdpending);
372 1.113 ad atomic_add_int(&uvmexp.paging, npages);
373 1.89 ad }
374 1.89 ad
375 1.89 ad void
376 1.89 ad uvm_pageout_done(int npages)
377 1.89 ad {
378 1.89 ad
379 1.89 ad KASSERT(uvmexp.paging >= npages);
380 1.114 ad atomic_dec_uint(&uvmexp.pdpending);
381 1.113 ad atomic_add_int(&uvmexp.paging, -npages);
382 1.89 ad
383 1.89 ad /*
384 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
385 1.89 ad */
386 1.89 ad
387 1.113 ad mutex_spin_enter(&uvm_fpageqlock);
388 1.89 ad if (uvmexp.free <= uvmexp.reserve_kernel) {
389 1.81 yamt wakeup(&uvm.pagedaemon);
390 1.81 yamt } else {
391 1.81 yamt wakeup(&uvmexp.free);
392 1.89 ad uvm_pagedaemon_waiters = 0;
393 1.8 mrg }
394 1.89 ad mutex_spin_exit(&uvm_fpageqlock);
395 1.1 mrg }
396 1.1 mrg
397 1.76 yamt /*
398 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
399 1.76 yamt *
400 1.113 ad * => called with page interlock held.
401 1.76 yamt * => resolve orphaned O->A loaned page.
402 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
403 1.76 yamt */
404 1.76 yamt
405 1.89 ad kmutex_t *
406 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
407 1.76 yamt {
408 1.76 yamt struct uvm_object *uobj = pg->uobject;
409 1.113 ad struct vm_anon *anon = pg->uanon;
410 1.113 ad int tries, count;
411 1.113 ad bool running;
412 1.89 ad kmutex_t *slock;
413 1.89 ad
414 1.113 ad KASSERT(mutex_owned(&pg->interlock));
415 1.76 yamt
416 1.76 yamt if (uobj != NULL) {
417 1.103 rmind slock = uobj->vmobjlock;
418 1.113 ad KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
419 1.113 ad } else if (anon != NULL) {
420 1.113 ad slock = anon->an_lock;
421 1.113 ad KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
422 1.76 yamt } else {
423 1.113 ad /* Page may be in state of flux - ignore. */
424 1.113 ad mutex_exit(&pg->interlock);
425 1.113 ad return NULL;
426 1.76 yamt }
427 1.76 yamt
428 1.113 ad /*
429 1.113 ad * Now try to lock the objects. We'll try hard, but don't really
430 1.113 ad * plan on spending more than a millisecond or so here.
431 1.113 ad */
432 1.113 ad tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
433 1.113 ad for (;;) {
434 1.113 ad if (mutex_tryenter(slock)) {
435 1.113 ad if (uobj == NULL) {
436 1.113 ad /*
437 1.113 ad * set PG_ANON if it isn't set already.
438 1.113 ad */
439 1.113 ad if ((pg->flags & PG_ANON) == 0) {
440 1.113 ad KASSERT(pg->loan_count > 0);
441 1.113 ad pg->loan_count--;
442 1.113 ad pg->flags |= PG_ANON;
443 1.113 ad /* anon now owns it */
444 1.113 ad }
445 1.113 ad }
446 1.113 ad mutex_exit(&pg->interlock);
447 1.113 ad return slock;
448 1.113 ad }
449 1.113 ad running = mutex_owner_running(slock);
450 1.113 ad if (!running || --tries <= 0) {
451 1.113 ad break;
452 1.113 ad }
453 1.113 ad count = SPINLOCK_BACKOFF_MAX;
454 1.113 ad SPINLOCK_BACKOFF(count);
455 1.76 yamt }
456 1.76 yamt
457 1.113 ad /*
458 1.113 ad * We didn't get the lock; chances are the very next page on the
459 1.113 ad * queue also has the same lock, so if the lock owner is not running
460 1.113 ad * take a breather and allow them to make progress. There could be
461 1.113 ad * only 1 CPU in the system, or the pagedaemon could have preempted
462 1.113 ad * the owner in kernel, or any number of other things could be going
463 1.113 ad * on.
464 1.113 ad */
465 1.113 ad mutex_exit(&pg->interlock);
466 1.113 ad if (curlwp == uvm.pagedaemon_lwp) {
467 1.113 ad if (!running) {
468 1.113 ad (void)kpause("pdpglock", false, 1, NULL);
469 1.76 yamt }
470 1.113 ad uvmexp.pdbusy++;
471 1.76 yamt }
472 1.113 ad return NULL;
473 1.76 yamt }
474 1.76 yamt
475 1.73 yamt #if defined(VMSWAP)
476 1.73 yamt struct swapcluster {
477 1.73 yamt int swc_slot;
478 1.73 yamt int swc_nallocated;
479 1.73 yamt int swc_nused;
480 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
481 1.73 yamt };
482 1.73 yamt
483 1.73 yamt static void
484 1.73 yamt swapcluster_init(struct swapcluster *swc)
485 1.73 yamt {
486 1.73 yamt
487 1.73 yamt swc->swc_slot = 0;
488 1.89 ad swc->swc_nused = 0;
489 1.73 yamt }
490 1.73 yamt
491 1.73 yamt static int
492 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
493 1.73 yamt {
494 1.73 yamt int slot;
495 1.73 yamt int npages;
496 1.73 yamt
497 1.73 yamt if (swc->swc_slot != 0) {
498 1.73 yamt return 0;
499 1.73 yamt }
500 1.73 yamt
501 1.73 yamt /* Even with strange MAXPHYS, the shift
502 1.73 yamt implicitly rounds down to a page. */
503 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
504 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
505 1.73 yamt if (slot == 0) {
506 1.73 yamt return ENOMEM;
507 1.73 yamt }
508 1.73 yamt swc->swc_slot = slot;
509 1.73 yamt swc->swc_nallocated = npages;
510 1.73 yamt swc->swc_nused = 0;
511 1.73 yamt
512 1.73 yamt return 0;
513 1.73 yamt }
514 1.73 yamt
515 1.73 yamt static int
516 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
517 1.73 yamt {
518 1.73 yamt int slot;
519 1.73 yamt struct uvm_object *uobj;
520 1.73 yamt
521 1.73 yamt KASSERT(swc->swc_slot != 0);
522 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
523 1.113 ad KASSERT((pg->flags & PG_SWAPBACKED) != 0);
524 1.73 yamt
525 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
526 1.73 yamt uobj = pg->uobject;
527 1.73 yamt if (uobj == NULL) {
528 1.103 rmind KASSERT(mutex_owned(pg->uanon->an_lock));
529 1.73 yamt pg->uanon->an_swslot = slot;
530 1.73 yamt } else {
531 1.73 yamt int result;
532 1.73 yamt
533 1.103 rmind KASSERT(mutex_owned(uobj->vmobjlock));
534 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
535 1.73 yamt if (result == -1) {
536 1.73 yamt return ENOMEM;
537 1.73 yamt }
538 1.73 yamt }
539 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
540 1.73 yamt swc->swc_nused++;
541 1.73 yamt
542 1.73 yamt return 0;
543 1.73 yamt }
544 1.73 yamt
545 1.73 yamt static void
546 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
547 1.73 yamt {
548 1.73 yamt int slot;
549 1.73 yamt int nused;
550 1.73 yamt int nallocated;
551 1.108 martin int error __diagused;
552 1.73 yamt
553 1.73 yamt if (swc->swc_slot == 0) {
554 1.73 yamt return;
555 1.73 yamt }
556 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
557 1.73 yamt
558 1.73 yamt slot = swc->swc_slot;
559 1.73 yamt nused = swc->swc_nused;
560 1.73 yamt nallocated = swc->swc_nallocated;
561 1.73 yamt
562 1.73 yamt /*
563 1.73 yamt * if this is the final pageout we could have a few
564 1.73 yamt * unused swap blocks. if so, free them now.
565 1.73 yamt */
566 1.73 yamt
567 1.73 yamt if (nused < nallocated) {
568 1.73 yamt if (!now) {
569 1.73 yamt return;
570 1.73 yamt }
571 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
572 1.73 yamt }
573 1.73 yamt
574 1.73 yamt /*
575 1.73 yamt * now start the pageout.
576 1.73 yamt */
577 1.73 yamt
578 1.91 yamt if (nused > 0) {
579 1.91 yamt uvmexp.pdpageouts++;
580 1.91 yamt uvm_pageout_start(nused);
581 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
582 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
583 1.91 yamt }
584 1.73 yamt
585 1.73 yamt /*
586 1.73 yamt * zero swslot to indicate that we are
587 1.73 yamt * no longer building a swap-backed cluster.
588 1.73 yamt */
589 1.73 yamt
590 1.73 yamt swc->swc_slot = 0;
591 1.89 ad swc->swc_nused = 0;
592 1.89 ad }
593 1.89 ad
594 1.89 ad static int
595 1.89 ad swapcluster_nused(struct swapcluster *swc)
596 1.89 ad {
597 1.89 ad
598 1.89 ad return swc->swc_nused;
599 1.73 yamt }
600 1.77 yamt
601 1.77 yamt /*
602 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
603 1.77 yamt *
604 1.77 yamt * => called with owner locked.
605 1.84 thorpej * => return true if a page had an associated slot.
606 1.77 yamt */
607 1.77 yamt
608 1.83 thorpej static bool
609 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
610 1.77 yamt {
611 1.84 thorpej bool result = false;
612 1.77 yamt struct vm_anon *anon = pg->uanon;
613 1.77 yamt
614 1.113 ad if ((pg->flags & PG_ANON) && anon->an_swslot) {
615 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
616 1.77 yamt anon->an_swslot = 0;
617 1.77 yamt pg->flags &= ~PG_CLEAN;
618 1.84 thorpej result = true;
619 1.113 ad } else if (pg->flags & PG_AOBJ) {
620 1.77 yamt int slot = uao_set_swslot(pg->uobject,
621 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
622 1.77 yamt if (slot) {
623 1.77 yamt uvm_swap_free(slot, 1);
624 1.77 yamt pg->flags &= ~PG_CLEAN;
625 1.84 thorpej result = true;
626 1.77 yamt }
627 1.77 yamt }
628 1.77 yamt
629 1.77 yamt return result;
630 1.77 yamt }
631 1.77 yamt
632 1.77 yamt /*
633 1.77 yamt * uvmpd_trydropswap: try to free any swap allocated to this page.
634 1.77 yamt *
635 1.84 thorpej * => return true if a slot is successfully freed.
636 1.113 ad * => page interlock must be held, and will be dropped.
637 1.77 yamt */
638 1.77 yamt
639 1.83 thorpej bool
640 1.77 yamt uvmpd_trydropswap(struct vm_page *pg)
641 1.77 yamt {
642 1.89 ad kmutex_t *slock;
643 1.83 thorpej bool result;
644 1.77 yamt
645 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
646 1.113 ad mutex_exit(&pg->interlock);
647 1.84 thorpej return false;
648 1.77 yamt }
649 1.77 yamt
650 1.77 yamt /*
651 1.77 yamt * lock the page's owner.
652 1.113 ad * this will drop pg->interlock.
653 1.77 yamt */
654 1.77 yamt
655 1.77 yamt slock = uvmpd_trylockowner(pg);
656 1.77 yamt if (slock == NULL) {
657 1.84 thorpej return false;
658 1.77 yamt }
659 1.77 yamt
660 1.77 yamt /*
661 1.77 yamt * skip this page if it's busy.
662 1.77 yamt */
663 1.77 yamt
664 1.77 yamt if ((pg->flags & PG_BUSY) != 0) {
665 1.89 ad mutex_exit(slock);
666 1.84 thorpej return false;
667 1.77 yamt }
668 1.77 yamt
669 1.77 yamt result = uvmpd_dropswap(pg);
670 1.77 yamt
671 1.89 ad mutex_exit(slock);
672 1.77 yamt
673 1.77 yamt return result;
674 1.77 yamt }
675 1.77 yamt
676 1.73 yamt #endif /* defined(VMSWAP) */
677 1.73 yamt
678 1.1 mrg /*
679 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
680 1.77 yamt * to clean or free.
681 1.1 mrg *
682 1.1 mrg * => we work on meeting our free target by converting inactive pages
683 1.1 mrg * into free pages.
684 1.1 mrg * => we handle the building of swap-backed clusters
685 1.1 mrg */
686 1.1 mrg
687 1.65 thorpej static void
688 1.77 yamt uvmpd_scan_queue(void)
689 1.8 mrg {
690 1.77 yamt struct vm_page *p;
691 1.8 mrg struct uvm_object *uobj;
692 1.37 chs struct vm_anon *anon;
693 1.68 yamt #if defined(VMSWAP)
694 1.73 yamt struct swapcluster swc;
695 1.68 yamt #endif /* defined(VMSWAP) */
696 1.77 yamt int dirtyreacts;
697 1.89 ad kmutex_t *slock;
698 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
699 1.1 mrg
700 1.8 mrg /*
701 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
702 1.24 chs * to stay in the loop while we have a page to scan or we have
703 1.8 mrg * a swap-cluster to build.
704 1.8 mrg */
705 1.24 chs
706 1.73 yamt #if defined(VMSWAP)
707 1.73 yamt swapcluster_init(&swc);
708 1.73 yamt #endif /* defined(VMSWAP) */
709 1.77 yamt
710 1.14 chs dirtyreacts = 0;
711 1.77 yamt uvmpdpol_scaninit();
712 1.43 chs
713 1.77 yamt while (/* CONSTCOND */ 1) {
714 1.24 chs
715 1.73 yamt /*
716 1.73 yamt * see if we've met the free target.
717 1.73 yamt */
718 1.73 yamt
719 1.89 ad if (uvmexp.free + uvmexp.paging
720 1.89 ad #if defined(VMSWAP)
721 1.89 ad + swapcluster_nused(&swc)
722 1.89 ad #endif /* defined(VMSWAP) */
723 1.89 ad >= uvmexp.freetarg << 2 ||
724 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
725 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
726 1.73 yamt "exit loop", 0, 0, 0, 0);
727 1.73 yamt break;
728 1.73 yamt }
729 1.24 chs
730 1.73 yamt /*
731 1.113 ad * first we have the pdpolicy select a victim page
732 1.113 ad * and attempt to lock the object that the page
733 1.73 yamt * belongs to. if our attempt fails we skip on to
734 1.73 yamt * the next page (no harm done). it is important to
735 1.73 yamt * "try" locking the object as we are locking in the
736 1.73 yamt * wrong order (pageq -> object) and we don't want to
737 1.73 yamt * deadlock.
738 1.73 yamt *
739 1.73 yamt * the only time we expect to see an ownerless page
740 1.113 ad * (i.e. a page with no uobject and !PG_ANON) is if an
741 1.73 yamt * anon has loaned a page from a uvm_object and the
742 1.73 yamt * uvm_object has dropped the ownership. in that
743 1.73 yamt * case, the anon can "take over" the loaned page
744 1.73 yamt * and make it its own.
745 1.73 yamt */
746 1.30 chs
747 1.113 ad p = uvmpdpol_selectvictim(&slock);
748 1.113 ad if (p == NULL) {
749 1.113 ad break;
750 1.76 yamt }
751 1.113 ad KASSERT(uvmpdpol_pageisqueued_p(p));
752 1.113 ad KASSERT(uvm_page_locked_p(p));
753 1.113 ad KASSERT(p->wire_count == 0);
754 1.113 ad
755 1.113 ad /*
756 1.113 ad * we are below target and have a new page to consider.
757 1.113 ad */
758 1.113 ad
759 1.113 ad anon = p->uanon;
760 1.113 ad uobj = p->uobject;
761 1.113 ad
762 1.76 yamt if (p->flags & PG_BUSY) {
763 1.89 ad mutex_exit(slock);
764 1.76 yamt uvmexp.pdbusy++;
765 1.76 yamt continue;
766 1.76 yamt }
767 1.76 yamt
768 1.73 yamt /* does the page belong to an object? */
769 1.73 yamt if (uobj != NULL) {
770 1.73 yamt uvmexp.pdobscan++;
771 1.73 yamt } else {
772 1.73 yamt #if defined(VMSWAP)
773 1.73 yamt KASSERT(anon != NULL);
774 1.73 yamt uvmexp.pdanscan++;
775 1.68 yamt #else /* defined(VMSWAP) */
776 1.73 yamt panic("%s: anon", __func__);
777 1.68 yamt #endif /* defined(VMSWAP) */
778 1.73 yamt }
779 1.8 mrg
780 1.37 chs
781 1.73 yamt /*
782 1.113 ad * we now have the object locked.
783 1.73 yamt * if the page is not swap-backed, call the object's
784 1.73 yamt * pager to flush and free the page.
785 1.73 yamt */
786 1.37 chs
787 1.69 yamt #if defined(READAHEAD_STATS)
788 1.113 ad if ((p->flags & PG_READAHEAD) != 0) {
789 1.113 ad p->flags &= ~PG_READAHEAD;
790 1.73 yamt uvm_ra_miss.ev_count++;
791 1.73 yamt }
792 1.69 yamt #endif /* defined(READAHEAD_STATS) */
793 1.69 yamt
794 1.113 ad if ((p->flags & PG_SWAPBACKED) == 0) {
795 1.82 alc KASSERT(uobj != NULL);
796 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
797 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
798 1.73 yamt continue;
799 1.73 yamt }
800 1.37 chs
801 1.73 yamt /*
802 1.73 yamt * the page is swap-backed. remove all the permissions
803 1.73 yamt * from the page so we can sync the modified info
804 1.73 yamt * without any race conditions. if the page is clean
805 1.73 yamt * we can free it now and continue.
806 1.73 yamt */
807 1.8 mrg
808 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
809 1.73 yamt if ((p->flags & PG_CLEAN) && pmap_clear_modify(p)) {
810 1.73 yamt p->flags &= ~(PG_CLEAN);
811 1.73 yamt }
812 1.73 yamt if (p->flags & PG_CLEAN) {
813 1.73 yamt int slot;
814 1.73 yamt int pageidx;
815 1.73 yamt
816 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
817 1.73 yamt uvm_pagefree(p);
818 1.113 ad atomic_inc_uint(&uvmexp.pdfreed);
819 1.8 mrg
820 1.8 mrg /*
821 1.73 yamt * for anons, we need to remove the page
822 1.73 yamt * from the anon ourselves. for aobjs,
823 1.73 yamt * pagefree did that for us.
824 1.8 mrg */
825 1.24 chs
826 1.73 yamt if (anon) {
827 1.73 yamt KASSERT(anon->an_swslot != 0);
828 1.73 yamt anon->an_page = NULL;
829 1.73 yamt slot = anon->an_swslot;
830 1.73 yamt } else {
831 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
832 1.8 mrg }
833 1.73 yamt if (slot > 0) {
834 1.73 yamt /* this page is now only in swap. */
835 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
836 1.112 ad atomic_inc_uint(&uvmexp.swpgonly);
837 1.37 chs }
838 1.112 ad mutex_exit(slock);
839 1.73 yamt continue;
840 1.73 yamt }
841 1.37 chs
842 1.77 yamt #if defined(VMSWAP)
843 1.73 yamt /*
844 1.73 yamt * this page is dirty, skip it if we'll have met our
845 1.73 yamt * free target when all the current pageouts complete.
846 1.73 yamt */
847 1.24 chs
848 1.73 yamt if (uvmexp.free + uvmexp.paging > uvmexp.freetarg << 2) {
849 1.89 ad mutex_exit(slock);
850 1.73 yamt continue;
851 1.73 yamt }
852 1.14 chs
853 1.73 yamt /*
854 1.73 yamt * free any swap space allocated to the page since
855 1.73 yamt * we'll have to write it again with its new data.
856 1.73 yamt */
857 1.24 chs
858 1.77 yamt uvmpd_dropswap(p);
859 1.14 chs
860 1.73 yamt /*
861 1.97 ad * start new swap pageout cluster (if necessary).
862 1.97 ad *
863 1.97 ad * if swap is full reactivate this page so that
864 1.97 ad * we eventually cycle all pages through the
865 1.97 ad * inactive queue.
866 1.73 yamt */
867 1.68 yamt
868 1.97 ad if (swapcluster_allocslots(&swc)) {
869 1.73 yamt dirtyreacts++;
870 1.73 yamt uvm_pageactivate(p);
871 1.89 ad mutex_exit(slock);
872 1.73 yamt continue;
873 1.8 mrg }
874 1.8 mrg
875 1.8 mrg /*
876 1.73 yamt * at this point, we're definitely going reuse this
877 1.73 yamt * page. mark the page busy and delayed-free.
878 1.73 yamt * we should remove the page from the page queues
879 1.73 yamt * so we don't ever look at it again.
880 1.73 yamt * adjust counters and such.
881 1.8 mrg */
882 1.8 mrg
883 1.73 yamt p->flags |= PG_BUSY;
884 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
885 1.113 ad p->flags |= PG_PAGEOUT;
886 1.113 ad uvmexp.pgswapout++;
887 1.73 yamt
888 1.73 yamt uvm_pagedequeue(p);
889 1.73 yamt
890 1.8 mrg /*
891 1.73 yamt * add the new page to the cluster.
892 1.8 mrg */
893 1.8 mrg
894 1.73 yamt if (swapcluster_add(&swc, p)) {
895 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
896 1.73 yamt UVM_PAGE_OWN(p, NULL);
897 1.77 yamt dirtyreacts++;
898 1.73 yamt uvm_pageactivate(p);
899 1.89 ad mutex_exit(slock);
900 1.73 yamt continue;
901 1.73 yamt }
902 1.89 ad mutex_exit(slock);
903 1.73 yamt
904 1.8 mrg /*
905 1.114 ad * set the pageout in progress. bump counters and set up
906 1.31 chs * for the next loop.
907 1.8 mrg */
908 1.8 mrg
909 1.114 ad swapcluster_flush(&swc, false);
910 1.77 yamt
911 1.77 yamt #else /* defined(VMSWAP) */
912 1.77 yamt uvm_pageactivate(p);
913 1.89 ad mutex_exit(slock);
914 1.77 yamt #endif /* defined(VMSWAP) */
915 1.73 yamt }
916 1.73 yamt
917 1.73 yamt #if defined(VMSWAP)
918 1.84 thorpej swapcluster_flush(&swc, true);
919 1.68 yamt #endif /* defined(VMSWAP) */
920 1.1 mrg }
921 1.1 mrg
922 1.1 mrg /*
923 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
924 1.1 mrg */
925 1.1 mrg
926 1.65 thorpej static void
927 1.37 chs uvmpd_scan(void)
928 1.1 mrg {
929 1.77 yamt int swap_shortage, pages_freed;
930 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
931 1.1 mrg
932 1.37 chs uvmexp.pdrevs++;
933 1.1 mrg
934 1.8 mrg /*
935 1.93 ad * work on meeting our targets. first we work on our free target
936 1.93 ad * by converting inactive pages into free pages. then we work on
937 1.93 ad * meeting our inactive target by converting active pages to
938 1.93 ad * inactive ones.
939 1.8 mrg */
940 1.8 mrg
941 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
942 1.8 mrg
943 1.14 chs pages_freed = uvmexp.pdfreed;
944 1.77 yamt uvmpd_scan_queue();
945 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
946 1.8 mrg
947 1.8 mrg /*
948 1.14 chs * detect if we're not going to be able to page anything out
949 1.14 chs * until we free some swap resources from active pages.
950 1.14 chs */
951 1.24 chs
952 1.14 chs swap_shortage = 0;
953 1.14 chs if (uvmexp.free < uvmexp.freetarg &&
954 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
955 1.52 pk !uvm_swapisfull() &&
956 1.14 chs pages_freed == 0) {
957 1.14 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
958 1.14 chs }
959 1.24 chs
960 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
961 1.93 ad
962 1.93 ad /*
963 1.94 ad * if still below the minimum target, try unloading kernel
964 1.94 ad * modules.
965 1.94 ad */
966 1.93 ad
967 1.94 ad if (uvmexp.free < uvmexp.freemin) {
968 1.94 ad module_thread_kick();
969 1.93 ad }
970 1.1 mrg }
971 1.62 yamt
972 1.62 yamt /*
973 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
974 1.62 yamt *
975 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
976 1.62 yamt *
977 1.62 yamt * XXX should be tunable.
978 1.62 yamt * XXX should consider pools, etc?
979 1.62 yamt */
980 1.62 yamt
981 1.83 thorpej bool
982 1.62 yamt uvm_reclaimable(void)
983 1.62 yamt {
984 1.62 yamt int filepages;
985 1.77 yamt int active, inactive;
986 1.62 yamt
987 1.62 yamt /*
988 1.62 yamt * if swap is not full, no problem.
989 1.62 yamt */
990 1.62 yamt
991 1.62 yamt if (!uvm_swapisfull()) {
992 1.84 thorpej return true;
993 1.62 yamt }
994 1.62 yamt
995 1.62 yamt /*
996 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
997 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
998 1.62 yamt *
999 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
1000 1.63 yamt *
1001 1.63 yamt * XXX should consider about other reclaimable memory.
1002 1.63 yamt * XXX ie. pools, traditional buffer cache.
1003 1.62 yamt */
1004 1.62 yamt
1005 1.62 yamt filepages = uvmexp.filepages + uvmexp.execpages - uvmexp.wired;
1006 1.77 yamt uvm_estimatepageable(&active, &inactive);
1007 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
1008 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
1009 1.84 thorpej return true;
1010 1.62 yamt }
1011 1.62 yamt
1012 1.62 yamt /*
1013 1.62 yamt * kill the process, fail allocation, etc..
1014 1.62 yamt */
1015 1.62 yamt
1016 1.84 thorpej return false;
1017 1.62 yamt }
1018 1.77 yamt
1019 1.77 yamt void
1020 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
1021 1.77 yamt {
1022 1.77 yamt
1023 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
1024 1.77 yamt }
1025 1.98 haad
1026 1.110 chs
1027 1.110 chs /*
1028 1.110 chs * Use a separate thread for draining pools.
1029 1.110 chs * This work can't done from the main pagedaemon thread because
1030 1.110 chs * some pool allocators need to take vm_map locks.
1031 1.110 chs */
1032 1.110 chs
1033 1.110 chs static void
1034 1.110 chs uvmpd_pool_drain_thread(void *arg)
1035 1.110 chs {
1036 1.110 chs int bufcnt;
1037 1.110 chs
1038 1.110 chs for (;;) {
1039 1.110 chs mutex_enter(&uvmpd_pool_drain_lock);
1040 1.110 chs if (!uvmpd_pool_drain_run) {
1041 1.110 chs cv_wait(&uvmpd_pool_drain_cv, &uvmpd_pool_drain_lock);
1042 1.110 chs }
1043 1.110 chs uvmpd_pool_drain_run = false;
1044 1.110 chs mutex_exit(&uvmpd_pool_drain_lock);
1045 1.110 chs
1046 1.110 chs /*
1047 1.110 chs * kill unused metadata buffers.
1048 1.110 chs */
1049 1.110 chs mutex_spin_enter(&uvm_fpageqlock);
1050 1.110 chs bufcnt = uvmexp.freetarg - uvmexp.free;
1051 1.110 chs mutex_spin_exit(&uvm_fpageqlock);
1052 1.110 chs if (bufcnt < 0)
1053 1.110 chs bufcnt = 0;
1054 1.110 chs
1055 1.110 chs mutex_enter(&bufcache_lock);
1056 1.110 chs buf_drain(bufcnt << PAGE_SHIFT);
1057 1.110 chs mutex_exit(&bufcache_lock);
1058 1.110 chs
1059 1.110 chs /*
1060 1.110 chs * drain a pool.
1061 1.110 chs */
1062 1.110 chs pool_drain(NULL);
1063 1.110 chs }
1064 1.110 chs /*NOTREACHED*/
1065 1.110 chs }
1066 1.110 chs
1067 1.110 chs static void
1068 1.110 chs uvmpd_pool_drain_wakeup(void)
1069 1.110 chs {
1070 1.110 chs
1071 1.110 chs mutex_enter(&uvmpd_pool_drain_lock);
1072 1.110 chs uvmpd_pool_drain_run = true;
1073 1.110 chs cv_signal(&uvmpd_pool_drain_cv);
1074 1.110 chs mutex_exit(&uvmpd_pool_drain_lock);
1075 1.110 chs }
1076