uvm_pdaemon.c revision 1.12.2.3 1 1.12.2.3 chs /* $NetBSD: uvm_pdaemon.c,v 1.12.2.3 1999/04/09 04:46:43 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
46 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
47 1.1 mrg *
48 1.1 mrg *
49 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 1.1 mrg * All rights reserved.
51 1.1 mrg *
52 1.1 mrg * Permission to use, copy, modify and distribute this software and
53 1.1 mrg * its documentation is hereby granted, provided that both the copyright
54 1.1 mrg * notice and this permission notice appear in all copies of the
55 1.1 mrg * software, derivative works or modified versions, and any portions
56 1.1 mrg * thereof, and that both notices appear in supporting documentation.
57 1.1 mrg *
58 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 1.1 mrg *
62 1.1 mrg * Carnegie Mellon requests users of this software to return to
63 1.1 mrg *
64 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 1.1 mrg * School of Computer Science
66 1.1 mrg * Carnegie Mellon University
67 1.1 mrg * Pittsburgh PA 15213-3890
68 1.1 mrg *
69 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
70 1.1 mrg * rights to redistribute these changes.
71 1.1 mrg */
72 1.1 mrg
73 1.7 mrg #include "opt_uvmhist.h"
74 1.7 mrg
75 1.1 mrg /*
76 1.1 mrg * uvm_pdaemon.c: the page daemon
77 1.1 mrg */
78 1.1 mrg
79 1.1 mrg #include <sys/param.h>
80 1.1 mrg #include <sys/proc.h>
81 1.1 mrg #include <sys/systm.h>
82 1.1 mrg #include <sys/kernel.h>
83 1.9 pk #include <sys/pool.h>
84 1.1 mrg
85 1.1 mrg #include <vm/vm.h>
86 1.1 mrg #include <vm/vm_page.h>
87 1.1 mrg #include <vm/vm_kern.h>
88 1.1 mrg
89 1.1 mrg #include <uvm/uvm.h>
90 1.1 mrg
91 1.1 mrg /*
92 1.1 mrg * local prototypes
93 1.1 mrg */
94 1.1 mrg
95 1.1 mrg static void uvmpd_scan __P((void));
96 1.1 mrg static boolean_t uvmpd_scan_inactive __P((struct pglist *));
97 1.1 mrg static void uvmpd_tune __P((void));
98 1.1 mrg
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
102 1.1 mrg *
103 1.1 mrg * => should be called with all locks released
104 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
105 1.1 mrg */
106 1.1 mrg
107 1.12.2.2 chs void
108 1.12.2.2 chs uvm_wait(wmsg)
109 1.8 mrg char *wmsg;
110 1.8 mrg {
111 1.8 mrg int timo = 0;
112 1.8 mrg int s = splbio();
113 1.1 mrg
114 1.8 mrg /*
115 1.8 mrg * check for page daemon going to sleep (waiting for itself)
116 1.8 mrg */
117 1.1 mrg
118 1.8 mrg if (curproc == uvm.pagedaemon_proc) {
119 1.8 mrg /*
120 1.8 mrg * now we have a problem: the pagedaemon wants to go to
121 1.8 mrg * sleep until it frees more memory. but how can it
122 1.8 mrg * free more memory if it is asleep? that is a deadlock.
123 1.8 mrg * we have two options:
124 1.8 mrg * [1] panic now
125 1.8 mrg * [2] put a timeout on the sleep, thus causing the
126 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
127 1.8 mrg *
128 1.8 mrg * note that option [2] will only help us if we get lucky
129 1.8 mrg * and some other process on the system breaks the deadlock
130 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
131 1.8 mrg * to continue). for now we panic if DEBUG is defined,
132 1.8 mrg * otherwise we hope for the best with option [2] (better
133 1.8 mrg * yet, this should never happen in the first place!).
134 1.8 mrg */
135 1.1 mrg
136 1.8 mrg printf("pagedaemon: deadlock detected!\n");
137 1.8 mrg timo = hz >> 3; /* set timeout */
138 1.1 mrg #if defined(DEBUG)
139 1.8 mrg /* DEBUG: panic so we can debug it */
140 1.8 mrg panic("pagedaemon deadlock");
141 1.1 mrg #endif
142 1.8 mrg }
143 1.1 mrg
144 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
145 1.12.2.2 chs wakeup(&uvm.pagedaemon); /* wake the daemon! */
146 1.8 mrg UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg,
147 1.8 mrg timo);
148 1.1 mrg
149 1.8 mrg splx(s);
150 1.1 mrg }
151 1.1 mrg
152 1.1 mrg
153 1.1 mrg /*
154 1.1 mrg * uvmpd_tune: tune paging parameters
155 1.1 mrg *
156 1.1 mrg * => called when ever memory is added (or removed?) to the system
157 1.1 mrg * => caller must call with page queues locked
158 1.1 mrg */
159 1.1 mrg
160 1.8 mrg static void
161 1.8 mrg uvmpd_tune()
162 1.8 mrg {
163 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
164 1.1 mrg
165 1.8 mrg uvmexp.freemin = uvmexp.npages / 20;
166 1.1 mrg
167 1.8 mrg /* between 16k and 256k */
168 1.8 mrg /* XXX: what are these values good for? */
169 1.11 chs uvmexp.freemin = max(uvmexp.freemin, (16*1024) >> PAGE_SHIFT);
170 1.11 chs uvmexp.freemin = min(uvmexp.freemin, (256*1024) >> PAGE_SHIFT);
171 1.1 mrg
172 1.8 mrg uvmexp.freetarg = (uvmexp.freemin * 4) / 3;
173 1.8 mrg if (uvmexp.freetarg <= uvmexp.freemin)
174 1.8 mrg uvmexp.freetarg = uvmexp.freemin + 1;
175 1.1 mrg
176 1.8 mrg /* uvmexp.inactarg: computed in main daemon loop */
177 1.1 mrg
178 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
179 1.8 mrg UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d",
180 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
181 1.1 mrg }
182 1.1 mrg
183 1.1 mrg /*
184 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
185 1.1 mrg */
186 1.1 mrg
187 1.8 mrg void
188 1.8 mrg uvm_pageout()
189 1.8 mrg {
190 1.8 mrg int npages = 0;
191 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
192 1.12.2.3 chs
193 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
194 1.8 mrg
195 1.8 mrg /*
196 1.8 mrg * ensure correct priority and set paging parameters...
197 1.8 mrg */
198 1.8 mrg
199 1.8 mrg uvm.pagedaemon_proc = curproc;
200 1.8 mrg (void) spl0();
201 1.8 mrg uvm_lock_pageq();
202 1.8 mrg npages = uvmexp.npages;
203 1.8 mrg uvmpd_tune();
204 1.8 mrg uvm_unlock_pageq();
205 1.8 mrg
206 1.8 mrg /*
207 1.8 mrg * main loop
208 1.8 mrg */
209 1.8 mrg while (TRUE) {
210 1.1 mrg
211 1.8 mrg simple_lock(&uvm.pagedaemon_lock);
212 1.8 mrg
213 1.12.2.3 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
214 1.12.2.3 chs UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
215 1.12.2.3 chs &uvm.pagedaemon_lock, FALSE, "pgdaemon", 0);
216 1.12.2.3 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
217 1.1 mrg
218 1.12.2.3 chs simple_unlock(&uvm.pagedaemon_lock);
219 1.8 mrg
220 1.12.2.3 chs /* drain pool resources */
221 1.9 pk pool_drain(0);
222 1.8 mrg
223 1.8 mrg /*
224 1.8 mrg * now lock page queues and recompute inactive count
225 1.8 mrg */
226 1.8 mrg uvm_lock_pageq();
227 1.8 mrg
228 1.8 mrg if (npages != uvmexp.npages) { /* check for new pages? */
229 1.8 mrg npages = uvmexp.npages;
230 1.8 mrg uvmpd_tune();
231 1.8 mrg }
232 1.8 mrg
233 1.8 mrg uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3;
234 1.8 mrg if (uvmexp.inactarg <= uvmexp.freetarg)
235 1.8 mrg uvmexp.inactarg = uvmexp.freetarg + 1;
236 1.8 mrg
237 1.8 mrg UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d",
238 1.8 mrg uvmexp.free, uvmexp.freetarg, uvmexp.inactive,
239 1.8 mrg uvmexp.inactarg);
240 1.8 mrg
241 1.8 mrg /*
242 1.8 mrg * scan if needed
243 1.8 mrg */
244 1.12.2.2 chs if (uvmexp.free + uvmexp.paging < uvmexp.freetarg ||
245 1.12.2.2 chs uvmexp.inactive < uvmexp.inactarg) {
246 1.8 mrg uvmpd_scan();
247 1.12.2.2 chs }
248 1.8 mrg
249 1.8 mrg /*
250 1.12.2.2 chs * if there's any free memory to be had,
251 1.12.2.2 chs * wake up any waiters.
252 1.8 mrg */
253 1.12.2.2 chs wakeup(&uvmexp.free);
254 1.8 mrg
255 1.8 mrg /*
256 1.12.2.2 chs * done scan. unlock page queues (the only lock we are holding)
257 1.8 mrg */
258 1.12.2.2 chs uvm_unlock_pageq();
259 1.8 mrg }
260 1.8 mrg /*NOTREACHED*/
261 1.1 mrg }
262 1.1 mrg
263 1.12.2.3 chs
264 1.12.2.3 chs /*
265 1.12.2.3 chs * uvm_aiodone_daemon: main loop for the aiodone daemon.
266 1.12.2.3 chs */
267 1.12.2.3 chs
268 1.12.2.3 chs void
269 1.12.2.3 chs uvm_aiodone_daemon()
270 1.12.2.3 chs {
271 1.12.2.3 chs int s;
272 1.12.2.3 chs struct uvm_aiodesc *aio, *nextaio;
273 1.12.2.3 chs UVMHIST_FUNC("uvm_aiodoned"); UVMHIST_CALLED(pdhist);
274 1.12.2.3 chs
275 1.12.2.3 chs UVMHIST_LOG(pdhist,"<starting uvm aiodone daemon>", 0, 0, 0, 0);
276 1.12.2.3 chs
277 1.12.2.3 chs for (;;) {
278 1.12.2.3 chs
279 1.12.2.3 chs /*
280 1.12.2.3 chs * carefully attempt to go to sleep (without losing "wakeups"!).
281 1.12.2.3 chs * we need splbio because we want to make sure the aio_done list
282 1.12.2.3 chs * is totally empty before we go to sleep.
283 1.12.2.3 chs */
284 1.12.2.3 chs
285 1.12.2.3 chs s = splbio();
286 1.12.2.3 chs simple_lock(&uvm.aiodoned_lock);
287 1.12.2.3 chs
288 1.12.2.3 chs /*
289 1.12.2.3 chs * if we've got done aio's, then bypass the sleep
290 1.12.2.3 chs */
291 1.12.2.3 chs
292 1.12.2.3 chs if (TAILQ_FIRST(&uvm.aio_done) == NULL) {
293 1.12.2.3 chs UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
294 1.12.2.3 chs UVM_UNLOCK_AND_WAIT(&uvm.aiodoned,
295 1.12.2.3 chs &uvm.aiodoned_lock, FALSE, "aiodoned", 0);
296 1.12.2.3 chs UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
297 1.12.2.3 chs
298 1.12.2.3 chs /* relock aiodoned_lock, still at splbio */
299 1.12.2.3 chs simple_lock(&uvm.aiodoned_lock);
300 1.12.2.3 chs }
301 1.12.2.3 chs
302 1.12.2.3 chs /*
303 1.12.2.3 chs * check for done aio structures
304 1.12.2.3 chs */
305 1.12.2.3 chs
306 1.12.2.3 chs aio = TAILQ_FIRST(&uvm.aio_done);
307 1.12.2.3 chs if (aio) {
308 1.12.2.3 chs TAILQ_INIT(&uvm.aio_done);
309 1.12.2.3 chs }
310 1.12.2.3 chs
311 1.12.2.3 chs simple_unlock(&uvm.aiodoned_lock);
312 1.12.2.3 chs splx(s);
313 1.12.2.3 chs
314 1.12.2.3 chs /*
315 1.12.2.3 chs * process each i/o that's done.
316 1.12.2.3 chs */
317 1.12.2.3 chs
318 1.12.2.3 chs for (/*null*/; aio != NULL ; aio = nextaio) {
319 1.12.2.3 chs uvmexp.paging -= aio->npages;
320 1.12.2.3 chs nextaio = TAILQ_NEXT(aio, aioq);
321 1.12.2.3 chs aio->aiodone(aio);
322 1.12.2.3 chs }
323 1.12.2.3 chs }
324 1.12.2.3 chs }
325 1.12.2.3 chs
326 1.12.2.3 chs
327 1.12.2.3 chs
328 1.1 mrg /*
329 1.1 mrg * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into
330 1.1 mrg * its own function for ease of reading.
331 1.1 mrg *
332 1.1 mrg * => called with page queues locked
333 1.1 mrg * => we work on meeting our free target by converting inactive pages
334 1.1 mrg * into free pages.
335 1.1 mrg * => we handle the building of swap-backed clusters
336 1.1 mrg * => we return TRUE if we are exiting because we met our target
337 1.1 mrg */
338 1.1 mrg
339 1.8 mrg static boolean_t
340 1.8 mrg uvmpd_scan_inactive(pglst)
341 1.8 mrg struct pglist *pglst;
342 1.8 mrg {
343 1.8 mrg boolean_t retval = FALSE; /* assume we haven't hit target */
344 1.8 mrg int s, free, result;
345 1.8 mrg struct vm_page *p, *nextpg;
346 1.8 mrg struct uvm_object *uobj;
347 1.11 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT], **ppsp;
348 1.8 mrg int npages;
349 1.11 chs struct vm_page *swpps[MAXBSIZE >> PAGE_SHIFT]; /* XXX: see below */
350 1.8 mrg int swnpages, swcpages; /* XXX: see below */
351 1.8 mrg int swslot, oldslot;
352 1.8 mrg struct vm_anon *anon;
353 1.8 mrg boolean_t swap_backed;
354 1.10 eeh vaddr_t start;
355 1.8 mrg UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist);
356 1.1 mrg
357 1.8 mrg /*
358 1.8 mrg * note: we currently keep swap-backed pages on a seperate inactive
359 1.8 mrg * list from object-backed pages. however, merging the two lists
360 1.8 mrg * back together again hasn't been ruled out. thus, we keep our
361 1.8 mrg * swap cluster in "swpps" rather than in pps (allows us to mix
362 1.8 mrg * clustering types in the event of a mixed inactive queue).
363 1.8 mrg */
364 1.1 mrg
365 1.8 mrg /*
366 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
367 1.8 mrg * to stay in the loop while we have a page to scan or we have
368 1.8 mrg * a swap-cluster to build.
369 1.8 mrg */
370 1.8 mrg swslot = 0;
371 1.8 mrg swnpages = swcpages = 0;
372 1.8 mrg free = 0;
373 1.8 mrg
374 1.12.2.2 chs for (p = TAILQ_FIRST(pglst); p != NULL || swslot != 0; p = nextpg) {
375 1.8 mrg
376 1.8 mrg /*
377 1.8 mrg * note that p can be NULL iff we have traversed the whole
378 1.8 mrg * list and need to do one final swap-backed clustered pageout.
379 1.8 mrg */
380 1.8 mrg if (p) {
381 1.8 mrg /*
382 1.8 mrg * update our copy of "free" and see if we've met
383 1.8 mrg * our target
384 1.8 mrg */
385 1.8 mrg s = splimp();
386 1.8 mrg uvm_lock_fpageq();
387 1.8 mrg free = uvmexp.free;
388 1.8 mrg uvm_unlock_fpageq();
389 1.8 mrg splx(s);
390 1.8 mrg
391 1.8 mrg if (free >= uvmexp.freetarg) {
392 1.8 mrg UVMHIST_LOG(pdhist," met free target: "
393 1.8 mrg "exit loop", 0, 0, 0, 0);
394 1.8 mrg retval = TRUE; /* hit the target! */
395 1.8 mrg
396 1.8 mrg if (swslot == 0)
397 1.8 mrg /* exit now if no swap-i/o pending */
398 1.8 mrg break;
399 1.8 mrg
400 1.8 mrg /* set p to null to signal final swap i/o */
401 1.8 mrg p = NULL;
402 1.8 mrg }
403 1.8 mrg }
404 1.8 mrg
405 1.8 mrg uobj = NULL; /* be safe and shut gcc up */
406 1.8 mrg anon = NULL; /* be safe and shut gcc up */
407 1.8 mrg
408 1.8 mrg if (p) { /* if (we have a new page to consider) */
409 1.8 mrg /*
410 1.8 mrg * we are below target and have a new page to consider.
411 1.8 mrg */
412 1.8 mrg uvmexp.pdscans++;
413 1.12.2.2 chs nextpg = TAILQ_NEXT(p, pageq);
414 1.12.2.2 chs
415 1.12.2.2 chs #if 1
416 1.12.2.2 chs /*
417 1.12.2.2 chs * XXX
418 1.12.2.2 chs * commented this out because the only way a page
419 1.12.2.2 chs * can be referenced and still on the inactive queue
420 1.12.2.2 chs * if it is "referenced" by the process of
421 1.12.2.2 chs * paging it out. we shouldn't count these
422 1.12.2.2 chs * as real references, so this code must be a noop.
423 1.12.2.2 chs *
424 1.12.2.2 chs * XXX shouldn't this bit be in the *ACTIVE* queue
425 1.12.2.2 chs * scanning code?
426 1.12.2.2 chs */
427 1.8 mrg
428 1.8 mrg /*
429 1.8 mrg * move referenced pages back to active queue and
430 1.8 mrg * skip to next page (unlikely to happen since
431 1.8 mrg * inactive pages shouldn't have any valid mappings
432 1.8 mrg * and we cleared reference before deactivating).
433 1.8 mrg */
434 1.8 mrg if (pmap_is_referenced(PMAP_PGARG(p))) {
435 1.8 mrg uvm_pageactivate(p);
436 1.8 mrg uvmexp.pdreact++;
437 1.8 mrg continue;
438 1.8 mrg }
439 1.12.2.2 chs #endif
440 1.8 mrg
441 1.8 mrg /*
442 1.8 mrg * first we attempt to lock the object that this page
443 1.8 mrg * belongs to. if our attempt fails we skip on to
444 1.8 mrg * the next page (no harm done). it is important to
445 1.8 mrg * "try" locking the object as we are locking in the
446 1.8 mrg * wrong order (pageq -> object) and we don't want to
447 1.8 mrg * get deadlocked.
448 1.8 mrg *
449 1.8 mrg * the only time we exepct to see an ownerless page
450 1.8 mrg * (i.e. a page with no uobject and !PQ_ANON) is if an
451 1.8 mrg * anon has loaned a page from a uvm_object and the
452 1.8 mrg * uvm_object has dropped the ownership. in that
453 1.8 mrg * case, the anon can "take over" the loaned page
454 1.8 mrg * and make it its own.
455 1.8 mrg */
456 1.8 mrg
457 1.8 mrg /* is page part of an anon or ownerless ? */
458 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
459 1.1 mrg
460 1.8 mrg anon = p->uanon;
461 1.1 mrg
462 1.1 mrg #ifdef DIAGNOSTIC
463 1.8 mrg /* to be on inactive q, page must be part
464 1.8 mrg * of _something_ */
465 1.8 mrg if (anon == NULL)
466 1.8 mrg panic("pagedaemon: page with no anon "
467 1.8 mrg "or object detected - loop 1");
468 1.1 mrg #endif
469 1.1 mrg
470 1.8 mrg if (!simple_lock_try(&anon->an_lock))
471 1.8 mrg /* lock failed, skip this page */
472 1.8 mrg continue;
473 1.8 mrg
474 1.8 mrg /*
475 1.8 mrg * if the page is ownerless, claim it in the
476 1.8 mrg * name of "anon"!
477 1.8 mrg */
478 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
479 1.1 mrg #ifdef DIAGNOSTIC
480 1.8 mrg if (p->loan_count < 1)
481 1.8 mrg panic("pagedaemon: non-loaned "
482 1.8 mrg "ownerless page detected -"
483 1.8 mrg " loop 1");
484 1.1 mrg #endif
485 1.8 mrg p->loan_count--;
486 1.8 mrg p->pqflags |= PQ_ANON; /* anon now owns it */
487 1.8 mrg }
488 1.8 mrg
489 1.8 mrg if (p->flags & PG_BUSY) {
490 1.8 mrg simple_unlock(&anon->an_lock);
491 1.8 mrg uvmexp.pdbusy++;
492 1.8 mrg /* someone else owns page, skip it */
493 1.8 mrg continue;
494 1.8 mrg }
495 1.8 mrg
496 1.8 mrg uvmexp.pdanscan++;
497 1.8 mrg
498 1.8 mrg } else {
499 1.8 mrg
500 1.8 mrg uobj = p->uobject;
501 1.8 mrg
502 1.8 mrg if (!simple_lock_try(&uobj->vmobjlock))
503 1.8 mrg /* lock failed, skip this page */
504 1.12.2.2 chs continue;
505 1.8 mrg
506 1.8 mrg if (p->flags & PG_BUSY) {
507 1.8 mrg simple_unlock(&uobj->vmobjlock);
508 1.8 mrg uvmexp.pdbusy++;
509 1.8 mrg /* someone else owns page, skip it */
510 1.12.2.2 chs continue;
511 1.8 mrg }
512 1.8 mrg
513 1.8 mrg uvmexp.pdobscan++;
514 1.8 mrg }
515 1.8 mrg
516 1.8 mrg /*
517 1.8 mrg * we now have the object and the page queues locked.
518 1.8 mrg * the page is not busy. if the page is clean we
519 1.8 mrg * can free it now and continue.
520 1.8 mrg */
521 1.8 mrg
522 1.8 mrg if (p->flags & PG_CLEAN) {
523 1.12.2.1 chs
524 1.12.2.1 chs if (p->pqflags & PQ_SWAPBACKED) {
525 1.12.2.1 chs /* this page now lives only in swap */
526 1.12.2.1 chs uvmexp.swpguniq++;
527 1.12.2.1 chs }
528 1.12.2.1 chs
529 1.8 mrg /* zap all mappings with pmap_page_protect... */
530 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
531 1.8 mrg uvm_pagefree(p);
532 1.8 mrg uvmexp.pdfreed++;
533 1.8 mrg
534 1.8 mrg if (anon) {
535 1.1 mrg #ifdef DIAGNOSTIC
536 1.8 mrg /*
537 1.8 mrg * an anonymous page can only be clean
538 1.8 mrg * if it has valid backing store.
539 1.8 mrg */
540 1.8 mrg if (anon->an_swslot == 0)
541 1.8 mrg panic("pagedaemon: clean anon "
542 1.8 mrg "page without backing store?");
543 1.1 mrg #endif
544 1.8 mrg /* remove from object */
545 1.8 mrg anon->u.an_page = NULL;
546 1.8 mrg simple_unlock(&anon->an_lock);
547 1.8 mrg } else {
548 1.8 mrg /* pagefree has already removed the
549 1.8 mrg * page from the object */
550 1.8 mrg simple_unlock(&uobj->vmobjlock);
551 1.8 mrg }
552 1.8 mrg continue;
553 1.8 mrg }
554 1.8 mrg
555 1.8 mrg /*
556 1.8 mrg * this page is dirty, skip it if we'll have met our
557 1.8 mrg * free target when all the current pageouts complete.
558 1.8 mrg */
559 1.12.2.2 chs
560 1.12.2.2 chs if (free + uvmexp.paging > uvmexp.freetarg << 2) {
561 1.8 mrg if (anon) {
562 1.8 mrg simple_unlock(&anon->an_lock);
563 1.8 mrg } else {
564 1.8 mrg simple_unlock(&uobj->vmobjlock);
565 1.8 mrg }
566 1.8 mrg continue;
567 1.8 mrg }
568 1.8 mrg
569 1.8 mrg /*
570 1.8 mrg * the page we are looking at is dirty. we must
571 1.8 mrg * clean it before it can be freed. to do this we
572 1.8 mrg * first mark the page busy so that no one else will
573 1.8 mrg * touch the page. we write protect all the mappings
574 1.8 mrg * of the page so that no one touches it while it is
575 1.8 mrg * in I/O.
576 1.8 mrg */
577 1.8 mrg
578 1.8 mrg swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0);
579 1.8 mrg p->flags |= PG_BUSY; /* now we own it */
580 1.8 mrg UVM_PAGE_OWN(p, "scan_inactive");
581 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ);
582 1.8 mrg uvmexp.pgswapout++;
583 1.8 mrg
584 1.8 mrg /*
585 1.8 mrg * for swap-backed pages we need to (re)allocate
586 1.8 mrg * swap space.
587 1.8 mrg */
588 1.8 mrg if (swap_backed) {
589 1.8 mrg
590 1.8 mrg /*
591 1.8 mrg * free old swap slot (if any)
592 1.8 mrg */
593 1.8 mrg if (anon) {
594 1.8 mrg if (anon->an_swslot) {
595 1.8 mrg uvm_swap_free(anon->an_swslot,
596 1.8 mrg 1);
597 1.8 mrg anon->an_swslot = 0;
598 1.8 mrg }
599 1.8 mrg } else {
600 1.8 mrg oldslot = uao_set_swslot(uobj,
601 1.11 chs p->offset >> PAGE_SHIFT, 0);
602 1.8 mrg
603 1.8 mrg if (oldslot)
604 1.8 mrg uvm_swap_free(oldslot, 1);
605 1.8 mrg }
606 1.8 mrg
607 1.8 mrg /*
608 1.8 mrg * start new cluster (if necessary)
609 1.8 mrg */
610 1.8 mrg if (swslot == 0) {
611 1.8 mrg /* want this much */
612 1.11 chs swnpages = MAXBSIZE >> PAGE_SHIFT;
613 1.8 mrg
614 1.8 mrg swslot = uvm_swap_alloc(&swnpages,
615 1.8 mrg TRUE);
616 1.8 mrg
617 1.8 mrg if (swslot == 0) {
618 1.8 mrg /* no swap? give up! */
619 1.8 mrg p->flags &= ~PG_BUSY;
620 1.8 mrg UVM_PAGE_OWN(p, NULL);
621 1.8 mrg if (anon)
622 1.8 mrg simple_unlock(
623 1.8 mrg &anon->an_lock);
624 1.8 mrg else
625 1.8 mrg simple_unlock(
626 1.8 mrg &uobj->vmobjlock);
627 1.8 mrg continue;
628 1.8 mrg }
629 1.8 mrg swcpages = 0; /* cluster is empty */
630 1.8 mrg }
631 1.8 mrg
632 1.8 mrg /*
633 1.8 mrg * add block to cluster
634 1.8 mrg */
635 1.8 mrg swpps[swcpages] = p;
636 1.8 mrg uvmexp.pgswapout++;
637 1.8 mrg if (anon)
638 1.8 mrg anon->an_swslot = swslot + swcpages;
639 1.8 mrg else
640 1.8 mrg uao_set_swslot(uobj,
641 1.11 chs p->offset >> PAGE_SHIFT,
642 1.8 mrg swslot + swcpages);
643 1.8 mrg swcpages++;
644 1.8 mrg
645 1.8 mrg /* done (swap-backed) */
646 1.8 mrg }
647 1.8 mrg
648 1.8 mrg /* end: if (p) ["if we have new page to consider"] */
649 1.8 mrg } else {
650 1.8 mrg
651 1.8 mrg /* if p == NULL we must be doing a last swap i/o */
652 1.8 mrg swap_backed = TRUE;
653 1.8 mrg }
654 1.8 mrg
655 1.8 mrg /*
656 1.12.2.2 chs * now consider doing the pageout.
657 1.8 mrg *
658 1.8 mrg * for swap-backed pages, we do the pageout if we have either
659 1.8 mrg * filled the cluster (in which case (swnpages == swcpages) or
660 1.8 mrg * run out of pages (p == NULL).
661 1.8 mrg *
662 1.8 mrg * for object pages, we always do the pageout.
663 1.8 mrg */
664 1.8 mrg if (swap_backed) {
665 1.8 mrg
666 1.8 mrg if (p) { /* if we just added a page to cluster */
667 1.8 mrg if (anon)
668 1.8 mrg simple_unlock(&anon->an_lock);
669 1.8 mrg else
670 1.8 mrg simple_unlock(&uobj->vmobjlock);
671 1.8 mrg
672 1.8 mrg /* cluster not full yet? */
673 1.8 mrg if (swcpages < swnpages)
674 1.8 mrg continue;
675 1.8 mrg }
676 1.8 mrg
677 1.8 mrg /* starting I/O now... set up for it */
678 1.8 mrg npages = swcpages;
679 1.8 mrg ppsp = swpps;
680 1.8 mrg /* for swap-backed pages only */
681 1.10 eeh start = (vaddr_t) swslot;
682 1.8 mrg
683 1.8 mrg /* if this is final pageout we could have a few
684 1.8 mrg * extra swap blocks */
685 1.8 mrg if (swcpages < swnpages) {
686 1.8 mrg uvm_swap_free(swslot + swcpages,
687 1.8 mrg (swnpages - swcpages));
688 1.8 mrg }
689 1.1 mrg
690 1.8 mrg } else {
691 1.1 mrg
692 1.8 mrg /* normal object pageout */
693 1.8 mrg ppsp = pps;
694 1.8 mrg npages = sizeof(pps) / sizeof(struct vm_page *);
695 1.8 mrg /* not looked at because PGO_ALLPAGES is set */
696 1.8 mrg start = 0;
697 1.8 mrg
698 1.8 mrg }
699 1.8 mrg
700 1.8 mrg /*
701 1.8 mrg * now do the pageout.
702 1.8 mrg *
703 1.8 mrg * for swap_backed pages we have already built the cluster.
704 1.8 mrg * for !swap_backed pages, uvm_pager_put will call the object's
705 1.8 mrg * "make put cluster" function to build a cluster on our behalf.
706 1.8 mrg *
707 1.8 mrg * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct
708 1.8 mrg * it to free the cluster pages for us on a successful I/O (it
709 1.8 mrg * always does this for un-successful I/O requests). this
710 1.8 mrg * allows us to do clustered pageout without having to deal
711 1.8 mrg * with cluster pages at this level.
712 1.8 mrg *
713 1.8 mrg * note locking semantics of uvm_pager_put with PGO_PDFREECLUST:
714 1.8 mrg * IN: locked: uobj (if !swap_backed), page queues
715 1.8 mrg * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND)
716 1.8 mrg * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND)
717 1.8 mrg *
718 1.8 mrg * [the bit about VM_PAGER_PEND saves us one lock-unlock pair]
719 1.8 mrg */
720 1.8 mrg
721 1.8 mrg /* locked: uobj (if !swap_backed), page queues */
722 1.8 mrg uvmexp.pdpageouts++;
723 1.8 mrg result = uvm_pager_put((swap_backed) ? NULL : uobj, p,
724 1.8 mrg &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0);
725 1.8 mrg /* locked: uobj (if !swap_backed && result != PEND) */
726 1.8 mrg /* unlocked: pageqs, object (if swap_backed ||result == PEND) */
727 1.8 mrg
728 1.8 mrg /*
729 1.8 mrg * if we did i/o to swap, zero swslot to indicate that we are
730 1.8 mrg * no longer building a swap-backed cluster.
731 1.8 mrg */
732 1.8 mrg
733 1.8 mrg if (swap_backed)
734 1.8 mrg swslot = 0; /* done with this cluster */
735 1.8 mrg
736 1.8 mrg /*
737 1.8 mrg * first, we check for VM_PAGER_PEND which means that the
738 1.8 mrg * async I/O is in progress and the async I/O done routine
739 1.8 mrg * will clean up after us. in this case we move on to the
740 1.8 mrg * next page.
741 1.8 mrg *
742 1.8 mrg * there is a very remote chance that the pending async i/o can
743 1.8 mrg * finish _before_ we get here. if that happens, our page "p"
744 1.8 mrg * may no longer be on the inactive queue. so we verify this
745 1.8 mrg * when determining the next page (starting over at the head if
746 1.8 mrg * we've lost our inactive page).
747 1.8 mrg */
748 1.8 mrg
749 1.8 mrg if (result == VM_PAGER_PEND) {
750 1.12.2.3 chs uvmexp.paging += npages;
751 1.8 mrg uvm_lock_pageq(); /* relock page queues */
752 1.8 mrg uvmexp.pdpending++;
753 1.8 mrg if (p) {
754 1.8 mrg if (p->pqflags & PQ_INACTIVE)
755 1.8 mrg /* reload! */
756 1.12.2.2 chs nextpg = TAILQ_NEXT(p, pageq);
757 1.8 mrg else
758 1.8 mrg /* reload! */
759 1.12.2.2 chs nextpg = TAILQ_FIRST(pglst);
760 1.12.2.2 chs } else {
761 1.12.2.2 chs nextpg = NULL; /* done list */
762 1.8 mrg }
763 1.8 mrg continue;
764 1.8 mrg }
765 1.8 mrg
766 1.8 mrg /*
767 1.8 mrg * clean up "p" if we have one
768 1.8 mrg */
769 1.8 mrg
770 1.8 mrg if (p) {
771 1.8 mrg /*
772 1.8 mrg * the I/O request to "p" is done and uvm_pager_put
773 1.8 mrg * has freed any cluster pages it may have allocated
774 1.8 mrg * during I/O. all that is left for us to do is
775 1.8 mrg * clean up page "p" (which is still PG_BUSY).
776 1.8 mrg *
777 1.8 mrg * our result could be one of the following:
778 1.8 mrg * VM_PAGER_OK: successful pageout
779 1.8 mrg *
780 1.8 mrg * VM_PAGER_AGAIN: tmp resource shortage, we skip
781 1.8 mrg * to next page
782 1.8 mrg * VM_PAGER_{FAIL,ERROR,BAD}: an error. we
783 1.8 mrg * "reactivate" page to get it out of the way (it
784 1.8 mrg * will eventually drift back into the inactive
785 1.8 mrg * queue for a retry).
786 1.8 mrg * VM_PAGER_UNLOCK: should never see this as it is
787 1.8 mrg * only valid for "get" operations
788 1.8 mrg */
789 1.8 mrg
790 1.8 mrg /* relock p's object: page queues not lock yet, so
791 1.8 mrg * no need for "try" */
792 1.8 mrg
793 1.8 mrg /* !swap_backed case: already locked... */
794 1.8 mrg if (swap_backed) {
795 1.8 mrg if (anon)
796 1.8 mrg simple_lock(&anon->an_lock);
797 1.8 mrg else
798 1.8 mrg simple_lock(&uobj->vmobjlock);
799 1.8 mrg }
800 1.1 mrg
801 1.1 mrg #ifdef DIAGNOSTIC
802 1.8 mrg if (result == VM_PAGER_UNLOCK)
803 1.8 mrg panic("pagedaemon: pageout returned "
804 1.8 mrg "invalid 'unlock' code");
805 1.1 mrg #endif
806 1.1 mrg
807 1.8 mrg /* handle PG_WANTED now */
808 1.8 mrg if (p->flags & PG_WANTED)
809 1.8 mrg /* still holding object lock */
810 1.12.2.2 chs wakeup(p);
811 1.8 mrg
812 1.8 mrg p->flags &= ~(PG_BUSY|PG_WANTED);
813 1.8 mrg UVM_PAGE_OWN(p, NULL);
814 1.8 mrg
815 1.8 mrg /* released during I/O? */
816 1.8 mrg if (p->flags & PG_RELEASED) {
817 1.8 mrg if (anon) {
818 1.8 mrg /* remove page so we can get nextpg */
819 1.8 mrg anon->u.an_page = NULL;
820 1.8 mrg
821 1.8 mrg simple_unlock(&anon->an_lock);
822 1.8 mrg uvm_anfree(anon); /* kills anon */
823 1.8 mrg pmap_page_protect(PMAP_PGARG(p),
824 1.8 mrg VM_PROT_NONE);
825 1.8 mrg anon = NULL;
826 1.8 mrg uvm_lock_pageq();
827 1.12.2.2 chs nextpg = TAILQ_NEXT(p, pageq);
828 1.8 mrg /* free released page */
829 1.8 mrg uvm_pagefree(p);
830 1.1 mrg
831 1.8 mrg } else {
832 1.1 mrg
833 1.1 mrg #ifdef DIAGNOSTIC
834 1.8 mrg if (uobj->pgops->pgo_releasepg == NULL)
835 1.8 mrg panic("pagedaemon: no "
836 1.8 mrg "pgo_releasepg function");
837 1.1 mrg #endif
838 1.1 mrg
839 1.8 mrg /*
840 1.8 mrg * pgo_releasepg nukes the page and
841 1.8 mrg * gets "nextpg" for us. it returns
842 1.8 mrg * with the page queues locked (when
843 1.8 mrg * given nextpg ptr).
844 1.8 mrg */
845 1.8 mrg if (!uobj->pgops->pgo_releasepg(p,
846 1.8 mrg &nextpg))
847 1.8 mrg /* uobj died after release */
848 1.8 mrg uobj = NULL;
849 1.8 mrg
850 1.8 mrg /*
851 1.8 mrg * lock page queues here so that they're
852 1.8 mrg * always locked at the end of the loop.
853 1.8 mrg */
854 1.8 mrg uvm_lock_pageq();
855 1.8 mrg }
856 1.8 mrg
857 1.8 mrg } else { /* page was not released during I/O */
858 1.8 mrg
859 1.8 mrg uvm_lock_pageq();
860 1.12.2.2 chs nextpg = TAILQ_NEXT(p, pageq);
861 1.8 mrg
862 1.8 mrg if (result != VM_PAGER_OK) {
863 1.8 mrg
864 1.8 mrg /* pageout was a failure... */
865 1.8 mrg if (result != VM_PAGER_AGAIN)
866 1.8 mrg uvm_pageactivate(p);
867 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
868 1.8 mrg /* XXXCDC: if (swap_backed) FREE p's
869 1.8 mrg * swap block? */
870 1.8 mrg
871 1.8 mrg } else {
872 1.8 mrg
873 1.8 mrg /* pageout was a success... */
874 1.8 mrg pmap_clear_reference(PMAP_PGARG(p));
875 1.8 mrg pmap_clear_modify(PMAP_PGARG(p));
876 1.8 mrg p->flags |= PG_CLEAN;
877 1.8 mrg /* XXX: could free page here, but old
878 1.8 mrg * pagedaemon does not */
879 1.8 mrg
880 1.8 mrg }
881 1.8 mrg }
882 1.8 mrg
883 1.8 mrg /*
884 1.8 mrg * drop object lock (if there is an object left). do
885 1.8 mrg * a safety check of nextpg to make sure it is on the
886 1.8 mrg * inactive queue (it should be since PG_BUSY pages on
887 1.8 mrg * the inactive queue can't be re-queued [note: not
888 1.8 mrg * true for active queue]).
889 1.8 mrg */
890 1.8 mrg
891 1.8 mrg if (anon)
892 1.8 mrg simple_unlock(&anon->an_lock);
893 1.8 mrg else if (uobj)
894 1.8 mrg simple_unlock(&uobj->vmobjlock);
895 1.8 mrg
896 1.8 mrg } /* if (p) */ else {
897 1.8 mrg
898 1.8 mrg /* if p is null in this loop, make sure it stays null
899 1.8 mrg * in next loop */
900 1.8 mrg nextpg = NULL;
901 1.8 mrg
902 1.8 mrg /*
903 1.8 mrg * lock page queues here just so they're always locked
904 1.8 mrg * at the end of the loop.
905 1.8 mrg */
906 1.8 mrg uvm_lock_pageq();
907 1.8 mrg }
908 1.8 mrg
909 1.8 mrg if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) {
910 1.8 mrg printf("pagedaemon: invalid nextpg! reverting to "
911 1.8 mrg "queue head\n");
912 1.12.2.2 chs nextpg = TAILQ_FIRST(pglst); /* reload! */
913 1.8 mrg }
914 1.1 mrg
915 1.8 mrg } /* end of "inactive" 'for' loop */
916 1.8 mrg return (retval);
917 1.1 mrg }
918 1.1 mrg
919 1.1 mrg /*
920 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
921 1.1 mrg *
922 1.1 mrg * => called with pageq's locked
923 1.1 mrg */
924 1.1 mrg
925 1.8 mrg void
926 1.8 mrg uvmpd_scan()
927 1.1 mrg {
928 1.12.2.2 chs int s, free, inactive_shortage, swap_shortage;
929 1.8 mrg struct vm_page *p, *nextpg;
930 1.8 mrg struct uvm_object *uobj;
931 1.8 mrg boolean_t got_it;
932 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
933 1.1 mrg
934 1.8 mrg uvmexp.pdrevs++; /* counter */
935 1.1 mrg
936 1.1 mrg #ifdef __GNUC__
937 1.8 mrg uobj = NULL; /* XXX gcc */
938 1.1 mrg #endif
939 1.8 mrg /*
940 1.8 mrg * get current "free" page count
941 1.8 mrg */
942 1.8 mrg s = splimp();
943 1.8 mrg uvm_lock_fpageq();
944 1.8 mrg free = uvmexp.free;
945 1.8 mrg uvm_unlock_fpageq();
946 1.8 mrg splx(s);
947 1.1 mrg
948 1.1 mrg #ifndef __SWAP_BROKEN
949 1.8 mrg /*
950 1.8 mrg * swap out some processes if we are below our free target.
951 1.8 mrg * we need to unlock the page queues for this.
952 1.8 mrg */
953 1.8 mrg if (free < uvmexp.freetarg) {
954 1.8 mrg
955 1.8 mrg uvmexp.pdswout++;
956 1.8 mrg UVMHIST_LOG(pdhist," free %d < target %d: swapout", free,
957 1.8 mrg uvmexp.freetarg, 0, 0);
958 1.8 mrg uvm_unlock_pageq();
959 1.8 mrg uvm_swapout_threads();
960 1.8 mrg pmap_update(); /* update so we can scan inactive q */
961 1.8 mrg uvm_lock_pageq();
962 1.1 mrg
963 1.8 mrg }
964 1.1 mrg #endif
965 1.1 mrg
966 1.8 mrg /*
967 1.8 mrg * now we want to work on meeting our targets. first we work on our
968 1.8 mrg * free target by converting inactive pages into free pages. then
969 1.8 mrg * we work on meeting our inactive target by converting active pages
970 1.8 mrg * to inactive ones.
971 1.8 mrg */
972 1.8 mrg
973 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
974 1.8 mrg
975 1.8 mrg /*
976 1.8 mrg * do loop #1! alternate starting queue between swap and object based
977 1.8 mrg * on the low bit of uvmexp.pdrevs (which we bump by one each call).
978 1.8 mrg */
979 1.8 mrg
980 1.8 mrg got_it = FALSE;
981 1.8 mrg if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0)
982 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp);
983 1.8 mrg if (!got_it)
984 1.8 mrg got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj);
985 1.8 mrg if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0)
986 1.8 mrg (void) uvmpd_scan_inactive(&uvm.page_inactive_swp);
987 1.8 mrg
988 1.8 mrg /*
989 1.8 mrg * we have done the scan to get free pages. now we work on meeting
990 1.12.2.2 chs * our inactive target. if we are still below the free target
991 1.12.2.2 chs * and we didn't start any pageouts in the inactive scan above
992 1.12.2.2 chs * (perhaps because we're out of swap space) and we've met
993 1.12.2.2 chs * the inactive target, then go ahead and deactivate some more
994 1.12.2.2 chs * pages anyway. meeting the free target is important enough
995 1.12.2.2 chs * that it's worth temporarily reducing the number of active pages.
996 1.8 mrg */
997 1.8 mrg
998 1.12.2.2 chs inactive_shortage = uvmexp.inactarg - uvmexp.inactive;
999 1.12.2.2 chs if (free < uvmexp.freetarg && inactive_shortage <= 0 &&
1000 1.12.2.2 chs uvmexp.paging == 0) {
1001 1.12.2.2 chs inactive_shortage = 16;
1002 1.12.2.2 chs }
1003 1.8 mrg
1004 1.12.2.1 chs /*
1005 1.12.2.1 chs * detect if we're not going to be able to page anything out
1006 1.12.2.1 chs * until we free some swap resources from active pages.
1007 1.12.2.1 chs */
1008 1.12.2.1 chs swap_shortage = 0;
1009 1.12.2.1 chs if (uvmexp.free < uvmexp.freetarg &&
1010 1.12.2.1 chs uvmexp.swpginuse == uvmexp.swpages &&
1011 1.12.2.1 chs uvmexp.swpguniq < uvmexp.swpages &&
1012 1.12.2.1 chs uvmexp.paging == 0) {
1013 1.12.2.1 chs swap_shortage = uvmexp.freetarg - uvmexp.free;
1014 1.12.2.1 chs }
1015 1.12.2.1 chs
1016 1.12.2.2 chs UVMHIST_LOG(pdhist, " loop 2: inactive_shortage=%d swap_shortage=%d",
1017 1.12.2.2 chs inactive_shortage, swap_shortage,0,0);
1018 1.12.2.2 chs for (p = TAILQ_FIRST(&uvm.page_active);
1019 1.12.2.2 chs p != NULL && (inactive_shortage > 0 || swap_shortage > 0);
1020 1.12.2.1 chs p = nextpg) {
1021 1.12.2.1 chs
1022 1.12.2.2 chs nextpg = TAILQ_NEXT(p, pageq);
1023 1.8 mrg if (p->flags & PG_BUSY)
1024 1.8 mrg continue; /* quick check before trying to lock */
1025 1.8 mrg
1026 1.8 mrg /*
1027 1.12.2.2 chs * lock the page's owner.
1028 1.8 mrg */
1029 1.8 mrg /* is page anon owned or ownerless? */
1030 1.8 mrg if ((p->pqflags & PQ_ANON) || p->uobject == NULL) {
1031 1.1 mrg #ifdef DIAGNOSTIC
1032 1.8 mrg if (p->uanon == NULL)
1033 1.8 mrg panic("pagedaemon: page with no anon or "
1034 1.8 mrg "object detected - loop 2");
1035 1.1 mrg #endif
1036 1.8 mrg if (!simple_lock_try(&p->uanon->an_lock))
1037 1.8 mrg continue;
1038 1.1 mrg
1039 1.8 mrg /* take over the page? */
1040 1.8 mrg if ((p->pqflags & PQ_ANON) == 0) {
1041 1.1 mrg #ifdef DIAGNOSTIC
1042 1.8 mrg if (p->loan_count < 1)
1043 1.8 mrg panic("pagedaemon: non-loaned "
1044 1.8 mrg "ownerless page detected - loop 2");
1045 1.1 mrg #endif
1046 1.8 mrg p->loan_count--;
1047 1.8 mrg p->pqflags |= PQ_ANON;
1048 1.8 mrg }
1049 1.8 mrg } else {
1050 1.8 mrg if (!simple_lock_try(&p->uobject->vmobjlock))
1051 1.8 mrg continue;
1052 1.8 mrg }
1053 1.8 mrg
1054 1.12.2.1 chs /*
1055 1.12.2.1 chs * skip this page if it's busy.
1056 1.12.2.1 chs */
1057 1.12.2.1 chs if ((p->flags & PG_BUSY) != 0) {
1058 1.12.2.1 chs if (p->pqflags & PQ_ANON)
1059 1.12.2.1 chs simple_unlock(&p->uanon->an_lock);
1060 1.12.2.1 chs else
1061 1.12.2.1 chs simple_unlock(&p->uobject->vmobjlock);
1062 1.12.2.1 chs continue;
1063 1.12.2.1 chs }
1064 1.12.2.1 chs
1065 1.12.2.1 chs /*
1066 1.12.2.2 chs * free any swap allocated to this page
1067 1.12.2.2 chs * if there's a shortage of swap.
1068 1.12.2.1 chs */
1069 1.12.2.1 chs if (swap_shortage > 0) {
1070 1.12.2.1 chs if (p->pqflags & PQ_ANON && p->uanon->an_swslot) {
1071 1.12.2.1 chs uvm_swap_free(p->uanon->an_swslot, 1);
1072 1.12.2.1 chs p->uanon->an_swslot = 0;
1073 1.12.2.1 chs p->flags &= ~PG_CLEAN;
1074 1.12.2.1 chs swap_shortage--;
1075 1.12.2.1 chs }
1076 1.12.2.1 chs if (p->pqflags & PQ_AOBJ) {
1077 1.12.2.1 chs int slot = uao_set_swslot(p->uobject,
1078 1.12.2.1 chs p->offset >> PAGE_SHIFT, 0);
1079 1.12.2.1 chs if (slot) {
1080 1.12.2.1 chs uvm_swap_free(slot, 1);
1081 1.12.2.1 chs p->flags &= ~PG_CLEAN;
1082 1.12.2.1 chs swap_shortage--;
1083 1.12.2.1 chs }
1084 1.12.2.1 chs }
1085 1.12.2.1 chs }
1086 1.12.2.1 chs
1087 1.12.2.1 chs /*
1088 1.12.2.2 chs * deactivate this page if there's a shortage of
1089 1.12.2.2 chs * inactive pages.
1090 1.12.2.1 chs */
1091 1.12.2.2 chs if (inactive_shortage > 0) {
1092 1.8 mrg pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE);
1093 1.8 mrg /* no need to check wire_count as pg is "active" */
1094 1.8 mrg uvm_pagedeactivate(p);
1095 1.8 mrg uvmexp.pddeact++;
1096 1.12.2.2 chs inactive_shortage--;
1097 1.8 mrg }
1098 1.8 mrg
1099 1.8 mrg if (p->pqflags & PQ_ANON)
1100 1.8 mrg simple_unlock(&p->uanon->an_lock);
1101 1.8 mrg else
1102 1.8 mrg simple_unlock(&p->uobject->vmobjlock);
1103 1.8 mrg }
1104 1.1 mrg }
1105