uvm_pdaemon.c revision 1.124 1 1.124 chs /* $NetBSD: uvm_pdaemon.c,v 1.124 2020/02/18 20:23:17 chs Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.124 chs __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.124 2020/02/18 20:23:17 chs Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.1 mrg #include <sys/param.h>
75 1.1 mrg #include <sys/proc.h>
76 1.1 mrg #include <sys/systm.h>
77 1.1 mrg #include <sys/kernel.h>
78 1.9 pk #include <sys/pool.h>
79 1.24 chs #include <sys/buf.h>
80 1.94 ad #include <sys/module.h>
81 1.96 ad #include <sys/atomic.h>
82 1.110 chs #include <sys/kthread.h>
83 1.1 mrg
84 1.1 mrg #include <uvm/uvm.h>
85 1.77 yamt #include <uvm/uvm_pdpolicy.h>
86 1.119 ad #include <uvm/uvm_pgflcache.h>
87 1.1 mrg
88 1.107 matt #ifdef UVMHIST
89 1.107 matt UVMHIST_DEFINE(pdhist);
90 1.107 matt #endif
91 1.107 matt
92 1.1 mrg /*
93 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
94 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
95 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
96 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
97 1.14 chs */
98 1.14 chs
99 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
100 1.14 chs
101 1.113 ad #define UVMPD_NUMTRYLOCKOWNER 128
102 1.14 chs
103 1.14 chs /*
104 1.1 mrg * local prototypes
105 1.1 mrg */
106 1.1 mrg
107 1.65 thorpej static void uvmpd_scan(void);
108 1.77 yamt static void uvmpd_scan_queue(void);
109 1.65 thorpej static void uvmpd_tune(void);
110 1.110 chs static void uvmpd_pool_drain_thread(void *);
111 1.110 chs static void uvmpd_pool_drain_wakeup(void);
112 1.1 mrg
113 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
114 1.89 ad
115 1.110 chs /* State for the pool drainer thread */
116 1.117 ad static kmutex_t uvmpd_lock __cacheline_aligned;
117 1.110 chs static kcondvar_t uvmpd_pool_drain_cv;
118 1.110 chs static bool uvmpd_pool_drain_run = false;
119 1.110 chs
120 1.1 mrg /*
121 1.61 chs * XXX hack to avoid hangs when large processes fork.
122 1.61 chs */
123 1.96 ad u_int uvm_extrapages;
124 1.61 chs
125 1.61 chs /*
126 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
127 1.1 mrg *
128 1.1 mrg * => should be called with all locks released
129 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
130 1.1 mrg */
131 1.1 mrg
132 1.19 thorpej void
133 1.65 thorpej uvm_wait(const char *wmsg)
134 1.8 mrg {
135 1.8 mrg int timo = 0;
136 1.89 ad
137 1.111 chs if (uvm.pagedaemon_lwp == NULL)
138 1.111 chs panic("out of memory before the pagedaemon thread exists");
139 1.111 chs
140 1.117 ad mutex_spin_enter(&uvmpd_lock);
141 1.1 mrg
142 1.8 mrg /*
143 1.8 mrg * check for page daemon going to sleep (waiting for itself)
144 1.8 mrg */
145 1.1 mrg
146 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
147 1.8 mrg /*
148 1.8 mrg * now we have a problem: the pagedaemon wants to go to
149 1.8 mrg * sleep until it frees more memory. but how can it
150 1.8 mrg * free more memory if it is asleep? that is a deadlock.
151 1.8 mrg * we have two options:
152 1.8 mrg * [1] panic now
153 1.8 mrg * [2] put a timeout on the sleep, thus causing the
154 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
155 1.8 mrg *
156 1.8 mrg * note that option [2] will only help us if we get lucky
157 1.8 mrg * and some other process on the system breaks the deadlock
158 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
159 1.8 mrg * to continue). for now we panic if DEBUG is defined,
160 1.8 mrg * otherwise we hope for the best with option [2] (better
161 1.8 mrg * yet, this should never happen in the first place!).
162 1.8 mrg */
163 1.1 mrg
164 1.8 mrg printf("pagedaemon: deadlock detected!\n");
165 1.8 mrg timo = hz >> 3; /* set timeout */
166 1.1 mrg #if defined(DEBUG)
167 1.8 mrg /* DEBUG: panic so we can debug it */
168 1.8 mrg panic("pagedaemon deadlock");
169 1.1 mrg #endif
170 1.8 mrg }
171 1.1 mrg
172 1.89 ad uvm_pagedaemon_waiters++;
173 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
174 1.117 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
175 1.1 mrg }
176 1.1 mrg
177 1.77 yamt /*
178 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
179 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
180 1.77 yamt */
181 1.77 yamt
182 1.77 yamt void
183 1.77 yamt uvm_kick_pdaemon(void)
184 1.77 yamt {
185 1.121 ad int fpages = uvm_availmem();
186 1.77 yamt
187 1.117 ad if (fpages + uvmexp.paging < uvmexp.freemin ||
188 1.117 ad (fpages + uvmexp.paging < uvmexp.freetarg &&
189 1.105 para uvmpdpol_needsscan_p()) ||
190 1.105 para uvm_km_va_starved_p()) {
191 1.117 ad mutex_spin_enter(&uvmpd_lock);
192 1.77 yamt wakeup(&uvm.pagedaemon);
193 1.117 ad mutex_spin_exit(&uvmpd_lock);
194 1.77 yamt }
195 1.77 yamt }
196 1.1 mrg
197 1.1 mrg /*
198 1.1 mrg * uvmpd_tune: tune paging parameters
199 1.1 mrg *
200 1.1 mrg * => called when ever memory is added (or removed?) to the system
201 1.1 mrg */
202 1.1 mrg
203 1.65 thorpej static void
204 1.37 chs uvmpd_tune(void)
205 1.8 mrg {
206 1.95 ad int val;
207 1.95 ad
208 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
209 1.1 mrg
210 1.93 ad /*
211 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
212 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
213 1.93 ad */
214 1.95 ad val = uvmexp.npages / 200;
215 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
216 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
217 1.95 ad val *= ncpu;
218 1.23 bjh21
219 1.23 bjh21 /* Make sure there's always a user page free. */
220 1.95 ad if (val < uvmexp.reserve_kernel + 1)
221 1.95 ad val = uvmexp.reserve_kernel + 1;
222 1.95 ad uvmexp.freemin = val;
223 1.95 ad
224 1.96 ad /* Calculate free target. */
225 1.95 ad val = (uvmexp.freemin * 4) / 3;
226 1.95 ad if (val <= uvmexp.freemin)
227 1.95 ad val = uvmexp.freemin + 1;
228 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
229 1.61 chs
230 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
231 1.109 pgoyette UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
232 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
233 1.1 mrg }
234 1.1 mrg
235 1.1 mrg /*
236 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
237 1.1 mrg */
238 1.1 mrg
239 1.8 mrg void
240 1.80 yamt uvm_pageout(void *arg)
241 1.8 mrg {
242 1.110 chs int npages = 0;
243 1.61 chs int extrapages = 0;
244 1.117 ad int fpages;
245 1.98 haad
246 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
247 1.24 chs
248 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
249 1.8 mrg
250 1.117 ad mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
251 1.110 chs cv_init(&uvmpd_pool_drain_cv, "pooldrain");
252 1.110 chs
253 1.110 chs /* Create the pool drainer kernel thread. */
254 1.110 chs if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
255 1.110 chs uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
256 1.110 chs panic("fork pooldrain");
257 1.110 chs
258 1.8 mrg /*
259 1.8 mrg * ensure correct priority and set paging parameters...
260 1.8 mrg */
261 1.8 mrg
262 1.86 ad uvm.pagedaemon_lwp = curlwp;
263 1.8 mrg npages = uvmexp.npages;
264 1.8 mrg uvmpd_tune();
265 1.8 mrg
266 1.8 mrg /*
267 1.8 mrg * main loop
268 1.8 mrg */
269 1.24 chs
270 1.24 chs for (;;) {
271 1.105 para bool needsscan, needsfree, kmem_va_starved;
272 1.105 para
273 1.105 para kmem_va_starved = uvm_km_va_starved_p();
274 1.24 chs
275 1.117 ad mutex_spin_enter(&uvmpd_lock);
276 1.105 para if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
277 1.105 para !kmem_va_starved) {
278 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
279 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
280 1.117 ad &uvmpd_lock, false, "pgdaemon", 0);
281 1.89 ad uvmexp.pdwoke++;
282 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
283 1.89 ad } else {
284 1.117 ad mutex_spin_exit(&uvmpd_lock);
285 1.89 ad }
286 1.24 chs
287 1.8 mrg /*
288 1.113 ad * now recompute inactive count
289 1.8 mrg */
290 1.8 mrg
291 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
292 1.24 chs npages = uvmexp.npages;
293 1.61 chs extrapages = uvm_extrapages;
294 1.24 chs uvmpd_tune();
295 1.24 chs }
296 1.24 chs
297 1.77 yamt uvmpdpol_tune();
298 1.24 chs
299 1.60 enami /*
300 1.60 enami * Estimate a hint. Note that bufmem are returned to
301 1.60 enami * system only when entire pool page is empty.
302 1.60 enami */
303 1.121 ad fpages = uvm_availmem();
304 1.109 pgoyette UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
305 1.117 ad fpages, uvmexp.freetarg, 0,0);
306 1.8 mrg
307 1.117 ad needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
308 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
309 1.89 ad
310 1.8 mrg /*
311 1.24 chs * scan if needed
312 1.8 mrg */
313 1.97 ad if (needsscan) {
314 1.24 chs uvmpd_scan();
315 1.97 ad }
316 1.8 mrg
317 1.8 mrg /*
318 1.24 chs * if there's any free memory to be had,
319 1.24 chs * wake up any waiters.
320 1.8 mrg */
321 1.121 ad if (uvm_availmem() > uvmexp.reserve_kernel ||
322 1.121 ad uvmexp.paging == 0) {
323 1.117 ad mutex_spin_enter(&uvmpd_lock);
324 1.24 chs wakeup(&uvmexp.free);
325 1.89 ad uvm_pagedaemon_waiters = 0;
326 1.117 ad mutex_spin_exit(&uvmpd_lock);
327 1.8 mrg }
328 1.1 mrg
329 1.8 mrg /*
330 1.113 ad * scan done. if we don't need free memory, we're done.
331 1.93 ad */
332 1.93 ad
333 1.105 para if (!needsfree && !kmem_va_starved)
334 1.93 ad continue;
335 1.93 ad
336 1.93 ad /*
337 1.110 chs * kick the pool drainer thread.
338 1.38 chs */
339 1.57 jdolecek
340 1.110 chs uvmpd_pool_drain_wakeup();
341 1.24 chs }
342 1.24 chs /*NOTREACHED*/
343 1.24 chs }
344 1.24 chs
345 1.89 ad void
346 1.89 ad uvm_pageout_start(int npages)
347 1.89 ad {
348 1.89 ad
349 1.113 ad atomic_add_int(&uvmexp.paging, npages);
350 1.89 ad }
351 1.89 ad
352 1.89 ad void
353 1.89 ad uvm_pageout_done(int npages)
354 1.89 ad {
355 1.89 ad
356 1.89 ad KASSERT(uvmexp.paging >= npages);
357 1.113 ad atomic_add_int(&uvmexp.paging, -npages);
358 1.89 ad
359 1.89 ad /*
360 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
361 1.89 ad */
362 1.89 ad
363 1.117 ad mutex_spin_enter(&uvmpd_lock);
364 1.121 ad if (uvm_availmem() <= uvmexp.reserve_kernel) {
365 1.81 yamt wakeup(&uvm.pagedaemon);
366 1.117 ad } else if (uvm_pagedaemon_waiters != 0) {
367 1.81 yamt wakeup(&uvmexp.free);
368 1.89 ad uvm_pagedaemon_waiters = 0;
369 1.8 mrg }
370 1.117 ad mutex_spin_exit(&uvmpd_lock);
371 1.1 mrg }
372 1.1 mrg
373 1.76 yamt /*
374 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
375 1.76 yamt *
376 1.113 ad * => called with page interlock held.
377 1.76 yamt * => resolve orphaned O->A loaned page.
378 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
379 1.76 yamt */
380 1.76 yamt
381 1.89 ad kmutex_t *
382 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
383 1.76 yamt {
384 1.76 yamt struct uvm_object *uobj = pg->uobject;
385 1.113 ad struct vm_anon *anon = pg->uanon;
386 1.113 ad int tries, count;
387 1.113 ad bool running;
388 1.89 ad kmutex_t *slock;
389 1.89 ad
390 1.113 ad KASSERT(mutex_owned(&pg->interlock));
391 1.76 yamt
392 1.76 yamt if (uobj != NULL) {
393 1.103 rmind slock = uobj->vmobjlock;
394 1.113 ad KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
395 1.113 ad } else if (anon != NULL) {
396 1.113 ad slock = anon->an_lock;
397 1.113 ad KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
398 1.76 yamt } else {
399 1.113 ad /* Page may be in state of flux - ignore. */
400 1.113 ad mutex_exit(&pg->interlock);
401 1.113 ad return NULL;
402 1.76 yamt }
403 1.76 yamt
404 1.113 ad /*
405 1.113 ad * Now try to lock the objects. We'll try hard, but don't really
406 1.113 ad * plan on spending more than a millisecond or so here.
407 1.113 ad */
408 1.113 ad tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
409 1.113 ad for (;;) {
410 1.113 ad if (mutex_tryenter(slock)) {
411 1.113 ad if (uobj == NULL) {
412 1.113 ad /*
413 1.113 ad * set PG_ANON if it isn't set already.
414 1.113 ad */
415 1.113 ad if ((pg->flags & PG_ANON) == 0) {
416 1.113 ad KASSERT(pg->loan_count > 0);
417 1.113 ad pg->loan_count--;
418 1.113 ad pg->flags |= PG_ANON;
419 1.113 ad /* anon now owns it */
420 1.113 ad }
421 1.113 ad }
422 1.113 ad mutex_exit(&pg->interlock);
423 1.113 ad return slock;
424 1.113 ad }
425 1.113 ad running = mutex_owner_running(slock);
426 1.113 ad if (!running || --tries <= 0) {
427 1.113 ad break;
428 1.113 ad }
429 1.113 ad count = SPINLOCK_BACKOFF_MAX;
430 1.113 ad SPINLOCK_BACKOFF(count);
431 1.76 yamt }
432 1.76 yamt
433 1.113 ad /*
434 1.113 ad * We didn't get the lock; chances are the very next page on the
435 1.113 ad * queue also has the same lock, so if the lock owner is not running
436 1.113 ad * take a breather and allow them to make progress. There could be
437 1.113 ad * only 1 CPU in the system, or the pagedaemon could have preempted
438 1.113 ad * the owner in kernel, or any number of other things could be going
439 1.113 ad * on.
440 1.113 ad */
441 1.113 ad mutex_exit(&pg->interlock);
442 1.113 ad if (curlwp == uvm.pagedaemon_lwp) {
443 1.113 ad if (!running) {
444 1.113 ad (void)kpause("pdpglock", false, 1, NULL);
445 1.76 yamt }
446 1.113 ad uvmexp.pdbusy++;
447 1.76 yamt }
448 1.113 ad return NULL;
449 1.76 yamt }
450 1.76 yamt
451 1.73 yamt #if defined(VMSWAP)
452 1.73 yamt struct swapcluster {
453 1.73 yamt int swc_slot;
454 1.73 yamt int swc_nallocated;
455 1.73 yamt int swc_nused;
456 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
457 1.73 yamt };
458 1.73 yamt
459 1.73 yamt static void
460 1.73 yamt swapcluster_init(struct swapcluster *swc)
461 1.73 yamt {
462 1.73 yamt
463 1.73 yamt swc->swc_slot = 0;
464 1.89 ad swc->swc_nused = 0;
465 1.73 yamt }
466 1.73 yamt
467 1.73 yamt static int
468 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
469 1.73 yamt {
470 1.73 yamt int slot;
471 1.73 yamt int npages;
472 1.73 yamt
473 1.73 yamt if (swc->swc_slot != 0) {
474 1.73 yamt return 0;
475 1.73 yamt }
476 1.73 yamt
477 1.73 yamt /* Even with strange MAXPHYS, the shift
478 1.73 yamt implicitly rounds down to a page. */
479 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
480 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
481 1.73 yamt if (slot == 0) {
482 1.73 yamt return ENOMEM;
483 1.73 yamt }
484 1.73 yamt swc->swc_slot = slot;
485 1.73 yamt swc->swc_nallocated = npages;
486 1.73 yamt swc->swc_nused = 0;
487 1.73 yamt
488 1.73 yamt return 0;
489 1.73 yamt }
490 1.73 yamt
491 1.73 yamt static int
492 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
493 1.73 yamt {
494 1.73 yamt int slot;
495 1.73 yamt struct uvm_object *uobj;
496 1.73 yamt
497 1.73 yamt KASSERT(swc->swc_slot != 0);
498 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
499 1.113 ad KASSERT((pg->flags & PG_SWAPBACKED) != 0);
500 1.73 yamt
501 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
502 1.73 yamt uobj = pg->uobject;
503 1.73 yamt if (uobj == NULL) {
504 1.103 rmind KASSERT(mutex_owned(pg->uanon->an_lock));
505 1.73 yamt pg->uanon->an_swslot = slot;
506 1.73 yamt } else {
507 1.73 yamt int result;
508 1.73 yamt
509 1.103 rmind KASSERT(mutex_owned(uobj->vmobjlock));
510 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
511 1.73 yamt if (result == -1) {
512 1.73 yamt return ENOMEM;
513 1.73 yamt }
514 1.73 yamt }
515 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
516 1.73 yamt swc->swc_nused++;
517 1.73 yamt
518 1.73 yamt return 0;
519 1.73 yamt }
520 1.73 yamt
521 1.73 yamt static void
522 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
523 1.73 yamt {
524 1.73 yamt int slot;
525 1.73 yamt int nused;
526 1.73 yamt int nallocated;
527 1.108 martin int error __diagused;
528 1.73 yamt
529 1.73 yamt if (swc->swc_slot == 0) {
530 1.73 yamt return;
531 1.73 yamt }
532 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
533 1.73 yamt
534 1.73 yamt slot = swc->swc_slot;
535 1.73 yamt nused = swc->swc_nused;
536 1.73 yamt nallocated = swc->swc_nallocated;
537 1.73 yamt
538 1.73 yamt /*
539 1.73 yamt * if this is the final pageout we could have a few
540 1.73 yamt * unused swap blocks. if so, free them now.
541 1.73 yamt */
542 1.73 yamt
543 1.73 yamt if (nused < nallocated) {
544 1.73 yamt if (!now) {
545 1.73 yamt return;
546 1.73 yamt }
547 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
548 1.73 yamt }
549 1.73 yamt
550 1.73 yamt /*
551 1.73 yamt * now start the pageout.
552 1.73 yamt */
553 1.73 yamt
554 1.91 yamt if (nused > 0) {
555 1.91 yamt uvmexp.pdpageouts++;
556 1.91 yamt uvm_pageout_start(nused);
557 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
558 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
559 1.91 yamt }
560 1.73 yamt
561 1.73 yamt /*
562 1.73 yamt * zero swslot to indicate that we are
563 1.73 yamt * no longer building a swap-backed cluster.
564 1.73 yamt */
565 1.73 yamt
566 1.73 yamt swc->swc_slot = 0;
567 1.89 ad swc->swc_nused = 0;
568 1.89 ad }
569 1.89 ad
570 1.89 ad static int
571 1.89 ad swapcluster_nused(struct swapcluster *swc)
572 1.89 ad {
573 1.89 ad
574 1.89 ad return swc->swc_nused;
575 1.73 yamt }
576 1.77 yamt
577 1.77 yamt /*
578 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
579 1.77 yamt *
580 1.77 yamt * => called with owner locked.
581 1.84 thorpej * => return true if a page had an associated slot.
582 1.77 yamt */
583 1.77 yamt
584 1.119 ad bool
585 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
586 1.77 yamt {
587 1.84 thorpej bool result = false;
588 1.77 yamt struct vm_anon *anon = pg->uanon;
589 1.77 yamt
590 1.113 ad if ((pg->flags & PG_ANON) && anon->an_swslot) {
591 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
592 1.77 yamt anon->an_swslot = 0;
593 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
594 1.84 thorpej result = true;
595 1.113 ad } else if (pg->flags & PG_AOBJ) {
596 1.77 yamt int slot = uao_set_swslot(pg->uobject,
597 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
598 1.77 yamt if (slot) {
599 1.77 yamt uvm_swap_free(slot, 1);
600 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
601 1.84 thorpej result = true;
602 1.77 yamt }
603 1.77 yamt }
604 1.77 yamt
605 1.77 yamt return result;
606 1.77 yamt }
607 1.77 yamt
608 1.73 yamt #endif /* defined(VMSWAP) */
609 1.73 yamt
610 1.1 mrg /*
611 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
612 1.77 yamt * to clean or free.
613 1.1 mrg *
614 1.1 mrg * => we work on meeting our free target by converting inactive pages
615 1.1 mrg * into free pages.
616 1.1 mrg * => we handle the building of swap-backed clusters
617 1.1 mrg */
618 1.1 mrg
619 1.65 thorpej static void
620 1.77 yamt uvmpd_scan_queue(void)
621 1.8 mrg {
622 1.77 yamt struct vm_page *p;
623 1.8 mrg struct uvm_object *uobj;
624 1.37 chs struct vm_anon *anon;
625 1.68 yamt #if defined(VMSWAP)
626 1.73 yamt struct swapcluster swc;
627 1.68 yamt #endif /* defined(VMSWAP) */
628 1.77 yamt int dirtyreacts;
629 1.89 ad kmutex_t *slock;
630 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
631 1.1 mrg
632 1.8 mrg /*
633 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
634 1.24 chs * to stay in the loop while we have a page to scan or we have
635 1.8 mrg * a swap-cluster to build.
636 1.8 mrg */
637 1.24 chs
638 1.73 yamt #if defined(VMSWAP)
639 1.73 yamt swapcluster_init(&swc);
640 1.73 yamt #endif /* defined(VMSWAP) */
641 1.77 yamt
642 1.14 chs dirtyreacts = 0;
643 1.77 yamt uvmpdpol_scaninit();
644 1.43 chs
645 1.77 yamt while (/* CONSTCOND */ 1) {
646 1.24 chs
647 1.73 yamt /*
648 1.73 yamt * see if we've met the free target.
649 1.73 yamt */
650 1.73 yamt
651 1.121 ad if (uvm_availmem() + uvmexp.paging
652 1.89 ad #if defined(VMSWAP)
653 1.89 ad + swapcluster_nused(&swc)
654 1.89 ad #endif /* defined(VMSWAP) */
655 1.89 ad >= uvmexp.freetarg << 2 ||
656 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
657 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
658 1.73 yamt "exit loop", 0, 0, 0, 0);
659 1.73 yamt break;
660 1.73 yamt }
661 1.24 chs
662 1.73 yamt /*
663 1.113 ad * first we have the pdpolicy select a victim page
664 1.113 ad * and attempt to lock the object that the page
665 1.73 yamt * belongs to. if our attempt fails we skip on to
666 1.73 yamt * the next page (no harm done). it is important to
667 1.73 yamt * "try" locking the object as we are locking in the
668 1.73 yamt * wrong order (pageq -> object) and we don't want to
669 1.73 yamt * deadlock.
670 1.73 yamt *
671 1.73 yamt * the only time we expect to see an ownerless page
672 1.113 ad * (i.e. a page with no uobject and !PG_ANON) is if an
673 1.73 yamt * anon has loaned a page from a uvm_object and the
674 1.73 yamt * uvm_object has dropped the ownership. in that
675 1.73 yamt * case, the anon can "take over" the loaned page
676 1.73 yamt * and make it its own.
677 1.73 yamt */
678 1.30 chs
679 1.113 ad p = uvmpdpol_selectvictim(&slock);
680 1.113 ad if (p == NULL) {
681 1.113 ad break;
682 1.76 yamt }
683 1.113 ad KASSERT(uvmpdpol_pageisqueued_p(p));
684 1.120 ad KASSERT(uvm_page_owner_locked_p(p));
685 1.113 ad KASSERT(p->wire_count == 0);
686 1.113 ad
687 1.113 ad /*
688 1.113 ad * we are below target and have a new page to consider.
689 1.113 ad */
690 1.113 ad
691 1.113 ad anon = p->uanon;
692 1.113 ad uobj = p->uobject;
693 1.113 ad
694 1.76 yamt if (p->flags & PG_BUSY) {
695 1.89 ad mutex_exit(slock);
696 1.76 yamt uvmexp.pdbusy++;
697 1.76 yamt continue;
698 1.76 yamt }
699 1.76 yamt
700 1.73 yamt /* does the page belong to an object? */
701 1.73 yamt if (uobj != NULL) {
702 1.73 yamt uvmexp.pdobscan++;
703 1.73 yamt } else {
704 1.73 yamt #if defined(VMSWAP)
705 1.73 yamt KASSERT(anon != NULL);
706 1.73 yamt uvmexp.pdanscan++;
707 1.68 yamt #else /* defined(VMSWAP) */
708 1.73 yamt panic("%s: anon", __func__);
709 1.68 yamt #endif /* defined(VMSWAP) */
710 1.73 yamt }
711 1.8 mrg
712 1.37 chs
713 1.73 yamt /*
714 1.113 ad * we now have the object locked.
715 1.73 yamt * if the page is not swap-backed, call the object's
716 1.73 yamt * pager to flush and free the page.
717 1.73 yamt */
718 1.37 chs
719 1.69 yamt #if defined(READAHEAD_STATS)
720 1.113 ad if ((p->flags & PG_READAHEAD) != 0) {
721 1.113 ad p->flags &= ~PG_READAHEAD;
722 1.73 yamt uvm_ra_miss.ev_count++;
723 1.73 yamt }
724 1.69 yamt #endif /* defined(READAHEAD_STATS) */
725 1.69 yamt
726 1.113 ad if ((p->flags & PG_SWAPBACKED) == 0) {
727 1.82 alc KASSERT(uobj != NULL);
728 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
729 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
730 1.73 yamt continue;
731 1.73 yamt }
732 1.37 chs
733 1.73 yamt /*
734 1.73 yamt * the page is swap-backed. remove all the permissions
735 1.73 yamt * from the page so we can sync the modified info
736 1.73 yamt * without any race conditions. if the page is clean
737 1.73 yamt * we can free it now and continue.
738 1.73 yamt */
739 1.8 mrg
740 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
741 1.123 ad if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
742 1.123 ad if (pmap_clear_modify(p)) {
743 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
744 1.123 ad } else {
745 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
746 1.123 ad }
747 1.73 yamt }
748 1.123 ad if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
749 1.73 yamt int slot;
750 1.73 yamt int pageidx;
751 1.73 yamt
752 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
753 1.73 yamt uvm_pagefree(p);
754 1.113 ad atomic_inc_uint(&uvmexp.pdfreed);
755 1.8 mrg
756 1.8 mrg /*
757 1.73 yamt * for anons, we need to remove the page
758 1.73 yamt * from the anon ourselves. for aobjs,
759 1.73 yamt * pagefree did that for us.
760 1.8 mrg */
761 1.24 chs
762 1.73 yamt if (anon) {
763 1.73 yamt KASSERT(anon->an_swslot != 0);
764 1.73 yamt anon->an_page = NULL;
765 1.73 yamt slot = anon->an_swslot;
766 1.73 yamt } else {
767 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
768 1.8 mrg }
769 1.73 yamt if (slot > 0) {
770 1.73 yamt /* this page is now only in swap. */
771 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
772 1.112 ad atomic_inc_uint(&uvmexp.swpgonly);
773 1.37 chs }
774 1.112 ad mutex_exit(slock);
775 1.73 yamt continue;
776 1.73 yamt }
777 1.37 chs
778 1.77 yamt #if defined(VMSWAP)
779 1.73 yamt /*
780 1.73 yamt * this page is dirty, skip it if we'll have met our
781 1.73 yamt * free target when all the current pageouts complete.
782 1.73 yamt */
783 1.24 chs
784 1.121 ad if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
785 1.89 ad mutex_exit(slock);
786 1.73 yamt continue;
787 1.73 yamt }
788 1.14 chs
789 1.73 yamt /*
790 1.73 yamt * free any swap space allocated to the page since
791 1.73 yamt * we'll have to write it again with its new data.
792 1.73 yamt */
793 1.24 chs
794 1.77 yamt uvmpd_dropswap(p);
795 1.14 chs
796 1.73 yamt /*
797 1.97 ad * start new swap pageout cluster (if necessary).
798 1.97 ad *
799 1.97 ad * if swap is full reactivate this page so that
800 1.97 ad * we eventually cycle all pages through the
801 1.97 ad * inactive queue.
802 1.73 yamt */
803 1.68 yamt
804 1.97 ad if (swapcluster_allocslots(&swc)) {
805 1.73 yamt dirtyreacts++;
806 1.122 ad uvm_pagelock(p);
807 1.73 yamt uvm_pageactivate(p);
808 1.122 ad uvm_pageunlock(p);
809 1.89 ad mutex_exit(slock);
810 1.73 yamt continue;
811 1.8 mrg }
812 1.8 mrg
813 1.8 mrg /*
814 1.73 yamt * at this point, we're definitely going reuse this
815 1.73 yamt * page. mark the page busy and delayed-free.
816 1.73 yamt * we should remove the page from the page queues
817 1.73 yamt * so we don't ever look at it again.
818 1.73 yamt * adjust counters and such.
819 1.8 mrg */
820 1.8 mrg
821 1.73 yamt p->flags |= PG_BUSY;
822 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
823 1.113 ad p->flags |= PG_PAGEOUT;
824 1.113 ad uvmexp.pgswapout++;
825 1.73 yamt
826 1.122 ad uvm_pagelock(p);
827 1.73 yamt uvm_pagedequeue(p);
828 1.122 ad uvm_pageunlock(p);
829 1.73 yamt
830 1.8 mrg /*
831 1.73 yamt * add the new page to the cluster.
832 1.8 mrg */
833 1.8 mrg
834 1.73 yamt if (swapcluster_add(&swc, p)) {
835 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
836 1.73 yamt UVM_PAGE_OWN(p, NULL);
837 1.77 yamt dirtyreacts++;
838 1.122 ad uvm_pagelock(p);
839 1.73 yamt uvm_pageactivate(p);
840 1.122 ad uvm_pageunlock(p);
841 1.89 ad mutex_exit(slock);
842 1.73 yamt continue;
843 1.73 yamt }
844 1.89 ad mutex_exit(slock);
845 1.73 yamt
846 1.115 ad swapcluster_flush(&swc, false);
847 1.115 ad
848 1.8 mrg /*
849 1.115 ad * the pageout is in progress. bump counters and set up
850 1.31 chs * for the next loop.
851 1.8 mrg */
852 1.8 mrg
853 1.115 ad atomic_inc_uint(&uvmexp.pdpending);
854 1.77 yamt
855 1.77 yamt #else /* defined(VMSWAP) */
856 1.122 ad uvm_pagelock(p);
857 1.77 yamt uvm_pageactivate(p);
858 1.122 ad uvm_pageunlock(p);
859 1.89 ad mutex_exit(slock);
860 1.77 yamt #endif /* defined(VMSWAP) */
861 1.73 yamt }
862 1.73 yamt
863 1.119 ad uvmpdpol_scanfini();
864 1.119 ad
865 1.73 yamt #if defined(VMSWAP)
866 1.84 thorpej swapcluster_flush(&swc, true);
867 1.68 yamt #endif /* defined(VMSWAP) */
868 1.1 mrg }
869 1.1 mrg
870 1.1 mrg /*
871 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
872 1.1 mrg */
873 1.1 mrg
874 1.65 thorpej static void
875 1.37 chs uvmpd_scan(void)
876 1.1 mrg {
877 1.117 ad int swap_shortage, pages_freed, fpages;
878 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
879 1.1 mrg
880 1.37 chs uvmexp.pdrevs++;
881 1.1 mrg
882 1.8 mrg /*
883 1.93 ad * work on meeting our targets. first we work on our free target
884 1.93 ad * by converting inactive pages into free pages. then we work on
885 1.93 ad * meeting our inactive target by converting active pages to
886 1.93 ad * inactive ones.
887 1.8 mrg */
888 1.8 mrg
889 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
890 1.8 mrg
891 1.14 chs pages_freed = uvmexp.pdfreed;
892 1.77 yamt uvmpd_scan_queue();
893 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
894 1.8 mrg
895 1.8 mrg /*
896 1.14 chs * detect if we're not going to be able to page anything out
897 1.14 chs * until we free some swap resources from active pages.
898 1.14 chs */
899 1.24 chs
900 1.14 chs swap_shortage = 0;
901 1.121 ad fpages = uvm_availmem();
902 1.117 ad if (fpages < uvmexp.freetarg &&
903 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
904 1.52 pk !uvm_swapisfull() &&
905 1.14 chs pages_freed == 0) {
906 1.117 ad swap_shortage = uvmexp.freetarg - fpages;
907 1.14 chs }
908 1.24 chs
909 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
910 1.93 ad
911 1.93 ad /*
912 1.94 ad * if still below the minimum target, try unloading kernel
913 1.94 ad * modules.
914 1.94 ad */
915 1.93 ad
916 1.121 ad if (uvm_availmem() < uvmexp.freemin) {
917 1.94 ad module_thread_kick();
918 1.93 ad }
919 1.1 mrg }
920 1.62 yamt
921 1.62 yamt /*
922 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
923 1.62 yamt *
924 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
925 1.62 yamt *
926 1.62 yamt * XXX should be tunable.
927 1.62 yamt * XXX should consider pools, etc?
928 1.62 yamt */
929 1.62 yamt
930 1.83 thorpej bool
931 1.62 yamt uvm_reclaimable(void)
932 1.62 yamt {
933 1.62 yamt int filepages;
934 1.77 yamt int active, inactive;
935 1.62 yamt
936 1.62 yamt /*
937 1.62 yamt * if swap is not full, no problem.
938 1.62 yamt */
939 1.62 yamt
940 1.62 yamt if (!uvm_swapisfull()) {
941 1.84 thorpej return true;
942 1.62 yamt }
943 1.62 yamt
944 1.62 yamt /*
945 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
946 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
947 1.62 yamt *
948 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
949 1.63 yamt *
950 1.63 yamt * XXX should consider about other reclaimable memory.
951 1.63 yamt * XXX ie. pools, traditional buffer cache.
952 1.62 yamt */
953 1.62 yamt
954 1.116 ad cpu_count_sync_all();
955 1.116 ad filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
956 1.116 ad (int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
957 1.77 yamt uvm_estimatepageable(&active, &inactive);
958 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
959 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
960 1.84 thorpej return true;
961 1.62 yamt }
962 1.62 yamt
963 1.62 yamt /*
964 1.62 yamt * kill the process, fail allocation, etc..
965 1.62 yamt */
966 1.62 yamt
967 1.84 thorpej return false;
968 1.62 yamt }
969 1.77 yamt
970 1.77 yamt void
971 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
972 1.77 yamt {
973 1.77 yamt
974 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
975 1.77 yamt }
976 1.98 haad
977 1.110 chs
978 1.110 chs /*
979 1.110 chs * Use a separate thread for draining pools.
980 1.110 chs * This work can't done from the main pagedaemon thread because
981 1.110 chs * some pool allocators need to take vm_map locks.
982 1.110 chs */
983 1.110 chs
984 1.110 chs static void
985 1.110 chs uvmpd_pool_drain_thread(void *arg)
986 1.110 chs {
987 1.119 ad struct pool *firstpool, *curpool;
988 1.119 ad int bufcnt, lastslept;
989 1.119 ad bool cycled;
990 1.110 chs
991 1.119 ad firstpool = NULL;
992 1.119 ad cycled = true;
993 1.110 chs for (;;) {
994 1.119 ad /*
995 1.119 ad * sleep until awoken by the pagedaemon.
996 1.119 ad */
997 1.117 ad mutex_enter(&uvmpd_lock);
998 1.110 chs if (!uvmpd_pool_drain_run) {
999 1.119 ad lastslept = hardclock_ticks;
1000 1.117 ad cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
1001 1.119 ad if (hardclock_ticks != lastslept) {
1002 1.119 ad cycled = false;
1003 1.119 ad firstpool = NULL;
1004 1.119 ad }
1005 1.110 chs }
1006 1.110 chs uvmpd_pool_drain_run = false;
1007 1.117 ad mutex_exit(&uvmpd_lock);
1008 1.110 chs
1009 1.110 chs /*
1010 1.119 ad * rate limit draining, otherwise in desperate circumstances
1011 1.119 ad * this can totally saturate the system with xcall activity.
1012 1.119 ad */
1013 1.119 ad if (cycled) {
1014 1.119 ad kpause("uvmpdlmt", false, 1, NULL);
1015 1.119 ad cycled = false;
1016 1.119 ad firstpool = NULL;
1017 1.119 ad }
1018 1.119 ad
1019 1.119 ad /*
1020 1.119 ad * drain and temporarily disable the freelist cache.
1021 1.119 ad */
1022 1.119 ad uvm_pgflcache_pause();
1023 1.119 ad
1024 1.119 ad /*
1025 1.110 chs * kill unused metadata buffers.
1026 1.110 chs */
1027 1.121 ad bufcnt = uvmexp.freetarg - uvm_availmem();
1028 1.110 chs if (bufcnt < 0)
1029 1.110 chs bufcnt = 0;
1030 1.110 chs
1031 1.110 chs mutex_enter(&bufcache_lock);
1032 1.110 chs buf_drain(bufcnt << PAGE_SHIFT);
1033 1.110 chs mutex_exit(&bufcache_lock);
1034 1.110 chs
1035 1.110 chs /*
1036 1.119 ad * drain a pool, and then re-enable the freelist cache.
1037 1.110 chs */
1038 1.119 ad (void)pool_drain(&curpool);
1039 1.119 ad KASSERT(curpool != NULL);
1040 1.119 ad if (firstpool == NULL) {
1041 1.119 ad firstpool = curpool;
1042 1.119 ad } else if (firstpool == curpool) {
1043 1.119 ad cycled = true;
1044 1.119 ad }
1045 1.119 ad uvm_pgflcache_resume();
1046 1.110 chs }
1047 1.110 chs /*NOTREACHED*/
1048 1.110 chs }
1049 1.110 chs
1050 1.110 chs static void
1051 1.110 chs uvmpd_pool_drain_wakeup(void)
1052 1.110 chs {
1053 1.110 chs
1054 1.117 ad mutex_enter(&uvmpd_lock);
1055 1.110 chs uvmpd_pool_drain_run = true;
1056 1.110 chs cv_signal(&uvmpd_pool_drain_cv);
1057 1.117 ad mutex_exit(&uvmpd_lock);
1058 1.110 chs }
1059