uvm_pdaemon.c revision 1.126 1 1.126 maxv /* $NetBSD: uvm_pdaemon.c,v 1.126 2020/04/13 15:54:45 maxv Exp $ */
2 1.1 mrg
3 1.34 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.34 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.102 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94
37 1.4 mrg * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.34 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.34 chs *
49 1.34 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.34 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.34 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.1 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_pdaemon.c: the page daemon
66 1.1 mrg */
67 1.42 lukem
68 1.42 lukem #include <sys/cdefs.h>
69 1.126 maxv __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.126 2020/04/13 15:54:45 maxv Exp $");
70 1.42 lukem
71 1.42 lukem #include "opt_uvmhist.h"
72 1.69 yamt #include "opt_readahead.h"
73 1.1 mrg
74 1.125 ad #define __RWLOCK_PRIVATE
75 1.125 ad
76 1.1 mrg #include <sys/param.h>
77 1.1 mrg #include <sys/proc.h>
78 1.1 mrg #include <sys/systm.h>
79 1.1 mrg #include <sys/kernel.h>
80 1.9 pk #include <sys/pool.h>
81 1.24 chs #include <sys/buf.h>
82 1.94 ad #include <sys/module.h>
83 1.96 ad #include <sys/atomic.h>
84 1.110 chs #include <sys/kthread.h>
85 1.1 mrg
86 1.1 mrg #include <uvm/uvm.h>
87 1.77 yamt #include <uvm/uvm_pdpolicy.h>
88 1.119 ad #include <uvm/uvm_pgflcache.h>
89 1.1 mrg
90 1.107 matt #ifdef UVMHIST
91 1.107 matt UVMHIST_DEFINE(pdhist);
92 1.107 matt #endif
93 1.107 matt
94 1.1 mrg /*
95 1.45 wiz * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
96 1.14 chs * in a pass thru the inactive list when swap is full. the value should be
97 1.14 chs * "small"... if it's too large we'll cycle the active pages thru the inactive
98 1.14 chs * queue too quickly to for them to be referenced and avoid being freed.
99 1.14 chs */
100 1.14 chs
101 1.89 ad #define UVMPD_NUMDIRTYREACTS 16
102 1.14 chs
103 1.113 ad #define UVMPD_NUMTRYLOCKOWNER 128
104 1.14 chs
105 1.14 chs /*
106 1.1 mrg * local prototypes
107 1.1 mrg */
108 1.1 mrg
109 1.65 thorpej static void uvmpd_scan(void);
110 1.77 yamt static void uvmpd_scan_queue(void);
111 1.65 thorpej static void uvmpd_tune(void);
112 1.110 chs static void uvmpd_pool_drain_thread(void *);
113 1.110 chs static void uvmpd_pool_drain_wakeup(void);
114 1.1 mrg
115 1.101 pooka static unsigned int uvm_pagedaemon_waiters;
116 1.89 ad
117 1.110 chs /* State for the pool drainer thread */
118 1.117 ad static kmutex_t uvmpd_lock __cacheline_aligned;
119 1.110 chs static kcondvar_t uvmpd_pool_drain_cv;
120 1.110 chs static bool uvmpd_pool_drain_run = false;
121 1.110 chs
122 1.1 mrg /*
123 1.61 chs * XXX hack to avoid hangs when large processes fork.
124 1.61 chs */
125 1.96 ad u_int uvm_extrapages;
126 1.61 chs
127 1.61 chs /*
128 1.1 mrg * uvm_wait: wait (sleep) for the page daemon to free some pages
129 1.1 mrg *
130 1.1 mrg * => should be called with all locks released
131 1.1 mrg * => should _not_ be called by the page daemon (to avoid deadlock)
132 1.1 mrg */
133 1.1 mrg
134 1.19 thorpej void
135 1.65 thorpej uvm_wait(const char *wmsg)
136 1.8 mrg {
137 1.8 mrg int timo = 0;
138 1.89 ad
139 1.111 chs if (uvm.pagedaemon_lwp == NULL)
140 1.111 chs panic("out of memory before the pagedaemon thread exists");
141 1.111 chs
142 1.117 ad mutex_spin_enter(&uvmpd_lock);
143 1.1 mrg
144 1.8 mrg /*
145 1.8 mrg * check for page daemon going to sleep (waiting for itself)
146 1.8 mrg */
147 1.1 mrg
148 1.86 ad if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
149 1.8 mrg /*
150 1.8 mrg * now we have a problem: the pagedaemon wants to go to
151 1.8 mrg * sleep until it frees more memory. but how can it
152 1.8 mrg * free more memory if it is asleep? that is a deadlock.
153 1.8 mrg * we have two options:
154 1.8 mrg * [1] panic now
155 1.8 mrg * [2] put a timeout on the sleep, thus causing the
156 1.8 mrg * pagedaemon to only pause (rather than sleep forever)
157 1.8 mrg *
158 1.8 mrg * note that option [2] will only help us if we get lucky
159 1.8 mrg * and some other process on the system breaks the deadlock
160 1.8 mrg * by exiting or freeing memory (thus allowing the pagedaemon
161 1.8 mrg * to continue). for now we panic if DEBUG is defined,
162 1.8 mrg * otherwise we hope for the best with option [2] (better
163 1.8 mrg * yet, this should never happen in the first place!).
164 1.8 mrg */
165 1.1 mrg
166 1.8 mrg printf("pagedaemon: deadlock detected!\n");
167 1.8 mrg timo = hz >> 3; /* set timeout */
168 1.1 mrg #if defined(DEBUG)
169 1.8 mrg /* DEBUG: panic so we can debug it */
170 1.8 mrg panic("pagedaemon deadlock");
171 1.1 mrg #endif
172 1.8 mrg }
173 1.1 mrg
174 1.89 ad uvm_pagedaemon_waiters++;
175 1.17 thorpej wakeup(&uvm.pagedaemon); /* wake the daemon! */
176 1.117 ad UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
177 1.1 mrg }
178 1.1 mrg
179 1.77 yamt /*
180 1.77 yamt * uvm_kick_pdaemon: perform checks to determine if we need to
181 1.77 yamt * give the pagedaemon a nudge, and do so if necessary.
182 1.77 yamt */
183 1.77 yamt
184 1.77 yamt void
185 1.77 yamt uvm_kick_pdaemon(void)
186 1.77 yamt {
187 1.121 ad int fpages = uvm_availmem();
188 1.77 yamt
189 1.117 ad if (fpages + uvmexp.paging < uvmexp.freemin ||
190 1.117 ad (fpages + uvmexp.paging < uvmexp.freetarg &&
191 1.105 para uvmpdpol_needsscan_p()) ||
192 1.105 para uvm_km_va_starved_p()) {
193 1.117 ad mutex_spin_enter(&uvmpd_lock);
194 1.77 yamt wakeup(&uvm.pagedaemon);
195 1.117 ad mutex_spin_exit(&uvmpd_lock);
196 1.77 yamt }
197 1.77 yamt }
198 1.1 mrg
199 1.1 mrg /*
200 1.1 mrg * uvmpd_tune: tune paging parameters
201 1.1 mrg *
202 1.1 mrg * => called when ever memory is added (or removed?) to the system
203 1.1 mrg */
204 1.1 mrg
205 1.65 thorpej static void
206 1.37 chs uvmpd_tune(void)
207 1.8 mrg {
208 1.95 ad int val;
209 1.95 ad
210 1.8 mrg UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
211 1.1 mrg
212 1.93 ad /*
213 1.93 ad * try to keep 0.5% of available RAM free, but limit to between
214 1.93 ad * 128k and 1024k per-CPU. XXX: what are these values good for?
215 1.93 ad */
216 1.95 ad val = uvmexp.npages / 200;
217 1.95 ad val = MAX(val, (128*1024) >> PAGE_SHIFT);
218 1.95 ad val = MIN(val, (1024*1024) >> PAGE_SHIFT);
219 1.95 ad val *= ncpu;
220 1.23 bjh21
221 1.23 bjh21 /* Make sure there's always a user page free. */
222 1.95 ad if (val < uvmexp.reserve_kernel + 1)
223 1.95 ad val = uvmexp.reserve_kernel + 1;
224 1.95 ad uvmexp.freemin = val;
225 1.95 ad
226 1.96 ad /* Calculate free target. */
227 1.95 ad val = (uvmexp.freemin * 4) / 3;
228 1.95 ad if (val <= uvmexp.freemin)
229 1.95 ad val = uvmexp.freemin + 1;
230 1.96 ad uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
231 1.61 chs
232 1.8 mrg uvmexp.wiredmax = uvmexp.npages / 3;
233 1.109 pgoyette UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
234 1.1 mrg uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
235 1.1 mrg }
236 1.1 mrg
237 1.1 mrg /*
238 1.1 mrg * uvm_pageout: the main loop for the pagedaemon
239 1.1 mrg */
240 1.1 mrg
241 1.8 mrg void
242 1.80 yamt uvm_pageout(void *arg)
243 1.8 mrg {
244 1.110 chs int npages = 0;
245 1.61 chs int extrapages = 0;
246 1.117 ad int fpages;
247 1.98 haad
248 1.8 mrg UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
249 1.24 chs
250 1.8 mrg UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
251 1.8 mrg
252 1.117 ad mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
253 1.110 chs cv_init(&uvmpd_pool_drain_cv, "pooldrain");
254 1.110 chs
255 1.110 chs /* Create the pool drainer kernel thread. */
256 1.110 chs if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
257 1.110 chs uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
258 1.110 chs panic("fork pooldrain");
259 1.110 chs
260 1.8 mrg /*
261 1.8 mrg * ensure correct priority and set paging parameters...
262 1.8 mrg */
263 1.8 mrg
264 1.86 ad uvm.pagedaemon_lwp = curlwp;
265 1.8 mrg npages = uvmexp.npages;
266 1.8 mrg uvmpd_tune();
267 1.8 mrg
268 1.8 mrg /*
269 1.8 mrg * main loop
270 1.8 mrg */
271 1.24 chs
272 1.24 chs for (;;) {
273 1.105 para bool needsscan, needsfree, kmem_va_starved;
274 1.105 para
275 1.105 para kmem_va_starved = uvm_km_va_starved_p();
276 1.24 chs
277 1.117 ad mutex_spin_enter(&uvmpd_lock);
278 1.105 para if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
279 1.105 para !kmem_va_starved) {
280 1.89 ad UVMHIST_LOG(pdhist," <<SLEEPING>>",0,0,0,0);
281 1.89 ad UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
282 1.117 ad &uvmpd_lock, false, "pgdaemon", 0);
283 1.89 ad uvmexp.pdwoke++;
284 1.89 ad UVMHIST_LOG(pdhist," <<WOKE UP>>",0,0,0,0);
285 1.89 ad } else {
286 1.117 ad mutex_spin_exit(&uvmpd_lock);
287 1.89 ad }
288 1.24 chs
289 1.8 mrg /*
290 1.113 ad * now recompute inactive count
291 1.8 mrg */
292 1.8 mrg
293 1.61 chs if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
294 1.24 chs npages = uvmexp.npages;
295 1.61 chs extrapages = uvm_extrapages;
296 1.24 chs uvmpd_tune();
297 1.24 chs }
298 1.24 chs
299 1.77 yamt uvmpdpol_tune();
300 1.24 chs
301 1.60 enami /*
302 1.60 enami * Estimate a hint. Note that bufmem are returned to
303 1.60 enami * system only when entire pool page is empty.
304 1.60 enami */
305 1.121 ad fpages = uvm_availmem();
306 1.109 pgoyette UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd",
307 1.117 ad fpages, uvmexp.freetarg, 0,0);
308 1.8 mrg
309 1.117 ad needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
310 1.93 ad needsscan = needsfree || uvmpdpol_needsscan_p();
311 1.89 ad
312 1.8 mrg /*
313 1.24 chs * scan if needed
314 1.8 mrg */
315 1.97 ad if (needsscan) {
316 1.24 chs uvmpd_scan();
317 1.97 ad }
318 1.8 mrg
319 1.8 mrg /*
320 1.24 chs * if there's any free memory to be had,
321 1.24 chs * wake up any waiters.
322 1.8 mrg */
323 1.121 ad if (uvm_availmem() > uvmexp.reserve_kernel ||
324 1.121 ad uvmexp.paging == 0) {
325 1.117 ad mutex_spin_enter(&uvmpd_lock);
326 1.24 chs wakeup(&uvmexp.free);
327 1.89 ad uvm_pagedaemon_waiters = 0;
328 1.117 ad mutex_spin_exit(&uvmpd_lock);
329 1.8 mrg }
330 1.1 mrg
331 1.8 mrg /*
332 1.113 ad * scan done. if we don't need free memory, we're done.
333 1.93 ad */
334 1.93 ad
335 1.105 para if (!needsfree && !kmem_va_starved)
336 1.93 ad continue;
337 1.93 ad
338 1.93 ad /*
339 1.110 chs * kick the pool drainer thread.
340 1.38 chs */
341 1.57 jdolecek
342 1.110 chs uvmpd_pool_drain_wakeup();
343 1.24 chs }
344 1.24 chs /*NOTREACHED*/
345 1.24 chs }
346 1.24 chs
347 1.89 ad void
348 1.89 ad uvm_pageout_start(int npages)
349 1.89 ad {
350 1.89 ad
351 1.113 ad atomic_add_int(&uvmexp.paging, npages);
352 1.89 ad }
353 1.89 ad
354 1.89 ad void
355 1.89 ad uvm_pageout_done(int npages)
356 1.89 ad {
357 1.89 ad
358 1.89 ad KASSERT(uvmexp.paging >= npages);
359 1.113 ad atomic_add_int(&uvmexp.paging, -npages);
360 1.89 ad
361 1.89 ad /*
362 1.89 ad * wake up either of pagedaemon or LWPs waiting for it.
363 1.89 ad */
364 1.89 ad
365 1.117 ad mutex_spin_enter(&uvmpd_lock);
366 1.121 ad if (uvm_availmem() <= uvmexp.reserve_kernel) {
367 1.81 yamt wakeup(&uvm.pagedaemon);
368 1.117 ad } else if (uvm_pagedaemon_waiters != 0) {
369 1.81 yamt wakeup(&uvmexp.free);
370 1.89 ad uvm_pagedaemon_waiters = 0;
371 1.8 mrg }
372 1.117 ad mutex_spin_exit(&uvmpd_lock);
373 1.1 mrg }
374 1.1 mrg
375 1.76 yamt /*
376 1.76 yamt * uvmpd_trylockowner: trylock the page's owner.
377 1.76 yamt *
378 1.113 ad * => called with page interlock held.
379 1.76 yamt * => resolve orphaned O->A loaned page.
380 1.89 ad * => return the locked mutex on success. otherwise, return NULL.
381 1.76 yamt */
382 1.76 yamt
383 1.125 ad krwlock_t *
384 1.76 yamt uvmpd_trylockowner(struct vm_page *pg)
385 1.76 yamt {
386 1.76 yamt struct uvm_object *uobj = pg->uobject;
387 1.113 ad struct vm_anon *anon = pg->uanon;
388 1.113 ad int tries, count;
389 1.113 ad bool running;
390 1.125 ad krwlock_t *slock;
391 1.89 ad
392 1.113 ad KASSERT(mutex_owned(&pg->interlock));
393 1.76 yamt
394 1.76 yamt if (uobj != NULL) {
395 1.103 rmind slock = uobj->vmobjlock;
396 1.113 ad KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
397 1.113 ad } else if (anon != NULL) {
398 1.113 ad slock = anon->an_lock;
399 1.113 ad KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
400 1.76 yamt } else {
401 1.113 ad /* Page may be in state of flux - ignore. */
402 1.113 ad mutex_exit(&pg->interlock);
403 1.113 ad return NULL;
404 1.76 yamt }
405 1.76 yamt
406 1.113 ad /*
407 1.113 ad * Now try to lock the objects. We'll try hard, but don't really
408 1.113 ad * plan on spending more than a millisecond or so here.
409 1.113 ad */
410 1.113 ad tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
411 1.113 ad for (;;) {
412 1.125 ad if (rw_tryenter(slock, RW_WRITER)) {
413 1.113 ad if (uobj == NULL) {
414 1.113 ad /*
415 1.113 ad * set PG_ANON if it isn't set already.
416 1.113 ad */
417 1.113 ad if ((pg->flags & PG_ANON) == 0) {
418 1.113 ad KASSERT(pg->loan_count > 0);
419 1.113 ad pg->loan_count--;
420 1.113 ad pg->flags |= PG_ANON;
421 1.113 ad /* anon now owns it */
422 1.113 ad }
423 1.113 ad }
424 1.113 ad mutex_exit(&pg->interlock);
425 1.113 ad return slock;
426 1.113 ad }
427 1.125 ad running = rw_owner_running(slock);
428 1.113 ad if (!running || --tries <= 0) {
429 1.113 ad break;
430 1.113 ad }
431 1.113 ad count = SPINLOCK_BACKOFF_MAX;
432 1.113 ad SPINLOCK_BACKOFF(count);
433 1.76 yamt }
434 1.76 yamt
435 1.113 ad /*
436 1.113 ad * We didn't get the lock; chances are the very next page on the
437 1.113 ad * queue also has the same lock, so if the lock owner is not running
438 1.113 ad * take a breather and allow them to make progress. There could be
439 1.113 ad * only 1 CPU in the system, or the pagedaemon could have preempted
440 1.113 ad * the owner in kernel, or any number of other things could be going
441 1.113 ad * on.
442 1.113 ad */
443 1.113 ad mutex_exit(&pg->interlock);
444 1.113 ad if (curlwp == uvm.pagedaemon_lwp) {
445 1.113 ad if (!running) {
446 1.113 ad (void)kpause("pdpglock", false, 1, NULL);
447 1.76 yamt }
448 1.113 ad uvmexp.pdbusy++;
449 1.76 yamt }
450 1.113 ad return NULL;
451 1.76 yamt }
452 1.76 yamt
453 1.73 yamt #if defined(VMSWAP)
454 1.73 yamt struct swapcluster {
455 1.73 yamt int swc_slot;
456 1.73 yamt int swc_nallocated;
457 1.73 yamt int swc_nused;
458 1.75 yamt struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
459 1.73 yamt };
460 1.73 yamt
461 1.73 yamt static void
462 1.73 yamt swapcluster_init(struct swapcluster *swc)
463 1.73 yamt {
464 1.73 yamt
465 1.73 yamt swc->swc_slot = 0;
466 1.89 ad swc->swc_nused = 0;
467 1.73 yamt }
468 1.73 yamt
469 1.73 yamt static int
470 1.73 yamt swapcluster_allocslots(struct swapcluster *swc)
471 1.73 yamt {
472 1.73 yamt int slot;
473 1.73 yamt int npages;
474 1.73 yamt
475 1.73 yamt if (swc->swc_slot != 0) {
476 1.73 yamt return 0;
477 1.73 yamt }
478 1.73 yamt
479 1.73 yamt /* Even with strange MAXPHYS, the shift
480 1.73 yamt implicitly rounds down to a page. */
481 1.73 yamt npages = MAXPHYS >> PAGE_SHIFT;
482 1.84 thorpej slot = uvm_swap_alloc(&npages, true);
483 1.73 yamt if (slot == 0) {
484 1.73 yamt return ENOMEM;
485 1.73 yamt }
486 1.73 yamt swc->swc_slot = slot;
487 1.73 yamt swc->swc_nallocated = npages;
488 1.73 yamt swc->swc_nused = 0;
489 1.73 yamt
490 1.73 yamt return 0;
491 1.73 yamt }
492 1.73 yamt
493 1.73 yamt static int
494 1.73 yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
495 1.73 yamt {
496 1.73 yamt int slot;
497 1.73 yamt struct uvm_object *uobj;
498 1.73 yamt
499 1.73 yamt KASSERT(swc->swc_slot != 0);
500 1.73 yamt KASSERT(swc->swc_nused < swc->swc_nallocated);
501 1.113 ad KASSERT((pg->flags & PG_SWAPBACKED) != 0);
502 1.73 yamt
503 1.73 yamt slot = swc->swc_slot + swc->swc_nused;
504 1.73 yamt uobj = pg->uobject;
505 1.73 yamt if (uobj == NULL) {
506 1.125 ad KASSERT(rw_write_held(pg->uanon->an_lock));
507 1.73 yamt pg->uanon->an_swslot = slot;
508 1.73 yamt } else {
509 1.73 yamt int result;
510 1.73 yamt
511 1.125 ad KASSERT(rw_write_held(uobj->vmobjlock));
512 1.73 yamt result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
513 1.73 yamt if (result == -1) {
514 1.73 yamt return ENOMEM;
515 1.73 yamt }
516 1.73 yamt }
517 1.73 yamt swc->swc_pages[swc->swc_nused] = pg;
518 1.73 yamt swc->swc_nused++;
519 1.73 yamt
520 1.73 yamt return 0;
521 1.73 yamt }
522 1.73 yamt
523 1.73 yamt static void
524 1.83 thorpej swapcluster_flush(struct swapcluster *swc, bool now)
525 1.73 yamt {
526 1.73 yamt int slot;
527 1.73 yamt int nused;
528 1.73 yamt int nallocated;
529 1.108 martin int error __diagused;
530 1.73 yamt
531 1.73 yamt if (swc->swc_slot == 0) {
532 1.73 yamt return;
533 1.73 yamt }
534 1.73 yamt KASSERT(swc->swc_nused <= swc->swc_nallocated);
535 1.73 yamt
536 1.73 yamt slot = swc->swc_slot;
537 1.73 yamt nused = swc->swc_nused;
538 1.73 yamt nallocated = swc->swc_nallocated;
539 1.73 yamt
540 1.73 yamt /*
541 1.73 yamt * if this is the final pageout we could have a few
542 1.73 yamt * unused swap blocks. if so, free them now.
543 1.73 yamt */
544 1.73 yamt
545 1.73 yamt if (nused < nallocated) {
546 1.73 yamt if (!now) {
547 1.73 yamt return;
548 1.73 yamt }
549 1.73 yamt uvm_swap_free(slot + nused, nallocated - nused);
550 1.73 yamt }
551 1.73 yamt
552 1.73 yamt /*
553 1.73 yamt * now start the pageout.
554 1.73 yamt */
555 1.73 yamt
556 1.91 yamt if (nused > 0) {
557 1.91 yamt uvmexp.pdpageouts++;
558 1.91 yamt uvm_pageout_start(nused);
559 1.91 yamt error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
560 1.92 yamt KASSERT(error == 0 || error == ENOMEM);
561 1.91 yamt }
562 1.73 yamt
563 1.73 yamt /*
564 1.73 yamt * zero swslot to indicate that we are
565 1.73 yamt * no longer building a swap-backed cluster.
566 1.73 yamt */
567 1.73 yamt
568 1.73 yamt swc->swc_slot = 0;
569 1.89 ad swc->swc_nused = 0;
570 1.89 ad }
571 1.89 ad
572 1.89 ad static int
573 1.89 ad swapcluster_nused(struct swapcluster *swc)
574 1.89 ad {
575 1.89 ad
576 1.89 ad return swc->swc_nused;
577 1.73 yamt }
578 1.77 yamt
579 1.77 yamt /*
580 1.77 yamt * uvmpd_dropswap: free any swap allocated to this page.
581 1.77 yamt *
582 1.77 yamt * => called with owner locked.
583 1.84 thorpej * => return true if a page had an associated slot.
584 1.77 yamt */
585 1.77 yamt
586 1.119 ad bool
587 1.77 yamt uvmpd_dropswap(struct vm_page *pg)
588 1.77 yamt {
589 1.84 thorpej bool result = false;
590 1.77 yamt struct vm_anon *anon = pg->uanon;
591 1.77 yamt
592 1.113 ad if ((pg->flags & PG_ANON) && anon->an_swslot) {
593 1.77 yamt uvm_swap_free(anon->an_swslot, 1);
594 1.77 yamt anon->an_swslot = 0;
595 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
596 1.84 thorpej result = true;
597 1.113 ad } else if (pg->flags & PG_AOBJ) {
598 1.77 yamt int slot = uao_set_swslot(pg->uobject,
599 1.77 yamt pg->offset >> PAGE_SHIFT, 0);
600 1.77 yamt if (slot) {
601 1.77 yamt uvm_swap_free(slot, 1);
602 1.123 ad uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
603 1.84 thorpej result = true;
604 1.77 yamt }
605 1.77 yamt }
606 1.77 yamt
607 1.77 yamt return result;
608 1.77 yamt }
609 1.77 yamt
610 1.73 yamt #endif /* defined(VMSWAP) */
611 1.73 yamt
612 1.1 mrg /*
613 1.77 yamt * uvmpd_scan_queue: scan an replace candidate list for pages
614 1.77 yamt * to clean or free.
615 1.1 mrg *
616 1.1 mrg * => we work on meeting our free target by converting inactive pages
617 1.1 mrg * into free pages.
618 1.1 mrg * => we handle the building of swap-backed clusters
619 1.1 mrg */
620 1.1 mrg
621 1.65 thorpej static void
622 1.77 yamt uvmpd_scan_queue(void)
623 1.8 mrg {
624 1.77 yamt struct vm_page *p;
625 1.8 mrg struct uvm_object *uobj;
626 1.37 chs struct vm_anon *anon;
627 1.68 yamt #if defined(VMSWAP)
628 1.73 yamt struct swapcluster swc;
629 1.68 yamt #endif /* defined(VMSWAP) */
630 1.77 yamt int dirtyreacts;
631 1.125 ad krwlock_t *slock;
632 1.77 yamt UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
633 1.1 mrg
634 1.8 mrg /*
635 1.8 mrg * swslot is non-zero if we are building a swap cluster. we want
636 1.24 chs * to stay in the loop while we have a page to scan or we have
637 1.8 mrg * a swap-cluster to build.
638 1.8 mrg */
639 1.24 chs
640 1.73 yamt #if defined(VMSWAP)
641 1.73 yamt swapcluster_init(&swc);
642 1.73 yamt #endif /* defined(VMSWAP) */
643 1.77 yamt
644 1.14 chs dirtyreacts = 0;
645 1.77 yamt uvmpdpol_scaninit();
646 1.43 chs
647 1.77 yamt while (/* CONSTCOND */ 1) {
648 1.24 chs
649 1.73 yamt /*
650 1.73 yamt * see if we've met the free target.
651 1.73 yamt */
652 1.73 yamt
653 1.121 ad if (uvm_availmem() + uvmexp.paging
654 1.89 ad #if defined(VMSWAP)
655 1.89 ad + swapcluster_nused(&swc)
656 1.89 ad #endif /* defined(VMSWAP) */
657 1.89 ad >= uvmexp.freetarg << 2 ||
658 1.73 yamt dirtyreacts == UVMPD_NUMDIRTYREACTS) {
659 1.73 yamt UVMHIST_LOG(pdhist," met free target: "
660 1.73 yamt "exit loop", 0, 0, 0, 0);
661 1.73 yamt break;
662 1.73 yamt }
663 1.24 chs
664 1.73 yamt /*
665 1.113 ad * first we have the pdpolicy select a victim page
666 1.113 ad * and attempt to lock the object that the page
667 1.73 yamt * belongs to. if our attempt fails we skip on to
668 1.73 yamt * the next page (no harm done). it is important to
669 1.73 yamt * "try" locking the object as we are locking in the
670 1.73 yamt * wrong order (pageq -> object) and we don't want to
671 1.73 yamt * deadlock.
672 1.73 yamt *
673 1.73 yamt * the only time we expect to see an ownerless page
674 1.113 ad * (i.e. a page with no uobject and !PG_ANON) is if an
675 1.73 yamt * anon has loaned a page from a uvm_object and the
676 1.73 yamt * uvm_object has dropped the ownership. in that
677 1.73 yamt * case, the anon can "take over" the loaned page
678 1.73 yamt * and make it its own.
679 1.73 yamt */
680 1.30 chs
681 1.113 ad p = uvmpdpol_selectvictim(&slock);
682 1.113 ad if (p == NULL) {
683 1.113 ad break;
684 1.76 yamt }
685 1.113 ad KASSERT(uvmpdpol_pageisqueued_p(p));
686 1.125 ad KASSERT(uvm_page_owner_locked_p(p, true));
687 1.113 ad KASSERT(p->wire_count == 0);
688 1.113 ad
689 1.113 ad /*
690 1.113 ad * we are below target and have a new page to consider.
691 1.113 ad */
692 1.113 ad
693 1.113 ad anon = p->uanon;
694 1.113 ad uobj = p->uobject;
695 1.113 ad
696 1.76 yamt if (p->flags & PG_BUSY) {
697 1.125 ad rw_exit(slock);
698 1.76 yamt uvmexp.pdbusy++;
699 1.76 yamt continue;
700 1.76 yamt }
701 1.76 yamt
702 1.73 yamt /* does the page belong to an object? */
703 1.73 yamt if (uobj != NULL) {
704 1.73 yamt uvmexp.pdobscan++;
705 1.73 yamt } else {
706 1.73 yamt #if defined(VMSWAP)
707 1.73 yamt KASSERT(anon != NULL);
708 1.73 yamt uvmexp.pdanscan++;
709 1.68 yamt #else /* defined(VMSWAP) */
710 1.73 yamt panic("%s: anon", __func__);
711 1.68 yamt #endif /* defined(VMSWAP) */
712 1.73 yamt }
713 1.8 mrg
714 1.37 chs
715 1.73 yamt /*
716 1.113 ad * we now have the object locked.
717 1.73 yamt * if the page is not swap-backed, call the object's
718 1.73 yamt * pager to flush and free the page.
719 1.73 yamt */
720 1.37 chs
721 1.69 yamt #if defined(READAHEAD_STATS)
722 1.113 ad if ((p->flags & PG_READAHEAD) != 0) {
723 1.113 ad p->flags &= ~PG_READAHEAD;
724 1.73 yamt uvm_ra_miss.ev_count++;
725 1.73 yamt }
726 1.69 yamt #endif /* defined(READAHEAD_STATS) */
727 1.69 yamt
728 1.113 ad if ((p->flags & PG_SWAPBACKED) == 0) {
729 1.82 alc KASSERT(uobj != NULL);
730 1.73 yamt (void) (uobj->pgops->pgo_put)(uobj, p->offset,
731 1.73 yamt p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
732 1.73 yamt continue;
733 1.73 yamt }
734 1.37 chs
735 1.73 yamt /*
736 1.73 yamt * the page is swap-backed. remove all the permissions
737 1.73 yamt * from the page so we can sync the modified info
738 1.73 yamt * without any race conditions. if the page is clean
739 1.73 yamt * we can free it now and continue.
740 1.73 yamt */
741 1.8 mrg
742 1.73 yamt pmap_page_protect(p, VM_PROT_NONE);
743 1.123 ad if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
744 1.123 ad if (pmap_clear_modify(p)) {
745 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
746 1.123 ad } else {
747 1.123 ad uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
748 1.123 ad }
749 1.73 yamt }
750 1.123 ad if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
751 1.73 yamt int slot;
752 1.73 yamt int pageidx;
753 1.73 yamt
754 1.73 yamt pageidx = p->offset >> PAGE_SHIFT;
755 1.73 yamt uvm_pagefree(p);
756 1.113 ad atomic_inc_uint(&uvmexp.pdfreed);
757 1.8 mrg
758 1.8 mrg /*
759 1.73 yamt * for anons, we need to remove the page
760 1.73 yamt * from the anon ourselves. for aobjs,
761 1.73 yamt * pagefree did that for us.
762 1.8 mrg */
763 1.24 chs
764 1.73 yamt if (anon) {
765 1.73 yamt KASSERT(anon->an_swslot != 0);
766 1.73 yamt anon->an_page = NULL;
767 1.73 yamt slot = anon->an_swslot;
768 1.73 yamt } else {
769 1.73 yamt slot = uao_find_swslot(uobj, pageidx);
770 1.8 mrg }
771 1.73 yamt if (slot > 0) {
772 1.73 yamt /* this page is now only in swap. */
773 1.73 yamt KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
774 1.112 ad atomic_inc_uint(&uvmexp.swpgonly);
775 1.37 chs }
776 1.125 ad rw_exit(slock);
777 1.73 yamt continue;
778 1.73 yamt }
779 1.37 chs
780 1.77 yamt #if defined(VMSWAP)
781 1.73 yamt /*
782 1.73 yamt * this page is dirty, skip it if we'll have met our
783 1.73 yamt * free target when all the current pageouts complete.
784 1.73 yamt */
785 1.24 chs
786 1.121 ad if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
787 1.125 ad rw_exit(slock);
788 1.73 yamt continue;
789 1.73 yamt }
790 1.14 chs
791 1.73 yamt /*
792 1.73 yamt * free any swap space allocated to the page since
793 1.73 yamt * we'll have to write it again with its new data.
794 1.73 yamt */
795 1.24 chs
796 1.77 yamt uvmpd_dropswap(p);
797 1.14 chs
798 1.73 yamt /*
799 1.97 ad * start new swap pageout cluster (if necessary).
800 1.97 ad *
801 1.97 ad * if swap is full reactivate this page so that
802 1.97 ad * we eventually cycle all pages through the
803 1.97 ad * inactive queue.
804 1.73 yamt */
805 1.68 yamt
806 1.97 ad if (swapcluster_allocslots(&swc)) {
807 1.73 yamt dirtyreacts++;
808 1.122 ad uvm_pagelock(p);
809 1.73 yamt uvm_pageactivate(p);
810 1.122 ad uvm_pageunlock(p);
811 1.125 ad rw_exit(slock);
812 1.73 yamt continue;
813 1.8 mrg }
814 1.8 mrg
815 1.8 mrg /*
816 1.73 yamt * at this point, we're definitely going reuse this
817 1.73 yamt * page. mark the page busy and delayed-free.
818 1.73 yamt * we should remove the page from the page queues
819 1.73 yamt * so we don't ever look at it again.
820 1.73 yamt * adjust counters and such.
821 1.8 mrg */
822 1.8 mrg
823 1.73 yamt p->flags |= PG_BUSY;
824 1.77 yamt UVM_PAGE_OWN(p, "scan_queue");
825 1.113 ad p->flags |= PG_PAGEOUT;
826 1.113 ad uvmexp.pgswapout++;
827 1.73 yamt
828 1.122 ad uvm_pagelock(p);
829 1.73 yamt uvm_pagedequeue(p);
830 1.122 ad uvm_pageunlock(p);
831 1.73 yamt
832 1.8 mrg /*
833 1.73 yamt * add the new page to the cluster.
834 1.8 mrg */
835 1.8 mrg
836 1.73 yamt if (swapcluster_add(&swc, p)) {
837 1.73 yamt p->flags &= ~(PG_BUSY|PG_PAGEOUT);
838 1.73 yamt UVM_PAGE_OWN(p, NULL);
839 1.77 yamt dirtyreacts++;
840 1.122 ad uvm_pagelock(p);
841 1.73 yamt uvm_pageactivate(p);
842 1.122 ad uvm_pageunlock(p);
843 1.125 ad rw_exit(slock);
844 1.73 yamt continue;
845 1.73 yamt }
846 1.125 ad rw_exit(slock);
847 1.73 yamt
848 1.115 ad swapcluster_flush(&swc, false);
849 1.115 ad
850 1.8 mrg /*
851 1.115 ad * the pageout is in progress. bump counters and set up
852 1.31 chs * for the next loop.
853 1.8 mrg */
854 1.8 mrg
855 1.115 ad atomic_inc_uint(&uvmexp.pdpending);
856 1.77 yamt
857 1.77 yamt #else /* defined(VMSWAP) */
858 1.122 ad uvm_pagelock(p);
859 1.77 yamt uvm_pageactivate(p);
860 1.122 ad uvm_pageunlock(p);
861 1.125 ad rw_exit(slock);
862 1.77 yamt #endif /* defined(VMSWAP) */
863 1.73 yamt }
864 1.73 yamt
865 1.119 ad uvmpdpol_scanfini();
866 1.119 ad
867 1.73 yamt #if defined(VMSWAP)
868 1.84 thorpej swapcluster_flush(&swc, true);
869 1.68 yamt #endif /* defined(VMSWAP) */
870 1.1 mrg }
871 1.1 mrg
872 1.1 mrg /*
873 1.1 mrg * uvmpd_scan: scan the page queues and attempt to meet our targets.
874 1.1 mrg */
875 1.1 mrg
876 1.65 thorpej static void
877 1.37 chs uvmpd_scan(void)
878 1.1 mrg {
879 1.117 ad int swap_shortage, pages_freed, fpages;
880 1.8 mrg UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
881 1.1 mrg
882 1.37 chs uvmexp.pdrevs++;
883 1.1 mrg
884 1.8 mrg /*
885 1.93 ad * work on meeting our targets. first we work on our free target
886 1.93 ad * by converting inactive pages into free pages. then we work on
887 1.93 ad * meeting our inactive target by converting active pages to
888 1.93 ad * inactive ones.
889 1.8 mrg */
890 1.8 mrg
891 1.8 mrg UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0);
892 1.8 mrg
893 1.14 chs pages_freed = uvmexp.pdfreed;
894 1.77 yamt uvmpd_scan_queue();
895 1.14 chs pages_freed = uvmexp.pdfreed - pages_freed;
896 1.8 mrg
897 1.8 mrg /*
898 1.14 chs * detect if we're not going to be able to page anything out
899 1.14 chs * until we free some swap resources from active pages.
900 1.14 chs */
901 1.24 chs
902 1.14 chs swap_shortage = 0;
903 1.121 ad fpages = uvm_availmem();
904 1.117 ad if (fpages < uvmexp.freetarg &&
905 1.52 pk uvmexp.swpginuse >= uvmexp.swpgavail &&
906 1.52 pk !uvm_swapisfull() &&
907 1.14 chs pages_freed == 0) {
908 1.117 ad swap_shortage = uvmexp.freetarg - fpages;
909 1.14 chs }
910 1.24 chs
911 1.77 yamt uvmpdpol_balancequeue(swap_shortage);
912 1.93 ad
913 1.93 ad /*
914 1.94 ad * if still below the minimum target, try unloading kernel
915 1.94 ad * modules.
916 1.94 ad */
917 1.93 ad
918 1.121 ad if (uvm_availmem() < uvmexp.freemin) {
919 1.94 ad module_thread_kick();
920 1.93 ad }
921 1.1 mrg }
922 1.62 yamt
923 1.62 yamt /*
924 1.62 yamt * uvm_reclaimable: decide whether to wait for pagedaemon.
925 1.62 yamt *
926 1.84 thorpej * => return true if it seems to be worth to do uvm_wait.
927 1.62 yamt *
928 1.62 yamt * XXX should be tunable.
929 1.62 yamt * XXX should consider pools, etc?
930 1.62 yamt */
931 1.62 yamt
932 1.83 thorpej bool
933 1.62 yamt uvm_reclaimable(void)
934 1.62 yamt {
935 1.62 yamt int filepages;
936 1.77 yamt int active, inactive;
937 1.62 yamt
938 1.62 yamt /*
939 1.62 yamt * if swap is not full, no problem.
940 1.62 yamt */
941 1.62 yamt
942 1.62 yamt if (!uvm_swapisfull()) {
943 1.84 thorpej return true;
944 1.62 yamt }
945 1.62 yamt
946 1.62 yamt /*
947 1.62 yamt * file-backed pages can be reclaimed even when swap is full.
948 1.62 yamt * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
949 1.62 yamt *
950 1.62 yamt * XXX assume the worst case, ie. all wired pages are file-backed.
951 1.63 yamt *
952 1.63 yamt * XXX should consider about other reclaimable memory.
953 1.63 yamt * XXX ie. pools, traditional buffer cache.
954 1.62 yamt */
955 1.62 yamt
956 1.116 ad cpu_count_sync_all();
957 1.116 ad filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
958 1.116 ad (int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
959 1.77 yamt uvm_estimatepageable(&active, &inactive);
960 1.77 yamt if (filepages >= MIN((active + inactive) >> 4,
961 1.62 yamt 5 * 1024 * 1024 >> PAGE_SHIFT)) {
962 1.84 thorpej return true;
963 1.62 yamt }
964 1.62 yamt
965 1.62 yamt /*
966 1.62 yamt * kill the process, fail allocation, etc..
967 1.62 yamt */
968 1.62 yamt
969 1.84 thorpej return false;
970 1.62 yamt }
971 1.77 yamt
972 1.77 yamt void
973 1.77 yamt uvm_estimatepageable(int *active, int *inactive)
974 1.77 yamt {
975 1.77 yamt
976 1.77 yamt uvmpdpol_estimatepageable(active, inactive);
977 1.77 yamt }
978 1.98 haad
979 1.110 chs
980 1.110 chs /*
981 1.110 chs * Use a separate thread for draining pools.
982 1.110 chs * This work can't done from the main pagedaemon thread because
983 1.110 chs * some pool allocators need to take vm_map locks.
984 1.110 chs */
985 1.110 chs
986 1.110 chs static void
987 1.110 chs uvmpd_pool_drain_thread(void *arg)
988 1.110 chs {
989 1.119 ad struct pool *firstpool, *curpool;
990 1.119 ad int bufcnt, lastslept;
991 1.119 ad bool cycled;
992 1.110 chs
993 1.119 ad firstpool = NULL;
994 1.119 ad cycled = true;
995 1.110 chs for (;;) {
996 1.119 ad /*
997 1.119 ad * sleep until awoken by the pagedaemon.
998 1.119 ad */
999 1.117 ad mutex_enter(&uvmpd_lock);
1000 1.110 chs if (!uvmpd_pool_drain_run) {
1001 1.126 maxv lastslept = getticks();
1002 1.117 ad cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
1003 1.126 maxv if (getticks() != lastslept) {
1004 1.119 ad cycled = false;
1005 1.119 ad firstpool = NULL;
1006 1.119 ad }
1007 1.110 chs }
1008 1.110 chs uvmpd_pool_drain_run = false;
1009 1.117 ad mutex_exit(&uvmpd_lock);
1010 1.110 chs
1011 1.110 chs /*
1012 1.119 ad * rate limit draining, otherwise in desperate circumstances
1013 1.119 ad * this can totally saturate the system with xcall activity.
1014 1.119 ad */
1015 1.119 ad if (cycled) {
1016 1.119 ad kpause("uvmpdlmt", false, 1, NULL);
1017 1.119 ad cycled = false;
1018 1.119 ad firstpool = NULL;
1019 1.119 ad }
1020 1.119 ad
1021 1.119 ad /*
1022 1.119 ad * drain and temporarily disable the freelist cache.
1023 1.119 ad */
1024 1.119 ad uvm_pgflcache_pause();
1025 1.119 ad
1026 1.119 ad /*
1027 1.110 chs * kill unused metadata buffers.
1028 1.110 chs */
1029 1.121 ad bufcnt = uvmexp.freetarg - uvm_availmem();
1030 1.110 chs if (bufcnt < 0)
1031 1.110 chs bufcnt = 0;
1032 1.110 chs
1033 1.110 chs mutex_enter(&bufcache_lock);
1034 1.110 chs buf_drain(bufcnt << PAGE_SHIFT);
1035 1.110 chs mutex_exit(&bufcache_lock);
1036 1.110 chs
1037 1.110 chs /*
1038 1.119 ad * drain a pool, and then re-enable the freelist cache.
1039 1.110 chs */
1040 1.119 ad (void)pool_drain(&curpool);
1041 1.119 ad KASSERT(curpool != NULL);
1042 1.119 ad if (firstpool == NULL) {
1043 1.119 ad firstpool = curpool;
1044 1.119 ad } else if (firstpool == curpool) {
1045 1.119 ad cycled = true;
1046 1.119 ad }
1047 1.119 ad uvm_pgflcache_resume();
1048 1.110 chs }
1049 1.110 chs /*NOTREACHED*/
1050 1.110 chs }
1051 1.110 chs
1052 1.110 chs static void
1053 1.110 chs uvmpd_pool_drain_wakeup(void)
1054 1.110 chs {
1055 1.110 chs
1056 1.117 ad mutex_enter(&uvmpd_lock);
1057 1.110 chs uvmpd_pool_drain_run = true;
1058 1.110 chs cv_signal(&uvmpd_pool_drain_cv);
1059 1.117 ad mutex_exit(&uvmpd_lock);
1060 1.110 chs }
1061