Home | History | Annotate | Line # | Download | only in uvm
uvm_pdaemon.c revision 1.127
      1  1.127        ad /*	$NetBSD: uvm_pdaemon.c,v 1.127 2020/05/25 19:46:20 ad Exp $	*/
      2    1.1       mrg 
      3   1.34       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.34       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.102     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
     37    1.4       mrg  * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.34       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.34       chs  *
     49   1.34       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.34       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.34       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.1       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_pdaemon.c: the page daemon
     66    1.1       mrg  */
     67   1.42     lukem 
     68   1.42     lukem #include <sys/cdefs.h>
     69  1.127        ad __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.127 2020/05/25 19:46:20 ad Exp $");
     70   1.42     lukem 
     71   1.42     lukem #include "opt_uvmhist.h"
     72   1.69      yamt #include "opt_readahead.h"
     73    1.1       mrg 
     74  1.125        ad #define	__RWLOCK_PRIVATE
     75  1.125        ad 
     76    1.1       mrg #include <sys/param.h>
     77    1.1       mrg #include <sys/proc.h>
     78    1.1       mrg #include <sys/systm.h>
     79    1.1       mrg #include <sys/kernel.h>
     80    1.9        pk #include <sys/pool.h>
     81   1.24       chs #include <sys/buf.h>
     82   1.94        ad #include <sys/module.h>
     83   1.96        ad #include <sys/atomic.h>
     84  1.110       chs #include <sys/kthread.h>
     85    1.1       mrg 
     86    1.1       mrg #include <uvm/uvm.h>
     87   1.77      yamt #include <uvm/uvm_pdpolicy.h>
     88  1.119        ad #include <uvm/uvm_pgflcache.h>
     89    1.1       mrg 
     90  1.107      matt #ifdef UVMHIST
     91  1.107      matt UVMHIST_DEFINE(pdhist);
     92  1.107      matt #endif
     93  1.107      matt 
     94    1.1       mrg /*
     95   1.45       wiz  * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
     96   1.14       chs  * in a pass thru the inactive list when swap is full.  the value should be
     97   1.14       chs  * "small"... if it's too large we'll cycle the active pages thru the inactive
     98   1.14       chs  * queue too quickly to for them to be referenced and avoid being freed.
     99   1.14       chs  */
    100   1.14       chs 
    101   1.89        ad #define	UVMPD_NUMDIRTYREACTS	16
    102   1.14       chs 
    103  1.113        ad #define	UVMPD_NUMTRYLOCKOWNER	128
    104   1.14       chs 
    105   1.14       chs /*
    106    1.1       mrg  * local prototypes
    107    1.1       mrg  */
    108    1.1       mrg 
    109   1.65   thorpej static void	uvmpd_scan(void);
    110   1.77      yamt static void	uvmpd_scan_queue(void);
    111   1.65   thorpej static void	uvmpd_tune(void);
    112  1.110       chs static void	uvmpd_pool_drain_thread(void *);
    113  1.110       chs static void	uvmpd_pool_drain_wakeup(void);
    114    1.1       mrg 
    115  1.101     pooka static unsigned int uvm_pagedaemon_waiters;
    116   1.89        ad 
    117  1.110       chs /* State for the pool drainer thread */
    118  1.117        ad static kmutex_t uvmpd_lock __cacheline_aligned;
    119  1.110       chs static kcondvar_t uvmpd_pool_drain_cv;
    120  1.110       chs static bool uvmpd_pool_drain_run = false;
    121  1.110       chs 
    122    1.1       mrg /*
    123   1.61       chs  * XXX hack to avoid hangs when large processes fork.
    124   1.61       chs  */
    125   1.96        ad u_int uvm_extrapages;
    126   1.61       chs 
    127   1.61       chs /*
    128    1.1       mrg  * uvm_wait: wait (sleep) for the page daemon to free some pages
    129    1.1       mrg  *
    130    1.1       mrg  * => should be called with all locks released
    131    1.1       mrg  * => should _not_ be called by the page daemon (to avoid deadlock)
    132    1.1       mrg  */
    133    1.1       mrg 
    134   1.19   thorpej void
    135   1.65   thorpej uvm_wait(const char *wmsg)
    136    1.8       mrg {
    137    1.8       mrg 	int timo = 0;
    138   1.89        ad 
    139  1.111       chs 	if (uvm.pagedaemon_lwp == NULL)
    140  1.111       chs 		panic("out of memory before the pagedaemon thread exists");
    141  1.111       chs 
    142  1.117        ad 	mutex_spin_enter(&uvmpd_lock);
    143    1.1       mrg 
    144    1.8       mrg 	/*
    145    1.8       mrg 	 * check for page daemon going to sleep (waiting for itself)
    146    1.8       mrg 	 */
    147    1.1       mrg 
    148   1.86        ad 	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
    149    1.8       mrg 		/*
    150    1.8       mrg 		 * now we have a problem: the pagedaemon wants to go to
    151    1.8       mrg 		 * sleep until it frees more memory.   but how can it
    152    1.8       mrg 		 * free more memory if it is asleep?  that is a deadlock.
    153    1.8       mrg 		 * we have two options:
    154    1.8       mrg 		 *  [1] panic now
    155    1.8       mrg 		 *  [2] put a timeout on the sleep, thus causing the
    156    1.8       mrg 		 *      pagedaemon to only pause (rather than sleep forever)
    157    1.8       mrg 		 *
    158    1.8       mrg 		 * note that option [2] will only help us if we get lucky
    159    1.8       mrg 		 * and some other process on the system breaks the deadlock
    160    1.8       mrg 		 * by exiting or freeing memory (thus allowing the pagedaemon
    161    1.8       mrg 		 * to continue).  for now we panic if DEBUG is defined,
    162    1.8       mrg 		 * otherwise we hope for the best with option [2] (better
    163    1.8       mrg 		 * yet, this should never happen in the first place!).
    164    1.8       mrg 		 */
    165    1.1       mrg 
    166    1.8       mrg 		printf("pagedaemon: deadlock detected!\n");
    167    1.8       mrg 		timo = hz >> 3;		/* set timeout */
    168    1.1       mrg #if defined(DEBUG)
    169    1.8       mrg 		/* DEBUG: panic so we can debug it */
    170    1.8       mrg 		panic("pagedaemon deadlock");
    171    1.1       mrg #endif
    172    1.8       mrg 	}
    173    1.1       mrg 
    174   1.89        ad 	uvm_pagedaemon_waiters++;
    175   1.17   thorpej 	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
    176  1.117        ad 	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
    177    1.1       mrg }
    178    1.1       mrg 
    179   1.77      yamt /*
    180   1.77      yamt  * uvm_kick_pdaemon: perform checks to determine if we need to
    181   1.77      yamt  * give the pagedaemon a nudge, and do so if necessary.
    182   1.77      yamt  */
    183   1.77      yamt 
    184   1.77      yamt void
    185   1.77      yamt uvm_kick_pdaemon(void)
    186   1.77      yamt {
    187  1.121        ad 	int fpages = uvm_availmem();
    188   1.77      yamt 
    189  1.117        ad 	if (fpages + uvmexp.paging < uvmexp.freemin ||
    190  1.117        ad 	    (fpages + uvmexp.paging < uvmexp.freetarg &&
    191  1.105      para 	     uvmpdpol_needsscan_p()) ||
    192  1.105      para 	     uvm_km_va_starved_p()) {
    193  1.117        ad 	     	mutex_spin_enter(&uvmpd_lock);
    194   1.77      yamt 		wakeup(&uvm.pagedaemon);
    195  1.117        ad 	     	mutex_spin_exit(&uvmpd_lock);
    196   1.77      yamt 	}
    197   1.77      yamt }
    198    1.1       mrg 
    199    1.1       mrg /*
    200    1.1       mrg  * uvmpd_tune: tune paging parameters
    201    1.1       mrg  *
    202    1.1       mrg  * => called when ever memory is added (or removed?) to the system
    203    1.1       mrg  */
    204    1.1       mrg 
    205   1.65   thorpej static void
    206   1.37       chs uvmpd_tune(void)
    207    1.8       mrg {
    208   1.95        ad 	int val;
    209   1.95        ad 
    210    1.8       mrg 	UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist);
    211    1.1       mrg 
    212   1.93        ad 	/*
    213   1.93        ad 	 * try to keep 0.5% of available RAM free, but limit to between
    214   1.93        ad 	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
    215   1.93        ad 	 */
    216   1.95        ad 	val = uvmexp.npages / 200;
    217   1.95        ad 	val = MAX(val, (128*1024) >> PAGE_SHIFT);
    218   1.95        ad 	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
    219   1.95        ad 	val *= ncpu;
    220   1.23     bjh21 
    221   1.23     bjh21 	/* Make sure there's always a user page free. */
    222   1.95        ad 	if (val < uvmexp.reserve_kernel + 1)
    223   1.95        ad 		val = uvmexp.reserve_kernel + 1;
    224   1.95        ad 	uvmexp.freemin = val;
    225   1.95        ad 
    226   1.96        ad 	/* Calculate free target. */
    227   1.95        ad 	val = (uvmexp.freemin * 4) / 3;
    228   1.95        ad 	if (val <= uvmexp.freemin)
    229   1.95        ad 		val = uvmexp.freemin + 1;
    230   1.96        ad 	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
    231   1.61       chs 
    232    1.8       mrg 	uvmexp.wiredmax = uvmexp.npages / 3;
    233  1.109  pgoyette 	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
    234    1.1       mrg 	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
    235    1.1       mrg }
    236    1.1       mrg 
    237    1.1       mrg /*
    238    1.1       mrg  * uvm_pageout: the main loop for the pagedaemon
    239    1.1       mrg  */
    240    1.1       mrg 
    241    1.8       mrg void
    242   1.80      yamt uvm_pageout(void *arg)
    243    1.8       mrg {
    244  1.110       chs 	int npages = 0;
    245   1.61       chs 	int extrapages = 0;
    246  1.117        ad 	int fpages;
    247   1.98      haad 
    248    1.8       mrg 	UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist);
    249   1.24       chs 
    250    1.8       mrg 	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
    251    1.8       mrg 
    252  1.117        ad 	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
    253  1.110       chs 	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
    254  1.110       chs 
    255  1.110       chs 	/* Create the pool drainer kernel thread. */
    256  1.110       chs 	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
    257  1.110       chs 	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
    258  1.110       chs 		panic("fork pooldrain");
    259  1.110       chs 
    260    1.8       mrg 	/*
    261    1.8       mrg 	 * ensure correct priority and set paging parameters...
    262    1.8       mrg 	 */
    263    1.8       mrg 
    264   1.86        ad 	uvm.pagedaemon_lwp = curlwp;
    265    1.8       mrg 	npages = uvmexp.npages;
    266    1.8       mrg 	uvmpd_tune();
    267    1.8       mrg 
    268    1.8       mrg 	/*
    269    1.8       mrg 	 * main loop
    270    1.8       mrg 	 */
    271   1.24       chs 
    272   1.24       chs 	for (;;) {
    273  1.105      para 		bool needsscan, needsfree, kmem_va_starved;
    274  1.105      para 
    275  1.105      para 		kmem_va_starved = uvm_km_va_starved_p();
    276   1.24       chs 
    277  1.117        ad 		mutex_spin_enter(&uvmpd_lock);
    278  1.105      para 		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
    279  1.105      para 		    !kmem_va_starved) {
    280   1.89        ad 			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
    281   1.89        ad 			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
    282  1.117        ad 			    &uvmpd_lock, false, "pgdaemon", 0);
    283   1.89        ad 			uvmexp.pdwoke++;
    284   1.89        ad 			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
    285   1.89        ad 		} else {
    286  1.117        ad 			mutex_spin_exit(&uvmpd_lock);
    287   1.89        ad 		}
    288   1.24       chs 
    289    1.8       mrg 		/*
    290  1.113        ad 		 * now recompute inactive count
    291    1.8       mrg 		 */
    292    1.8       mrg 
    293   1.61       chs 		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
    294   1.24       chs 			npages = uvmexp.npages;
    295   1.61       chs 			extrapages = uvm_extrapages;
    296   1.24       chs 			uvmpd_tune();
    297   1.24       chs 		}
    298   1.24       chs 
    299   1.77      yamt 		uvmpdpol_tune();
    300   1.24       chs 
    301   1.60     enami 		/*
    302   1.60     enami 		 * Estimate a hint.  Note that bufmem are returned to
    303   1.60     enami 		 * system only when entire pool page is empty.
    304   1.60     enami 		 */
    305  1.121        ad 		fpages = uvm_availmem();
    306  1.109  pgoyette 		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
    307  1.117        ad 		    fpages, uvmexp.freetarg, 0,0);
    308    1.8       mrg 
    309  1.117        ad 		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
    310   1.93        ad 		needsscan = needsfree || uvmpdpol_needsscan_p();
    311   1.89        ad 
    312    1.8       mrg 		/*
    313   1.24       chs 		 * scan if needed
    314    1.8       mrg 		 */
    315   1.97        ad 		if (needsscan) {
    316   1.24       chs 			uvmpd_scan();
    317   1.97        ad 		}
    318    1.8       mrg 
    319    1.8       mrg 		/*
    320   1.24       chs 		 * if there's any free memory to be had,
    321   1.24       chs 		 * wake up any waiters.
    322    1.8       mrg 		 */
    323  1.121        ad 		if (uvm_availmem() > uvmexp.reserve_kernel ||
    324  1.121        ad 		    uvmexp.paging == 0) {
    325  1.117        ad 			mutex_spin_enter(&uvmpd_lock);
    326   1.24       chs 			wakeup(&uvmexp.free);
    327   1.89        ad 			uvm_pagedaemon_waiters = 0;
    328  1.117        ad 			mutex_spin_exit(&uvmpd_lock);
    329    1.8       mrg 		}
    330    1.1       mrg 
    331    1.8       mrg 		/*
    332  1.113        ad 		 * scan done.  if we don't need free memory, we're done.
    333   1.93        ad 		 */
    334   1.93        ad 
    335  1.105      para 		if (!needsfree && !kmem_va_starved)
    336   1.93        ad 			continue;
    337   1.93        ad 
    338   1.93        ad 		/*
    339  1.110       chs 		 * kick the pool drainer thread.
    340   1.38       chs 		 */
    341   1.57  jdolecek 
    342  1.110       chs 		uvmpd_pool_drain_wakeup();
    343   1.24       chs 	}
    344   1.24       chs 	/*NOTREACHED*/
    345   1.24       chs }
    346   1.24       chs 
    347   1.89        ad void
    348   1.89        ad uvm_pageout_start(int npages)
    349   1.89        ad {
    350   1.89        ad 
    351  1.113        ad 	atomic_add_int(&uvmexp.paging, npages);
    352   1.89        ad }
    353   1.89        ad 
    354   1.89        ad void
    355   1.89        ad uvm_pageout_done(int npages)
    356   1.89        ad {
    357   1.89        ad 
    358  1.127        ad 	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
    359  1.127        ad 
    360  1.127        ad 	if (npages == 0) {
    361  1.127        ad 		return;
    362  1.127        ad 	}
    363  1.127        ad 
    364  1.113        ad 	atomic_add_int(&uvmexp.paging, -npages);
    365   1.89        ad 
    366   1.89        ad 	/*
    367   1.89        ad 	 * wake up either of pagedaemon or LWPs waiting for it.
    368   1.89        ad 	 */
    369   1.89        ad 
    370  1.117        ad 	mutex_spin_enter(&uvmpd_lock);
    371  1.121        ad 	if (uvm_availmem() <= uvmexp.reserve_kernel) {
    372   1.81      yamt 		wakeup(&uvm.pagedaemon);
    373  1.117        ad 	} else if (uvm_pagedaemon_waiters != 0) {
    374   1.81      yamt 		wakeup(&uvmexp.free);
    375   1.89        ad 		uvm_pagedaemon_waiters = 0;
    376    1.8       mrg 	}
    377  1.117        ad 	mutex_spin_exit(&uvmpd_lock);
    378    1.1       mrg }
    379    1.1       mrg 
    380   1.76      yamt /*
    381   1.76      yamt  * uvmpd_trylockowner: trylock the page's owner.
    382   1.76      yamt  *
    383  1.113        ad  * => called with page interlock held.
    384   1.76      yamt  * => resolve orphaned O->A loaned page.
    385   1.89        ad  * => return the locked mutex on success.  otherwise, return NULL.
    386   1.76      yamt  */
    387   1.76      yamt 
    388  1.125        ad krwlock_t *
    389   1.76      yamt uvmpd_trylockowner(struct vm_page *pg)
    390   1.76      yamt {
    391   1.76      yamt 	struct uvm_object *uobj = pg->uobject;
    392  1.113        ad 	struct vm_anon *anon = pg->uanon;
    393  1.113        ad 	int tries, count;
    394  1.113        ad 	bool running;
    395  1.125        ad 	krwlock_t *slock;
    396   1.89        ad 
    397  1.113        ad 	KASSERT(mutex_owned(&pg->interlock));
    398   1.76      yamt 
    399   1.76      yamt 	if (uobj != NULL) {
    400  1.103     rmind 		slock = uobj->vmobjlock;
    401  1.113        ad 		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
    402  1.113        ad 	} else if (anon != NULL) {
    403  1.113        ad 		slock = anon->an_lock;
    404  1.113        ad 		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
    405   1.76      yamt 	} else {
    406  1.113        ad 		/* Page may be in state of flux - ignore. */
    407  1.113        ad 		mutex_exit(&pg->interlock);
    408  1.113        ad 		return NULL;
    409   1.76      yamt 	}
    410   1.76      yamt 
    411  1.113        ad 	/*
    412  1.113        ad 	 * Now try to lock the objects.  We'll try hard, but don't really
    413  1.113        ad 	 * plan on spending more than a millisecond or so here.
    414  1.113        ad 	 */
    415  1.113        ad 	tries = (curlwp == uvm.pagedaemon_lwp ? UVMPD_NUMTRYLOCKOWNER : 1);
    416  1.113        ad 	for (;;) {
    417  1.125        ad 		if (rw_tryenter(slock, RW_WRITER)) {
    418  1.113        ad 			if (uobj == NULL) {
    419  1.113        ad 				/*
    420  1.113        ad 				 * set PG_ANON if it isn't set already.
    421  1.113        ad 				 */
    422  1.113        ad 				if ((pg->flags & PG_ANON) == 0) {
    423  1.113        ad 					KASSERT(pg->loan_count > 0);
    424  1.113        ad 					pg->loan_count--;
    425  1.113        ad 					pg->flags |= PG_ANON;
    426  1.113        ad 					/* anon now owns it */
    427  1.113        ad 				}
    428  1.113        ad 			}
    429  1.113        ad 			mutex_exit(&pg->interlock);
    430  1.113        ad 			return slock;
    431  1.113        ad 		}
    432  1.125        ad 		running = rw_owner_running(slock);
    433  1.113        ad 		if (!running || --tries <= 0) {
    434  1.113        ad 			break;
    435  1.113        ad 		}
    436  1.113        ad 		count = SPINLOCK_BACKOFF_MAX;
    437  1.113        ad 		SPINLOCK_BACKOFF(count);
    438   1.76      yamt 	}
    439   1.76      yamt 
    440  1.113        ad 	/*
    441  1.113        ad 	 * We didn't get the lock; chances are the very next page on the
    442  1.113        ad 	 * queue also has the same lock, so if the lock owner is not running
    443  1.113        ad 	 * take a breather and allow them to make progress.  There could be
    444  1.113        ad 	 * only 1 CPU in the system, or the pagedaemon could have preempted
    445  1.113        ad 	 * the owner in kernel, or any number of other things could be going
    446  1.113        ad 	 * on.
    447  1.113        ad 	 */
    448  1.113        ad 	mutex_exit(&pg->interlock);
    449  1.113        ad 	if (curlwp == uvm.pagedaemon_lwp) {
    450  1.113        ad 		if (!running) {
    451  1.113        ad 			(void)kpause("pdpglock", false, 1, NULL);
    452   1.76      yamt 		}
    453  1.113        ad 		uvmexp.pdbusy++;
    454   1.76      yamt 	}
    455  1.113        ad 	return NULL;
    456   1.76      yamt }
    457   1.76      yamt 
    458   1.73      yamt #if defined(VMSWAP)
    459   1.73      yamt struct swapcluster {
    460   1.73      yamt 	int swc_slot;
    461   1.73      yamt 	int swc_nallocated;
    462   1.73      yamt 	int swc_nused;
    463   1.75      yamt 	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
    464   1.73      yamt };
    465   1.73      yamt 
    466   1.73      yamt static void
    467   1.73      yamt swapcluster_init(struct swapcluster *swc)
    468   1.73      yamt {
    469   1.73      yamt 
    470   1.73      yamt 	swc->swc_slot = 0;
    471   1.89        ad 	swc->swc_nused = 0;
    472   1.73      yamt }
    473   1.73      yamt 
    474   1.73      yamt static int
    475   1.73      yamt swapcluster_allocslots(struct swapcluster *swc)
    476   1.73      yamt {
    477   1.73      yamt 	int slot;
    478   1.73      yamt 	int npages;
    479   1.73      yamt 
    480   1.73      yamt 	if (swc->swc_slot != 0) {
    481   1.73      yamt 		return 0;
    482   1.73      yamt 	}
    483   1.73      yamt 
    484   1.73      yamt 	/* Even with strange MAXPHYS, the shift
    485   1.73      yamt 	   implicitly rounds down to a page. */
    486   1.73      yamt 	npages = MAXPHYS >> PAGE_SHIFT;
    487   1.84   thorpej 	slot = uvm_swap_alloc(&npages, true);
    488   1.73      yamt 	if (slot == 0) {
    489   1.73      yamt 		return ENOMEM;
    490   1.73      yamt 	}
    491   1.73      yamt 	swc->swc_slot = slot;
    492   1.73      yamt 	swc->swc_nallocated = npages;
    493   1.73      yamt 	swc->swc_nused = 0;
    494   1.73      yamt 
    495   1.73      yamt 	return 0;
    496   1.73      yamt }
    497   1.73      yamt 
    498   1.73      yamt static int
    499   1.73      yamt swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
    500   1.73      yamt {
    501   1.73      yamt 	int slot;
    502   1.73      yamt 	struct uvm_object *uobj;
    503   1.73      yamt 
    504   1.73      yamt 	KASSERT(swc->swc_slot != 0);
    505   1.73      yamt 	KASSERT(swc->swc_nused < swc->swc_nallocated);
    506  1.113        ad 	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
    507   1.73      yamt 
    508   1.73      yamt 	slot = swc->swc_slot + swc->swc_nused;
    509   1.73      yamt 	uobj = pg->uobject;
    510   1.73      yamt 	if (uobj == NULL) {
    511  1.125        ad 		KASSERT(rw_write_held(pg->uanon->an_lock));
    512   1.73      yamt 		pg->uanon->an_swslot = slot;
    513   1.73      yamt 	} else {
    514   1.73      yamt 		int result;
    515   1.73      yamt 
    516  1.125        ad 		KASSERT(rw_write_held(uobj->vmobjlock));
    517   1.73      yamt 		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
    518   1.73      yamt 		if (result == -1) {
    519   1.73      yamt 			return ENOMEM;
    520   1.73      yamt 		}
    521   1.73      yamt 	}
    522   1.73      yamt 	swc->swc_pages[swc->swc_nused] = pg;
    523   1.73      yamt 	swc->swc_nused++;
    524   1.73      yamt 
    525   1.73      yamt 	return 0;
    526   1.73      yamt }
    527   1.73      yamt 
    528   1.73      yamt static void
    529   1.83   thorpej swapcluster_flush(struct swapcluster *swc, bool now)
    530   1.73      yamt {
    531   1.73      yamt 	int slot;
    532   1.73      yamt 	int nused;
    533   1.73      yamt 	int nallocated;
    534  1.108    martin 	int error __diagused;
    535   1.73      yamt 
    536   1.73      yamt 	if (swc->swc_slot == 0) {
    537   1.73      yamt 		return;
    538   1.73      yamt 	}
    539   1.73      yamt 	KASSERT(swc->swc_nused <= swc->swc_nallocated);
    540   1.73      yamt 
    541   1.73      yamt 	slot = swc->swc_slot;
    542   1.73      yamt 	nused = swc->swc_nused;
    543   1.73      yamt 	nallocated = swc->swc_nallocated;
    544   1.73      yamt 
    545   1.73      yamt 	/*
    546   1.73      yamt 	 * if this is the final pageout we could have a few
    547   1.73      yamt 	 * unused swap blocks.  if so, free them now.
    548   1.73      yamt 	 */
    549   1.73      yamt 
    550   1.73      yamt 	if (nused < nallocated) {
    551   1.73      yamt 		if (!now) {
    552   1.73      yamt 			return;
    553   1.73      yamt 		}
    554   1.73      yamt 		uvm_swap_free(slot + nused, nallocated - nused);
    555   1.73      yamt 	}
    556   1.73      yamt 
    557   1.73      yamt 	/*
    558   1.73      yamt 	 * now start the pageout.
    559   1.73      yamt 	 */
    560   1.73      yamt 
    561   1.91      yamt 	if (nused > 0) {
    562   1.91      yamt 		uvmexp.pdpageouts++;
    563   1.91      yamt 		uvm_pageout_start(nused);
    564   1.91      yamt 		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
    565   1.92      yamt 		KASSERT(error == 0 || error == ENOMEM);
    566   1.91      yamt 	}
    567   1.73      yamt 
    568   1.73      yamt 	/*
    569   1.73      yamt 	 * zero swslot to indicate that we are
    570   1.73      yamt 	 * no longer building a swap-backed cluster.
    571   1.73      yamt 	 */
    572   1.73      yamt 
    573   1.73      yamt 	swc->swc_slot = 0;
    574   1.89        ad 	swc->swc_nused = 0;
    575   1.89        ad }
    576   1.89        ad 
    577   1.89        ad static int
    578   1.89        ad swapcluster_nused(struct swapcluster *swc)
    579   1.89        ad {
    580   1.89        ad 
    581   1.89        ad 	return swc->swc_nused;
    582   1.73      yamt }
    583   1.77      yamt 
    584   1.77      yamt /*
    585   1.77      yamt  * uvmpd_dropswap: free any swap allocated to this page.
    586   1.77      yamt  *
    587   1.77      yamt  * => called with owner locked.
    588   1.84   thorpej  * => return true if a page had an associated slot.
    589   1.77      yamt  */
    590   1.77      yamt 
    591  1.119        ad bool
    592   1.77      yamt uvmpd_dropswap(struct vm_page *pg)
    593   1.77      yamt {
    594   1.84   thorpej 	bool result = false;
    595   1.77      yamt 	struct vm_anon *anon = pg->uanon;
    596   1.77      yamt 
    597  1.113        ad 	if ((pg->flags & PG_ANON) && anon->an_swslot) {
    598   1.77      yamt 		uvm_swap_free(anon->an_swslot, 1);
    599   1.77      yamt 		anon->an_swslot = 0;
    600  1.123        ad 		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    601   1.84   thorpej 		result = true;
    602  1.113        ad 	} else if (pg->flags & PG_AOBJ) {
    603   1.77      yamt 		int slot = uao_set_swslot(pg->uobject,
    604   1.77      yamt 		    pg->offset >> PAGE_SHIFT, 0);
    605   1.77      yamt 		if (slot) {
    606   1.77      yamt 			uvm_swap_free(slot, 1);
    607  1.123        ad 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    608   1.84   thorpej 			result = true;
    609   1.77      yamt 		}
    610   1.77      yamt 	}
    611   1.77      yamt 
    612   1.77      yamt 	return result;
    613   1.77      yamt }
    614   1.77      yamt 
    615   1.73      yamt #endif /* defined(VMSWAP) */
    616   1.73      yamt 
    617    1.1       mrg /*
    618   1.77      yamt  * uvmpd_scan_queue: scan an replace candidate list for pages
    619   1.77      yamt  * to clean or free.
    620    1.1       mrg  *
    621    1.1       mrg  * => we work on meeting our free target by converting inactive pages
    622    1.1       mrg  *    into free pages.
    623    1.1       mrg  * => we handle the building of swap-backed clusters
    624    1.1       mrg  */
    625    1.1       mrg 
    626   1.65   thorpej static void
    627   1.77      yamt uvmpd_scan_queue(void)
    628    1.8       mrg {
    629   1.77      yamt 	struct vm_page *p;
    630    1.8       mrg 	struct uvm_object *uobj;
    631   1.37       chs 	struct vm_anon *anon;
    632   1.68      yamt #if defined(VMSWAP)
    633   1.73      yamt 	struct swapcluster swc;
    634   1.68      yamt #endif /* defined(VMSWAP) */
    635   1.77      yamt 	int dirtyreacts;
    636  1.125        ad 	krwlock_t *slock;
    637   1.77      yamt 	UVMHIST_FUNC("uvmpd_scan_queue"); UVMHIST_CALLED(pdhist);
    638    1.1       mrg 
    639    1.8       mrg 	/*
    640    1.8       mrg 	 * swslot is non-zero if we are building a swap cluster.  we want
    641   1.24       chs 	 * to stay in the loop while we have a page to scan or we have
    642    1.8       mrg 	 * a swap-cluster to build.
    643    1.8       mrg 	 */
    644   1.24       chs 
    645   1.73      yamt #if defined(VMSWAP)
    646   1.73      yamt 	swapcluster_init(&swc);
    647   1.73      yamt #endif /* defined(VMSWAP) */
    648   1.77      yamt 
    649   1.14       chs 	dirtyreacts = 0;
    650   1.77      yamt 	uvmpdpol_scaninit();
    651   1.43       chs 
    652   1.77      yamt 	while (/* CONSTCOND */ 1) {
    653   1.24       chs 
    654   1.73      yamt 		/*
    655   1.73      yamt 		 * see if we've met the free target.
    656   1.73      yamt 		 */
    657   1.73      yamt 
    658  1.121        ad 		if (uvm_availmem() + uvmexp.paging
    659   1.89        ad #if defined(VMSWAP)
    660   1.89        ad 		    + swapcluster_nused(&swc)
    661   1.89        ad #endif /* defined(VMSWAP) */
    662   1.89        ad 		    >= uvmexp.freetarg << 2 ||
    663   1.73      yamt 		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
    664   1.73      yamt 			UVMHIST_LOG(pdhist,"  met free target: "
    665   1.73      yamt 				    "exit loop", 0, 0, 0, 0);
    666   1.73      yamt 			break;
    667   1.73      yamt 		}
    668   1.24       chs 
    669   1.73      yamt 		/*
    670  1.113        ad 		 * first we have the pdpolicy select a victim page
    671  1.113        ad 		 * and attempt to lock the object that the page
    672   1.73      yamt 		 * belongs to.  if our attempt fails we skip on to
    673   1.73      yamt 		 * the next page (no harm done).  it is important to
    674   1.73      yamt 		 * "try" locking the object as we are locking in the
    675   1.73      yamt 		 * wrong order (pageq -> object) and we don't want to
    676   1.73      yamt 		 * deadlock.
    677   1.73      yamt 		 *
    678   1.73      yamt 		 * the only time we expect to see an ownerless page
    679  1.113        ad 		 * (i.e. a page with no uobject and !PG_ANON) is if an
    680   1.73      yamt 		 * anon has loaned a page from a uvm_object and the
    681   1.73      yamt 		 * uvm_object has dropped the ownership.  in that
    682   1.73      yamt 		 * case, the anon can "take over" the loaned page
    683   1.73      yamt 		 * and make it its own.
    684   1.73      yamt 		 */
    685   1.30       chs 
    686  1.113        ad 		p = uvmpdpol_selectvictim(&slock);
    687  1.113        ad 		if (p == NULL) {
    688  1.113        ad 			break;
    689   1.76      yamt 		}
    690  1.113        ad 		KASSERT(uvmpdpol_pageisqueued_p(p));
    691  1.125        ad 		KASSERT(uvm_page_owner_locked_p(p, true));
    692  1.113        ad 		KASSERT(p->wire_count == 0);
    693  1.113        ad 
    694  1.113        ad 		/*
    695  1.113        ad 		 * we are below target and have a new page to consider.
    696  1.113        ad 		 */
    697  1.113        ad 
    698  1.113        ad 		anon = p->uanon;
    699  1.113        ad 		uobj = p->uobject;
    700  1.113        ad 
    701   1.76      yamt 		if (p->flags & PG_BUSY) {
    702  1.125        ad 			rw_exit(slock);
    703   1.76      yamt 			uvmexp.pdbusy++;
    704   1.76      yamt 			continue;
    705   1.76      yamt 		}
    706   1.76      yamt 
    707   1.73      yamt 		/* does the page belong to an object? */
    708   1.73      yamt 		if (uobj != NULL) {
    709   1.73      yamt 			uvmexp.pdobscan++;
    710   1.73      yamt 		} else {
    711   1.73      yamt #if defined(VMSWAP)
    712   1.73      yamt 			KASSERT(anon != NULL);
    713   1.73      yamt 			uvmexp.pdanscan++;
    714   1.68      yamt #else /* defined(VMSWAP) */
    715   1.73      yamt 			panic("%s: anon", __func__);
    716   1.68      yamt #endif /* defined(VMSWAP) */
    717   1.73      yamt 		}
    718    1.8       mrg 
    719   1.37       chs 
    720   1.73      yamt 		/*
    721  1.113        ad 		 * we now have the object locked.
    722   1.73      yamt 		 * if the page is not swap-backed, call the object's
    723   1.73      yamt 		 * pager to flush and free the page.
    724   1.73      yamt 		 */
    725   1.37       chs 
    726   1.69      yamt #if defined(READAHEAD_STATS)
    727  1.113        ad 		if ((p->flags & PG_READAHEAD) != 0) {
    728  1.113        ad 			p->flags &= ~PG_READAHEAD;
    729   1.73      yamt 			uvm_ra_miss.ev_count++;
    730   1.73      yamt 		}
    731   1.69      yamt #endif /* defined(READAHEAD_STATS) */
    732   1.69      yamt 
    733  1.113        ad 		if ((p->flags & PG_SWAPBACKED) == 0) {
    734   1.82       alc 			KASSERT(uobj != NULL);
    735   1.73      yamt 			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
    736   1.73      yamt 			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
    737   1.73      yamt 			continue;
    738   1.73      yamt 		}
    739   1.37       chs 
    740   1.73      yamt 		/*
    741   1.73      yamt 		 * the page is swap-backed.  remove all the permissions
    742   1.73      yamt 		 * from the page so we can sync the modified info
    743   1.73      yamt 		 * without any race conditions.  if the page is clean
    744   1.73      yamt 		 * we can free it now and continue.
    745   1.73      yamt 		 */
    746    1.8       mrg 
    747   1.73      yamt 		pmap_page_protect(p, VM_PROT_NONE);
    748  1.123        ad 		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
    749  1.123        ad 			if (pmap_clear_modify(p)) {
    750  1.123        ad 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
    751  1.123        ad 			} else {
    752  1.123        ad 				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
    753  1.123        ad 			}
    754   1.73      yamt 		}
    755  1.123        ad 		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
    756   1.73      yamt 			int slot;
    757   1.73      yamt 			int pageidx;
    758   1.73      yamt 
    759   1.73      yamt 			pageidx = p->offset >> PAGE_SHIFT;
    760   1.73      yamt 			uvm_pagefree(p);
    761  1.113        ad 			atomic_inc_uint(&uvmexp.pdfreed);
    762    1.8       mrg 
    763    1.8       mrg 			/*
    764   1.73      yamt 			 * for anons, we need to remove the page
    765   1.73      yamt 			 * from the anon ourselves.  for aobjs,
    766   1.73      yamt 			 * pagefree did that for us.
    767    1.8       mrg 			 */
    768   1.24       chs 
    769   1.73      yamt 			if (anon) {
    770   1.73      yamt 				KASSERT(anon->an_swslot != 0);
    771   1.73      yamt 				anon->an_page = NULL;
    772   1.73      yamt 				slot = anon->an_swslot;
    773   1.73      yamt 			} else {
    774   1.73      yamt 				slot = uao_find_swslot(uobj, pageidx);
    775    1.8       mrg 			}
    776   1.73      yamt 			if (slot > 0) {
    777   1.73      yamt 				/* this page is now only in swap. */
    778   1.73      yamt 				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
    779  1.112        ad 				atomic_inc_uint(&uvmexp.swpgonly);
    780   1.37       chs 			}
    781  1.125        ad 			rw_exit(slock);
    782   1.73      yamt 			continue;
    783   1.73      yamt 		}
    784   1.37       chs 
    785   1.77      yamt #if defined(VMSWAP)
    786   1.73      yamt 		/*
    787   1.73      yamt 		 * this page is dirty, skip it if we'll have met our
    788   1.73      yamt 		 * free target when all the current pageouts complete.
    789   1.73      yamt 		 */
    790   1.24       chs 
    791  1.121        ad 		if (uvm_availmem() + uvmexp.paging > uvmexp.freetarg << 2) {
    792  1.125        ad 			rw_exit(slock);
    793   1.73      yamt 			continue;
    794   1.73      yamt 		}
    795   1.14       chs 
    796   1.73      yamt 		/*
    797   1.73      yamt 		 * free any swap space allocated to the page since
    798   1.73      yamt 		 * we'll have to write it again with its new data.
    799   1.73      yamt 		 */
    800   1.24       chs 
    801   1.77      yamt 		uvmpd_dropswap(p);
    802   1.14       chs 
    803   1.73      yamt 		/*
    804   1.97        ad 		 * start new swap pageout cluster (if necessary).
    805   1.97        ad 		 *
    806   1.97        ad 		 * if swap is full reactivate this page so that
    807   1.97        ad 		 * we eventually cycle all pages through the
    808   1.97        ad 		 * inactive queue.
    809   1.73      yamt 		 */
    810   1.68      yamt 
    811   1.97        ad 		if (swapcluster_allocslots(&swc)) {
    812   1.73      yamt 			dirtyreacts++;
    813  1.122        ad 			uvm_pagelock(p);
    814   1.73      yamt 			uvm_pageactivate(p);
    815  1.122        ad 			uvm_pageunlock(p);
    816  1.125        ad 			rw_exit(slock);
    817   1.73      yamt 			continue;
    818    1.8       mrg 		}
    819    1.8       mrg 
    820    1.8       mrg 		/*
    821   1.73      yamt 		 * at this point, we're definitely going reuse this
    822   1.73      yamt 		 * page.  mark the page busy and delayed-free.
    823   1.73      yamt 		 * we should remove the page from the page queues
    824   1.73      yamt 		 * so we don't ever look at it again.
    825   1.73      yamt 		 * adjust counters and such.
    826    1.8       mrg 		 */
    827    1.8       mrg 
    828   1.73      yamt 		p->flags |= PG_BUSY;
    829   1.77      yamt 		UVM_PAGE_OWN(p, "scan_queue");
    830  1.113        ad 		p->flags |= PG_PAGEOUT;
    831  1.113        ad 		uvmexp.pgswapout++;
    832   1.73      yamt 
    833  1.122        ad 		uvm_pagelock(p);
    834   1.73      yamt 		uvm_pagedequeue(p);
    835  1.122        ad 		uvm_pageunlock(p);
    836   1.73      yamt 
    837    1.8       mrg 		/*
    838   1.73      yamt 		 * add the new page to the cluster.
    839    1.8       mrg 		 */
    840    1.8       mrg 
    841   1.73      yamt 		if (swapcluster_add(&swc, p)) {
    842   1.73      yamt 			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
    843   1.73      yamt 			UVM_PAGE_OWN(p, NULL);
    844   1.77      yamt 			dirtyreacts++;
    845  1.122        ad 			uvm_pagelock(p);
    846   1.73      yamt 			uvm_pageactivate(p);
    847  1.122        ad 			uvm_pageunlock(p);
    848  1.125        ad 			rw_exit(slock);
    849   1.73      yamt 			continue;
    850   1.73      yamt 		}
    851  1.125        ad 		rw_exit(slock);
    852   1.73      yamt 
    853  1.115        ad 		swapcluster_flush(&swc, false);
    854  1.115        ad 
    855    1.8       mrg 		/*
    856  1.115        ad 		 * the pageout is in progress.  bump counters and set up
    857   1.31       chs 		 * for the next loop.
    858    1.8       mrg 		 */
    859    1.8       mrg 
    860  1.115        ad 		atomic_inc_uint(&uvmexp.pdpending);
    861   1.77      yamt 
    862   1.77      yamt #else /* defined(VMSWAP) */
    863  1.122        ad 		uvm_pagelock(p);
    864   1.77      yamt 		uvm_pageactivate(p);
    865  1.122        ad 		uvm_pageunlock(p);
    866  1.125        ad 		rw_exit(slock);
    867   1.77      yamt #endif /* defined(VMSWAP) */
    868   1.73      yamt 	}
    869   1.73      yamt 
    870  1.119        ad 	uvmpdpol_scanfini();
    871  1.119        ad 
    872   1.73      yamt #if defined(VMSWAP)
    873   1.84   thorpej 	swapcluster_flush(&swc, true);
    874   1.68      yamt #endif /* defined(VMSWAP) */
    875    1.1       mrg }
    876    1.1       mrg 
    877    1.1       mrg /*
    878    1.1       mrg  * uvmpd_scan: scan the page queues and attempt to meet our targets.
    879    1.1       mrg  */
    880    1.1       mrg 
    881   1.65   thorpej static void
    882   1.37       chs uvmpd_scan(void)
    883    1.1       mrg {
    884  1.117        ad 	int swap_shortage, pages_freed, fpages;
    885    1.8       mrg 	UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist);
    886    1.1       mrg 
    887   1.37       chs 	uvmexp.pdrevs++;
    888    1.1       mrg 
    889    1.8       mrg 	/*
    890   1.93        ad 	 * work on meeting our targets.   first we work on our free target
    891   1.93        ad 	 * by converting inactive pages into free pages.  then we work on
    892   1.93        ad 	 * meeting our inactive target by converting active pages to
    893   1.93        ad 	 * inactive ones.
    894    1.8       mrg 	 */
    895    1.8       mrg 
    896    1.8       mrg 	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
    897    1.8       mrg 
    898   1.14       chs 	pages_freed = uvmexp.pdfreed;
    899   1.77      yamt 	uvmpd_scan_queue();
    900   1.14       chs 	pages_freed = uvmexp.pdfreed - pages_freed;
    901    1.8       mrg 
    902    1.8       mrg 	/*
    903   1.14       chs 	 * detect if we're not going to be able to page anything out
    904   1.14       chs 	 * until we free some swap resources from active pages.
    905   1.14       chs 	 */
    906   1.24       chs 
    907   1.14       chs 	swap_shortage = 0;
    908  1.121        ad 	fpages = uvm_availmem();
    909  1.117        ad 	if (fpages < uvmexp.freetarg &&
    910   1.52        pk 	    uvmexp.swpginuse >= uvmexp.swpgavail &&
    911   1.52        pk 	    !uvm_swapisfull() &&
    912   1.14       chs 	    pages_freed == 0) {
    913  1.117        ad 		swap_shortage = uvmexp.freetarg - fpages;
    914   1.14       chs 	}
    915   1.24       chs 
    916   1.77      yamt 	uvmpdpol_balancequeue(swap_shortage);
    917   1.93        ad 
    918   1.93        ad 	/*
    919   1.94        ad 	 * if still below the minimum target, try unloading kernel
    920   1.94        ad 	 * modules.
    921   1.94        ad 	 */
    922   1.93        ad 
    923  1.121        ad 	if (uvm_availmem() < uvmexp.freemin) {
    924   1.94        ad 		module_thread_kick();
    925   1.93        ad 	}
    926    1.1       mrg }
    927   1.62      yamt 
    928   1.62      yamt /*
    929   1.62      yamt  * uvm_reclaimable: decide whether to wait for pagedaemon.
    930   1.62      yamt  *
    931   1.84   thorpej  * => return true if it seems to be worth to do uvm_wait.
    932   1.62      yamt  *
    933   1.62      yamt  * XXX should be tunable.
    934   1.62      yamt  * XXX should consider pools, etc?
    935   1.62      yamt  */
    936   1.62      yamt 
    937   1.83   thorpej bool
    938   1.62      yamt uvm_reclaimable(void)
    939   1.62      yamt {
    940   1.62      yamt 	int filepages;
    941   1.77      yamt 	int active, inactive;
    942   1.62      yamt 
    943   1.62      yamt 	/*
    944   1.62      yamt 	 * if swap is not full, no problem.
    945   1.62      yamt 	 */
    946   1.62      yamt 
    947   1.62      yamt 	if (!uvm_swapisfull()) {
    948   1.84   thorpej 		return true;
    949   1.62      yamt 	}
    950   1.62      yamt 
    951   1.62      yamt 	/*
    952   1.62      yamt 	 * file-backed pages can be reclaimed even when swap is full.
    953   1.62      yamt 	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
    954   1.62      yamt 	 *
    955   1.62      yamt 	 * XXX assume the worst case, ie. all wired pages are file-backed.
    956   1.63      yamt 	 *
    957   1.63      yamt 	 * XXX should consider about other reclaimable memory.
    958   1.63      yamt 	 * XXX ie. pools, traditional buffer cache.
    959   1.62      yamt 	 */
    960   1.62      yamt 
    961  1.116        ad 	cpu_count_sync_all();
    962  1.116        ad 	filepages = (int)cpu_count_get(CPU_COUNT_FILEPAGES) +
    963  1.116        ad 	    (int)cpu_count_get(CPU_COUNT_EXECPAGES) - uvmexp.wired;
    964   1.77      yamt 	uvm_estimatepageable(&active, &inactive);
    965   1.77      yamt 	if (filepages >= MIN((active + inactive) >> 4,
    966   1.62      yamt 	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
    967   1.84   thorpej 		return true;
    968   1.62      yamt 	}
    969   1.62      yamt 
    970   1.62      yamt 	/*
    971   1.62      yamt 	 * kill the process, fail allocation, etc..
    972   1.62      yamt 	 */
    973   1.62      yamt 
    974   1.84   thorpej 	return false;
    975   1.62      yamt }
    976   1.77      yamt 
    977   1.77      yamt void
    978   1.77      yamt uvm_estimatepageable(int *active, int *inactive)
    979   1.77      yamt {
    980   1.77      yamt 
    981   1.77      yamt 	uvmpdpol_estimatepageable(active, inactive);
    982   1.77      yamt }
    983   1.98      haad 
    984  1.110       chs 
    985  1.110       chs /*
    986  1.110       chs  * Use a separate thread for draining pools.
    987  1.110       chs  * This work can't done from the main pagedaemon thread because
    988  1.110       chs  * some pool allocators need to take vm_map locks.
    989  1.110       chs  */
    990  1.110       chs 
    991  1.110       chs static void
    992  1.110       chs uvmpd_pool_drain_thread(void *arg)
    993  1.110       chs {
    994  1.119        ad 	struct pool *firstpool, *curpool;
    995  1.119        ad 	int bufcnt, lastslept;
    996  1.119        ad 	bool cycled;
    997  1.110       chs 
    998  1.119        ad 	firstpool = NULL;
    999  1.119        ad 	cycled = true;
   1000  1.110       chs 	for (;;) {
   1001  1.119        ad 		/*
   1002  1.119        ad 		 * sleep until awoken by the pagedaemon.
   1003  1.119        ad 		 */
   1004  1.117        ad 		mutex_enter(&uvmpd_lock);
   1005  1.110       chs 		if (!uvmpd_pool_drain_run) {
   1006  1.126      maxv 			lastslept = getticks();
   1007  1.117        ad 			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
   1008  1.126      maxv 			if (getticks() != lastslept) {
   1009  1.119        ad 				cycled = false;
   1010  1.119        ad 				firstpool = NULL;
   1011  1.119        ad 			}
   1012  1.110       chs 		}
   1013  1.110       chs 		uvmpd_pool_drain_run = false;
   1014  1.117        ad 		mutex_exit(&uvmpd_lock);
   1015  1.110       chs 
   1016  1.110       chs 		/*
   1017  1.119        ad 		 * rate limit draining, otherwise in desperate circumstances
   1018  1.119        ad 		 * this can totally saturate the system with xcall activity.
   1019  1.119        ad 		 */
   1020  1.119        ad 		if (cycled) {
   1021  1.119        ad 			kpause("uvmpdlmt", false, 1, NULL);
   1022  1.119        ad 			cycled = false;
   1023  1.119        ad 			firstpool = NULL;
   1024  1.119        ad 		}
   1025  1.119        ad 
   1026  1.119        ad 		/*
   1027  1.119        ad 		 * drain and temporarily disable the freelist cache.
   1028  1.119        ad 		 */
   1029  1.119        ad 		uvm_pgflcache_pause();
   1030  1.119        ad 
   1031  1.119        ad 		/*
   1032  1.110       chs 		 * kill unused metadata buffers.
   1033  1.110       chs 		 */
   1034  1.121        ad 		bufcnt = uvmexp.freetarg - uvm_availmem();
   1035  1.110       chs 		if (bufcnt < 0)
   1036  1.110       chs 			bufcnt = 0;
   1037  1.110       chs 
   1038  1.110       chs 		mutex_enter(&bufcache_lock);
   1039  1.110       chs 		buf_drain(bufcnt << PAGE_SHIFT);
   1040  1.110       chs 		mutex_exit(&bufcache_lock);
   1041  1.110       chs 
   1042  1.110       chs 		/*
   1043  1.119        ad 		 * drain a pool, and then re-enable the freelist cache.
   1044  1.110       chs 		 */
   1045  1.119        ad 		(void)pool_drain(&curpool);
   1046  1.119        ad 		KASSERT(curpool != NULL);
   1047  1.119        ad 		if (firstpool == NULL) {
   1048  1.119        ad 			firstpool = curpool;
   1049  1.119        ad 		} else if (firstpool == curpool) {
   1050  1.119        ad 			cycled = true;
   1051  1.119        ad 		}
   1052  1.119        ad 		uvm_pgflcache_resume();
   1053  1.110       chs 	}
   1054  1.110       chs 	/*NOTREACHED*/
   1055  1.110       chs }
   1056  1.110       chs 
   1057  1.110       chs static void
   1058  1.110       chs uvmpd_pool_drain_wakeup(void)
   1059  1.110       chs {
   1060  1.110       chs 
   1061  1.117        ad 	mutex_enter(&uvmpd_lock);
   1062  1.110       chs 	uvmpd_pool_drain_run = true;
   1063  1.110       chs 	cv_signal(&uvmpd_pool_drain_cv);
   1064  1.117        ad 	mutex_exit(&uvmpd_lock);
   1065  1.110       chs }
   1066